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We discuss the feasibility of measurement-based braiding in semiconductor-superconductor (SM-SC) het-
erostructures in the so-called quasi-Majorana regime—the topologically-trivial regime characterized by robust
zero-bias conductance peaks (ZBCPs) that are due to partially-separated Andreev bound states (ps-ABSs). These
low energy ABSs consist of component Majorana bound states (also called quasi-Majorana modes) that are
spatially separated by a length scale smaller than the length of the system, in contrast with the Majorana
zero modes (MZMs) emerging in the topological regime, which are separated by the length of the wire. In
the quasi-Majorana regime, the ZBCPs appear to be robust to various perturbations as long as the energy
splitting of the ps-ABS is less than the typical width εw of the low-energy conductance peaks (εw ∼ 10–20 μeV).
However, the feasibility of measurement-based braiding depends on a different, much smaller, energy scale
εm ∼ 0.1 μeV. This energy scale is given by the typical fermion parity-dependent ground state energy shift
due to virtual electron transfer between the SM-SC system and a quantum dot used for parity measurements.
In this paper we show that it is possible to prepare the SM-SC system in the quasi-Majorana regime with
energy splittings below the εm threshold, so that measurement-based braiding is possible in principle. However,
despite the apparent robustness of the corresponding ZBCPs, ps-ABSs are in reality topologically unprotected.
Starting with ps-ABSs with energy below εm, we identify the maximum amplitudes of different types of (local)
perturbations that are consistent with perturbation-induced energy splittings not exceeding the εm limit. We argue
that measurements generating perturbations larger than the threshold amplitudes appropriate for εm cannot realize
measurement-based braiding in SM-SC heterostructures in the quasi-Majorana regime. We find that, if possible
at all, quantum computation using measurement-based braiding in the quasi-Majorana regime would be plagued
with errors introduced by the measurement processes themselves, while such errors are significantly less likely
in a scheme involving topological MZMs.
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I. INTRODUCTION

Fault-tolerant quantum computation requires qubits
that are protected against quantum errors. Due to their
non-Abelian topological properties, Majorana zero modes
(MZMs) have been proposed as an ideal platform for realizing
topologically protected qubits [1–3]. Nonlocal encoding of
quantum information using spatially separated MZMs makes
the storing and processing of this information immune
to local perturbations. Spin-orbit coupled semiconductor
nanowires with proximity induced superconductivity were
predicted theoretically to support MZMs in the presence of a
Zeeman field [4–10]. In this platform, MZMs arise as pairs of
zero-energy excitations localized at the opposite ends of the
nanowire. Braiding these MZMs, which realizes the Clifford
gates in a topologically-protected manner [11–13], could be
implemented by tuning gate voltages in a superconducting
nanowire network [11,14–18] or by performing parity
measurements [19–23]. Fueled by this significant potential
advantage over “standard” qubits, tremendous experimental
progress has been made over the past few years in realizing

topological superconductivity and Majorana modes in
one-dimensional SM-SC heterostructures [24–32]. The most
recent significant development involves the observation of
a quantized ZBCP plateau of height 2e2/h̄ in a local charge
tunneling measurement of a single topological nanowire
[32]. However, in other recent theoretical works [33–38]
it has been shown that this type of signature, naturally
associated with topological MZMs, is possible even in a
topologically trivial system due to the presence of so-called
partially-separated Andreev bound states (ps-ABSs) or
quasi-Majoranas [36,37]. Of course, gate-controlled braiding
cannot be implemented using ps-ABSs, which mimic most of
the local phenomenology of topological MZMs, because they
do not obey non-Abelian statistics.

In contrast to gate-controlled braiding, measurement-
based braiding consists of sequences of projective parity
measurements of 2n MZMs (n = 1, 2, . . . ) and has the
significant advantage that it does not involve the actual
physical movement of the Majorana modes [19–23]. In the
measurement-based braiding scheme, quantum information
processing could be realized by joint parity measurement
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of pairs and quartets of MZMs in the Coulomb-blockade
regime. By coupling the (quasi) one-dimensional supercon-
ductors (SCs) hosting the MZMs to probing quantum dots,
the ground state energy of the system is shifted and be-
comes fermion parity dependent, which can be read out by
suitable energy level spectroscopy. Compared to the braiding
schemes based on physically manipulating the Majoranas, the
measurement-based braiding avoids serious engineering chal-
lenges involving fabrication and implementation and reduces
possible thermal errors [39]. In Ref. [37] it has been suggested
that the measurement-based braiding scheme could even be
implemented using quasi-Majorana modes (i.e., ps-ABSs),
by exploiting the fact that the component Majorana bound
states (MBSs) of the ps-ABSs have exponentially different
couplings to the external quantum dot. This is an exciting pos-
sibility that would mark a significant preliminary step toward
the realization of a topological qubit. However, considering
the nontopological nature of the quasi-Majoranas, a detailed
analysis of how sensitive they are to local perturbations that
may be generated during the measurement process is indis-
pensable for considering their usefulness in implementing
measurement-based braiding.

The ability to perform projective parity measurements rests
on the controlled realization of nonlocal couplings to at least
a pair of MZMs [23,40]. In this scheme, a quantum dot
is coupled to multiple MZMs hosted by a SC island with
nonzero charging energy, which suppresses the actual transfer
of electrons between the SC island and the quantum dot (QD).
The virtual transfer of electrons between the island and the dot
introduces an energy shift of the island-QD system, which is
dependent on the fermion parity of the MZMs. By measuring
this ground state energy shift, e.g., via a frequency shift in a
transmon-type measurement, the fermion parity of the MZM
system can be identified. It can be shown that a sequence of
parity measurements of a group of MZMs is equivalent to
an effective braiding operation [21,41]. Thus, the measure-
ment sequence realizes braiding without actually moving the
MZMs. It is important to emphasize that the parity-dependent
energy splittings of the island-QD ground state due to virtual
electron transfer are required to satisfy the readout condi-
tion, i.e., the corresponding frequency shift should fall within
the range of sensitivity of the transmon-type measurements
[40,42–44]. Therefore, the feasibility of measurement-based
braiding through projective parity measurements depends cru-
cially on the robustness of the “intrinsic” energy splittings
associated with the finite MZM overlap, which should not
exceed a certain threshold.

In this paper, we explicitly examine the robustness of the
energy splitting of a Majorana wire in the quasi-Majorana
regime, i.e., when the near-zero energy modes are ps-ABSs
rather than topological MZMs. Here, by ps-ABSs we mean
low energy ABSs emerging in the topologically-trivial regime
and being characterized by component MBSs (i.e., quasi-
Majorana modes) that are spatially separated by a length
scale L∗ � ξ , with ξ being the SC coherence length. By
contrast, topological MZMs are separated by the length of
nanowire L, hence their overlap is exponentially small (i.e.,
of order e−L/ξ ). It has been shown recently that ps-ABSs
are quite generic in SM-SC heterostructures and can pro-
duce ZBCPs in local charge tunneling experiments that are

robust against various local perturbations, giving rise to quan-
tized conductance plateaus similar to those generated by
topological MZMs [33–36]. However, despite the apparent
robustness of the ZBCPs, the ps-ABSs (or quasi-Majoranas)
are not topologically protected. Various local perturbations
may produce ps-ABS energy splittings that are sufficient
to make measurement-based braiding unfeasible, in spite of
these splittings not being observable in tunneling conductance
experiments due to low energy resolution. For instance, any
energy splitting less than εw ∼ 10–20 μeV will be consistent
with the observation of robust ZBCPs but will not neces-
sarily be consistent with measurement-based braiding, which
requires energy splittings less than the typical fermion parity-
dependent energy shift due to the coupling of the SC island
to an external QD, εm ∼ 0.1 μeV. Moreover, even when the
“unperturbed” system is characterized by a quasi-Majorana
splitting below the required threshold, δε < εm, the mea-
surement itself could generate perturbations that enhance the
splitting above the required limit, i.e., the condition δε < εm

could break down during the measurement. In this paper we
explicitly determine the dependence of the quasi-Majorana
splitting on different types of local perturbations, including
changes in the spin-orbit coupling, Zeeman field, and effec-
tive potential. By comparing these results with the response
of topological MZMs to similar perturbations, we show that
the ps-ABSs are extremely sensitive to local perturbations,
particularly those that affect the region where the compo-
nent MBSs overlap. We identify the typical amplitudes of the
perturbations that drive the quasi-Majorana splittings above
the readout condition, making measurement-based braiding
unfeasible.

Note that, although the current state of the experiments
may be consistent with the quasi-Majorana picture, it is hard
to prove definitively that this is indeed the case. However,
it is even harder to prove that the observed features are
associated with topological MZMs. The primary focus of
the present work is not the current experimental situation
or even the theoretical predictions regarding the nature of
the low-energy modes. Instead, assuming that quasi-Majorana
modes can be realized (spontaneously or by design), in
this paper, we address the important theoretical question of
whether or not measurement-based braiding is feasible with
partially-separated quasi-Majorana modes (as suggested in
Ref. [37]). This question is independent of the current experi-
mental status but will be crucially important for the design of
measurement-based braiding protocols with future Majorana
qubits, even as an intermediate step, if the efforts to realize
topological Majorana zero modes remain unsuccessful for a
while. In the same spirit, Ref. [45] has recently studied the
dephasing of MZMs and contrasted with that of ps-AsBSs.

The remainder of this paper is organized as follows: In
Sec. II we briefly describe the basic idea behind measurement-
based braiding. In Sec. III we introduce the model Hamilto-
nian [Eq. (6)] for the SM-SC heterostructures that can host
topological MZMs as well as topologically trivial ps-ASBs.
We also discuss the role of the confinement potential, effec-
tive mass, and spin-orbit coupling strength in the emergence
of ps-ASBs. In Sec. IV, we introduce three different types
of local perturbations corresponding to small variations of
the spin-orbit coupling [Eq. (11)], Zeeman field [Eq. (12)],
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and confinement potential [Eq. (13)] and discuss the stability
of the ps-ABSs in the presence of these perturbations. In
Sec. V we consider an inhomogeneous system that supports
quasi-Majoranas satisfying the measurement-based braiding
condition and estimate the maximum amplitudes of local
perturbations that are consistent with this condition. For com-
parison, we also calculate the effect of these perturbations on
topological MZMs emerging in the system at a higher value
of the Zeeman field. We end in Sec. VI with a summary of our
findings and a discussion of their implications.

II. MEASUREMENT-BASED BRAIDING

Recently proposed Majorana-based qubit architectures
consist of parallel sets of topological superconducting wires
connected by a regular superconductor that constitute a
Coulomb blockaded island hosting four (or six) MZMs [40].
The finite charging energy exponentially suppresses the quasi-
particle excitations due to electron transfer between the SC
island and the environment (i.e., quasiparticle poisoning pro-
cesses), rendering the topological superconductor fermion
parity protected. For each pair ( j, k) of MZMs we can define
the fermion annihilation and creation operators c jk = 1

2 (γ j −
iγk ) and c

†
jk

= 1
2 (γ j + iγk ), where γi are Majorana operators

satisfying the anticommutation rule {γ j, γk} = 2δ jk . The cor-
responding fermion number operator is

n jk ≡ c
†
jk

c jk = 1
2 (1 − iγ jγk ), (1)

where Pjk = iγ jγk is the fermion parity operator of the MZM
pair. Note that the sign of the γi operators is a matter of
convention, as it can be changed via a gauge transformation.
Here, even fermion parity (i.e., the vacuum) corresponds to
the eigenvalue +1 of Pjk , while odd parity corresponds to the
eigenvalue −1. The total parity of the qubit is fixed because
of the finite charging energy and, for the simple case of four
MZMs, we assume P12P34 = 1, i.e., even total parity. The
corresponding qubit states are

||0〉〉 = |P12 = P34 = +1〉, (2)

||1〉〉 = |P12 = P34 = −1〉. (3)

When one exchanges a pair of MZMs, their associated
operators transform into each other, up to a phase. Intuitively,
one can understand this phase as being associated with a
MZM crossing branch cuts emanating from the topological
defects (e.g., vortices) hosting the other MZMs, which are
associated with 2π changes of the superconducting phase.
Each MZM that crosses such a branch cut will flip sign.
Consider, for example, exchanging the ( j, k) MZM pair so
that γ j crosses (once) the branch cut “carried” by γk , while
γk does not cross any branch cut (or crosses an even number
of times). As a result of this exchange, we have γ j → −γk

and γk → γ j . This braiding operation can be represented us-
ing the unitary operator R jk = (1 + γ jγk )/

√
2, as one can

easily verify using the Majorana anticommutation relations:
R jkγ jR

†
jk

= −γk , R jkγkR
†
jk

= γ j . In turn, the braiding opera-
tions associated with the exchange of MZM pairs can rotate
the state of a qubit within a fixed total parity subspace. For

example, applying R23 to the state ||0〉〉 gives

R23||0〉〉 =
1

√
2

(||0〉〉 − i||1〉〉). (4)

The braiding operations can be realized by physically mov-
ing the MZMs, or, alternatively, by performing a sequence of
parity measurements [23,41]. Consider the operator � jk =
(1 + iγ jγk )/2 = 1 − n jk that projects the ( j, k) MZM pair
into the even fermion parity state (i.e., the vacuum). Using
the Majorana anticommutation relations one can verify that
the braiding transformation R12 corresponding to exchanging
the (1,2) pair of MZMs can be implemented by the following
sequence of projections [40]

�34�13�23�34 =
1

√
8

R12 ⊗ �34, (5)

where the pair (3,4) plays the role of an ancillary pair of
MZMs. For a six MZM qubit (a so-called hexon [40]), one can
show that the braiding transformations R12 and R25 provide
a sufficient gate set for generating all single-qubit Clifford
gates. Furthermore, a complete set of (multiqubit) Clifford
gates requires only the additional ability to perform an en-
tangling two-qubit Clifford gate between neighboring qubits,
which can be implemented by a sequence of projective parity
measurements on two and four MZMs from two hexons. Note
that the projection into the even parity state described by the
operator � jk corresponds to a parity measurement with an
outcome Pjk = +1. Of course, the outcome of a parity mea-
surement is inherently probabilistic. However, one can obtain
the desired outcome using a “forced measurement” protocol
involving a repeat-until-success strategy [41]. Note that, in
the quasi-Majorana regime, in the segment of a topological
SC wire, there is a pair of quasi-Majoranas at each end. In this
work, we consider the measurement-based braiding protocol
where only one member of the pair is a computational degree
of freedom, and the joint parity of this quasi-Majorana and
another one located at the other end of the wire is measured.
In such a case, only one of the zero modes of each quasi-
Majorana pair is coupled to the quantum dot and is involved
in the measurement-based braiding. The joint parity will be
measured for the MZMs coupled to the quantum dot, leaving
half of the MZMs pairs unused.

As discussed in Ref. [40], a parity measurement can be
realized by coupling the SC island hosting the Majorana
modes to a quantum dot, which results in a measurable
parity-dependent shift of the ground-state energy of the super-
conductor island-quantum dot system. This parity-dependent
energy shift can be determined experimentally using sev-
eral experimental techniques, e.g., energy level spectroscopy,
quantum dot charge measurements, or differential capaci-
tance measurements [40]. Considering, for example, energy
level spectroscopy, one can couple the MZM island-quantum
dot system to a superconducting transmission line resonator
[46], which will generate a parity-dependent resonance fre-
quency shift �ω that can be detected using reflectometry
[47]. For realistic parameters, the resonance frequency shift
in the transmission line resonator has been estimated [40]
as �ω ∼ 100 MHz. This value of frequency shift is within
the range of transmon sensitivity, and hence by measuring
this frequency shift, it is possible to measure the difference
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in the ground state energies of the SC Majorana island for
two different values of fermion parity. This scheme allows the
measurement of fermion parity of groups of MZMs in the SC
Majorana island. In turn, successive measurements of fermion
parities of pairs of MZMs effectively implement the desired
braiding operations [19–23,40,41]. This scheme of measuring
the fermion parities and, in turn, measurement-based braiding,
limits the MZM (or the quasi-Majorana) energy splitting to
δε � 0.1 μeV. A sufficiently small MZM energy splitting can
be reached in the topological regime by increasing the length
of the nanowires that host the Majorana modes. On the other
hand, the component MBSs of a ps-ABSs are separated by a
length scale L∗ � ξ that cannot be easily controlled externally.
Here, we show that the energy splitting of a ps-ABS can be
made sufficiently small (i.e., less than ∼100 MHz) by, e.g.,
ensuring that the confinement potential is sufficiently smooth.
However, local perturbations introduced by disorder or by the
measurement process itself will typically increase the energy
splitting of the component MBSs, possibly above the trans-
mon sensitivity limit. Therefore, it is crucial to identify the
upper limits of various types of local perturbations beyond
which measurement-based braiding in the quasi-Majorana
regime does not work. Of course, a related problem con-
cerns the magnitude of these perturbations in the topological
regime, which establishes the feasibility of measurement-
based braiding (and, ultimately, TQC) with MZMs. Note that
the key control parameter in the topological regime is the
length L of the wire, while in the quasi-Majorana regime it
is the (average) slope of the confining potential.

Note that the transmon sensitivity here indicates the energy
resolution in the microwave experiment. The parity-dependent
frequency shift (�ω ∼ 100 MHz) of the superconducting
transmission line resonator, which has been estimated in Ref.
[40] for physically reasonable parameters, must be bigger
than this resolution. This will enable the parity-dependent
frequency shift (and in turn the parity of the MZM island) to
be distinguished from noise and can be read out as an observ-
able quantity. Better energy resolution is, of course, helpful.
However, this becomes irrelevant once the quasi-Majorana
energy splitting exceeds the parity-dependent frequency shift
since the parity of the computational Majoranas becomes ill
defined. We emphasize that the specific value of the energy
shift is not critical for our argument, and �ω ∼ 50 MHz or
250 MHz instead of the value we quote here, �ω ∼ 100 MHz
[40], would have generated similar conclusions.

III. GENERAL PROPERTIES OF QUASI-MAJORANAS

In this section, we consider a perturbation-free quantum
dot-semiconductor-superconductor (QD-SM-SC) heterostruc-
ture, with the QD representing a short bare segment at the
end of the SM wire (i.e., a segment that is not covered by
the superconductor) where a tunnel gate potential is applied.
Note that an inhomogeneous effective potential is expected to
naturally arise in the presence of a quantum dot (even without
an applied gate potential) due to the mismatch of the work
functions corresponding to the metallic lead/superconductor
and the semiconductor wire [28]. For such a system, we show
that ps-ABSs generally arise as the lowest energy states in the
topologically trivial regime and that the characteristic energy

splittings of these ps-ABSs can be below the εm threshold for
measurement-based braiding.

A smooth confinement potential is commonly believed
to be responsible for the emergence of near-zero-energy
ABSs in SM-SC heterostructures in the topologically trivial
regime [48–50]. Recently, it was shown that the topologically
trivial near-zero-energy ABSs can also emerge in a proxim-
itized wire coupled to a quantum dot [33–37,51–54], or in a
finite-length Kitaev chain attached to a QD with a position-
dependent steplike potential [55]. A summary of different
types of effective potential that can induce topologically-
trivial low-energy ABSs can be found in Ref. [38]. In this
work, we focus on the emergence of the near-zero-energy
ps-ABSs in a system characterized by a “flat top” Gaussian
effective potential in the QD region, as shown in Fig. 1(b).
Note that, self-consistent BdG-Poisson calculations [56,57]
have been done and the results support the general picture
of inhomogeneous potential and quasi-Majorana modes dis-
cussed here. Also note that the smoothness of the effective
potential is not a necessary condition for the emergence of
low-energy quasi-Majorana modes, as discussed in Ref. [36].

We start with a model Hamiltonian of the one-dimensional
QD-SM-SC hybrid system given by

H =
[

−
h̄2

2m∗ ∂2
x − iα(x)∂xσy − μ + V (x)

]

τz

+ �(x)σx + �(x)τx,

(6)

with m∗ being the effective mass, μ the chemical poten-
tial, α(x) the spin-orbit coupling (SOC) strength, V (x) the
confinement potential, �(x) the externally applied Zeeman
field, and �(x) the proximity-induced SC pairing potential.
Here, σi and τ j (i = x, y, z) are the Pauli matrices operat-
ing in the spin and particle-hole spaces, respectively. The
SOC, the induced SC pairing, and the Zeeman field are, in
general, position-dependent parameters. The consequences of
having position-dependent effective parameters will be fully
investigated in Sec. IV, where local perturbations of these
parameters are considered; in this section we analyze a system
with spatially uniform � and α. In addition, the inhomoge-
neous confinement potential V (x) and the position-dependent
pairing potential �(x) are given by

V (x) = Vmax ×

{

1 if x < xV ,

e
− (x−xV )2

δx2
V if xV < x < L,

(7)

�(x) = �0

(

1 − e
− (x−x� )2

δx2
�

)

. (8)

Here, xV defines the width of the “flat-top” region with poten-
tial Vmax and δxV describes the smoothness of the decaying
potential barrier. Similarly, x� indicates the length of the
bare SM region (i.e., the quantum dot) and δx� controls
the smoothness of �(x). By discretizing the model given by
Eq. (6) on a one-dimensional lattice (of lattice constant a),
we obtain the following tight-binding Bogoliubov-de Gennes
Hamiltonian for the the QD-SM-SC structure:

HBdG =
∑

i

{�†
i [(2t − μ + Vi )τz + �iσx + �iτx]�i

+ [�†
i+1(−tτz + iαiσyτx )�i + H.c.]}, (9)
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FIG. 1. (a) Dependence of the low energy spectrum on the ap-
plied Zeeman field for a system described by the Hamiltonian in
Eq. (6) with chemical potential μ = 5�0. The bulk gap has a
minimum at �c ≈ μ = 5�0, the critical field associated with the
topological quantum phase transition. (b) Position-dependent pairing
[see Eq. (8)] with �0 = 0.25 meV and effective potential profile
[Eq. (7)] with Vmax = 8�0. (c) Wave functions of the Majorana
components corresponding to the ps-ABS marked by the green line
in panel (a). The component MBSs are separated by a length scale
L∗ ∼ x�, the length of the bare SM segment. (d) MZM wave func-
tions corresponding to the black line in panel (a). The parameters of
the system are: m = 0.03me, α(x) = α = 0.4 eV Å, xV = 0.20 μm,
δxV = 0.15 μm, δx� = 0.10 μm, and x� = 0.50 μm.

where �i = (ci↑, ci↓, c
†
i↑, c

†
i↓)

T
are Nambu spinors, with c

†
iσ

(ciσ ) being the electron creation (annihilation) operator at
lattice site i. Note that the position dependence of the effective
parameters �(x), V (x), α(x), and �(x) is now reflected by the
corresponding site dependence, �i, Vi, αi, and �i, based on
the correspondence x = ia. To obtain the low energy spectra
and the wave functions of the system, we numerically diago-
nalize the Hamiltonian in Eq. (9), i.e., we solve the eigenvalue
problem HBdG�α = Eα�α .

Consider a positive low energy solution E+ = ε �
� with the eigenfunction �+ε (i) = (ui↑, ui↓, vi↑, vi↓)T . A
corresponding negative energy solution E− = −ε with
eigenfunction �−ε (i) = (v∗

i↑, v∗
i↓, u∗

i↑, u∗
i↓)T is guaranteed by

particle-hole symmetry. The linear combinations

χA =
1

√
2

(�+ε + �−ε ),

χB =
i

√
2

(�+ε − �−ε )

(10)

are the corresponding wave functions in the Majorana repre-
sentation, i.e., the component MBSs of the BdG states �±ε .
Note that the Majorana modes are eigenstates of HBdG only
for ε = 0, while in general they satisfy 〈χn|HBdG|χn〉 = 0
and 〈χA|HBdG|χB〉 = iε. Throughout this paper we will use
Eq. (10) to express the near-zero-energy modes as superpo-
sitions of (partially overlapping) MBSs.

An example of typical dependence of the low energy spec-
trum on the applied Zeeman field for the QD-SM-SC hybrid
structure described by the model Hamiltonian (6) is shown in
Fig. 1(a). The red lines indicate the (localized) lowest energy
modes, while the blue lines represent bulk states. A topolog-
ical quantum phase transition (TQPT) from a topologically
trivial to topologically nontrivial phase is indicated by the
bulk gap (nearly) closing at a critical Zeeman field �c =√

�2
0 + μ2 (here, μ = 5�0 and, consequently, �c ≈ 5�0).

The inhomogeneous effective potential V (x) and induced SC
pairing potential �(x) are schematically shown in Fig. 1(b).
Note that in the presence of the nonuniform potential V (x),
near-zero-energy states emerge within a considerable range of
Zeeman field in the topologically trivial regime, � < �c, as
shown in Fig. 1(a). To identify the nature of these low-energy
states, we calculate the corresponding wave functions in the
Majorana representation. The wave functions χA and χB cor-
responding to the low-energy mode marked by the green line
in Fig. 1(a), i.e., at � = 4�0, are plotted in Fig. 1(c) as the
red and yellow lines, respectively. Thus, the low-energy ABS
mode can be represented as a pair of (partially) overlapping
MBSs located in the quantum dot region—hence, its dubbing
as partially-separated Andreev bound states (ps-ABS). Note
that the two component MBSs are separated by a length scale
(given by the distance between the main wave function max-
ima) on the order of the QD length. By contrast, the MZMs
emerging in the topological regime are separated by the length
of the nanowire, as shown in Fig. 1(d) for the modes marked
by the black line in Fig. 1(a) corresponding to � = 6�0.

In the topological regime, the energy splitting induced by
the overlap between the MZMs (which is always nonzero in
a finite system) can be exponentially suppressed by increas-
ing the length L of the nanowire, ε ≡ E0 ∼ e−L/ξ . Therefore,
topological MZMs can always satisfy the requirement E0 �
εm for measurement-based braiding in long-enough wires (as
long as the system is free of “catastrophic perturbations”
that effectively cut the wire in several disjoint pieces). By
contrast, the length scale L∗ of the spatial separation between
the component MBSs of a ps-ABS is dictated by the details
of the effective potential (e.g., by xV , x�, and δxV in our
modeling), which cannot be easily controlled. However, as
we show explicitly below, one can identify (topologically-
trivial) parameter regimes that satisfy the condition E0 � εm

and, considering the rapid developments in the growth and
fabrication of SM-SC hybrid devices, it may be possible to
produce topologically trivial ps-ABSs with energy splittings
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FIG. 2. Dependence of the lowest energy E0 on the applied Zee-
man field (�) and the confining potential height (Vmax) for a system
with chemical potential (a) μ = 3�0 and (b) μ = 5�0. The other
system parameters are the same as in Fig. 1. The green dashed
lines (�/�c = 1) represent the critical Zeeman field associated with
the TQPT. The red regions are consistent with the emergence of
ZBCPs and correspond to energy splittings E0 = 40–80 m�0 (light
red) and E0 = 0.5–40 m�0 (dark red), where m�0 ≡ �0/1000 =
0.25 μeV, while the light blue areas correspond to energy splittings
E0 < 0.5 m�0 ∼ εm, consistent with measurement-based braiding.
The dark red and light blue regions are associated with robust
ZBCPs, while the light red areas may be associated with signatures
of zero-bias peak splitting in experiments with high-enough energy
resolution. Note that low-energy modes emerge both in the topolog-
ical regime (�/�c > 1) as well as in the topologically-trivial regime
(�/�c > 1). The insets show the field dependence of the lowest
energy E0 for Vmax = 0 and Vmax = 1.5μ.

small enough to meet the braiding requirement. Note that
throughout this paper E0 > 0 will designate the energy of the
lowest lying mode in both the trivial and topological regimes.

It has been shown [38] that the key parameter that deter-
mines the energy of the ps-ABS is the “average slope” of the
effective potential over a length scale ∼L∗ given by the sepa-
ration of the MBS components. In turn, L∗ depends not only
on the details of the effective potential but also on control pa-
rameters such as the chemical potential and the Zeeman field.
To illustrate this property, we calculate the lowest energy E0 of
the BdG Hamiltonian as a function of the Zeeman field � and
the quantum dot potential height Vmax for a fixed smoothness
parameter, δxV = 0.15 μm. The results are shown in Fig. 2.
The magnitude of the energy splitting is given by the color
code and the energy units are m� ≡ �0/1000 = 0.25 μeV.
The (vertical) green dashed lines indicate the critical Zee-
man field associated with the TQPT, i.e., �/�c = 1. Note
that the dark red region characterized by E0 � 40 m�, which

supports robust ZBCPs, extends throughout both the topo-
logical (� > �c) and the trivial (� < �c) phases. The light
red region corresponding to E0 = 40–80 m� may show
signatures of zero-bias peak splitting in experiments with
high-enough energy resolution. The regions characterized
by E0 � εm ≈ 0.5 m� (light blue), which could support
measurement-based braiding, are represented by a few narrow
parameter windows inside the topological phase in Fig. 2(a)
and a finite topologically-trivial area in Fig. 2(b). Of course,
these regions can be expanded by appropriately varying the
system parameters, e.g., increasing the length of the wire or
the smoothness parameter δxV . Regarding the dependence on
the chemical potential, we note that the system with larger
chemical potential, μ = 5�0 [see Fig. 2(b)], is characterized
by a larger region that supports ps-ABSs than the system
with μ = 3�0 [see Fig. 2(a)]. On the other hand, increasing
the chemical potential increases the MZM energy splitting in
the topological phase, which can be attributed to the larger
critical Zeeman fields required for accessing the topological
regime. Finally, note that, for the confining potential model
considered in these calculations, the minimum Zeeman field
associated with the emergence of robust ZBCPs generated
by topologically-trivial ps-ABSs occurs at Vmax ∼ 1.5μ and
corresponds to about 0.5�c ≈ 2.5�0 for μ = 5�0. Again, this
minimum field can be further reduced down to �∗ ∼ �0 by
considering, e.g., smoother confining potentials.

More realistic modeling of experimentally-available SM-
SC hybrid structures has to take into account additional effects
such as, for example, the proximity-induced renormalization
of the effective mass [58], the gate potential-induced position
dependence of the spin-orbit coupling [59], or the interband
coupling in systems with multiband occupancy [57,60]. We
emphasize that many of these effects favor the emergence of
topologically-trivial low-energy states. Consider, for exam-
ple, the enhancement of the effective mass due to proximity
coupling to the parent superconductor. In Fig. 3, we show
the dependence of the lowest energy [more specifically, of
log(E0/�)] on the effective mass (m∗) and SOC strength (α)
for a system with � = 4� < �c, i.e., in the topologically-
trivial phase. The color code and the (unspecified) system
parameters are the same as in Fig. 2. Note that most of the
parameter space supports low-energy ps-ABSs with E0 � εw

(red and blue areas), i.e., robust low-field ZBCPs emerg-
ing in the topologically trivial regime. Furthermore, there is
a considerable area characterized by E0 � εm (light blue),
i.e., consistent with measurement-based braiding of quasi-
Majoranas. Horizontal and vertical line cuts are shown in
panels (b) and (c). In Fig. 3(b) we show the energy split-
ting, log(E0/�), as a function of the effective mass for two
different SOC values, α = 0.15 and 0.30 eV Å. Also, the de-
pendence of the energy splitting on the SOC strength for
two values of the effective masse (m∗ = 0.02me and (m∗ =
0.05me) is shown in Fig. 3(c). In general, higher values of the
effective mass allow a larger SOC range consistent with E0 �
εm. The typical SOC strength within this range is α ∼ 0.1–0.3,
with significantly higher (or lower) strengths being associ-
ated with larger energy splittings (above the measurement
threshold).

Based on the results discussed above and in agreement with
similar theoretical results reported in recent years [33–35,37],
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FIG. 3. (a) Lowest energy as a function of the effective mass (m∗)
and spin-orbit coupling strength (α) for a system with � = 4� < �c

(i.e., topologically trivial). The color code and the unspecified sys-
tem parameters are the same as in Fig. 2. Note that the light blue
region indicates the presence of trivial states with energy splitting
E0 � εm, which, in principle, can be used for measurement-based
braiding. Line cuts with fixed values of the spin-orbit coupling (α =
0.15, 0.30 eV Å) and effective mass (m∗ = 0.02, 0.05me) are shown
in (b) and (c), respectively.

we conclude that the emergence of low-energy ps-ABSs in the
topologically trivial phase (i.e., at low Zeeman fields) is quite
generic in SM-SC nanowires coupled to quantum dots similar
to the systems investigated experimentally. There is a signifi-
cant parameter space region consistent with energy splittings
E0 � 40 m�, which would result in robust ps-ABS-induced
ZBCPs. Furthermore, there are nonzero parameter regions
consistent with topologically trivial ps-ABSs characterized
by an energy scale E0 � εm ∼ 0.1 μeV, as shown, e.g., in
Fig. 2(b) and Fig. 3(a). In principle, these low-energy ps-
ABSs (or quasi-Majoranas) could enable measurement-based
braiding [37]. The basic idea is that one of the component
MBSs of the ps-ABS [e.g., the “red” Majorana mode in
Fig. 1(c)] is characterized by an exponentially larger coupling
to an end-of-the-wire probe than its partner (e.g., the “yellow”
quasi-Majorana). Combined with a sufficiently low energy
splitting, E0 < εm, this would enable measurement-based
braiding [37]. Since the two quasi-Majorana modes have a
substantial spatial overlap, the key questions are: (i) How
robust are the quasi-Majoranas against local perturbations
(e.g., disorder, different types of inhomogeneity associated
with position-dependent potentials, etc.) inherent in real,
less-than-ideal systems or generated by the measurement pro-
cess itself? (ii) What is the maximum amplitude of a given

type of perturbation consistent with the measurement-based
braiding condition, E0 < εm? These questions will be ex-
amined in the next sections. We note that in practice the
“robustness” in question (i) could involve either the energy
scale εw (in the context of differential conductance measure-
ments, when it implies robustness of observed ZBCPs) or
the energy scale εm (in the context of measurement-based
braiding, when it refers to the feasibility of this scheme with
quasi-Majoranas). We emphasize that these energy scales dif-
fer by two orders of magnitude.

IV. STABILITY OF QUASI-MAJORANAS IN THE

PRESENCE OF LOCAL PERTURBATIONS

Partially separated Andreev bound states, or quasi-
Majoranas, can mimic the local behavior of topological
Majorana zero modes, including the generation of robust
zero-bias conductance features in a tunneling experiment
and the 4π -Josephson effect [34,35,61]. The nontopologi-
cal quasi-Majorana modes are even considered suitable for
measurement-based braiding, as long as the corresponding
energy splittings are below a certain energy scale εm [37].
However, it is important to emphasize that, in contrast to the
topological MZMs characterized by a spatial separation given
by the length of the nanowire, the component Majorana modes
of a ps-ABSs are typically separated by a distance on the order
of the length scale of the quantum dot, rendering the ps-ABSs
topologically unprotected against local perturbations. In this
section, we consider three types of local perturbations affect-
ing the quantum dot region near the end of the wire, as shown
schematically in Fig. 4: Local variations of the spin-orbit cou-
pling, local variations of the applied Zeeman field, and local
perturbations of the effective potential. These perturbations
can be viewed as representing either realistic features that
have to be incorporated into the model to account for charac-
teristics of actual devices or possible perturbations induced by
the measurement process itself (e.g., in a braiding-type experi-
ment). We note that each type of perturbation is characterized
by a spatial profile (see Fig. 4) and an amplitude (strength).
The perturbations that are actually relevant for a given device
could be determined by a detailed modeling of the structure;
here, we focus on the qualitative aspects of the problem, which
are expected to be generic. Different measurement schemes
may generate different types of dominant perturbations. How-
ever, it is critical to demonstrate that the quasi-Majoranas
are sensitive to all types of local perturbations. We want to
stress that the objective here is to study the effect of these
perturbations on the stability of the quasi-Majoranas, which,
in turn will determine the feasibility of measurement-based
braiding. It is critical to establish whether or not there exist
types of local perturbations that have minimal (i.e., negligi-
ble) effects on the quasi-Majoranas. Should they exist, one
could perhaps imagine measurement techniques that mainly
generate this type of perturbation, hence leave the quasi-
Majoranas relatively unaffected. However, our results suggest
that this is not the case; all local perturbations affect the
quasi-Majoranas significantly. We first investigate the effect
of these perturbations on the near-zero-energy states emerg-
ing in the topologically trivial phase (Secs. IV A, IV B, and
IV C), then we discuss the limits on the perturbation strength
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FIG. 4. Top: Spatial profile of the position-dependent spin-orbit
coupling α(x) described by Eq. (11). The blue line represents the
bulk value α of the SOC strength. Middle: Spatial profile of the
position-dependent Zeeman field �(x). The magenta line represents
the uniform (bulk) Zeeman field �, while the gray line represents
another possible profile �(x) consistent with Eq. (12). Bottom: Spa-
tial profile of the effective potential perturbation δV (x) (orange area)
given by Eq. (13). The confining potential V (x) and the induced
pairing �(x) are the same as in Fig. 1(b).

consistent with the ps-ABSs being suitable for measurement-
based braiding (Sec. V).

A. Perturbation from steplike spin-orbit coupling

In most of the theoretical calculations, the SOC strength is
considered to be independent of the position along the wire.
However, in the presence of inhomogeneous gate potentials
and position-dependent work function differences (e.g., in a
quantum dot region consisting of a wire segment not covered
by the parent superconductor), a nonuniform SOC is possible,
even likely. A key question concerns the fate of ps-ABSs in the
presence of position-dependent spin-orbit coupling. Recently,
it has been shown that a steplike SOC (near the end of the
wire) can lead to decaying oscillations of the energy splitting
as a function of the Zeeman field [59]. To explore the effect of
such inhomogeneity on the ps-ABSs, we consider a position-
dependent SOC of the form

α(x) = α + α0
1

2

[

tanh

(

x − xα

δxα

)

− 1
]

, (11)

where α is the “bulk” value of the SOC strength and α0

characterizes the suppression near the end of the wire (i.e.,

FIG. 5. Low-energy spectrum as a function of Zeeman field for
a QD-SM-SC system with (a) constant spin-orbit coupling α and
(b) position-dependent spin-orbit coupling α(x) with a profile as
shown in Fig. 4(a). Note that the position-dependent SOC gener-
ates large energy splitting oscillations. The wave function profiles
associated with the marked lines are given in Fig. 6. The sys-
tem parameters are μ = 5�0, m∗ = 0.03me, α = 0.4 eV Å, �0 =
0.25 meV, x� = 0.5 μm, δx� = 0.15 μm and the confinement po-
tential is characterized by xV = 0.2 μm, δxV = 0.15 μm, and Vmax =
6�0. The parameters for the position-dependent SOC α(x) described
by Eq. (11) are xα = 0.25 μm, δxα = 0.02 μm, α1 = 0. A similar
perturbation is applied at the right end of the system.

in the quantum dot region), with α1 = α − α0 representing
the strength of the suppressed SOC. The parameters xα and
δxα describe the length scale and the smoothness of the
perturbation, respectively. A schematic representation of the
nonuniform SOC is provided in the top panel of Fig. 4. The
effect of the spatially varying SOC defined by Eq. (11) on
the ps-ABBs emerging in a QD-SM-SC system is investigated
below.

First, we consider a system with chemical potential μ =
5�0, quantum dot potential Vmax = 6�0, and uniform SOC
α = 0.4 eV Å (α0 = 0) and calculate the dependence of the
low energy spectrum on the Zeeman splitting. The results are
shown in Fig. 5(a). Note the robust near-zero energy modes
that emerge in the topologically trivial region (� < �c ∼
5�0), which are characterized by a typical energy splitting
smaller than that of the topological Majorana modes (� >

�c). Next, we switch on the SOC inhomogeneity described by
Eq. (11) and consider a complete suppression of the spin-orbit
coupling near the end of the wire, i.e., α0 = α → α1 = 0. As
shown in Fig. 5(b), the ps-ABS mode is now characterized
by large energy splitting oscillations, while the low-energy
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FIG. 6. (a) and (b) Majorana wave functions associated with the
near-zero energy ps-ABSs marked by the green and cyan lines in
Fig. 5(a) and Fig. 5(b), respectively. (c), (d) Wave function profiles
for the topological MBSs marked by the black and orange lines in
Fig. 5(a) and Fig. 5(b), respectively. Note that the energy splitting
of the ps-ABS is strongly affected by the suppression of the SOC
strength at the end of the wire, from E0 = 6.4 m�0 in the system
with uniform SOC (a) to E0 = 48.6 m�0 in the system with a step-
like SOC (b), while the change of the corresponding component
MBS wave function profiles is rather modest.

Majorana mode in the topological regime (� > 5�0) is only
weakly affected. Of course, the effect of the local pertur-
bation on the topological Majorana mode could be further
reduced by increasing the length of the wire. By contrast, the
inhomogeneous SOC affects the ps-ABS locally, practically
independent of the wire length. The Majorana wave function
profiles corresponding to the low-energy states marked by
lines in Fig. 5, i.e., the ps-ABSs at � = 3.8�0 (green and cyan
lines) and the MBSs at � = 6.2�0 (black and orange lines)
are shown in Fig. 6, along with their corresponding energy
splittings. Note that the dramatic increase of the ps-ABS en-
ergy splitting in the presence of the SOC inhomogeneity is not
accompanied by a major change of the wave function profiles.
The relevant change [see Fig. 6(b)] involves the “yellow”
MBS developing a weak oscillatory “tail” within the sup-
pressed SOC region, x � xα = 0.25 μm, where the overlap
with the “red” MBS was nearly zero in the uniform SOC case
[see Fig. 6(a)]. By contrast, the change of the topological MBS
wave function profiles does not significantly affect the MBS
overlap, hence the energy splitting. Furthermore, this overlap
(and the corresponding energy splitting) can be arbitrarily
reduced (e.g., below the characteristic measurement-based
braiding energy scale εm) by increasing the length of the wire.

An important corollary of our discussion related to Fig. 5
is that the stability of ps-ABSs against local perturbations
of the spin-orbit coupling cannot be directly assessed based

on the dependence of the unperturbed low-energy spectrum
on the Zeeman field. This is in sharp contrast with the behav-
ior of topological MZMs, when a lower value of the energy
splitting E0 implies better separated and, implicitly, more ro-
bust MZMs. As a consequence, measurement-based braiding
using quasi-Majoranas becomes rather problematic, as the
perturbation induced by the measurement itself could result
in the two component MBSs becoming too strongly coupled.
Consider, for example, a system similar to that discussed
above, but having a larger effective mass, m∗ = 0.05me, a
smaller SOC strength, α = 0.2 eV Å, and a smoother con-
fining potential, δxV = 0.30 μm. The dependence of the
corresponding low-energy spectrum on the Zeeman field is
shown in Fig. 7(a). Note that the energy splitting associated
with the ps-ABSs at a Zeeman field � = 4�0 [green line in
Fig. 7(a)] is sufficiently small to satisfy the requirement for
measurement-based braiding, E0 = 0.1 m� � εm ∼ 0.4 m�.
Also, comparing the corresponding Majorana wave functions
shown in Fig. 7(c) with those in Fig. 6(a) suggests that the
lower energy splitting is associated with a larger separation
(i.e., lower overlap) of the MBS components. However, this
seemingly “robust” ps-ABS is strongly affected by a steplike
SOC perturbation, as revealed by the low-energy spectrum
shown in Fig. 7(b). Moreover, the “perturbed” wave functions
shown in Fig. 7(d) confirm our previous observation that the
main change induced by the perturbation is the development
of an oscillatory “tail” within the suppressed SOC region, x �
xα = 0.55 μm, where the overlap of the component MBSs
was nearly zero in the uniform SOC case.

These examples suggest that suppressing the spin-orbit
coupling in the quantum dot region quickly destabilizes the
quasi-Majorana modes, which acquire a finite energy split-
ting. To better evaluate the effect of the perturbation, we
expand the energy splitting map from Fig. 3(a) along the
“direction” α0/α corresponding to the strength of the step-
like SOC perturbation [see Eq. (11)]. More specifically, we
consider cuts corresponding to two different values of the
effective mass, m∗ = 0.03me and m∗ = 0.05me, for a system
with position-dependent SOC described by Eq. (11) with
xα = 0.25 μm and two different values of the smoothness
parameter, δxα = 0.02 μm and δxα = 0.05 μm. The results
are shown in Fig. 8. Note that the system is characterized
by low-energy ps-ABSs consistent with the observation of
robust zero-bias conductance peaks over a significant range
of parameters (dark red and cyan regions). However, local
variations of the spin-orbit coupling (within the quantum
dot region) typically enhances the energy splitting E0 of
the ps-ABSs. Consequently, the quasi-Majoranas satisfy the
braiding condition E0 < εm (cyan areas) within a substantial
(connected) parameter region only for the conditions corre-
sponding to panel (d), i.e., large effective mass and smooth
steplike SOC. We emphasize that measurement-based braid-
ing using Majorana or quasi-Majorana modes is feasible only
if the system can be tuned within a finite (large-enough) do-
main of the the multidimensional space of relevant control and
perturbation parameters characterized by E0 < εm. In the case
of topological MZMs, this domain is relatively “isotropic,”
in the sense that enhancing its characteristic “length” scale
along one direction (e.g., the applied Zeeman field) ensures
the expansion of the domain in all directions, including those
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FIG. 7. Low-energy spectrum as a function of Zeeman field for
a system with (a) constant SOC and (b) steplike SOC. The sys-
tem parameters are m∗ = 0.05me, α = 0.2 eVÅ, �0 = 0.25 meV,
μ = 6�0, Vmax = 8�0, xV = 0.20 μm, δxV = 0.3 μ. The position-
dependent SOC is described by Eq. (11) with xα = 0.55 μm, dxα =
0.02 μm, and α1/α = 0.2. The Majorana wave functions corre-
sponding to the ps-ABSs marked by green and cyan lines in panels
(a) and (b) are shown in (c) and (d), respectively. Note that the
local perturbation generates a huge increase of the ps-ABS energy
splitting, as well as a manifest enhancement of the component MBS
overlap.

corresponding to local perturbation parameters. This prop-
erty is a direct manifestation of the topological protection
enjoyed by the MZMs. By contrast, the near-zero-energy
quasi-Majorana domain is highly “anisotropic,” the apparent
robustness with respect to some parameters (e.g., Zeeman
field and chemical potential) being accompanied by a high
susceptibility with respect to certain local perturbations (e.g.,
the local suppression/enhancement of SOC).

B. Perturbation from a position-dependent Zeeman field

The proximity-coupled semiconductor-superconductor
heterostructure is driven into the topological phase when

FIG. 8. Energy E0 of topologically-trivial ps-ABSs as a function
of the SOC strength, α, and the relative amplitude of the steplike
SOC perturbation near the end of the wire, α0/α, for a system
with � = 4�0 < �c (i.e., topologically trivial) and different values
of the effective mass and the smoothness parameter δxα: (a) m∗ =
0.03me, δxα = 0.02 μm, (b) m∗ = 0.03me, δxα = 0.05 μm, (c) m∗ =
0.05me, δxα = 0.02 μm, and (d) m∗ = 0.05me, δxα = 0.05 μm. The
other system parameters and the color code are the same as in Fig. 2.
Positive (negative) values of the parameter α0/α correspond to a sup-
pressed (enhanced) SOC within the quantum dot region. In general,
the SOC inhomogeneity leads to an increase of the ps-ABS energy
splitting. Note that, while the observation of robust (topologically
trivial) ZBCPs is possible within a large range of parameters (dark
red and cyan areas), the only significant region corresponding to the
braiding condition E0 < εm (cyan) occurs in (d).

the external Zeeman field parallel to the nanowire (or, more
generally, perpendicular to the effective SOC field) exceeds
a certain critical value �c(μ) =

√
�2

0 + μ2 . In this section,
we investigate the effect of a local, position-dependent
perturbation of the Zeeman field on the energy splitting of
topologically trivial ps-ABSs. We note that variations of
the magnetic field near the end of the wire are expected
due to screening by the parent superconductor. Furthermore,
the effective g factor in the quantum dot region could
differ significantly from the g factor in the segment of
the wire covered by the superconductor as a result of the
proximity-induced renormalization of this parameter [58,62],
which results in a local variation of the Zeeman field. To
investigate the effect of a local variation of the Zeeman field
(within the quantum dot region), we consider the following
phenomenological model of a position-dependent effective
Zeeman field

�(x) = [�1 + �0 sin(ωx)]�(x� − x) + ��(x − x� ), (12)

with �1 = � − �0 being the value of the Zeeman field at
x = 0 and � being the field in the absence of the perturbation.
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FIG. 9. Dependence of the low-energy spectrum on the ap-
plied Zeeman field for a system with (a) uniform Zeeman field,
(b) position-dependent Zeeman field given by Eq. (12) with �0/� =
0.3 and ω = −3π/100, and (c) position-dependent Zeeman field
with �0/� = 0.4 and ω = 4π/200. The position-dependent Zeeman
fields are shown in Fig. 4 (middle panel). The Majorana wave func-
tions corresponding to the ps-ABSs marked by colored lines are
shown in Fig. 10. The chemical potential of the system is μ = 5�0

and the confinement potential is characterized by xV = 0.2 μm,
δxV = 0.15 μm, and Vmax = 8�0. The other parameters are the same
as in Fig. 7.

The parameters 1/ω and x� determine the characteristic length
scales of the perturbation. A schematic representation of the
position-dependent Zeeman field described by Eq. (12) is
shown in the middle panel of Fig. 4.

We start with a QD-SM-SC system in the presence of a
uniform Zeeman field, �(x) = �, hosting robust near-zero
energy states even in the trivial regime, � < �c ∼ 5�0, as
shown in Fig. 9(a). Next, we perturb the Zeeman field in the
quantum dot region by considering a profile �(x) given by
Eq. (12) with �0/� = 0.3 and ω = −3π/100 (correspond-
ing to the black line in the middle panel of Fig. 4). As a
consequence, the energy splitting associated with the trivial
ps-ABS increases strongly, while the topological MBS modes
are weakly affected, as shown in Fig. 9(b). The same behavior
characterizes Fig. 9(c), which represents another example of

FIG. 10. Majorana wave functions associated with the near-zero
energy ABS modes marked by colored lines in Fig. 9 and the
corresponding energies. Note that the presence of the local per-
turbation [panels (b) and (c)] results in a reduced separation (i.e.,
enhanced overlap) of MBS components, which generates larger en-
ergy splittings.

perturbed low energy spectrum corresponding to �0 = 0.4�

and ω = π/25 (gray line in the middle panel of Fig. 4).
The Majorana wave functions corresponding to the ps-ABSs
marked by lines (at � = 4�0) in Fig. 9 are shown in Fig. 10.
As a result of locally perturbing the Zeeman field, the energy
of the ps-ABS increases dramatically from E0 = 0.93 m� in
Fig. 10(a) to E0 = 45 m� and E0 = 42 m� in panels (b) and
(c), respectively. This increase of the energy splitting is due
to an enhancement of the overlap of the corresponding MBS
components. Note that in the topological regime the pertur-
bation affects significantly the wave function of the MBS
localized near the quantum dot (not shown) but has a weak
effect on its overlap with the MBS localized at the opposite
end of the system. As a result, the energy splitting of the
topological Majorana modes is weakly affected by the local
perturbation, as evident in Fig. 9. Furthermore, this effect
can be arbitrarily minimized by increasing the length of the
system, which is not the case for the ps-ABS.

The effect of the perturbation can be understood qualita-
tively as a reduction of the wire segment within which the
“topological” condition �(x) � �c(x) is (locally) satisfied,
which, in turn, is a result of suppressing the Zeeman field near
the end of the system. Consequently, the spatial separation
of the component MBSs of the emerging ps-ABS decreases,
as revealed by the wave functions in Fig. 10, and the higher
overlap results in larger values of the energy splitting. It is
natural to suspect that, perhaps, enhancing the Zeeman field
near the end of the system would lower the characteristic
energy of the ps-ABS. To test this insight, we calculate the
energy splitting E0 as a function of the applied Zeeman field,
�/�c, and the amplitude of the local perturbation described
by Eq. (12), �0/�. The results, corresponding to two values
of the effective mass and two perturbation profiles (see the
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FIG. 11. Energy of topologically-trivial ps-ABSs as a function
of the applied Zeeman field, �/�c, and the amplitude of the local
perturbation described by Eq. (12), �0/�, for a system with different
values of the effective mass and different perturbation profiles: (a)
m∗ = 0.03me, ω = −3π/100, (b) m∗ = 0.03me, ω = 4π/200, (c)
m∗ = 0.05me, ω = −3π/100, (d) m∗ = 0.05me, ω = 4π/200. The
other system parameters and the color code are the same as in Fig. 2.
The yellow dotted line marks the topological phase boundary corre-
sponding to � = �c. Note that, in general, suppressing the Zeeman
field in the quantum dot region, �0/� > 0, enhances the energy
splitting of the ps-ABS, while locally increasing the Zeeman field can
stabilize the low-energy (topologically trivial) modes. For moderate
enhancement of the Zeeman field in the quantum dot region, the sys-
tem with m∗ = 0.05me supports a large (connected) region consistent
with the braiding condition, E0 < εm [cyan areas in (c) and (d)].

middle panel of Fig. 4) are shown in Fig. 11. Remarkably, a
moderate local increase of the Zeeman field can stabilize the
ps-ABSs, generating (in certain conditions) significant sim-
ply connected parameter regions consistent with the braiding
condition E0 < εm [cyan areas in Figs. 11(c) and 11(d)]. Also
remarkable is the fact that, in the regime characterized by
�0/� < 0 (i.e., locally-enhanced Zeeman field) and �/�c < 1
(i.e., topologically-trivial regime), the parameter regions in
Fig. 11(c) and Fig. 11(d) characterized by robust ps-ABS-
induced ZBCPs (dark red and cyan) are comparable with those
defined by the braiding condition (cyan). We note that, in
practice, a local increase of the Zeeman field in the quantum
dot region could be associated with a locally-enhanced value
of the effective g factor.

C. Local potential perturbation

As a final example, we consider the effect of perturbations
due to local potentials on the energy of topologically trivial
ps-ABSs. For concreteness, we consider a Gaussian-like po-
tential perturbation localized near x = x0, where x0 is a point

within the quantum dot region. Specifically, we have

δV (x) = δV exp

[

−
(x − x0)2

δx2
0

]

, (13)

with δV being the amplitude of the potential perturbation and
δx0 representing its characteristic width. A schematic repre-
sentation of the local potential is given in the bottom panel of
Fig. 4. As in the previous sections, we first consider an unper-
turbed system that supports low-energy (topologically trivial)
ps-ABSs, then we apply the local perturbation—here de-
scribed by δV (x), with δV = 0.3Vmax and x0 = 0.2 μm—and
determine its effect on the low-energy modes. The dependence
of the corresponding low-energy spectra on the applied Zee-
man field is shown in Fig. 12. Similar to the perturbations
studied above, the local variation of the effective potential
leads to an enhancement of the characteristic ps-ABS energy
[see Fig. 12(b)]. The Majorana wave functions correspond-
ing to the unperturbed ps-ABS marked by the green line in
Fig. 12(a) are shown in Fig. 12(c). Note that the component
MBSs are fairly well separated, consistent with the low energy
splitting, E0 = 5.02 m�. By contrast, the corresponding wave
functions in the presence of the potential perturbation, which
are shown in Fig. 12(d), are characterized by a large overlap,
consistent with the increased energy splitting, E0 = 46.9 m�.
Note that the local potential perturbation does not visibly
affect the energy splitting of the Majorana modes in the topo-
logical regime.

To gain a more complete understanding of the effect of the
local potential perturbation on the trivial low-energy states,
we follow the strategy used in the previous sections and cal-
culate the energy E0 of the lowest energy mode as a function
of the applied Zeeman field and the perturbation amplitude,
δV/Vmax. Explicitly, we consider four distinct cases corre-
sponding to two values of the effective mass, m∗ = 0.03me

and m∗ = 0.05me, and two characteristic widths of the per-
turbation potential, δx0 = 0.05 μm and δx0 = 0.1 μm. The
results are shown in Fig. 13. Our first observation is that the
system supports low-energy ps-ABSs in the presence of a
local potential perturbation, with a significant parameter range
consistent with the observation of (topologically trivial) robust
ZBCPs (dark red and cyan regions with �/�c < 1). This is
an indication that, within an energy window E0 � εw, the
ps-ABSs are relatively insensitive to the details of the effective
potential in the quantum dot region. Combined with our find-
ings from the previous sections, this suggests that the observa-
tion of low field, topologically trivial ZBCPs is rather generic.
On the other hand, satisfying the condition for measurement-
based braiding, E0 < εm, depends on the details of the
effective potential, e.g., on the sign of the perturbing potential
δV . Nonetheless, the system characterized by a large effective
mass, which implies a short MBS characteristic length scale,
has a large (connected) parameter region consistent with ps-
ABS braiding [cyan areas in Figs. 13(c) and 13(d)]. Finally,
we note that the MBSs emerging in the topological regime
(�/�c > 1) typically do not satisfy the braiding condition
because of the relatively short length of the wire. Of course,
in longer wire this condition will be satisfied, regardless of the
local potential in the quantum dot region, provided the system
is uniform enough, e.g., it does not contain “catastrophic
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FIG. 12. Dependence of the low-energy spectrum on the ap-
plied Zeeman field for a QD-SM-SC system with position-dependent
effective potential described by Eq. (7) and (a) no local perturba-
tion, δV (x) = 0, or (b) local perturbation given by Eq. (13) with
δV/Vmax = 0.3, x0 = 0.2 μm, and δx0 = 0.05 μm. Note that local
perturbation enhances the characteristic energy of the topologically
trivial low-energy mode but does not affect significantly the energy
splitting of the topological Majorana mode. The Majorana wave
functions corresponding to the ps-ABSs marked by the green and
cyan lines in (a) and (b) are shown in panels (c) and (d), respec-
tively. Clearly, the local potential perturbation enhances the overlap
of the component MBSs. The system parameters are μ = 5.5�0,
m∗ = 0.05me, α = 0.15 eVÅ, Vmax = 8�0, and x� = 0.

perturbations”—bulk perturbations that effectively “cut” the
wire into disconnected topological segments.

V. AMPLITUDES OF LOCAL PERTURBATIONS

CONSISTENT WITH MEASUREMENT-BASED BRAIDING

In the previous sections we have shown that topologi-
cally trivial ps-ABSs emerging generically in a QD-SM-SC
heterostructure at Zeeman fields below the critical value cor-
responding to the topological quantum phase transition are
sensitive to local variations of the system parameters, e.g., the
local effective potential, Zeeman field, and spin-orbit coupling

FIG. 13. Energy of topologically-trivial ps-ABSs as a function
of the applied Zeeman field, �/�c, and the amplitude of the local
potential perturbation described by Eq. (13), δV/Vmax, for a system
with different values of the effective mass and different characteristic
widths of the perturbing potential: (a) m∗ = 0.03me, δx0 = 0.05 μm,
(b) m∗ = 0.03me, δx0 = 0.1 μm, (c) m∗ = 0.05me, δx0 = 0.05 μm,
(d) m∗ = 0.05me, δx0 = 0.1 μm. The other system parameters
and the color code are the same as in Fig. 2. The yellow dot-
ted line marks the topological phase boundary corresponding to
� = �c. Note that the condition for observing robust ZBCPs in the
topologically trivial regime is weakly dependent on the perturbing
potential (dark red and cyan regions with �/�c < 1). The system
with m∗ = 0.05me supports a large (connected) region consistent
with the braiding condition, E0 < εm [cyan areas in (c) and (d)].

strength. Here, we focus on an inhomogeneous system that
supports a ps-ABS satisfying the braiding condition, E0 < εm,
and evaluate the maximum amplitudes of local perturbations
and random disorder potentials that are consistent with this
condition. This will provide a quantitative estimate of the
susceptibility of topologically trivial ps-ABSs to local pertur-
bations. For comparison, we also calculate the corresponding
variation of the energy splitting associated with topological
MZMs and show that, for a long enough wire, this variation
does not break the braiding condition.

One important feature that characterizes both the ps-ABSs
and the topological MZMs is their oscillatory behavior as a
function of the applied Zeeman field. As a consequence, the
energy splitting E0(�) corresponding to a specific value � of
the Zeeman field provides incomplete information regarding
the robustness of the low-energy mode. In particular, E0(�)
can be made arbitrarily small by moving close to a node,
which, of course, does not imply that the corresponding low-
energy mode is robust. To better characterize the robustness of
the low-energy mode, we propose the quantity 〈E0〉 represent-
ing the average energy splitting over a small range of Zeeman
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FIG. 14. Position-dependent profiles of the effective potential
V (x) [see Eq. (7)], pairing potential �(x) [Eq. (8)], Zeeman field
�(x) [Eq. (15)], and spin-orbit coupling α(x) [Eq. (11)] characteriz-
ing an inhomogeneous QD-SM-SC system. The system parameters
are: L = 2 μm (wire length), m = 0.05me (effective mass), �0 =
0.25 meV (induced bulk pairing), μ = 5�0 (chemical potential),
α = 200 meV Å (bulk spin-orbit coupling), and � = 4.15�0 (bulk
Zeeman field); the position-dependent profiles correspond to Vmax =
8�0, xV = 0.2 μm, δxV = 0.19 μm, x� = 0.5 μm, δx� = 0.2 μm,
α0 = 0.1α, xα = 0.15 μm, δxα = 0.03 μm, �0 = −0.1�0, x� =
0.2 μm, and δx� = 0.1 μm.

fields,

〈E0〉 =
1

2δ�

∫ �+δ�

�−δ�

d�′ E0(�′), (14)

where the range δ� is determined by the characteristic “wave-
length” of the energy splitting oscillations.

For concreteness, we consider a QD-SM-SC heterostruc-
ture with an inhomogeneous quantum dot region described
by an effective potential given by Eq. (7), a pairing potential
profile described by Eq. (8), a steplike spin-orbit coupling
corresponding to Eq. (11), and a position-dependent Zeeman
field given by

�(x) = � +
�0

2

(

tanh
x − x�

δx�

− 1

)

, (15)

where � is the bulk value of the Zeeman field and �0 charac-
terizes the suppression (if �0 > 0) or enhancement (if �0 < 0)
of the field inside the quantum dot region. The specific values
of the parameters and the corresponding position-dependent
profiles are given in Fig. 14. Note that the chemical potential
is μ = 5�0, hence the critical Zeeman field is �c ≈ 5.1�0.
Therefore, an applied (bulk) Zeeman field � = 4.15�0, as
specified in the caption of Fig. 14, corresponds to the topo-
logically trivial regime. To investigate the properties of the
topological MZMs we will choose � = 5.85�0.

The dependence of the lowest energy mode on the applied
Zeeman field corresponding to two different wire lengths is
shown in Fig. 15. The following remarks are warranted. First,
we note that in the topologically-trivial regime (� < �c ≈

FIG. 15. Lowest energy mode of the unperturbed QD-SM-SC
Majorana structure as a function of the (bulk) Zeeman field for two
different wire lengths, L = 2 μm (top) and L = 3.6 μm (bottom).
The other system parameters are the same as in Fig. 14.

5.1�0) the low-energy spectrum is practically independent
on the length of the wire. This is a clear indication of the
local nature of the ps-ABS responsible for the low-energy
mode. By contrast, the MZM corresponding to � > �c has a
strong (exponential) dependence on the length of the wire, the
energy splitting oscillations decreasing by about two orders of
magnitude as L increases from 2 μm to 3.6 μm. Second, the
amplitude of the energy splitting oscillations associated with
the topologically trivial ps-ABS decreases with the Zeeman
field, while the amplitude of the topological MZM increases

with �. Third, we notice that the “wavelength” of the MZM
energy splitting oscillations corresponding to L = 3.6 μm
(when the system satisfies the braiding condition in the topo-
logical regime) is about 0.5�0. Consequently, we calculate
the characteristic energy splitting 〈E0〉 using Eq. (14) with
δ� = 0.25�0. The inhomogeneous system described by the
parameters given in Fig. 14 supports a trivial ps-ABS with
〈E0〉 ≈ 0.29m�0, which is below the threshold εm ∼ 0.4m�0
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FIG. 16. Dependence of the characteristic energy splitting 〈E0〉/m�0 on local perturbations within the QD region for a (topologically-
trivial) quasi-Majorana mode (top panels) and a topological MZM (bottom panels). The parameters of the unperturbed system (δVmax =
δ�0 = δα0 = 0) are given in Fig. 14. The quasi-Majorana (ps-ABS) mode is consistent with measurement-based braiding if 〈E0〉 < 0.4�0,
which corresponds to the black regions in the top panels. The typical widths of the black regions represent 0.5–20% of the bulk values of the
corresponding parameters (see the main text). By contrast, the characteristic energy splitting of the topological MZM is way below the braiding
threshold εm over the entire range of local perturbations.

consistent with measurement based braiding. Hence, the
(unperturbed) inhomogeneous QD-SM-SC system described
above supports topologically-trivial ps-ABSs localized near
the quantum dot region that could enable measurement-based
braiding.

Next, we address the critical question regarding the robust-
ness of the low-energy ps-ABS against local perturbations.
Specifically, we consider the following perturbations affecting
the QD region. (i) Variations of the local effective potential
corresponding to Vmax → Vmax + δVmax in Eq. (7). (ii) Lo-
cal variations of the Zeeman field corresponding to �0 →
�0 + δ�0 in Eq. (15). (iii) Local changes of the spin-orbit
coupling corresponding to α0 → α0 + δα0 in Eq. (11). The
effects of these local perturbations on the characteristic energy
splitting 〈E0〉 of the quasi-Majorana mode are shown in the top
panels of Fig. 16. The topologically-trivial parameter regions
consistent with the braiding condition 〈E0〉 < εm ≈ 0.4m�0

are represented by the black areas in panels (a)–(c). In gen-
eral, relatively small variations of the local parameters (inside
the quantum dot region) away from the “unperturbed” values
given in Fig. 14 drive the system outside the regime consistent
with measurement-based braiding of quasi-Majoranas. For
example, panels (a) and (c) reveal that the system can tolerate
variations δVmax of the effective potential within a typical
window δV max ≈ 100 μeV. Note that δV max is about 5% of
the effective potential Vmax inside the quantum dot region.
Measurement-based braiding is not possible in the presence
of perturbations (e.g., induced by the measurement process
itself) characterized by δVmax outside this window, as the cor-
responding characteristic energy splitting 〈E0〉 becomes larger

than εm. Similarly, panels (a) and (b) show that local perturba-
tions of the spin-orbit coupling strength δα0 consistent with
the braiding condition have to be within a typical window
δα0 ≈ 1–2 meV Å, which corresponds to 0.5–1% of the bulk
spin-orbit coupling α, while panels (b) and (c) show that the
local variations of the Zeeman field, δ�0, should be within a
typical window δ�0 ≈ 200 μeV, corresponding to about 20%
of the bulk Zeeman field value.

These results suggest that, while measurement-based
braiding using quasi-Majorana modes is possible in princi-
ple, it requires very precise control of the local parameters,
which have to be tuned (and maintained) within fairly nar-
row windows. In particular, this imposes strict constraints on
the maximum amplitudes of the local perturbations induced
by the measurement process itself. Furthermore, the specific
example discussed in this section assumes a relatively large
effective mass, m = 0.05me. Reducing this value results in
the rapid collapse of the parameter windows consistent with
measurement-based braiding (see Figs. 8, 11, and 13). We
emphasize that the ps-ABS energy splittings shown in the
top panels of Fig. 16 are about two orders of magnitude
smaller than the characteristic energy εw ∼ 10–20 μeV asso-
ciated with the observation of robust zero bias peaks over the
entire range of perturbations explored here. In other words,
the system is characterized by a (topologically trivial) ZBCP
that is extremely robust against local perturbations, yet it
is not necessarily suitable (or, at least, it is not ideal) for
measurement-based braiding.

For comparison, we have also calculated the character-
istic energy splitting of topological MZMs for a system of
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FIG. 17. Disordered averaged splitting energy 〈〈E0〉〉 as a func-
tion of disorder strength. The length of the wire is L = 3.6 μm, while
the rest of the parameters are the same as in Fig. 14. We note that
the ps-ABS states are sensitive to even a small amount of disorder,
in sharp contrast with the Majorana modes. The red shaded area
indicates the regime apt for measurement based braiding.

length L = 3.6 μm and a value of the (bulk) Zeeman field
� = 5.85 meV (all other parameters being the same as in
Fig. 14) in the presence of the same type of local perturba-
tions. The results are shown in the lower panels of Fig. 16.
Note that 〈E0〉 is way below the measurement-based braiding
limit εm over the entire perturbation range explored here. This
is a direct consequence of the topological protection that the
MZMs enjoy, unlike their quasi-Majorana counterparts. We
note that the characteristic energy 〈E0〉 of the MZM depends
strongly (exponentially) on the length of the system, as clearly
illustrated in Fig. 15. If the system is long enough, the MZM
is practically immune against local perturbations that do not
effectively break the system into disjoint topological regions.

To further emphasize the difference between the
topologically-induced robustness of the MZMs against
local disorder and the relative fragility of the quasi-Majoranas
(ps-ABSs), we consider the inhomogeneous QD-SM-SC
system described by the parameters given in Fig. 14 in
the presence of a random onsite potential V (i) = Vdisζi,
where i labels the lattice sites, Vdis is the amplitude of the
random potential, and ζi is a site-dependent random number
between −1 and +1. Note that, unlike the local perturbations
considered above, which were localized within the QD
region, the random potential V (i) is defined throughout the
entire system, including the region near the middle of the
wire where the MZMs have an exponentially-small but finite
overlap. To evaluate the effect of disorder on the energy
splitting, we average the characteristic splitting 〈E0〉 defined
by Eq. (14) over 100 disorder realizations. The dependence
of the disorder-averaged characteristic energy 〈〈E0〉〉 on the
amplitude Vdis of the random potential is shown in Fig. 17.
While the MZM is practically unaffected by weak disorder,
the characteristic energy of the quasi-Majorana (ps-ABS)
exceeds the braiding threshold εm even in the presence of a
random potential with an amplitude Vdis representing only 5%

of the induced gap. Of course, this is a direct consequence
of the ps-ABSs not being topologically protected, but the
rather small values of Vdis consistent with measurement-based
braiding re-emphasize the difficulty of practically realizing
conditions consistent with braiding of quasi-Majoranas.
Finally, we note that, for the disorder strengths considered in
Fig. 17, the characteristic energy 〈〈E0〉〉 of the ps-ABS is still
well below the limit εw associated with the observation of
robust ZBCPs. Again, the robustness of the observed ZBCP
provides no relevant information regarding the feasibility of
measurement-based braiding.

As a final comment, we point out that the local perturba-
tions considered in this study do not include “catastrophic
perturbations” that effectively cut the wire into disjoint
(possibly topological) segments. In the presence of such per-
turbations, the “topological” regime will be characterized by
the presence of multiple pairs of MBSs distributed throughout
the system and characterized by separation lengths that are
controlled by the concentration of catastrophic perturbations,
rather than the size of the system. Since the characteristic
MZM energy depends critically on the separation length (see,
e.g., Fig. 15), a concentration of catastrophic local perturba-
tions in excess of one per several microns may completely
prohibit the realization of (topological) measurement-based
braiding with MZMs. By contrast, if the concentration of these
perturbations is not too high, ps-ABSs emerging near the end
of the wire (e.g., inside a QD region) are weakly affected by
their presence in the bulk of the system, as demonstrated by
the weak size dependence of the ps-ABS mode in Fig. 15.
Nonetheless, while these quasi-Majoranas can produce ex-
tremely robust zero-bias conductance peaks, they are not
topologically protected; using them for measurement-based
braiding is possible, in principle, but requires fine tuning and
exquisite control of the local parameters.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the feasibility of
measurement-based braiding using quasi-Majorana modes
emerging in the quantum dot region of a quantum dot-
semiconductor-superconductor (QD-SM-SC) structure. We
have shown that such modes, which represent the Majorana
components of a partially-separated Andreev bond state (ps-
ABS), emerge rather generically in this type of system at
Zeeman fields below the critical value associated with the
topological quantum phase transition (TQPT), i.e., in the
topologically-trivial phase, and we have investigated in detail
their behavior in the presence of local perturbations, such as
local variations of the effective potential, spin-orbit coupling,
and Zeeman field in the quantum dot region and random
disorder potentials.

The robustness of the quasi-Majorana (ps-ABS) modes can
be evaluated based on two different experimentally-relevant
criteria: (i) the ability to generate robust zero-bias conduc-
tance peaks (ZBCPs) in a charge tunneling experiment and
(ii) the ability to generate energy splittings that do not exceed
a certain threshold that enables measurement-based braid-
ing. According to criterion (i), the quasi-Majorana mode is
robust if its characteristic energy splitting is less that the
characteristic width of a ZBCP, εw ∼ 10 μeV, while criterion
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(ii) involves an energy scale determined by the parity-
dependent energy shift due to the coupling of (quasi-
)Majorana modes to external quantum dots, εm ∼ 0.1 μeV.
The key observation is that the two energy scales differ by
about two orders of magnitude. Consequently, robustness
with respect to criterion (i)—the ability to generate robust
ZBCPs—does not imply robustness with respect to criterion
(ii), hence suitability for measurement-based braiding.

Considering these observations and based on the results of
our detailed numerical analysis, we can formulate the follow-
ing conclusions. (1) In a QD-SM-SC system the emergence
of near-zero-energy ps-ABSs (quasi-Majoranas) is rather
generic, with these modes satisfying criterion (ii), i.e., having
characteristic energies E0 < εw, over large ranges of system
parameters (see Figs. 2, 11, and 13). Practically, the low-
field region of the topological phase diagram is dominated by
topologically trivial ps-ABSs that are virtually indistinguish-
able from topological Majorana zero-energy modes (MZMs)
under local probes. The only systematic qualitative differ-
ence between the trivial and the nontrivial modes is that the
energy oscillations of the ps-ABSs typically decay with the
Zeeman field, while the amplitude of the MZMs increases
with � (see Figs. 5, 9, 12, and 15, as well as Refs. [59,63]).
(2) The quasi-Majoranas (ps-ABSs) are not topologically
protected and, consequently, they are susceptible to local
perturbations. This susceptibility to local perturbations has
to be judged differently with respect to criteria (i) and (ii).
While within an energy resolution εw the quasi-Majoranas
are as robust to local perturbations as the genuine topological
MZMs, with respect to the measurement-based braiding crite-
rion they are rather fragile, unlike the MZMs (see Figs. 16
and 17). Furthermore, while the robustness of MZMs is
“isotropic”—robustness with respect to one type of pertur-
bation guaranties robustness with respect to other types of
local perturbations, the stability of quasi-Majoranas is highly
anisotropic. For example, the quasi-Majorana mode analyzed
in Fig. 16 can tolerate, according to criterion (ii), variations
up to 20% of the local potential, but only up to 1% of the
(bulk) SOC strength. (3) From the perspective of criterion
(ii), i.e., the feasibility of measurement-based braiding, the
quasi-Majoranas are highly susceptible to relatively weak
local perturbations, while the topological MZMs are suscep-
tible to rare “catastrophic perturbations,” i.e., perturbations
that effectively cut the wire into disjointed topological re-
gions. This suggests two possible near-term paths toward
the demonstration of measurement-based braiding with Ma-
jorana modes. The topological route, based on MZMs, can
lead to a genuine topological qubit but has to overcome
the requirement of no-catastrophic-perturbation over possibly
multimicron length scales. The poor man’s route, based on
quasi-Majoranas, can significantly relax the no-catastrophic-
perturbation requirement but involves exquisite control of the
local properties of the system. Furthermore, it imposes drastic

limits on the local perturbations induced by the measurement
process itself. Realistically, this route cannot be successful
based on spontaneously-produced quasi-Majoranas, which are
ubiquitous within an energy window ∼εw but are useless for
measurement-based braiding; if successful, this route has to
involve a systematic effort to design and control the local
properties of the system near the end of the wire.

The quantity εw in our paper refers to the characteristic
peak width of the zero bias conductance peaks experimen-
tally measured in SM-SC heterostructures. The representative
value for εw that we have quoted in our work (εw ∼
10–20 μeV) is taken from several recent experimental studies
of SM-SC heterostructures [28,32]. As for the other en-
ergy scale, εm, introduced for evaluating the feasibility of
measurement-based braiding, we have used the value εm ∼
0.1 μeV (100 MHz) [37,40]. We would like to emphasize
the fact that the specific values for εw and εm are not critical
for the broader argument made in this work. The key point
is that the two energy scales are significantly different and,
according to existing measurements and theoretical estimates,
they differ by about two orders of magnitude. Based on this,
we have essentially shown that (i) it is possible (quite gener-
ically) for the quasi-Majorana modes to have small enough
energy splitting so as to produce a robust, quantized, zero
bias conductance peak in charge tunneling experiments (the
energy splitting, being smaller than εw, is not observable);
(ii) it is even possible to fine tune the parameters of the system
so that the stricter braiding condition is satisfied; (iii) yet, in a
measurement-based braiding protocol, measurement-induced
(local) perturbations themselves may produce enough energy
splitting (>εm) to break the braiding condition, because the
quasi-Majorana modes (unlike the true Majorana modes in the
topological phase) are topologically unprotected. Thus, in or-
der to implement a measurement-based braiding protocol, one
has to keep the measurement-induced (local) perturbations
and the resultant energy splitting of the quasi-Majoranas small
enough to not exceed the εm threshold relevant to whatever
technique one uses for the projective fermion parity measure-
ments designed to mimic the braiding operations [40]. This
limitation does not apply to bona fide MZMs, which are topo-
logically protected (i.e., insensitive to local perturbations).
The exact values for εw and εm are not particularly important
for this general point, as long as they satisfy the condition
εm � εw.
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