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Enhanced topological superconductivity in spatially modulated planar Josephson junctions
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We propose a semiconductor-superconductor hybrid device for realizing topological superconductivity and
Majorana zero modes consisting of a planar Josephson junction structure with periodically modulated junction
width. By performing a numerical analysis of the effective model describing the low-energy physics of the hybrid
structure, we demonstrate that the modulation of the junction width results in a substantial enhancement of the
topological gap and, consequently, of the robustness of the topological superconducting phase and associated
Majorana zero modes. This enhancement is due to the formation of minibands with strongly renormalized
effective parameters, including stronger spin-orbit coupling, generated by the effective periodic potential induced
by the modulated structure. In addition to a larger topological gap, the proposed device supports a topological
superconducting phase that covers a significant fraction of the parameter space, including the low Zeeman field
regime, in the absence of a superconducting phase difference across the junction. Furthermore, the optimal
regime for operating the device can be conveniently accessed by tuning the potential in the junction region

using, for example, a top gate.
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I. INTRODUCTION

Majorana zero modes (MZMs) are particle-hole symmetric
Zero-energy excitations emerging in topological superconduc-
tors, either at the edges of a one-dimensional (1D) system,
or inside the vortex cores of a two-dimensional (2D) system
[1]. Their non-Abelian exchange statistics makes them attrac-
tive for quantum computation as possible building blocks for
topological qubits [2,3]. Such qubits are, in principle, immune
to decoherence from local perturbations due to the nonlocal
encoding of quantum information using pairs of spatially sep-
arated MZMs [4]. A major breakthrough was generated by
the proposal to engineer topological superconductors capa-
ble of supporting MZMs using semiconductor-superconductor
(SM-SC) hybrid nanostructures [5—8]. This has sparked a
significant experimental effort over the last decade, which led
to tremendous progress in the area of materials growth and
device engineering and generated a number of observations
consistent with the presence of MZMs [9-23]. However, there
is an ongoing debate within the community regarding the
nature of the low-energy modes responsible for the exper-
imental observations, as trivial low-energy Andreev bound
states emerging in the presence of disorder or system inho-
mogeneity are capable of mimicking the (local) Majorana
phenomenology [24—40]. This rather uncertain situation has
motivated the exploration of alternative paths for realizing
MZMs, including new designs of SM-SC heterostructures.

One interesting alternative to the ‘standard’ Majorana
nanowire platform consists of planar SM-SC structures, which
have attracted both experimental [41-51] and theoretical
[52-66] attention in recent years. This type of system involves
a two-dimensional electron gas (2DEG) with strong spin-orbit
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coupling and large g factor, which is hosted by a semicon-
ductor hetersrostructure, in proximity to a superconducting
film (often Al) and in the presence of an in-plane magnetic
field. The SC is patterned either as a narrow quasi-1D strip
(nanowire), with the 2DEG outside the strip being depleted
using a top gate [43,44,60], or as a Josephson junction (JJ)
consisting of two (large) superconducting regions separated
by a narrow (unproximitized) channel [46,48,51,53,54]. The
JJ design has an additional experimentally tunable parameter:
the superconducting phase difference ¢. As ¢ is tuned from
¢ =0 to ¢ = 7, the necessary Zeeman splitting E; needed
to drive the system into the topological phase can approach
zero [52,53], which is a very attractive feature. Moreover,
for ¢ = m, accessing the topological phase does not require
fine-tuning the chemical potential u, in stark contrast to the
nanowire design, in which p must be tuned near the bottom
of a (confinement-induced) subband. Finally, the planar de-
signs are easily scalable to large networks of Majorana qubits,
which will be necessary for quantum computation [67]. Ma-
jorana nanowires, on the other hand, require the realization of
exotic networks [68] to become scalable.

Despite these attractive features, planar SM-SC structures
have several potentially serious issues. For the SC strip de-
sign, a dramatic suppression of the effective g factor and
spin-orbit coupling may occur if the coupling between the
semiconductor and superconductor is strong [32,69]. In the
strong coupling regime, the Zeeman energy necessary to
VAL
as found in the minimal 1D Majorana model [5-8], but
rather Eyz i = /% + 92 [69], where Ajyq is the induced
superconducting gap, u is the chemical potential, and ¥ is
the effective SM-SC coupling. Note that ¥ can be several
times larger than Aj,y, which makes it difficult to reach
the topological phase before superconductivity in the parent
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FIG. 1. (a) Schematic representation of the proposed modulated
Josephson junction device. A 2DEG hosted by a semiconductor
quantum well (orange) is proximity coupled to a pair of s-wave
superconductors (light blue) separated by a quasi-1D, spatially mod-
ulated junction region. (b) Top view of four unit cells of the periodic
structure. There is a phase difference ¢ between the two supercon-
ductors. The proximitized regions are considered to be semi-infinite
in the y direction

superconductor is destroyed by the applied magnetic field.
Many widely used hybrid structures, which include both
nanowires and planar strip-type systems, particularly those
characterized by a hard (induced) SC gap, are likely to be in
a strong coupling regime since the induced gap is comparable
to the parent gap, Ajng ~ A,.

The JJ design overcomes the issues associated with strong
SM-SC coupling, basically because the bare semiconduc-
tor parameters are not renormalized by the superconductor
within the junction region. Also, this design enables an
additional, potentially useful tuning parameter: the super-
conducting phase difference. However, the JJ system has a
major issue that could make these attractive features practi-
cally irrelevant: the optimal topological gap is rather small,
which makes the topological superconducting phase (and
the corresponding MZMs) very fragile. In addition, realizing
the conditions consistent with the optimal topological gap is
nontrivial, as it involves a highly uniform effective potential
throughout the system. More specifically, for realistic device
parameters characterizing InAs/Al systems, the topological
gap Ay is restricted to rather small fractions of the parent gap
A,. Combined with the already small parent SC gap of Al,
A, ~ 0.2 —0.3meV, this leads to a very fragile topological
phase that can be easily destroyed by a small amount of
disorder [36,38,39]. Moreover, using superconductors with a
larger gap does not automatically fix the issue, since it in-
volves an increase of the Zeeman energy necessary to achieve
the optimal topological gap [53]. Finally, the uniformity re-
quirement to be satisfied by the effective potential represents
a nontrivial task in the presence of both proximitized and
nonproximitized regions [70] due to the strong band bending
at the SM-SC interface [71,72], as well as the proximity-
induced shift of the potential in the presence of finite SM-SC
coupling [32,73].

In this paper, we propose a planar JJ device with peri-
odically modulated junction width (see Fig. 1) as a possible
solution to the challenges facing the standard JJ design. In
essence, the modulation of the junction width generates a
strong periodic potential, which, in turn, produces minibands
with strongly renormalized effective parameters. On the one
hand, in the presence of these minibands, the topological

phase supported by the hybrid structure with no superconduct-
ing phase difference expands significantly within the low-field
regime. Most importantly, the topological gap characterizing
the low-field topological phase is substantially enhanced as
compared to gap associated with the the uniform, nonmodu-
lated structure (with or without a phase difference). In turn,
this enhances the robustness of the topological phase and the
associated MZMs against disorder. This enhancement of the
topological gap is, in essence, a direct result of the larger
effective spin-orbit coupling that characterizes the minibands
induced by the periodic (effective) potential. Note that this
type of optimization of the effective parameters by controlling
the geometric properties of a nanodevice opens a potentially
fruitful route to creating materials by design. Finally, we note
that the optimal regime for operating the proposed modulated
structure involves the presence of an attractive potential in
the junction region, which can be easily generated using a
top gate. This bypasses any potential uniformity requirement
that may apply to the nonmodulated structure. In addition,
the low-field topological phase can be accessed by tuning the
top gate potential without the need to apply a nonzero super-
conducting phase difference. This could significantly simplify
the scaling of these devices and the design of multiqubit
architectures. Of course, the proposed structure inherits the
advantages of the JJ design with respect to the issues arising
from strong SM-SC coupling, which can affect nanowire-type
devices.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the theoretical model used to investi-
gate the properties of the modulated JJ device and present
the numerical techniques developed to efficiently solve the
corresponding quantum mechanics problem. In Sec. III, we
first summarize the key properties of the uniform JJ structure,
emphasizing the key issue of the relatively small topological
gap, then we calculate the corresponding properties of the
proposed modulated structure and demonstrate that the peri-
odic modulation of the junction width leads to a significant
enhancement of the topological gap and, implicitly, to a a
more robust topological phase. Our concluding remarks are
presented in Sec. IV.

II. MODELING

We consider the hybrid system shown schematically in
Fig. 1, which consists of a 2DEG hosted by a semiconductor
quantum well (InAs) that is proximity coupled to a pair of
s-wave superconductors (Al) separated by a narrow quasi-1D
region, forming a JJ. The width of the JJ is periodically mod-
ulated, which represents the key ingredient of our proposed
design. Specifically, the width of the junction region varies
between two values W) > W,, where the constricted regions
(W>) have length £ and the overall length of the unit cell is
L. In this section, we discuss the theoretical model used to
describe the system and the method developed to efficiently
solve the corresponding quantum mechanics problem. We also
provide a qualitative characterization of the effects generated
by the periodic modulation of the junction width, which rep-
resent key ingredients affecting the low-energy physics of the
proposed device.
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A. Effective low-energy Hamiltonian

We assume that the quantum well hosting the 2DEG is
narrow, so its low-energy physics is accurately captured by a
single quantized mode along the z direction (i.e., the direction
perpendicular to the 2DEG plane). We model the effectively
2D SM-SC heterostructure at the mean-field level using a
Bogliubov-de Gennes (BdG) Hamiltonian that, in the Nambu
basis (Y4, ¥, ¥[, ¥]), has the form

h2
H = [_ e (324 8)) — u+Vix, y)}oorz

— iag(8,0,T, — 0,0,T,) + Ez(x, )0y T,
+ R[AEx, y)loyty + S[A, y)loyTy, €))

where m* is the SM effective mass, u is the chemical poten-
tial, V is the glectrostatic potential, ok is the Rashba spin-orbit
coefficient, Ez is the Zeeman energy, A is the induced SC
pairing, and o; and 1;, with j = o, x, y, z, are Pauli matrices
acting on the spin and particle-hole spaces, respectively. Note
that V, Ez, and A are position-dependent quantities having
a periodic dependence on x (i.e., on the position along the
junciion) with period L, V(x + L, y) = V(x, y) and similarly
for Ez and A. Explicitly, the electrostatic potential is assumed
to have the form

V X junction region
wLw={”(’”€”C@“%° . @

0, (x, y) € proximitized regions,
where V; is the junction potential. We note that the potential V;
in the junction region can be controlled using a top gate, which
will not affect the electrostatic potential of the proximitized
regions due to screening by the SCs. The Zeeman energy Ez,
which is generated by applying a magnetic field along the x
direction, has a spatial dependence given by

~ E X junction region
&mwz{z’(’”eJ...g G
0, (x,y) € proximitized regions.

Here, we assume that the junction region is characterized by a
relatively large g factor, while the effective g factor within the
proximitized regions is strongly suppressed as a result of the
renormalization generated by a strong SM-SC coupling [69].
For simplicity, we neglect the small Zeeman splitting within
the proximitized regions. Finally, the induced SC pairing is
assumed to have the form

A,e®? (x,y) e first SC region
A(x,y) =10, (x,y) € junction region 4)
A,e™ 2 (x,y) € second SC region,

where A, € R is the magnitude of the induced SC gap in the
proximitized regions and ¢ is the phase difference between the
two semi-infinite superconductors, which extend along the y
axis toward o0 (first SC) and —oo (second SC).

We discretize the Hamiltonian in Eq. (1) using the finite
difference method [74] on a square lattice with lattice constant
ay =a,=5nm and solve numerically the corresponding
BdG problem. The model parameters used in the calcula-
tion, m* = 0.026m,, ag =200meV A, and A, = 0.3meV,
are consistent with InAs/Al structures in the strong SM-SC
coupling limit. We note that the effective SM parameters may

be renormalized in a strongly confined 2DEG, but incorporat-
ing such effects would require a more complicated modeling,
e.g., using an eight-band Kane model [75]. The discretized
BdG Hamiltonian can be written in second quantized form as

H= Z Z Z W;,i,uHiu,jv (R—=RYr v, 5)

RR ij myv

where W;, ;. creates a fermion with spin/particle-hole index
on site i of the unit cell R, while H represents the correspond-
ing Hamiltonian matrix. Note that the matrix elements are
the same within every unit cell, as indicated by the (R — R’)
dependence in Eq. (5). Due to this periodicity, we can use
Bloch’s theorem by introducing the representation

1 Nt —i
¢R,i,,4 = W Z Wq,i,ue R (6)
Y q

into Eq. (5). Note that in Eq. (6), g € [—m, 7] represents the
crystal momentum, which is restricted to the first Brillouin
zone, and N, is the number of unit cells along the length of
the system. The BdG Hamiltonian takes the form

H= Z Z Z Jf‘;,i,uﬁiuij(Q)Jq.j,w (7)
q

i,j M.

where IZ; ; , creates a fermion with spin/particle-hole index 1
and crystal momentum g on site i of the unit cell. The Bloch
Hamiltonian H(qg) is given by

Hipju(@) =Y Hip ju(r)e. ®)

Note that the Bloch Hamiltonian has (antiunitary) particle-
hole symmetry, 7,H*(g)t, = —H(—¢q), which is characteris-
tic of all BAG Hamiltonians [76], but time-reversal symmetry
is broken due to the applied magnetic field. The system
therefore belongs to class D and is characterized by a Z,
topological invariant Q = sign(Pf[X (0)]Pf[X (;r)]), where Pf
indicates the Pfaffian and iX(q) is the imaginary skew-
symmetric Hamiltonian matrix in the Majorana basis [76].
The trivial SC phase corresponds to Q = +1, while the topo-
logical superconducting phase corresponds to Q = —1 and,
in a finite system, gives rise to MZMs localized at the ends
of the junction. Note that the phase boundaries separating the
topological and trivial phases correspond to H(g) having zero
eigenvalues (i.e., gapless states) at ¢ = 0 or ¢ = 7. The key
questions that we address within this theoretical framework
are (1) Given a set of structural parameters (e.g., Wi, W, ¢,
and L), what is the corresponding topological phase diagram
as function of the control parameters, u, Ez, V;, and ¢? (2)
Within the topological region of the parameter space, what is
the size of the topological gap? Of course, a larger topological
gap indicates a more robust topological phase and, implicitly,
more robust MZMs. Our main goal is to determine the impact
of having a spatially modulated junction width (W; # W) on
the extent and robustness of the topological phase.

B. Green’s function formalism

The hybrid system is perfectly well-defined by the Bloch
Hamiltonian in Egs. (7) and (8), but solving the corresponding
quantum mechanics problem using a straightforward, brute
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force numerical procedure is at least challenging, or even
impossible, if we assume that the proximitized regions are
semi-infinite in the y direction. We note that numerical calcu-
lations involving nonmodulated structures (with Wy = W5) do
not face a similar challenge because the underlying problem
is effectively 1D and a scattering approach can be employed
[53]. Alternatively, one can assume large, but finite, widths
for the proximitized regions [52], which implies solving a 1D
lattice problem for a system with N, sites, where a(N, + 1) is
the total width of the system. By contrast, using a similar ap-
proach for the modulated system involves a finite lattice with
Np x Ny sites, where L = aNy is the length of the unit cell and
the numerical problem becomes significantly more costly. To
address this challenge, we use a self-energy approach within
the Green’s function formalism [77,78] and integrate out the
degrees of freedom associated with the large (possibly semi-
infinite) proximitized regions. For quadratic Hamiltonians, the
retarded Green’s function is given by

G, q) = (@ —H(g)+ in) ", )

where 7 is an infinitesimally small positive energy that moves
the poles of the retarded Green’s function to the lower half of
the complex plane. The reduced Green’s function within the
junction region is obtained by integrating out the proximitized
regions. Specifically, we have

Gy, q) = (@ — H;(@) — Ssc(w, @) +in)™",  (10)

where the subscript J indicates a quantity that is restricted to
the junction region and Xgc is the self-energy that captures the
contribution of the two proximitized regions. The self-energy
can be efficiently calculated numerically using the decima-
tion method of Ref. [79], which takes advantage of the fact
that couplings between layers normal to the JJ interface are
independent of the layer index. Importantly, the topological
index Q can be calculated using the zero frequency Green’s
function. Furthermore, the topological phase diagram can be
efficiently calculated using the energy-independent effective
Hamiltonian,

H(q) = Hi(q) + Ssc(0, @) (11)

Indeed, the phase boundaries correspond to G;(0, g) having
poles at ¢ = 0 or ¢ = 7, which is equivalent with H5"(q)
having gapless modes at the corresponding values of g. Note
that the problem is now numerically tractable since HS(q)
only contains the junction degrees of freedom. Also note that
Ysc(0, g) is Hermitian since there are no states within the SC
gap for the isolated SC regions and, therefore, ’Hﬁﬂ(q) is also
Hermitian. We also calculate the topological gap by finding
the lowest-energy poles of Eq. (10) using the iterative method
discussed in Appendix B.

III. RESULTS
A. Uniform Josephson junctions

We first consider a uniform, nonmodulated system, which
provides reference results for evaluating the modulated struc-
tures. This case also illustrates some of the potential concerns
about (uniform) JJ structures, in particular, regarding the size
of the topological gap that can be realized in this type of
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FIG. 2. Phase diagram as a function of Zeeman energy and
chemical potential for a uniform (i.e., nonmodulated) system of
width W) = W, = 100 nm. The superconducting phase difference is
¢ = 0, 7 in (a) and (b), respectively, and V; = 0. Blue and red lines
correspond to parameter values for which the topological gap is
shown in Fig. 3.

system. An example of a topological phase diagram as func-
tion of the Zeeman splitting (E7) and chemical potential (u)
for a system of junction width Wy = W, = 100nm and su-
perconducting phase difference (a) ¢ =0 and (b) ¢ = 7 is
shown in Fig. 2. Note that the junction potential is set to zero,
V; = 0. The phase diagrams are consistent with previous stud-
ies [52,53]. We note that the experimentally relevant regime
corresponds to relatively low values of the Zeeman splitting
(e.g., Ez < 2meV), since applying large magnetic fields is
detrimental to superconductivity inside the parent SC (i.e.,
the Al films that proximitize the 2DEG) and, implicitly, to
the size of the topological gap. As expected [52,53], in the
presence of a phase difference ¢ = 7, practically the entire
low-field region of the phase diagram with u Z 0 is covered
by the topological superconducting phase. By contrast, the
system with ¢ =0 (i.e., no phase difference) is character-
ized by a single, relatively narrow topological lobe around
u ~ 0. Additional small topological regions occur at higher
u and E7 values, but because they are (mostly) outside the
low-field regime, these regions are expected to have rather
limited experimental significance. This behavior is due to the
fact that the relevant low-energy states leak further into the
proximitized regions as w increases and, therefore, require
larger values of E (which is nonzero only inside the junction
region) to acquire the effective Zeeman splitting consistent
with the emergence of topological superconductivity.

The quasiparticle gap Ay, (defined as the lowest positive
eigenenergy of the bulk spectrum) corresponding to the cuts
marked by blue lines in Fig. 2(a) are shown as blue lines
in Figs. 3(a) and 3(b). Note that A, is the topological gap,
Ap = Agp, When the system is in the topological phase.
The maximum topological gap along these representative cuts
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FIG. 3. Quasiparticle gap along representative cuts marked by
blue and red lines in Fig. 2 as functions of (a) chemical potential,
i, and (b) Zeeman splitting, E,. Blue lines correspond to ¢ = 0,
while red lines correspond to a system with superconducting phase
difference ¢ = m. Panel (c) shows the dependence of the quasipar-
ticle gap on the applied junction potential, V;, for a system with
parameters corresponding to the red dot in Fig. 2(b). Note that the
maximum topological gap for the uniform (nonmodulated) system is
Agp ~ 0.23A, = 0.07meV.

for the system with no phase difference (¢ = 0) is Ay ~
0.23A, = 0.07meV. The quasiparticle gaps corresponding
to the red lines in Fig. 2(b), i.e., for a system with phase
difference ¢ = 7, are shown as red lines in Figs. 3(a) and
3(b). Note that, as a function of the applied Zeeman field, the
topological gap has a maximum A, ~ 0.15A, = 0.045meV
at E; ~ 1 meV [see Fig. 3(b)]. The dependence of this max-
imum value on p is rather weak, as shown in Fig. 3(a). The
effect of a nonzero junction potential V; on the topological
gap is shown in Fig. 3(c) for parameters corresponding to the
red dot in Fig. 2(b). Note that for V; < 0 the topological gap
quickly decreases toward zero. This is due to the formation
of bound states localized almost entirely within the junction
region, which are characterized by a small induced gap, as dis-
cussed in Appendix A. The maximum of the topological gap
is obtained for V; ~ 1 meV and has a value Ay ~ 0.23A, =
0.07 meV comparable to the maximum gap of the system with
no phase difference (¢ = 0). Upon further increasing V; the
system becomes nontopological near V; &~ 10 meV, when the
junction region becomes depleted (i.e., V; > w).

An important question is whether the low-field topological
lobe characterizing the system with ¢ = 0 can be accessed by
tuning V; when the system has a finite (possibly large) chemi-
cal potential. To address this question, we determine the value
V() of the junction potential that minimizes the critical
Zeeman field for a given value of the chemical potential. We
find that V;*(n) < ., i.e., the optimal V;, is slightly smaller
than the value of the chemical potential. The topological phase
diagram as a function of E; and u for a system with optimal
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FIG. 4. Topological phase diagram for a uniform system of width
Wi = W, = 100 nm with no superconducting phase difference (¢ =
0) and optimal junction potential, V; = V;*(u) (see main text). Note
that the lowest critical Zeeman field in a system with finite chem-
ical potential is always larger than the minimal value E; = A, =
0.3 meV, which corresponds to i = 0.

junction potential V; = V(1) is shown in Fig. 4. Note that the
phase boundary shifts from a minimum E; = A, = 0.3 meV
at = 0 to larger values of the critical Zeeman splitting when
u # 0, which can make accessing the topological phase more
difficult. We emphasize that the experimentally relevant sit-
uation corresponds to o > 0, which implies that the minimal
critical field (obtained by tuning V;) in a system with no phase
difference (i.e., ¢ = 0) is always larger than (but comparable
to) A,. This analysis shows that, as far as the accessibility of
the topological phase is concerned, there is no fundamental
advantage of being able to apply a nonzero phase difference
if the regime Ez ~ 1 meV is experimentally accessible. In
other words, there is no major difference between accessing
the topological quantum states in Fig. 2(b) by applying a
phase difference ¢ = m and accessing the topological quan-
tum states in Fig. 4 by tuning the junction potential. If, on the
other hand, E; ~ 1 meV is outside of the low-field regime,
having ¢ = m may be a significant advantage. However, this
comes with the heavy price of a small topological gap (see
Fig. 3).

While applying a phase difference ¢ = 7 can solve po-
tential problems regarding the accessibility of the topological
phase due to finite critical values of Ez, there remains the
key issue of the relatively small topological gap. Why is
the (maximum) topological gap only a small fraction of A,
in nonmodulated systems? As pointed out in Ref. [53], the
topological gap is expected to be large if W < /% /(m*A,);
otherwise, it is inversely proportional to the square of the junc-
tion width, A W 2. For the values of the effective mass
and induced gap used in this paper, the large gap condition
yield W < 100 nm, which suggests that a larger topological
gap could be obtained by using narrower junctions. This mo-
tivates us to calculate the dependence of the topological gap
on the junction width. Figure 5 shows A, as a function of
the junction width for a uniform system with © = 10 meV,
¢ = m, and two different values of E;. Note that the topo-
logical gap decreases with increasing the junction width for
large-enough W values, as expected based on the asymptotic
Ap o W2 behavior. Perhaps more surprising is the suppres-
sion of the gap in the narrow junction limit, W — 0. This
occurs because the effective Zeeman energy associated with
the relevant low-energy states is proportional to the spectral
weight of the states within the junction, which is reduced as W
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FIG. 5. Dependence of the topological gap on the junction width
W for a uniform system with chemical potential ©x = 10 meV, phase
difference ¢ = 7, and two values of the Zeeman field: E; = 1 meV
(red) and E; = 2 meV (blue). Note that the dependence is nonmono-
tonic. Reducing the width of the junction allows larger values of the
maximum topological gap, but this requires larger Zeeman fields that
may be outside the (experimentally relevant) low-field regime.

decreases. For narrow junctions, the topological gap reaches
its maximum at a value E7 of the Zeeman splitting that in-
creases with decreasing W, which eventually puts E; outside
the (experimentally relevant) low-field regime. Consequently,
reducing W cannot be a practical solution to the problem of
small topological gaps in uniform systems. Finally, we note
that an enhancement of the topological gap could be obtained
by significantly increasing the spin-orbit coupling strength
[53]. However, we find that reaching values of the maximum
topological gap above Ay, ~ 0.3A, would be extremely diffi-
cult within any realistic parameter regime. In the next section,
we show that a practical solution to artificially enhancing
the effective spin-orbit coupling involves a periodic potential
created by modulating the width of the JJ.

To summarize this section, we point out that the most
appealing feature of the Josephson junction proposal for
realizing topological superconductivity and MZMs—the ex-
tensive low-field topological phase emerging in the presence
of a phase difference ¢ = 7 [see Fig. 2(b)]—is offset by seri-
ous limitations regarding the size of the topological gap. For
the realistic parameters used in our calculation, the maximum
topological gap is Ayp ~ 0.23A, = 0.07meV. Moreover,
generating this gap requires not only a finite Zeeman field,
E7; =~ 1 meV, but also tuning the Junction potential V; (see
Fig. 3). However, if the regime E; ~ 1 meV is accessible and
V; can be tuned, one can realize similar values of the topo-
logical gap in a system with no phase difference by simply
tuning the junction potential (see Figs. 3 and 4). In both cases,
the major problem is the relatively small topological gap and,
consequently, the fragility of the topological phase and of the
emerging MZMs.

B. Modulated Josephson junctions

In this section, we present the numerical results for the pro-
posed modulated JJ structure and show (see Sec. III B 1) that,
in the absence of a superconducting phase difference (i.e.,
for ¢ = 0), the system operated in the quantum well regime
(V; < 0) (i) supports a low-field topological phase that covers
a significant area of the phase diagram and (ii) is characterized
by an enhanced topological gap that represents a substantial
fraction of the induced gap A,. For completeness, we also
consider the case ¢ = m and show (see Sec. IIIB2) that

10 -

<ﬁ
.

H (meV)
[6,]
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FIG. 6. Phase diagram of a modulated structure with no super-
conducting phase difference (¢ = 0) as a function of Zeeman energy,
E7, and chemical potential, . The geometric parameters are W, =
100nm, W, = 20nm, L = 60nm, £ = 20nm, and w = 40 nm (see
Fig. 1). The junction potential is negative, V; = —40 meV, which
generates several bound states within the junction region. As com-
pared to the phase diagram for the uniform system [see Fig. 2(a)],
the low-field topological region is dramatically expanded; there exist
several topological lobes at low E; values, each associated with a
different folded subband. The quasiparticle gap corresponding to the
parameter cuts indicated by the blue lines are shown in Figs. 7 and 8.

having a superconducting phase difference ¢ = mw provides
no practical advantage in a system with modulated junction
width. We emphasize that the calculations presented in this
section should be considered as proof-of-concept examples.
Note that we do not explicitly address the issue of optimizing
the geometric parameters; this optimization task should be
addressed in synergy with the materials growth and structure
engineering efforts and should target specific materials and
hybrid structures.

1. Modulated Josephson junctions with no phase difference
(=0

Let us consider a 2D SM-SC hybrid system with no su-
perconducting phase difference, ¢ = 0, in the presence of a
spatial modulation characterized by the geometric parameters
W, = 100nm, W, = 20nm, L = 60 nm, and £ = 20nm. We
assume that the system has reflection symmetry about the x
axis. A negative junction potential V; = —40meV puts the
system into the quantum well regime. In a uniform structure,
the negative junction potential would generate a trivial topo-
logical phase, if the phase difference is zero, or an essentially
gapless topological phase at ¢ = m, as shown numerically
in Fig. 3(c) (see also the discussion in Appendix A). How-
ever, modulating the junction width significantly enhances
the quasiparticle gap. The corresponding phase diagram, as
a function of E; and u, is shown in Fig. 6. First, note that the
phase diagram is quite complicated, especially at larger values
of E7 (i.e., Ez > 2meV). This behavior is due to the presence
of many folded subbands which often cross, giving rise to a
rather atypical phase diagram. Nonetheless, the crucial point
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FIG. 7. (a) Low-field phase diagram corresponding to the region
E; < 1.1meV in Fig. 6. Note the presence of several topological
lobes (shaded) with Ez i ~ A,. (b) Topological gap as a function
of the chemical potential p for fixed E; = 1 meV [blue line in (a)].
The quasiparticle gap corresponding to the topologically trivial phase
is not shown. Note that the maximum topological gap approaches
0.5A,, which represents a significant increase as compared to the
nonmodulated structure (see blue lines in Fig. 3).

is that the low-field topological region of the phase diagram is
dramatically enlarged as compared to the corresponding phase
diagram of the nonmodulated structure [see Fig. 2(a)]. We em-
phasize that, unlike the uniform structure, in this modulated
system the topological phase exists at low Zeeman energies,
E; ~ A,, even for relatively large p values. This substantial
enhancement of the low-field topological region represents the
first significant advantage of the modulated structures.

To asses the robustness of the topological phase, we calcu-
late the topological gap along representative cuts through the
parameter space, which are shown as blue lines in Fig. 6. The
results for the vertical cut (i.e., the dependence on the chemi-
cal potential p for a fixed value of the Zeeman splitting E; =
1meV) are shown in Fig. 7. For convenience, the low-field
portion of the phase diagram shown in Fig. 6 is reproduced in
panel (a), while panel (b) shows the topological gap along the
vertical cut marked by the blue line. For simplicity, we do not
plot the quasiparticle gap corresponding to the topologically
trivial superconducting phase. Note that the low-field phase
diagram, especially for 1 > 4 meV, is qualitatively similar to
a conventional Majorana phase diagram for a multisubband
hybrid system [80]. In our case, the subbands responsible for
the emergence of the topological lobes are actually minibands
resulting from the folding of bound state bands (i.e., the bands
associated with states localized near the junction region) into
the first Brillouin zone associated with the periodic structure.
The topological gap for a fixed value of the Zeeman field,
Ez = 1meV, is shown in Fig. 7(b). Note that the topological
gap corresponding to the top two lobes is quite large, having
peak values A, ~ 0.47A,. This is a significant increase (by

1.0 A

Agp/Do
o
(6]

0.0 1

1.0 A

qu/ Ao
o
(0]

0.0 1

E- (meV)

FIG. 8. Quasiparticle gap as a function of Zeeman energy corre-
sponding to the horizontal lines in Fig. 6 with (a) . = 11.1 meV and
(b) u = 7.4meV. Shading indicates the presence of a topological su-
perconducting phase, i.e., Ay, = A,. Note that the topological gap
remains near its maximum value, A, &~ 0.5A,, over a significant
range of E.

a factor of 2) as compared to the uniform system, which
has a maximum topological gap of A, ~ 0.23A,. We note
that this enhancement was not optimized with respect to the
geometric parameters characterizing the modulated junction
or with respect to the applied junction potential V;, and is
obtained at a value of the applied Zeeman field comparable
to the (optimal) low-field values associated with the uniform
system.

The enhanced topological gap exists over a larger range
of Zeeman field, as shown in Fig. 8. Furthermore, the max-
imum value corresponding to the parameter range used in
this calculation slightly exceeds 0.5A, and is obtained at a
relatively low field, £z ~ 2.2A, = 0.66 meV. These results
clearly show that modulating the junction width can lead to
a substantial enhancement of the topological gap. The key
physical mechanism responsible for the enhancement of the
topological gap is associated with the increase of the effective
spin-orbit coupling in the presence of a periodic potential
[60]. More specifically, the high-order minibands (i.e., the
minibands formed from subbands that have folded several
times) are characterized by a substantially enhanced effective
spin-orbit coupling [60], which, in turn, produces a large topo-
logical gap. Note that the lower-order minibands, which are
responsible for the topological regions at smaller u values, are
characterized by a weaker enhancement of the effective spin-
orbit coupling and, consequently, a weaker enhancement of
the topological gap. On the other hand, further increasing the
chemical potential (4 > 12meV) leads to the emergence of
topological lobes generated by even higher-order minibands,
with extremely large effective spin-orbit coupling, which can
push the maximum topological gap closer to A,
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FIG. 9. (a) Phase diagram of a modulated structure with the same
parameters as in Fig. 6 and @ = 10 meV as function of the Zeeman
field, Ez, and the applied junction potential, V;. (b) Topological gap
along the cut marked by a blue line in (a), which corresponds to a
Zeeman field E; = 1 meV. The trivial quasiparticle gap is not shown.

The results presented in Figs. 6-8 illustrate the main
benefits of engineering hybrid structures with periodically
modulated junction width: the emergence of multiple low-
field topological lobes in the absence of a superconducting
phase difference, ¢ = 0, and the enhancement of the topo-
logical gap. However, for a given structure, the chemical
potential p is not an experimentally tunable parameter. In
fact, u is essentially determined by details of the 2DEG-SC
heterostructure, such as materials properties, band-bending
effects at the SM-SC interface [71,72], and the strength of
the effective SM-SC coupling [32,69]. On the other hand,
the junction potential V; is readily tunable using a top gate
and, therefore, represents an experimentally relevant control
parameter, along with the Zeeman field E;. The low-field
topological lobes generated by the (high-order) minibands and
characterized by large values of the topological gap should be
accessed by tuning V;, rather than the chemical potential.

An example of phase diagram as function of Zeeman field,
E7, and applied junction potential, V;, for a system with the
same structure parameters as in Fig. 6 and a (fixed) chemical
potential # = 10meV is shown in Fig. 9(a). The phase dia-
gram is characterized by several topological regions with low
values of the critical Zeeman field, E; ~ A,. As V; is tuned
toward more negative values in the presence of a Zeeman
field of order E; ~ 1 meV, we sweep through several topo-
logical lobes characterized by large values of the topological
gap, Ayp ~ 0.4 —0.45A, [see Fig. 9(b)]. This represents a
significant enhancement of topological gap as compared to
the nonmodulated system [see Fig. 2(a)]. We also note the
presence of a topological region for positive V; values (i.e.,
in the potential barrier regime) near V; ~ SmeV. However,
the corresponding critical Zeeman energy is Ez =~ 1 meV,
significantly larger than the lowest critical Zeeman energies

in the quantum well regime (V; < 0). This behavior is due
to a stronger localization of the low-energy states within the
junction region in the quantum well regime as compared to
the potential barrier case. In turn, since the Zeeman splitting is
assumed to be small in the proximitized regions, this results in
a larger effective Zeeman energy associated with a given value
of E; for the system in the quantum well regime (V; < 0).
The results shown in Fig. 9 demonstrate that the enhanced
topological regions generated by minibands emerging in the
presence of a modulation-induced periodic potential can be
conveniently accessed by tuning the junction potential V;. We
emphasize that tuning V; using a potential gate can be done
much more efficiently than tuning the effective potential of a
hybrid nanowire structure because of minimal screening by
the superconductor. Indeed, the active region in a nanowire
is relatively close to the superconductor, which drastically
limits the effectiveness of a potential gate. By contrast, the
junction region is free from this limitation, which enables
tuning V; within a large potential window and, consequently,
exploring large regions of the parameter space. This is useful
not only for optimizing the topological superconducting phase
(by maximizing the topological gap) but also for investigating
topological quantum phase transitions. Of course, the pres-
ence of disorder can seriously limit or completely destroy this
physics.

2. Modulated Josephson junctions with phase difference ¢ = n

Having demonstrated the enhancement of the topological
gap in modulated structures with no superconducting phase
difference (¢ = 0), the natural question regards the fate of
topological superconductivity in the presence of a phase dif-
ference ¢ = w. We note that, in general, modulating the
junction with a system operated in the potential barrier regime
(V; > 0) generates no advantage with respect to the uniform
structure (see the discussion in Appendix A) and, therefore,
we focus on the quantum well regime. Figure 10 shows an
example of topological phase diagram as a function of E;
and p for a system with the same parameters as in Fig. 6
and phase difference ¢ = m. Similarly to the nonmodulated
system in Fig. 2, the phase boundary shifts toward lower
values of the Zeeman field, reaching E; = O at certain val-
ues of the chemical potential. The phase diagram exhibits an
alternation of topological and trivial phases as the chemical
potential is varied in the presence of a finite Zeeman field.
Note that the ranges of u where the phase boundary ap-
proaches E; = 0 correspond to the low Ez topological lobes
in Fig. 6, suggesting that they are associated with the presence
of modulation-induced minibands.

Next, we calculate the size of the quasiparticle gap along
representative cuts corresponding to the red lines in Fig. 10.
It is important to emphasize that the system is deep inside
the quantum well regime, V; = —40meV, and that the cor-
responding uniform system would be essentially gapless, as
clearly shown in Fig. 3(c). By contrast, the topological gap
characterizing the modulated system with ¢ = is finite,
although significantly smaller that the corresponding gap in
the absence of a phase difference [see Figs. 7(b) and 8].
The results corresponding to the vertical cut are shown in
Fig. 11, with Fig. 11(a) reproducing the low-field region of
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FIG. 10. Phase diagram of a modulated structure with supercon-
ducting phase difference ¢ = 7 as a function of Zeeman energy, E,,
and chemical potential, ;. The geometric parameters are the same
as in Fig. 6 and the junction potential is negative, V; = —40meV.
The quasiparticle gap calculated along the cuts marked by red lines
is shown in Figs. 11(b) and 12.
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FIG. 11. (a) Low-field phase diagram corresponding to the re-
gion E; < 1.1meV in Fig. 10. (b) Topological gap along the cut
marked by the red line in (a), which corresponds to a Zeeman
field E; = 1 meV. The trivial quasiparticle gap is not shown. Note
that the topological gap is characterized by a huge enhancement as
compared to the gap of a uniform system in the quantum well regime
[V, = —40meV; see Fig. 3(c)]. However, the gap values are strongly
suppressed in comparison to those of a modulated system with no
phase difference [see Fig. 7(b)].
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FIG. 12. Quasiparticle gap as a function of E; along the horizon-
tal cuts marked by red lines in in Fig. 10. The chemical potential
values are (a) w =11.0meV, (b) © =6.3meV, and (¢) u =
2.7meV. Shading indicates the presence of a topological super-
conducting phase. The topological gap is massively enhanced in
comparison to the corresponding gap of a uniform system (in the
quantum well regime) [see Fig. 3(c)] but is significantly smaller than
the gap of the modulated system with no phase difference (Fig. 8).

the phase diagram and Fig. 11(b) showing the dependence of
the topological gap on the chemical potential for £, = 1 meV.
Note that the maximum value of the topological gap is A, ~
0.1A,, with typical values of the order A, ~ 0.01 — 0.03A,.
By contrast with the system with no phase difference [see
Figs. 7(b) and 8], the typical gap tends to decrease with the
chemical potential. This trend is confirmed by the results in
Fig. 12, which shows the dependence of the quasiparticle gap
on the Zeeman field along the horizontal cuts marked by red
lines in Fig. 10.

We conclude that a modulated structure operated in the
quantum well regime (V; < 0) in the presence of a phase dif-
ference ¢ = m exhibits a huge enhancement of the topological
gap as compared to a uniform structure operated in the same
regime. However, the gap is strongly suppressed as compared
to the corresponding values in a modulated structure with no
phase difference. More generally, applying a phase difference
¢ # 0 to a modulated structure operated in the quantum well
regime reduces the topological gap and, consequently, has a
detrimental effect on the robustness of the topological phase.
In addition, we have explicitly checked that operating the
modulated device in the potential barrier regime, V; > 0, leads
to effectively losing the qualitative difference between the
modulated and uniform systems. In other words, if V; > 0, the
experimentally accessible maximum values of the topological
gap are similar in modulated and uniform systems. Hence, to
take full advantage of the topological enhancement enabled
by modulated structures, the device should be operated in

155428-9



PAUDEL, COLE, WOODS, AND STANESCU

PHYSICAL REVIEW B 104, 155428 (2021)

the quantum well regime (V; < 0) in the absence of a phase
difference (i.e., ¢ = 0).

IV. CONCLUSION

In summary, we have proposed a planar, periodically mod-
ulated JJ design for realizing topological superconductivity
and MZMs in SM-SC hybrid structures. The key feature of
the proposed device is represented by the periodic modula-
tion of the junction width, which generates a strong periodic
potential within the junction region and induces minibands
with strongly renormalized effective parameters. By solving
numerically a theoretical model describing the structure, we
have shown that modulating the junction width generates
several key advantages over nonmodulated structures, which
ultimately results in an enhancement of topological supercon-
ductivity in terms of both accessibility and, most importantly,
robustness. More specifically, we have shown that in mod-
ulated structures a topological phase characterized by a gap
representing a significant fraction of the parent SC gap can be
accessed within the low Zeeman field regime by simply tuning
the potential in the junction region using, e.g., a top gate. This
provides an interesting solution to the main challenge facing
the JJ design—the rather low values of the topological gap and
the corresponding fragility of the topological phase—while
preserving its main advantages.

An important feature of the standard JJ design is the sub-
stantial expansion of the topological phase within the low
Zeeman field regime in the presence of a superconducting
phase difference ¢ = 7, as illustrated in Fig. 2(b). Note,
however, that an extended topological phase does not au-
tomatically translate into practical advantages for realizing
robust MZMs. In particular, maximizing the topological gap
requires not only finite values of the Zeeman field that increase
with decreasing the width of the junction [see Figs. 3(b) and
5], but also fine tuning the potential in the junction region
[see Fig. 3(c)]. In addition, controlling the phase difference
can be challenging in a multiqubit structure. By contrast, our
proposed modulated structure is characterized by a topolog-
ical superconducting phase that covers a significant area of
the low-field phase diagram [see Figs. 6 and 7(a)] in the
absence of a superconducting phase difference (¢ = 0). More
specifically, the modulated structure should be operated in
the quantum well regime, with the junction region having
a lower potential than the proximitized regions (V; < 0), so
bound states can form within the junction. This can be easily
realized using a top gate, since the junction region of the
2DEQG is not electrostatically screened by the superconductor.
We emphasize that although the low-field topological lobes in
Fig. 6 are similar to features characterizing the phase diagram
of standard multiband Majorana wires, tuning the chemical
potential (or rather the junction potential V;; see Fig. 9) to ac-
cess several of these lobes is significantly easier in a planar JJ
device as compared to a Majorana wire (or a planar structure
with a strip design) because of lack of screening by the parent
superconductor.

The key advantage of the proposed modulated structure is
a substantial enhancement of the topological gap as compared
to the optimal experimentally accessible gap characterizing
the uniform, nonmodulated structure. This enhancement is

due to a stronger effective spin-orbit coupling associated with
the minibands derived from the bound-state subbands that
have folded several times in the presence of the effective
periodic potential generated by the spatial modulation of the
junction width [60]. Note that maximum gap values are ob-
tained in the absence of a superconducting phase difference
across the junction, ¢ = 0, in the quantum well regime (V; <
0). Also note that a modulated structure with phase difference
¢ = 7 operated in the quantum well regime is characterized
by a much smaller topological gap [see Figs. 11(b) and 12].
However, this represents a dramatic enhancement with respect
to the nearly gapless superconducting state associated with
the uniform (nonmodulated) structure operated in the quan-
tum well regime [see Fig. 3(c)]. In addition, we note that
operating the modulated device in the potential barrier regime
(V; = 0) generates similar gap values as those characterizing
the uniform system, regardless of the phase difference ¢. We
emphasize that the example discussed in this paper is intended
as a proof-of-concept study of the modulation-induced en-
hancement of the topological gap. In other words, we have
not optimized the parameters of the structure. Most likely, the
topological gap can be further enhanced by exploiting higher-
order minibands, which can be reached by making V; more
negative or by increasing ., and by optimizing the geometric
parameters on the junctions (e.g., £, L, W;, W», etc.). This
optimization should be done in synergy with the experimental
and engineering efforts to realize such structures. On the other
hand, we point out that in nonmodulated structures the topo-
logical gap probably cannot be enhanced significantly due to
the intrinsically large Fermi velocity of InAs at even moderate
values of the chemical potentials [53].

In addition to enhancing the robustness of the topological
phase, the proposed modulated device shares the advantages
of the uniform JJ design. In particular, these structures over-
come the issues associated with the strong SM-SC coupling
regime. This is an important property, as most InAs/Al ex-
perimental devices, both nanowires and planar structures,
appear to be in this regime, which results in a suppression
of the effective g factor and spin-orbit coupling within the
proximitized regions. Using the junction design removes the
engineering challenges associated with tuning the SM-SC
coupling. In particular, it simplifies the growth process, since
growers can focus solely on creating a clean SM-SC inter-
face without having to worry about producing barrier layers
to reduce the SM-SC coupling. This also may expand the
materials combinations that can be explored for building these
structures. For example, Pb was recently grown epitaxially on
InAs nanowires [81]. Importantly Pb is able to withstand a
very large magnetic field without SC being destroyed. In the
nanowire experiment, however, the SM-SC coupling is clearly
in the strong-coupling regime since the bulk gap of the device
never closes, even with fields up to 8 T! The topological phase
will likely not be achieved in InAs/Pb nanowires, unless the
SM-SC coupling is significantly reduced. Provided Pb can
be grown cleanly on InAs, our device design overcomes this
strong coupling issue. One then may be able to achieve much
larger topological gaps than those provided by the current
InAs/Al devices. This, of course, could significantly increase
the robustness of the topological phase against disorder. Note,
however, that SCs with larger gaps do not automatically
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provide a significant enhancement of the topological gap in
nonmodulated structures with phase difference ¢ = . In fact,
they place stricter requirements on the junction width and
increase the Zeeman energy needed to reach a significant
topological gap [53]. By contrast, our proposed modulated
design does not have these limitations.

The most significant potential issue facing the realization
of modulated JJ devices concerns the lithography require-
ments to etch the modulations of the junction geometry. While
this may be a challenging engineering and materials growth
problem, we estimate that, in the context of a growing interest
for nanotechnologies, it is likely that precision lithography
will make significant progress in the coming years, making
modulated structures feasible and more attractive. Future the-
oretical work should address the problem of optimizing the
geometric features of the device within the limitations im-
posed by lithography and investigate the effect of geometric
imprecisions associated with lithography, which may repre-
sent a significant source of disorder. Finally, we note that a
number of previous studies have investigated the effects of
various types of periodic alterations of the basic Majorana
structures for both nanowires [29,82,83] and planar systems
[60,61,65]. While significantly different from our proposal,
these works have also found certain benefits of adding peri-
odic alterations to the uniform structure, which suggests that
this type of design deserves further attention.
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APPENDIX A: QUALITATIVE EFFECTS OF MODULATING
THE JUNCTION WIDTH

In this Appendix, we briefly discuss the effects of the
periodic modulation of the junction width at a qualitative level
to highlight the underlying physics. Consider first the case
of V; = 0, when there is no potential difference between the
junction and the proximitized regions. In such a situation,
the only difference between a modulated and nonmodulated
structure (with W, = W)) arises from the changes in A(x, y)
and E,(x,y) within the region |y| < W;/2 associated with
the modulated structure (see Fig. 1). The relevant question
concerns the existence of geometric parameters (i.e., ¢, L, and
W) consistent with significant deviations from the uniform
system. To answer this question, we consider states with en-
ergies below the parent gap, E < A,, which are classically
forbidden within the proximitized region and have a decay
length (approximately) given by

oo 2u

2w A2 —E?  kpJAZ_E?

for u > A,. We expect modulation effects to be important
if the weight of the wave function within the additional

£=2

(AD)

FIG. 13. Spectrum of a nonmodulated structure without spin-
orbit coupling or Zeeman splitting with a sufficiently deep junction
potential V; < O such that a bound-state subband (blue line) forms
with states heavily localized in the junction region. There also exists
a continuum of scatter states (shaded grey region) that extend across
the entire device. Upon the introduction of modulations, states with
k’s differing by a reciprocal lattice vector G, = 22—” couple due to
the periodic potential. For example, the bound state indicated by the
green dot couples to the continuum of scattering states in the red
shaded region. This results in a dressed bound state with enhanced

weight within the proximitized regions.

proximitized regions with |y| < W;/2 (see Fig. 1) is compa-
rable to the weight of the wave function within the standard
proximitized regions (]y| > W;/2) associated with the uni-
form system. Considering now, as an example, a system with
uw =3meV, E =0, and the InAs/Al model parameters given
above, Eq. (Al) yields & ~ 440 nm, which is much larger
than the values of the geometric parameters considered in
this paper. This implies that for the uniform system, most of
the weight associated with the subgap state is already within
the proximitized regions and that this weight will not change
significantly by adding the constrictions. Therefore, we con-
clude that in the absence of a junction potential V;, modulating
the junction width has rather small effects, a conclusion that
is confirmed by the numerical calculations. Similar consid-
erations hold when the system is characterized by a positive
junction potential, V; > 0. Again, the basic reason is that the
relevant wave functions undergo negligible changes in the
spatial distribution of their spectral weight upon introducing
the additional proximitized regions, which translates into the
emergence of a very weak effective periodic potential. We dub
the regime characterized by V; > 0 as the potential barrier
regime. Based on the above considerations, we conclude that
modulating the junction width has weak effects on the low-
energy physics of a hybrid structure operating in the potential
barrier regime.

Next, we consider the effects of the modulation for a
system with V; < 0, when the junction becomes a quantum
well. The normal spectrum of a nonmodulated structure in the
absence of spin-orbit coupling and Zeeman splitting is shown
in Fig. 13. Assuming that |V;| is sufficiently large, discrete
bound states form within the junction with energies below the
continuum of scattering states. Moreover, in the absence of
spin-orbit coupling and modulation, the x and y components
of the problem can be separated. Consequently, the energies
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of the eigenstates are simply E,, ; = &, + %, where k is the x
component of the momentum and ¢, is the eigenenergy of the
corresponding transverse mode. In addition, the wave function
of the states take the simple form W, ;(r) = ¢,(y) exp(ikx),
where ¢, is the k-independent transverse wave function. If
we now add superconductivity to the nonmodulated system,
the bound-state bands give rise to an extremely small induced
gap, since they are heavily localized within the junction region
where A = 0. Any topological phase would be extremely
fragile in this regime (characterized by V; < 0), which we dub
the quantum well regime. Based on these considerations, we
conclude that the quantum well regime is basically useless for
practical applications involving uniform structures.

However, introducing periodic modulations of the junction
width breaks momentum conservation along the x direction,
i.e., k is no longer a good quantum number but, instead, we
have a conserved crystal momentum g. This allows states of
momentum k; and k; to couple through the periodic poten-
tial provided k, = k; + G,, where G, is a reciprocal lattice
vector defined by G, = 2”7” with n € Z. As illustrated in
Fig. 13, bound states with energies near the Fermi level can
now couple to scattering states with much lower momentum
generating dressed bound states that have significantly en-
hanced weight within the proximitized regions. This strongly
alters the previously gapless bound states in the vicinity of
the Fermi level, which now acquire a significant induced gap
from mixing with (gaped) scattering states. Moreover, the
spectrum folds into the first Brillouin zone (|g| < 7 /L) and
the folded subbands associated with dressed bound states be-
come viable for supporting a topological phase for sufficiently
large Ez. In addition, these folded subbands are character-
ized by renormalized effective parameters (e.g., effective mass
and spin-orbit coupling strength), which can result in a sig-
nificant increase in the (effective) spin-orbit coupling and,
consequently, an increase of the topological gap [60]. This
qualitative picture, which is confirmed by the numerical cal-
culation presented in Sec. III, captures the key mechanism
responsible for the topological enhancement that character-
ized our proposed modulated devices.

APPENDIX B: CALCULATION OF THE
TOPOLOGICAL GAP

In this Appendix, we explain how we use a self-consistent
numerical procedure to calculate the energy of eigenstates be-
low the bulk superconducting gap A, and find the topological
gap when the system is in the topological phase.

The energy E of a subgap state with crystal momentum
q corresponds to a pole of the reduced Green’s function
G,(w, q) in Eq. (10) such that |w| < A,. Finding these poles
is equivalent to solving the eigenvalue equation,

HY(E, q)¥ = EV, (B1)
where
Hy (o, q) = Hi(q) + Ssc(w, 9). (B2)

Note that the energy dependence of 7—7’, requires that Eq. (B1)
be solved self-consistently, namely, the energy argument of
H, must equal one of the eigenvalues of #/. The lowest

w/hg

_ FIG. 14. The lowest positive eigenvalue (solid red line) of
H(w, q) monotonically decreases with the energy argument w until it
passes through zero. The energy of a subgap state is found where the
eigenvalue and £ = w (dashed green line) curves intersect (blue dot).
System parameters are given by u = 1 meV, Ez = 1 meV, ¢ = m,
with the same geometric parameters as Fig. 2.

positive eigenvalue of ﬁ} is shown as the red line in Fig. 14
for arbitrary system parameters of a uniform junction in the
topological phase. The energy of a subgap state satisfying
Eq. (B1) is given by the intersection of the eigenvalue curve
with the curve E = w (green dashed line) in Fig. 14. Note
that the eigenvalue monotonically decreases with an increas-
ing value of the energy argument until the eigenvalue passes
through zero near w =~ 0.6A,. Additionally note that this is
the generic behavior we observe for all system parameters.
This enables us to use an efficient root-finding algorithm that
iteratively reduces the energy interval in which we can find the
intersection corresponding to the energy of a subgap state. We
continue the iteration process until the length of the energy
interval is below a small tolerance.

To then calculate the value of topological gap, we must find
the minimum subgap energy which can occur at any value of
crystal momentum g. A brute force approach would require
scanning ¢ and performing the self-consistency algorithm
described above for each value. Fortunately, we generically
find the minimum eigenvalue of H/,(w, ¢) occurs at the same
g independent of the energy argument w. This is illustrated
in Fig. 15, where the lowest eigenvalue of #, is plotted for
three different energy argument values. We therefore first find

1.0
o
J 0.5
Ly
s
- =-0y/3
0.04 . .
0.000 0.002 0.004
ax (1/A)

FIG. 15. Lowest positive eigenvalue of ﬁ’, (w, q) as a function of
g, = q/L for three different values of the energy argument w. While
the energy argument w significantly affects the eigenvalue curve, we
find that the minimum eigenvalue always occurs at the same ¢ value
independent of the energy argument w.
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FIG. 16. Crystal momentum with minimum quasiparticle gap
gmin as a function of Zeeman energy E, for the same system as
Fig. 8(b) of the main text. Shaded blue indicates that the system is
in the topological phase. Topological phase transitions correspond
to bulk gap closures at g, = 7 and are indicated by red dots.
The small topological gap region near E, = 2.2meV (see Fig. 8)
is characterized by gmi, # 0, 7, indicating that we do not have a
topological phase transition near this £, value.

the ¢ = gmin yielding the minimum eigenvalue of ﬁ} (v =
0, g). Next we perform the self-consistent algorithm described
above for H),(w, ¢ = ¢min), which finally then yields the topo-
logical gap.

APPENDIX C: NEARLY GAPLESS TOPOLOGICAL
PHASE AT q # 0, 7

We find that our proposed modulated JJ system is some-
times characterized by a topological phase with a nearly
vanishing topological gap. For example, in Fig. 8(b) of the
main text, the topological gap appears to vanish near E, =
2.2meV. Naively, this may initially be attributed to a topo-
logical phase transition. This is not the case, however. If we
were to zoom in Fig. 8(b) near E, = 2.2 meV, we would find
a small, but nonzero, topological gap. Additionally, recall that
the topological phase transitions in 1D class D systems occur
due to bulk gap closures at g = 0, w [76]. We find, however,
that the crystal momentum g, responsible for the topological
gap near this value of E; is not at the zone boundary, i.e.,
gmin 7 0, . This is illustrated in Fig. 16, which shows g, as
a function of Zeeman energy for the same system as Fig. 8(b).
Therefore, even if the topological gap were to actually vanish
near £, = 2.2 meV instead of being a small value, this would
not be an indication of a topological phase transition. Rather,
our modulated JJ system would then be a gapless topological
superconductor.

— s | =
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FIG. 17. Phase diagram and topological gap plot for the asym-
metric junction with SC phase difference ¢ = 7. (a) Phase diagram
at low Zeeman energy regime. (b) Topological gap calculated along
the vertical line cut taken at £, = 1 meV as shown in (a).

APPENDIX D: INVESTIGATING THE ROLE
OF JUNCTION ASYMMETRY

The geometric parameters of all of modulated JJs that we
studied in the main text were chosen such that the system had
reflection symmetry about the x axis. A natural question is
what effect does breaking the reflection symmetry have on the
topological phase diagram and the topological gap? We inves-
tigate this question by studying one asymmetric modulated JJ
with geometric parameters W; = 100nm, W, = 20nm, L =
60nm, and £ = 20nm, and w = 0. Note that the modulated
structure corresponding to Figs. 612 in the main text have
the same geometric parameters except w # 0. The topological
phase diagram with ¢ = & is shown in Fig. 17(a), and the
topological gap for fixed E, = 1 meV is shown in Fig. 17(b).
Compared to the corresponding phase diagram in Fig. 11 of
the symmetric system, the results are qualitatively similar.
It does appear that the topological gap may be slightly en-
hanced in the asymmetric system compared to the symmetric
structure, although the topological gap still remains below
0.2A, except for the narrow region near . = 6 meV. At the
same time, however, the topological regions of the asymmetric
structure in Fig. 17(a) emerge at slightly larger E, on average
when compared to the symmetric results in Fig. 11(a). Consid-
ering the fact that the effects of introducing asymmetry in this
structure are small, we conclude that the presence or absence
of reflection symmetry does not likely play a crucial role.
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