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We address an outstanding problem that represents a critical roadblock in the development of the
Majorana-based topological qubit using semiconductor-superconductor hybrid structures: the quantitative
characterization of disorder effects generated by the unintentional presence of charge impurities within
the hybrid device. Given that disorder can have far-reaching consequences for the Majorana physics but
is intrinsically difficult to probe experimentally in a hybrid structure, providing a quantitative theoretical
description of disorder effects becomes essential. To accomplish this task, we develop a microscopic the-
ory that (i) provides a quantitative characterization of the effective potential generated by a charge impurity
embedded inside a semiconductor wire proximity coupled to a superconductor layer by solving self-
consistently the associated three-dimensional Schrédinger-Poisson problem, (ii) describes the low-energy
physics of the hybrid structure in the presence of s-wave superconductivity, spin-orbit coupling, Zeeman
splitting, and disorder arising from multiple charge impurities by using the results of (i) within a standard
free-fermion approach, and (iii) links the microscopic results to experimentally observable features by
generating tunneling differential-conductance maps as a function of the control parameters (e.g., Zeeman
field and chemical potential). We find that charge impurities lead to serious complications regarding the
realization and observation of Majorana zero modes, which have direct implications for the development
of Majorana-based qubits. More importantly, our work provides a clear direction regarding what needs to
be done for progress in the field, including specific materials-quality and semiconductor-purity targets that

must be achieved to create a topological qubit.
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I. INTRODUCTION

Majorana nanowires have been among the most inten-
sively studied topics in physics since 2010, when it was
theoretically proposed that semiconductor-superconductor
(SM-SC) hybrid platforms could host non-Abelian anyonic
Majorana zero modes (MZMs) [1-4] in the combined pres-
ence of s-wave superconductivity, spin-orbit coupling, and
Zeeman spin splitting. The subject has also attracted seri-
ous technological attention, way beyond its physics con-
text, since Microsoft Corporation chose this system as its
preferred platform for creating a fault-tolerant topological
quantum computer [5-9]. A large number of experiments
have followed up on the theoretical predictions using InSb
or InAs nanowires and Al or Nb superconductors, gen-
erating a lot of excitement with reported observations of
zero-bias conductance peaks in tunneling spectroscopy
[10—-16], which have been interpreted as possible signa-
tures of the putative MZMs. It has, however, become clear
by now that most of the experimental samples are likely
to contain potential disorder, which strongly affects the
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interpretation of the tunneling experiments and opens up
the possibility that the ubiquitous zero-bias peaks show-
ing up in the experiments may actually be generated
by disorder-induced nontopological fermionic low-energy
Andreev bound states [17-26]. The subject is very much
in flux and, in the absence of a clear understanding and
characterization of disorder effects, much of what is going
on experimentally remains problematic, in spite of high-
profile experimental publications with claims of Majorana
discovery appearing regularly.

This is the background and the context of the current
theoretical work, in which we take a step back and ask
a fundamental question: What happens if the nanowire,
instead of being pristine, has disorder arising from unin-
tentional charge impurities residing in it? The scenario
considered in this question is not hypothetical, since unin-
tentional charge impurities (“low doping”) constitute the
commonest type of disorder in high-quality semiconduc-
tor materials [27]. There is evidence that the experimental
nanowires do, in fact, have substantial disorder. Given the
considerable confusion about the situation surrounding the
Majorana nanowire experiments and the intrinsic difficulty
of directly measuring disorder in hybrid nanostructures,
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we think it is appropriate to take a quantitative micro-
scopic approach to the problem by first solving exactly the
single-impurity problem within a self-consistent numeri-
cal scheme and then using the results to study topological
superconductivity and Majorana physics in the presence of
impurity disorder within the standard free-fermion theory.

More specifically, this is what we do in this paper.
First, we provide a quantitative characterization of the
effective potential generated by a charge impurity embed-
ded inside a semiconductor wire proximity coupled to a
superconductor layer by solving self-consistently the asso-
ciated three-dimensional (3D) Schrédinger-Poisson prob-
lem. Next, using the single-impurity effective potential
obtained self-consistently, we construct disorder potentials
associated with the presence of multiple charge impurities
and solve numerically the Bogoliubov—de Gennes (BdG)
equations that describe the hybrid system in the presence
of s-wave superconductivity, spin-orbit coupling, Zeeman
splitting, and disorder arising from charge impurities. We
also carry out first-principles charge-transport calculations
and determine the tunneling differential conductance as
a function of various systems parameters (e.g., disorder
strength, chemical potential, and Zeeman splitting). Along
the way, we introduce a number of quantities that facili-
tate the characterization of the low-energy physics in the
presence of disorder (e.g., the Majorana separation length
and the edge-to-edge correlation) and describe several pro-
tocols that enable a more efficient extraction and use of
experimentally accessible information (e.g., construction
of zero-bias conductance-correlation maps). Given that the
work presented in this paper is multifaceted, with many
independent results of importance in their specific con-
texts, we first provide a summary of our key findings,
with references to the relevant equations and figures (see
Sec. II), so that the reader uninterested in the technical
details can simply learn about our main results without
going through the rest of the paper, with all its technical
complexity.

We anticipate that our work is central to the
development of a Majorana-based topological quantum
computer (TQC), as it addresses a critical outstanding
problem facing the realization of topological qubits using
hybrid nanostructures, which is the platform on which
the Microsoft Corporation is working. In particular, our
finding that charge impurities in the environment lead to
serious complications regarding the realization and obser-
vation of Majorana zero modes has obvious direct impli-
cations for the development of Majorana-based qubits and
the TQC. Our work provides a full microscopic-based
description of how experimentally available Majorana
nanowires behave in the presence of charge-impurity dis-
order of varying strength. Hopefully, our work provides a
clear future direction regarding what needs to be done for
progress in the field, as well as quantitative measures of
the maximum allowed impurity concentrations consistent

with the full manifestation of topological MZMs in hybrid
nanostructures. In particular, based on our extensive real-
istic calculations, we provide specific materials-quality
and semiconductor-purity targets that must be achieved
to create a topological qubit, hopefully providing a clear
blueprint for future progress toward building a TQC. Our
intention is to establish a clear goal of using nanowires
with impurity concentrations around 10'° per cm® or
lower for TQC hardware to be feasible using Majorana
qubits. This is a challenging target but by no means an
impossible one.

The remainder of this paper is organized as follows. In
Sec. II, we provide a summary of our key results and dis-
cuss their significance in the context of the ongoing exper-
imental effort to realize topological superconductivity and
Majorana zero modes using SM-SC hybrid structures.
The case of a single charge impurity embedded within a
proximity-coupled nanowire is investigated in Sec. III. The
model used in our analysis is described in Sec. III A, the
details of the self-consistent Schrédinger-Poisson scheme
for calculating the effective impurity-induced potential are
presented in Sec. III B, and the results of the numeri-
cal calculations are discussed in Sec. III C. Section IV
is dedicated to the multi-impurity case, with Sec. IV A
describing the effective single-band model used in our
analysis and Sec. IV B discussing the results of the numer-
ical calculations and their implications for the low-energy
physics of hybrid nanostructures with charge impurities.
Our concluding remarks are presented in Sec. V.

II. SUMMARY OF KEY RESULTS

In this section, we provide a brief summary of our key
results and indicate the relevant equations and/or figures.
For technical details and in-depth discussion of the results,
the reader should consult the corresponding paragraphs in
Secs. Il and I'V.

(a) We provide a quantitative description of the effec-
tive potential [see Eq. (28) and Fig. 3] generated
by a charge impurity embedded into a semiconductor-
wire—superconductor nanostructure (Fig. 1) by solv-
ing self-consistently the corresponding 3D Schrodinger-
Poisson problem [Egs. (1) and (2)].

(b) We show that the position dependence of the effec-
tive impurity potential has a simple functional form [see
Eq. (29)], with two controlling parameters: the amplitude
and decay length of the impurity potential in the absence
of redistribution of free charge. This can help future device
modeling in the presence of disorder, by circumventing
the need to explicitly address a numerically demanding 3D
Schrodinger-Poisson problem.

(c) We determine the distribution of the effective
impurity-potential parameters by sampling 169 possible
impurity locations evenly distributed over the hexagonal
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cross section of the semiconductor wire and show that the
typical values of the amplitude are of the order of 1.5-2
meV, while the typical decay lengths are about 812 nm
(Fig. 5).

(d) We demonstrate that the screening by the supercon-
ductor has a limited effect on reducing the magnitude and
characteristic length scale of the effective impurity poten-
tial inside the semiconductor (Fig. 6). On the other hand,
screening by the free charge in the wire has considerable
effects (Fig. 7) and has to be incorporated self-consistently
to obtain a quantitative description of the low-energy
physics in the presence of charge impurities.

(e) We show that the presence of multiple charge impu-
rities embedded inside the wire generates a correlated
disorder potential (Fig. 10) characterized by a correla-
tion function having a central peak of height on the order
1 meV? and full width at half maximum in the range
2040 nm (Fig. 11). The correlation function scales with
the impurity concentration.

(f) We introduce the precisely defined concepts of
Majorana separation length [Eqgs. (39—41)] and the edge-
to-edge correlation [Eqs. (43—44)] as useful theoretical
tools for characterizing the effects of impurity-induced
disorder and we connect them to the differential tunnel
conductance [Eq. (45)].

(g) We show that generating comprehensive maps that
cover large ranges of control parameters (Figs. 13, 19,
20, and 21), rather than focusing on specific postselected
traces, constitutes a productive approach to understand-
ing disorder effects in hybrid devices. We suggest that this
should be the standard protocol for the experimental char-
acterization of these devices, instead of the current focus
on postselected fine-tuned features, which is potentially
prone to serious confirmation-bias problems and provides
no relevant information on the effects of disorder.

(h) We find that in the low-impurity-density regime,
the system is characterized by well-separated Majorana
modes and finite edge-to-edge correlations within large
areas inside the nominally topological region, demonstrat-
ing topological immunity to weak disorder (Figs. 13, 14,
16, and 19).

(i) In the intermediate-impurity-density regime, the
parameter regions corresponding to significant edge-to-
edge correlations reduce to relatively small isolated islands
located both inside and outside the nominally topological
region (Figs. 20 and 21). There is still a significant region
corresponding to well-separated Majorana modes (Fig. 20)
but, typically, these modes are localized away from the
edges of the system and remain “invisible” to local probes
applied to these edges (e.g., tunneling spectroscopy at the
wire ends).

(G) We show that the zero-bias conductance maps (in
the tuning-parameter space) are characterized by qualita-
tively different features inside and outside the nominally
topological regime (Figs. 19 and 21). This suggests that

detailed zero-bias conductance maps could help identify
nominally topological regions even when the presence of
disorder suppresses the “standard” Majorana phenomenol-
ogy expected in a clean system.

(k) We introduce “global” parameters that character-
ize the properties of the Majorana bound states emerging
in the system in the presence of charge impurities [Egs.
(48-49)] and we calculate the dependence of the disorder-
averaged “global” parameters on the impurity concentra-
tion (Figs. 25 and 26) and spin-orbit coupling strength
(Fig. 27).

(I) We find that well-separated Majorana modes can
generically emerge in the presence of charge impurities
up to relatively high impurity concentration levels but, for
a given wire length, the presence of these well-separated
Majoranas translates into significant edge-to-edge cor-
relations only if the impurity concentration is below a
critical threshold (Figs. 25 and 26). The existence of a
disorder-dependent characteristic length scale is particu-
larly significant in the context of the exponential protection
of Majorana modes, which is necessary for fault-tolerant
qubit operations.

I11. SINGLE CHARGE IMPURITY

In this section, we investigate a single charge impurity
embedded within a semiconductor (SM) nanowire prox-
imity coupled to a superconductor (SC). In particular, we
address the key question regarding the magnitude and
characteristic length scale of the potential inhomogene-
ity induced by the charge impurity. The screening due to
the presence of the superconductor and of a nearby metal-
lic gate, as well as the effects due to the redistribution of
free charge within the SM wire, are incorporated using
a position-dependent self-consistent Schrodinger-Poisson
scheme. Our model for describing the SM-SC hybrid struc-
ture with an embedded charge impurity is introduced in
Sec. III A and the self-consistent Schrédinger-Poisson
method is presented in Sec. III B, while the results of our
analysis are discussed in Sec. III C.

A. Model

We consider the hybrid device represented schemati-
cally in Fig. 1, which consists of a hexagonal semicon-
ductor nanowire of radius R (purple in Fig. 1) having a
thin superconducting layer (green) deposited on two of its
facets. A metallic back gate (black) separated from the
hybrid nanowire by a thin dielectric layer of thickness d
(gray) is used to tune the band edges of the low-energy
SM subbands near the Fermi level. Up to minor modifica-
tions of the device geometry, e.g., having additional side
gates or depositing the SC on more than two facets, this
setup corresponds to the most prevalent type of SM-SC
hybrid device used experimentally for exploring Majorana
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FIG. 1. A schematic representation of the SM-SC hybrid
device with an embedded charge impurity. A semiconductor
nanowire (purple) of radius R is proximity coupled to a thin
superconductor (green). An impurity (yellow sphere) of charge
O embedded within the semiconductor nanowire will create a
potential inhomogeneity. The band edges of the low-energy SM
subbands can be tuned near the Fermi level using a back gate
(black) separated from the wire by a thin dielectric layer (gray).

physics [10-12,14,26,28-33]. The key additional ingredi-
ent, which represents the focus of this study, is a charge
impurity Q embedded inside the SM wire, as is indicated
in Fig. 1 by a yellow sphere. In our theory, the effects
induced by the presence of the charge impurity are cal-
culated exactly within a position-dependent self-consistent
Schrédinger-Poisson formalism.

At this stage, the SM nanowire is modeled using a
simple effective-mass Hamiltonian given by

2

I
H=-

V2 —ep (7), (1)
2m*

where m* is the effective mass, V? is the Laplacian opera-
tor in 3D space, and ¢ is the electrostatic potential inside
the wire. We assume that the wire is infinitely long. The
potential ¢ must satisfy the Poisson equation,

V. [e)Vo@)] = —p(), (@)

where €(7) is a material-dependent dielectric constant tak-
ing different values inside the dielectric, the SM wire, and
the surrounding vacuum and p is the charge density within
the wire. We impose Dirichlet boundary conditions on the
bottom gate and the surface of the superconductor with
potential values V, and Vsc, respectively. Note that the
boundary condition on the SC surface accounts for the
band bending of the SM conduction band near the SM-SC
interface [34,35]. In addition, we impose Neumann bound-
ary conditions on the sides and top of the full simulation
region for Eq. (2), which are a distance b > R away from
the nanowire. Note that this choice of boundary conditions
on the outer boundaries has a negligible impact on the
potential within the nanowire [36]. It is convenient (and
physically appealing) to break the total charge density into

three components,

1Y (?) = Lo (X,J’) + Pimp (’_;) + Ored (7) ) (3)

where p, is the free-charge density inside the SM wire in
the absence of a charge impurity, pin, is the charge den-
sity associated with the impurity, and peq accounts for the
redistribution of free charge due to the presence of the
impurity, i.e., describes the screening cloud. Note that p,
is translation invariant along the direction parallel to the
wire, which we take as the z direction. The charge impu-
rity is modeled as a small sphere of radius R;y,, and uniform
charge density, given by

0 |F— Fimpl <R
) = | ™ Tl = B
> lr — rimpl > Rimpa
where Fimp = Ximpex + Vimpey is the position vector of the
impurity. Note that, without loss of generality, we assume
Zimp = 0. Finally, the free-charge density is related to the
occupied electronic states,

pr () = po (5.9) + prea () = —2¢ > 1Y P’ f (Enn D),
(5)

where py is the total free-charge density, £, and v, are
the n'" eigenenergy of the Hamiltonian (1) and the corre-
sponding eigenstate, respectively, f* is the Fermi function,
T is the temperature, and the factor of 2 accounts for spin
degeneracy. Note that Eq. (5) couples Egs. (1) and (2),
known as the Schrdodinger-Poisson equations. The free-
charge density and the electrostatic potential are given by
the self-consistent solution of these equations.

Before presenting our method for solving the
Schrédinger-Poisson problem, a few comments about the
model are warranted. First, note that we neglect the key
ingredients responsible for the emergence of Majorana
physics in a SM-SC hybrid structure, namely proximity-
induced superconductivity, spin-orbit coupling, and Zee-
man splitting. These additional contributions to the effec-
tive Hamiltonian, which are included in the finite-wire
model discussed in Sec. IV, are characterized by energy
scales much smaller than the typical interband spacing
associated with the Hamiltonian in Eq. (1), the potentials
Ve and Vsc, and the bare potential of the charge impurity.
In other words, the spatial profile of eigenstates v, and,
implicitly, the charge density p, (7) and the potential ¢ (7),
are mainly determined by the terms already included in
Eq. (1) and by the boundary conditions, while the addi-
tional terms are expected to generate small perturbations.
Note also that we do not explicitly include the SC sub-
system in the Hamiltonian but consider it in the boundary
conditions. Of course, the coupling between the SM and
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SC is crucial for inducing superconductivity within the SM
wire through the proximity effect. Moreover, it is known
that proximity coupling to the superconductor renormal-
izes the low-energy spectrum of the hybrid system [9] and
generates a shift of the SM subbands [37]. However, these
effects can be accounted for in our model by modifying
the effective mass and shifting V, and Vsc appropriately.
Consequently, to avoid the dramatic increase of the com-
putational cost associated with including the SC in the
Hamiltonian, we do not explicitly consider the SC degrees
of freedom. We stress, however, that the SC still plays an
important role in our model due to the band bending gen-
erated by the Dirichlet boundary condition imposed on ¢
at the SC surface.

B. Self-consistent Schriodinger-Poisson scheme

We start by decomposing the electrostatic potential into
three components, similar to Eq. (3). Explicitly, we have

¢ ) = ¢o (,3) + Pimp (F) + Prea (7) (6)

where ¢, is the electrostatic potential in the absence of
a charge impurity and ¢y, and ¢r.q are solutions of the
Poisson equation, with pim, and prq as source terms,
respectively. The Dirichlet boundary conditions for
nonzero values of V, and Vsc are imposed on ¢,, while
¢imp and ¢rq are subject to trivial boundary conditions.
Next, we rewrite the Hamiltonian as

H=H,+H, (7)
with
h2
H,=— v — ed, (x,v), (3
2m*
H/ = —e(bimp (7-;) - e¢red (?) . (9)

Here, H, is the Hamiltonian of the clean system (i.e.,
the wire without a charge impurity) and H' represents the
perturbation due to the presence of the impurity. We first
solve the Schrodinger-Poisson equations with H = H,,.
Details regarding the self-consistent numerical procedure
can be found in Refs. [36,38]. The key output of this ini-
tial calculation is a set {(ea’o,(pa) | € N} of transverse
eigenenergies and corresponding eigenmodes. Note that
the transverse wave function ¢, satisfies the eigenvalue
equation

H, [% *x,y) e”‘z] = (sa,o + %) [wa x,y) ei"z], (10)

for arbitrary values of k. In other words, ¢, represents the
k-independent transverse profile of the « subband for a
clean system, while &, is the energy of the correspond-
ing band edge (i.e., the bottom of the band). Since {¢,} is a

complete orthonormal set of transverse functions, we use it
as a basis to expand the states of the full Hamiltonian (7).
Explicitly, we have

Un A=) 0o (£,) na(2), (11)

where 1, is the n™ eigenstate of Eq. (7) and g, (2) is a
yet-undetermined function of z. In principle, all subbands
may contribute to each eigenstate. In practice, however,
only a limited number of low-energy subbands contribute
significantly to the low-energy eigenstates of the Hamil-
tonian. We therefore project the eigenstate (11) of the full
Hamiltonian onto a low-energy subspace defined by sub-
bands with &,, < &cu, Where e¢ is a finite cutoff energy
larger than any other relevant energy scale in the prob-
lem. Note that the accuracy of this low-energy projection
can be tested by increasing e.y, i.€., including additional
transverse modes in the low-energy basis. The basis is
large enough if further increasing it generates a negligible
change of the final results.

Next, we point out that introducing a charge impurity
breaks the translation invariance along the z axis, making
the assumption of an infinite system rather inconvenient.
To address this issue, we impose periodic boundary con-
ditions with a supercell of length £ sufficiently large so
that charge impurities in neighboring supercells have a
negligible effect on one another. In these conditions, the
electrostatic potential within the large supercell will be
practically identical to the potential of an infinitely long
system within a region of length £ containing the impu-
rity. We introduce the following Fourier transforms of the
potential and charge density:

¢ ()= Pimlx,)e ", (12)

pi (F) =Y Pim(x, )€, (13)

where G, = 2mwm/{ is a reciprocal lattice vector, v € Z,
and i € {imp, red} designates different components defined
in Egs. (3) and (6). The substitution of Egs. (12) and (13)
into the Poisson equation (2) yields

[Vi (VL) — €G] Gim(x,y) = —Bin(x,y),  (14)

for all possible values of v, where V, is the del opera-
tor in the x-y plane. This reduces the original 3D Poisson
equation to a set of independent two-dimensional (2D)
screened Poisson equations with decay length |G} !|. Note
that the 3D version of Eq. (14) with a point charge has
the solution exp(—|G, |r)/ (4w er), where r is the radial dis-
tance from the point charge, which clearly illustrates the
screening effect due to the G, term. These 2D screened
Poisson equations are significantly less costly numerically,
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as compared to the original 3D Poisson equation. As a
result, we are able to efficiently perform high-resolution
calculations of the self-consistent potential near the impu-
rity. By contrast, achieving similar results using a brute-
force approach to the 3D Poisson equation would require
a dense discretization around the impurity, which would
lead to significant costs in terms of both memory and
computational time.

With periodic boundary conditions, the low-energy
expansion of the eigenstates of the full Hamiltonian
becomes

Ea,0<Ecut

n, k,) Z Zla v, k) ARk, (15)

where k, € (—m /€, /€] is the crystal momentum in the
z direction, AZ”’]‘JZ = (a, v,k |n, k) € C, and the basis state
|, v, k) is given by

ei(GU +kz)z
v/

where L is the total length of the system and the bra-ket
notation is introduced for convenience. Note that &, is a
good quantum number due to the discrete translation sym-
metry with period £. Calculation of the Hamiltonian matrix
elements yields

(7’|0[, V,kz> = Qo (xay) (16)

(v, k| Hy | B,V k) = €0, (k)80 p8g,0 17)
(v ] |B V) = Vol o+ Ve s (18)
where
hz
ga,v(kz) = Euy + P (Gv + kz)2 5 (19)
it = e [ ipndvay. (20)

with i € {imp, red}. Using this representation, the charge
density can be expressed in the following compact form:

_Te ZZ ZAZI;Z, AZI;Z+V

nk; o,

Prm (X, y) =

Xf[En(kz):T]wé(xsy)gpﬁ(xsy)’ (21)

where E,(k;) is the eigenenergy of the mth eigenstate
with crystal momentum £,. Equation (20) shows that both
Gimp and ¢req generically have diagonal and off-diagonal
matrix elements corresponding to intra- and intersubband
couplings. Consequently, the eigenstates of the full Hamil-
tonian will be linear combinations of basis states involving
several transverse modes. However, if the energy spacing

between subbands is significantly larger than the perturba-
tion terms, Vﬁnﬂ and 750, with o # B, the intersubband
mixing is small and the subband index o becomes an
“almost good” quantum number. This motivates us to con-
sider the independent-subband approximation, in which
we neglect any Hamiltonian matrix element between dif-
ferent subbands, i.e., (o, v,k |H|B, V', k) = 0 for a # B,
when calculating the self-consistent potential. Within this
approximation, the subband index becomes a good quan-
tum number and we can write the eigenstates as

e m ey =l v, k)AL, (22)
v
where AZ:’;Z = {a,v,k;|a,n,k;). The free-charge density
reduces to
~ ez Sz
,Of,v(XJ) ZZZAZU/ AZv+v

nk;, o

xf [Ea,,,<kz>, T) o, ). (23)

Finally, we can write the matrix elements of ¢4 in a
compact form by introducing the subband Green’s func-
tion, gy, defined as the solution of the Poisson equation,

[Vi (VL) — €G] 8a(x,y) = —eloa(r,))*,  (24)

with trivial boundary conditions, and the Green’s function
tensor,

3 = f 03wty drcy. (25)

With these notations, the relevant matrix elements
become

Vedo =2 &l nas, (26)
with
nav:_ZZA(nkz)*A(nszruf[ an(k) T] (27)
nk; v

for v #£ 0. If v =0, the structure of Eq. (27) remains
the same but the quantity #, associated with the clean
system must be subtracted, as it is already incorporated
in ¢,. Note that while Eq. (26) gives both diagonal
and off-diagonal matrix elements, within the independent-
subband approximation only the diagonal contributions
containing tensor elements of the form gﬂ B are relevant
for the self-consistent calculation of the potentlal Also,
we point out that once gf 7 and 7%  have been cal-

mp,v

culated using the self-consistent wave functions of the
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clean system, the problem reduces to finding n,, self-
consistently. We perform this task using a simple iterative
mixing scheme. An iteration is numerically inexpensive,
since each subband corresponds to an independent one-
dimensional (1D) Schrédinger equation that determines
the eigenstates |«,n, k;). In fact, the largest computation
cost corresponds to calculating the elements §’f&’ of the
Green’s function tensor. Note also that while the subbands
are independent as far as solving the Schrédinger equation
is concerned, they still affect each other through Eq. (26),
since n,, enters the expression of ?’if , for all o and
B. Therefore, our independent-subband approximation still
captures the main contribution due to intersubband elec-
trostatic screening. In addition, we explicitly check that
neglecting intersubband coupling has a negligible effect on
the spectrum of the full Hamiltonian.

Once the self-consistent solution is found, we Fourier
transform the matrix elements of the potential back to real
space and define the effective impurity-potential matrix
elements,

Vap (@ =) (’ﬁ;’rﬁ’v n V?Zi) oiGuz 28)

v

These quantities provide information regarding the
amplitude and characteristic length scale of the potential
inhomogeneity induced by the charge impurity. Note that
the diagonal element V, 4 (z) can be interpreted as an effec-
tive 1D potential for the o subband. On the other hand, the
off-diagonal element V, g (z) couples the subbands o and
B in a position-dependent manner.

For the numerical calculations, we choose parameter
values that roughly correspond to the currently exist-
ing InAs-Al- and InSb-Al-nanowire—superconductor plat-
forms, while being somewhat on the reasonably optimistic
side. We emphasize that our qualitative and semiquantita-
tive conclusions do not depend on the details of our param-
eter choice. Specifically, we use the following parameter
values: radius of SM nanowire R = 35 nm, dielectric thick-
ness d = 10 nm, superconductor thickness Wsc = 10 nm,
SM permittivity espy = 15.15, dielectric permittivity €; =
24, effective mass meg = 0.023, work-function difference
Vsc = 110 meV, radius of charge impurity Ry, = 2.5 nm,
supercell size £ = 500 nm, energy cutoff for transverse
modes €.« = 20 meV, and kinetic energy cutoff of plane
waves along the z direction €/ = 3 eV. Fourier coeffi-
cients satisfying |v| < 200 are used for the electrostatic
potential and charge-density expansions, and the trans-
verse mesh spacing within the semiconductor for the
Poisson, screened Poisson, and Schrédinger equations is
asym = 1 nm.

C. Results

To understand the qualitative and quantitative charac-
teristics of the effective potential generated by a charge

impurity embedded inside the semiconductor wire, we start
with a calculation of the impurity potential ¢;mn,, which
corresponds to the second term in the decomposition given
by Eq. (6). We note that ¢y, is the solution of the Pois-
son equation (2) with a source term given by iy, from
Eq. (4) and homogeneous Dirichlet boundary conditions
on the surface of the superconductor and the metallic gate.
Consequently, in addition to the bare 1/7 potential of the
charge impurity, ¢;n, includes the screening effect due to
the presence of the SC layer and the metallic back gate.
However, it does not include the screening effect due to
the redistribution of the free charge within the wire, which
corresponds to ¢req in Eq. (6).

Maps of the screened potential amplitudes atz = 0 (i.e.,
in the plane containing the impurity) and z = 10 nm for
two different impurity locations are shown in Fig. 2. The
left panels correspond to an impurity located in the middle
of the wire, while the right panels show the potential of an
impurity located near the SM-SC interface. While atz = 0
the potentials generated by the two impurities are compara-
ble (see the top panels in Fig. 2), further away the potential
of the central impurity is much stronger than the poten-
tial generated by the other impurity (lower panels). This
indicates that the potential of the impurity located near the
SM-SC interface has a significantly shorter decay length
than the central impurity, which is the result of a stronger
screening by the superconductor. We conclude that while
the characteristic length scale of the screened potential

(a) (b) 50
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0
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= 35 a
[ T E
N ASS
0.0
FIG. 2. Impurity potential maps, ¢imp(x,y), within the semi-

conductor region for two impurity locations: (a),(c) the middle
of the wire, (Ximp, Vimp) = (0,0) and (b),(d) close to the SM-SC
interface (top and upper right facets), (Ximp, Vimp) = (15,25) nm.
The potential amplitudes at z = 0, i.e., in plane containing the
impurities, are comparable (top panels), while at z = 10 nm
the potential of the central impurity is much stronger than the
potential generated by the other impurity (lower panels) as a
result of weaker screening by the superconductor. Note the dif-
ferent energy scales for the upper and lower panels. The impurity
charge O = e is used for both impurity locations.
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depends strongly on the location of the impurity relative
to the SM-SC interface and the back gate, the maximum
amplitude of @i, is of the order of tens of millielectron-
volts regardless of the location of the charge impurity. This
is at least one order of magnitude larger than the char-
acteristic energy scale associated with Majorana physics.
Without additional screening, the presence of charge impu-
rities inside the hybrid device would have catastrophic
effects on the stability of topological superconductivity
and Majorana zero modes. This is a quantitative finding
of considerable significance in the search for Majorana
zero modes, as it clearly reveals the fragility of the quan-
tum energy scale associated with Majorana physics (e.g.,
the topological gap of approximately 0.1 meV or less),
which can be easily overwhelmed by the huge (essentially
classical) impurity energy scale (approximately 10 meV).
This further emphasizes the critical need for clean samples
and the role of screening in limiting the impurity-induced
potential.

Next, we perform the full self-consistent Schrodinger-
Poisson calculation and determine the effective impurity-
potential matrix elements defined by Eq. (28). For con-
creteness, we focus on a system that, in the absence of
the impurity, has the bottom of the fourth subband at the
chemical potential, which is realized by properly tuning the
gate potential V,. Since Majorana physics is controlled by
the top occupied subband, the relevant effective potential
matrix elements V, g correspond, in this case, to @ = 4 and
B = 3,4, 5, with the diagonal element V4 4(z) representing
the intrasubband effective impurity potential and the off-
diagonal elements V43 and V4 5 providing a measure of the
impurity-induced intersubband coupling. The dependence
of the effective potential matrix elements on the distance
|z| from the plane containing the impurity is shown in
Fig. 3. We consider two cases: positive charge impurity,
O = +e (left side of Fig. 3), and negative charge impu-
rity, O = —e (right side). In both cases, the location of the
impurity in the transverse plane is given by (Ximp, Vimp) =
(23,0) nm. First, we note that the off-diagonal contribu-
tions are smaller than, but comparable to, the diagonal
term. If the intersubband spacing is much larger than
AFE ~ 1 meV, the impurity-induced intersubband coupling
is negligible and one can accurately describe the system
within the independent-subband approximation. If, on the
other hand, the intersubband spacing is comparable to (or
lower than) AE, intersubband coupling becomes important
and the system has to be treated explicitly as a multisub-
band system. In this scenario, the system is expected to be
prone to the formation of topologically trivial low-energy
states due to impurity-induced intersubband coupling [39].
On the other hand, in the independent-subband regime, the
system is expected to be less sensitive to impurity-induced
disorder. This study focuses on the more favorable scenario
involving well-separated subbands. We note that access-
ing this regime depends critically on ensuring low subband

Va,n (MeV)

[z] (nm)

FIG. 3. The dependence of the effective potential matrix ele-
ments on the distance |z| from the plane containing the impurity
for a system having the chemical potential near the bottom of
the fourth subband. The left side corresponds to a positively
charged impurity with O = +e, while the right side corresponds
to a negative charge, O = —e. Both impurities are located at
(Ximp» Yimp) = (23,0) nm. The black solid lines correspond to the
relevant intrasubband effective potential, V44, while the green
and red dashed lines represent the intersubband matrix elements,
V43 and V4 5, respectively.

occupancy [36]. We emphasize that in systems character-
ized by small intersubband energy separation, which is
generically the case at high occupancy (e.g., for @ > 10),
intersubband coupling may prevent the realization of a
robust topological phase even in the absence of disor-
der [39]. Here, we focus on the situation corresponding
to large intersubband energy splittings and low subband
occupancies, where the intersubband coupling (induced by,
e.g., charge impurities) can be safely neglected. Note that,
in principle, the subband occupancy can be kept low by
properly tuning the gate voltage, V.

The diagonal matrix elements (full black lines in Fig. 3)
are characterized by amplitudes of a few millielectronvolts
and decay lengths of the order of 10 nm. In general, the
amplitude of the potential generated by a negative charge
is slightly larger than the amplitude of a positive charge
potential corresponding to the same subband and impurity
location. This is a screening effect arising from the free
charge being made of electrons, which are more effective
in screening a positively charged impurity. Note that the
dependence of V44 on z is not monotonic, being charac-
terized by a fast decay at short distances followed by a
change of sign and a slow decay at long distances. Remark-
ably, this behavior, which turns out to be quite generic, is
captured well by the following empirical function:

Vaa(2) = Blpe” im — B o=l (29)
where the four fitting parameters, By, By y, Aff,,, and A,

depend on the band index, «, and also on the specific
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location of the impurity, (Ximp,Vimp). Details regarding
the fitting procedure, its accuracy, and numerical fitting
parameters are provided in Appendix A. Note that the
first and second terms in Eq. (29) account for the effec-
tive impurity and redistribution potentials, respectively.
Moreover, while there are four fitting parameters in the
Eq. (29), which, in principle, are independent, we show
in Appendix A that correlations between the fitting param-
eters imply that one only needs to input Bgnp or B‘i"mp and
A, 1.e., two independent parameters, to obtain a realistic
disorder potential. This has two major implications. First,
to understand the dependence of the effective impurity
potential on the band index and the position of the impu-
rity, it is enough to study the dependence of the amplitude
and decay length on these parameters, which substantially
simplifies our analysis. Second, the simple form of Eq. (29)
provides an extremely useful phenomenological model
for describing charge impurities embedded within SM-
SC hybrid devices. Combined with our quantitative results
described below, this enables the study of disorder gen-
erated by charge impurities without actually performing
a full numerically intensive Schrddinger-Poisson calcu-
lation. The validation of the relatively simple empirical
fitting of the impurity potential defined by Eq. (29) is a
central result of our work.

Our next task is to determine the dependence of the
amplitude and decay length characterizing the effective
disorder potential V, ,(z) on the position of the impurity
and the subband index. Here, we define the amplitude as
Vao(z = 0), while the decay length &, is obtained by find-
ing z such that V, ,(z) = V4, +(0) exp(—1). We emphasize
that within the independent-subband regime, the only rele-
vant matrix element is the diagonal element corresponding
to the top occupied subband. In turn, the occupancy of the
SM subbands is controlled by the applied gate potential V.

To acquire some intuition, we first consider a specific
example involving a system having the bottom of the sec-
ond subband near the chemical potential. A map showing
the dependence of the amplitude V,,(0) on the position
of the impurity is provided in Fig. 4(b). We note that
the amplitude of the effective impurity potential depends
strongly on the position of the impurity. The largest ampli-
tude corresponds to locations where the second transverse
mode has high spectral weight. This is not surprising, con-
sidering that },,(0) is a matrix element of a short-range
quantity over the second subband. Note also that as a
result of having a finite work-function difference, Vsc, the
lowest-energy modes tend to be localized in the vicinity of
the SM-SC interface. Higher-energy modes, on the other
hand, are more evenly spread over the cross section of
the wire. The subband-dependent amplitude of the effec-
tive impurity potential ¥y ,(0) exhibits a similar depen-
dence on the position of the charge impurity. To describe
quantitatively the distribution of potential amplitudes, we
generate a histogram of the amplitude corresponding to

(a)

(b)

|
0 4 80 4 8
Amplitude (meV) Amplitude (meV)

FIG. 4. (a) A histogram of the effective potential amplitude
V22(0). The data are taken from 169 impurity locations sam-
pled evenly over the hexagonal cross section. (b) The effective
potential amplitude V,,(0) as a function of the impurity posi-
tion, (Xjmp, Vimp). Note that the largest amplitude corresponds to
locations where the second transverse mode has high spectral
weight.

169 impurity locations sampled evenly over the hexago-
nal cross section of the wire. The results are shown in
Fig. 4(a). Note that as a result of the second subband
being localized near the SM-SC interface, the distribu-
tion is skewed toward lower amplitudes. For higher-energy
modes, the amplitude distributions are more uniform, as a
consequence of the wider distribution of spectral weight
associated with those modes.

Our analysis of the position dependence of V5 (0) sug-
gests that, in general, a compact characterization of the
potential amplitude ¥, ,(0) can be obtained by simply
focusing on the distribution obtained by sampling the
hexagonal cross section of the wire. Note that the effective
potential V,, is relevant when the bottom of the corre-
sponding subband is in the vicinity of the Fermi level. We
characterize the distributions by specifying the minimum
and maximum values of the potential amplitude, as well as
the values corresponding to the median (50%), 25%, and
75%. A similar procedure can be used to compactly charac-
terize the distribution of decay lengths. The results for sub-
bands 2—10 are shown in Fig. 5. The orange lines indicate
the median (50%), the boxes correspond to the 25%—75%
range, and the whiskers mark the upper and lower bound-
aries of the distribution. We note that the distributions
corresponding to a given subband « are obtained for a
value of the applied gate potential V, that tunes the bottom
of the subband near the chemical potential. As indicated in
Fig. 5, for V', = 0 the system has the fourth subband near
the chemical potential. Accessing lower-energy subbands
requires depleting the wire, i.e., applying a negative gate
potential. Higher-energy bands, on the other hand, become
relevant at positive V, values. We note that the typical val-
ues of the effective potential amplitude are of the order of
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FIG. 5. Distributions of (a) the intrasubband effective potential

amplitude, ¥, ,(0), and (b) the decay length, &,, for the subbands
o =2 — 10 with Q = —e. Note that the distributions correspond-
ing to o = 1 are not shown. The bottom of each subband is tuned
to the Fermi level by adjusting the gate potential V. The orange
lines indicate the median (50%) of the distribution, the boxes cor-
respond to the 25%—75% range, and the whiskers mark the upper
and lower boundaries of the distribution. Each subband distribu-
tion is sampled over 169 impurity locations evenly distributed
over the hexagonal cross section of the semiconductor wire.

2 meV, significantly larger than the typical superconduct-
ing energy scales associated with Majorana physics. The
typical decay lengths are in the range 812 nm for o > 3,
while the lowest-energy subbands are characterized by
longer (typical) decay lengths and wider distributions due
to the localization of the corresponding transverse modes
near the SM-SC interface.

An important question that can be raised at this point
concerns the role of the superconductor in screening the
impurity potential. To address it, we consider a charge
impurity embedded inside a semiconductor wire in the
absence of the superconductor layer. Note that the only
change with respect to the calculations described above is
the elimination of the Dirichlet boundary condition ¢ =
Vsc at the SC surface. The distributions of the intrasubband
effective potential amplitude, V,,(0), and decay length,
&,, for the even subbands with 2 < o < 10 are shown in
Fig. 6. Note that in the absence of superconductor-induced
band bending, the values of V, associated with differ-
ent subbands are different from the corresponding values
in Fig. 5. The key result of this calculation, which is
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FIG. 6. The same as Fig. 5 but for a system without a super-
conductor layer. The distributions correspond to even subbands
with index (from left to right) 2 < « < 10. Note that, as com-
pared to the results shown in Fig. 5, the typical values of the
amplitude of the effective impurity potential are larger by at most
a factor of 2, while the typical decay lengths are only slightly
larger, which indicates that screening by the superconductor has
a rather limited effect.

revealed by the comparison of Figs. 5 and 6, is that screen-
ing by the superconductor does not generate a dramatic
effect, as it reduces the typical amplitude of the effective
impurity potential by at most a factor of 2 and slightly
shortens the typical decay length. This behavior is mainly
due to the fact that the impurities inside the SM wire are
typically located too far from the SM-SC interface for
the superconductor to drastically screen out the impurity
potential.

Another important question regards the screening of
the impurity potential due to the free-charge redistribu-
tion in the wire. To characterize the renormalization of
the band-dependent effective potential due to free-charge
redistribution, we introduce the amplitude screening fac-
tor, Z4, and the integrated screening factor, Z{), defined
as follows:

Z(A) _ Va,a (z=0)
G =0)
20 _ fVa,a(Z)dZ
“ f Vla",‘o?(z)dzy

(30)

(€2))
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where V’;ﬂ’ (2) is the real-space diagonal matrix element of
the impurity potential,

Vi (@) =y Vi €97, (32)

with Vf‘r;]i,v given by Eq. (20). Note that using Eq. (28), the
effective potential can be written as V4 (z) = Vg (2) +
Vied (z), where Vo includes the bare impurity potential
contribution and the screening by the superconductor and
the metallic gate, while V24, is the contribution due to free-
charge redistribution. A specific example corresponding to
a positive charge impurity embedded inside a system hav-
ing the chemical potential near the bottom of the second
subband is given in Fig. 7(a). Note that V"¢ has a larger
decay length and a smaller amplitude than the impurity
potential. This is a general property responsible for the sign
change of the effective potential and the “hump” (“dip” for
negative impurities) feature starting near z ~ 30 nm.

The average screening factors averaged over different
transverse impurity positions for a system with different
occupancy levels are shown in Figs. 7(b) and 7(c), for
positively and negatively charged impurities, respectively.
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FIG. 7. (a) The position dependence of the effective impurity

potential V3 (black line) and its impurity component, V;Ep (blue
dashed line), and the free-charge redistribution component, V&3
(orange dashed line), for a positively charged impurity placed
at Ximp = —18 nm, yinp, = 10 nm inside a wire having the sec-
ond subband tuned to the Fermi level. (b) The average amplitude
screening, ZW (red circles), and the average integrated screen-
ing ZU (green circles), for a positively charged impurity, O =
+e, embedded in a wire having the chemical potential tuned near
the bottom of different subbands. The bars correspond to one
standard deviation, which ranges from 0.03 to 0.13. Each sub-
band distribution is sampled over 169 impurity locations evenly
distributed over the hexagonal cross section of the semiconduc-
tor wire. (c¢) The same as (b) for a negatively charge impurity,
Q = —e. Note that the screening by the free charge of nega-
tive impurities is significantly less effective than the screening
of positive impurities.

First, note that Z! is a measure of short-range screening,
while Z) takes into account long-range contributions.
Since, in general, V79, has a longer decay length than V¢,
we have Z() < ZUW_ Second, the screening by the free
charge of positive impurities is significantly more effective
than the screening of negative impurities. In particular, the
integrated screening factor, Z, has values smaller than
0.2 for all subbands, indicating that the contribution from
the “hump” feature almost cancels the contribution from
the central dip. In fact, in the case of the sixth subband, the
average integrated screening factor for Q = e is actually
negative, indicating overscreening by the free charge. In
addition, we note that the screening of negative impurities
is more effective when the subband occupancy increases,
while in the case of positive impurities the dependence
on the subband index is weak. Our analysis demonstrates
that screening due to free-charge redistribution in the wire
is a significant effect that has to be taken into account to
obtain a quantitative description of the low-energy physics
in the presence of charge impurities. This is physically rea-
sonable, since the free charge inside the SM wire resides
within the same spatial region as the impurity, making its
screening effect quantitatively dominant.

We conclude this section with a comment on the rele-
vance of the results obtained here to understanding Majo-
rana physics in SM-SC structures. On the one hand,
the matrix elements of the effective impurity potential
obtained numerically from the self-consistent solution of
the Schrodinger-Poisson problem can be used to investi-
gate hybrid devices containing a finite number of randomly
distributed charge impurities. The single-impurity matrix
elements should represent an excellent approximation, as
long as the typical distance between neighboring impuri-
ties is much larger than the characteristic decay length &,
so that each impurity can be considered as independent.
In addition to the “high-energy” ingredients described in
Sec. III A, the model used in this type of investigation
should include the key ingredients necessary for the emer-
gence of topological superconductivity, i.e., proximity-
induced superconductivity, spin-orbit coupling, and Zee-
man splitting. We pursue this path in the next section. On
the other hand, the single-impurity results described above
can be used to construct phenomenological models with
an effective impurity potential given by in Eq. (29) and
relevant parameters—i.e., amplitude 4, and decay length
&,—having distributions similar to those shown in Fig. 5
(for more details regarding the construction of phenomeno-
logical models, see Appendix A). This type of approach
enables the efficient investigation of the disordered system
over a large parameter space without the need to address
a numerically demanding 3D Schrédinger-Poisson prob-
lem. Hence, in addition to the results discussed below,
Majorana device modeling should indirectly benefit from
our phenomenological characterization of the impurity
potential given by Eq. (29).
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IV. MULTIPLE CHARGE IMPURITIES

In this section, we consider a hybrid nanowire with
multiple embedded charge impurities and investigate the
effect of the impurity-induced potential on the low-energy
physics, focusing on the fate of the Majorana zero-energy
modes that emerge in the clean system. Our analysis is
based on two working assumptions. (i) We consider sys-
tems with low-to-intermediate impurity concentrations,
which are characterized by average distances between
neighboring impurities that are much larger than the char-
acteristic length of the effective (single) impurity potential.
This allows us to work within the independent-impurity
approximation, in which each charge impurity generates
an effective potential that is independent of the presence of
other impurities and can be described using the approach
discussed in the previous section. (ii) We assume that
the intersubband spacing is much larger than all other
relevant energy scales. This allows us to work within
the independent-band approximation, which neglects the
effects of intersubband coupling. Within this approxi-
mation, the low-energy physics can be accurately cap-
tured using an effective single-band model. We note that
the independent-band approximation is expected to break
down in systems with high subband occupancy [36]. Note
also that in systems with low intersubband spacing, the
effects of impurity-induced disorder are expected to be sig-
nificantly stronger than the effects described below, due
to additional contributions from impurity-induced inter-
subband couplings [39]. So, the situation discussed here
is, in some sense, the most optimistic scenario conducive
to the emergence of topological Majorana modes; strong
disorder, high subband occupancy, and, implicitly, small
intersubband spacing will simply make the situation worse,
with topological physics being practically impossible to
achieve in SM-SC hybrid platforms. The effective single-
band model for a hybrid wire with multiple charge impuri-
ties is introduced in Sec. IV A. The results of our numerical
analysis are discussed in Sec. [V B.

A. Model

Within the independent-subband approximation, the
system can be described using an effective 1D single-band
model [1,4] defined by the BdG Hamiltonian,

h2
H = (—2 *822 — u — iagd.oy, + FGZ> T,
m

- AUyTy + Vimp @, (33)
where m* is the effective mass, u is the chemical potential,
ag is the Rashba spin-orbit coupling coefficient, I is the
Zeeman energy, A is the induced superconducting pairing,
Vimp 1s the effective potential generated by the presence
of charge impurities, and o; and 7;, with i = x,y,z, are

Pauli matrices in spin and particle-hole spaces, respec-
tively. Note that all parameters in Eq. (33) are assumed
to be position independent and that we use the values
m* = 0.023, ap =20 meV nm, and A = 0.3 meV unless
stated otherwise. Note that these correspond to optimistic
parameter values of InAs-Al hybrid nanowires.

On the other hand, the impurity potential has the form

Ni imp

Vimp (Z) = Z Voc,ot (Z — Zm, Qm:xmaym) )

m=1

(34)

where Ny, is the total number of impurities embedded
within the wire, V,, is the effective potential generated
by a single impurity, i.e., the intrasubband matrix element
given by Eq. (28), r,, = (X, Vm,zm) describes the position
of impurity m, and Q,, indicates its charge. We assume
charge neutrality and consider an equal number of posi-
tive (Q = +e) and negative (Q = —e) elementary charges
distributed randomly throughout the wire. Each disorder
realization corresponds to a specific set of Ny, impurity
positions {r,} and a set of Ny, charges {O,}. Note that
(X, ym) can take 169 different values sampled evenly over
the hexagonal cross section of the nanowire, while z,, can
take any value corresponding to a lattice site of the dis-
cretized version of Eq. (33), with a, = 4 nm being the
lattice spacing. For concreteness, we assume that chemical
potential is tuned near the bottom of the second subband,
so that the relevant matrix elements V, , entering Eq. (34)
correspond to o = 2. These matrix elements are calcu-
lated self-consistently following the procedure described
in Sec. Il B. The low-energy eigenvalues and the cor-
responding eigenstates of the Hamiltonian (33) are then
obtained using the Lanczos method [40].

To facilitate the connection with experimental tunneling
spectroscopy, we also calculate the differential conduc-
tance for charge tunneling into the left or the right end
of the wire. This is realized by connecting the proximi-
tized wire to semi-infinite leads at both ends and using the
Blonder-Tinkham-Klapwijk (BTK) formalism [41]. The
normal leads are modeled by the Hamiltonians

hz
Hyg = |:— 82 — i+ Vi (Z)i| T, (35)

2m* ¢

where the labels L and R designate the left and right leads,
respectively, p; is the chemical potential of the leads, and
V; and Vi are tunnel-barrier potentials at the left and
right ends of the system, respectively. The tunnel barri-
ers are square potential barriers of amplitude V3 and length
Lp = 20 nm, located at the ends of the corresponding leads
directly adjacent to the proximitized wire. To evaluate
the scattering matrix S, we consider the retarded Green’s
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function,
G =[w-H-%, (- +in] ', (36)

where H is the (discretized) Hamiltonian containing the
sites within the proximitized region, as well as the barrier
sites, plus one additional site on each side of the system,
immediately outside the corresponding barrier region, X,
and Xy are the self-energies obtained by integrating out
the degrees of freedom associated with the left and right
leads [42], respectively, and n € R* accounts for dissi-
pative broadening [21,43]. The boundary elements of the
Green’s function (36) are calculated using the recursive
Green’s function algorithm [44]. In turn, these elements
can be related to the scattering matrix, S, using the Fisher-
Lee relations [45]. Finally, the scattering-matrix elements
are used to calculate the local conductance [41],

2
G = % [2 — Tr(S%) + Tr(s?h], (37)

where S¢¢ and S¢' describe the reflection of incoming elec-
trons with energy w into electrons and holes, respectively,
and i = L,R. The numerical values of the parameters
used in the differential-conductance calculations are u; =
20 meV, Vg = 40 meV, Ly = 20 nm, and n = 20 ueV.

Before discussing the results, a few comments are war-
ranted. By taking the effective impurity potential, Vinp, in
Eq. (34) to be a sum of single impurity potentials, we are
neglecting any change of the potential due to interimpu-
rity coupling. This is expected to be a good approximation,
provided that the typical spacing between charge impu-
rities is larger than the single-impurity-potential decay
length, i.e., in the low-to-intermediate impurity-density
regime. The results shown in Fig. 5 indicate that the decay
length is in the range £ ~ 5-25 nm, which is significantly
less than the typical impurity separation length for low-
to-intermediate impurity densities. Note that for higher
impurity densities, we find that Majorana physics is com-
pletely destroyed by disorder, a conclusion that is unlikely
to be modified by including interimpurity coupling effects.
The fact that strong disorder destroys the Majorana physics
in nanowires and other superconducting systems is now
well accepted.

Finally, we note that the generalization of the single-
band formalism discussed here to a multisubband approach
is straightforward. The generalized effective model is a 1D
multisubband model with intersubband coupling induced
by the off-diagonal matrix elements of the effective poten-
tial, V, g, with a # B. As shown in Sec. III C, these
elements are typically smaller than, but comparable to,
the corresponding diagonal elements (see Fig. 3). The
intersubband coupling terms are expected to become rele-
vant when the intersubband spacing AE between subbands
close to the Fermi level is comparable to the magnitude

of V, g, which implies AE < 1 meV. For the case inves-
tigated here, which corresponds to the second subband
being tuned near the chemical potential, the intersub-
band spacing is AE ~ 10 meV, significantly larger than
the amplitude of the effective potential matrix elements.
Consequently, we can safely ignore the disorder-induced
intersubband coupling. High occupancy, on the other hand,
is associated with a reduction of the intersubband spac-
ing [36] and a multisubband approach becomes necessary.
We emphasize that in the multisubband regime the sys-
tem is less robust against disorder [39,46]. Therefore, our
independent-subband treatment provides upper bounds for
impurity concentrations consistent with various aspects of
Majorana physics. In other words, we are considering the
most favorable scenario in order to predict the upper bound
on the allowed disorder that would still enable topological
Majorana physics to emerge in realistic SM-SC structures.

B. Results

The numerical results discussed in this section cor-
respond to a charge-neutral system containing an equal
number of positively and negatively charged impurities
with charges Q = +e¢ and Q = —e, respectively. Posi-
tive charges create local potential wells, while negatively
charged impurities generate effective potential barriers.
To gain some intuition regarding the effects induced by
the two types of potential perturbations (i.e., “well” and
“barrier”), we first consider a wire of length L = 4.2 um
having an “artificial” potential perturbation localized near
the middle of the wire and consisting of a square poten-
tial well (barrier) of width L, = 50 nm and height V}, =
—10A (Vp = +10A), where A = 0.3 meV is the induced
pair potential. The dependence of the corresponding low-
energy spectra on the applied Zeeman field is shown in
Figs. 8(a) and 8(b). Note that the short-range potential per-
turbation induces subgap states (green lines in Fig. 8) when
the system is in the topological regime [47,48], which
can act as a source of quasiparticle poisoning in Majo-
rana qubits [49]. Note also that the characteristic energy of
the in-gap mode generated by the potential barrier is much
lower than the energy of the in-gap mode generated by the
potential well, except for an isolated zero-energy crossing
at Zeeman field I' & 54A.

The difference between the in-gap mode induced by the
potential well and that generated by the potential barrier
is further illustrated by the dependence of these modes on
the amplitude of the square potential. This dependence is
shown in Fig. 8(c) for a fixed value of the Zeeman field,
I' = 3A. Note that the potential well generates an in-gap
mode with an energy comparable to the topological gap,
except a few isolated Andreev crossings. By contrast, the
mode generated by the potential barrier collapses toward
zero energy with increasing V. This is a specific example
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FIG. 8. The low-energy spectrum as a function of the Zeeman
splitting for a wire of length L = 4.2 yum having a square poten-
tial well (a) or barrier (b) localized near its center. The width
of the square potential is L, = 50 nm and its height is (a) V) =
—10A and (b) V', = 10A. The red and green lines correspond to
the first and second lowest-energy modes, respectively. (c) The
spectrum as a function of ¥ /A for a Zeeman field I’ = 3A. The
blue solid and dashed lines indicate matching parameters in (c)
and in (a) and (b), respectively.

of a near-zero-energy subgap mode induced by an inhomo-
geneous potential, a scenario extensively discussed in the
literature.

To identify the nature of the in-gap modes, we calculate
the corresponding wave functions in the Majorana repre-
sentation. More specifically, let Y1z, (z), with 0 < E} <
E;, be the lowest-energy eigenstates of the BAG Hamil-
tonian. We define the following Majorana components
associated with the low-energy BdG states [50]:

Ko@) = 7 [V, @) + g, @]
X = %[w,,(z) VoG] G8)
Note that x? and x2 are not eigenstates of the

BdG Hamiltonian, except for E, =0, and we have
GHH X = (xZIH|xE) = 0 and (x;|H|xE) = iE,. The
position dependence of the amplitude of the Majorana
wave functions corresponding to the in-gap states from
Fig. 8 is shown in Fig. 9. The lowest-energy states, n = 1
(red lines in Fig. 8), correspond to a pair of Majorana
modes localized near the two ends of the nanowire (red and
green modes in Fig. 9). On the other hand, the in-gap states
induced by the square potential perturbation, » = 2 (green

rA=1.5 |
Vp/A=10.0
(b)
~ 0.03 { I/A=1.5 |
= Vp/A= —10.0 f! !\
0.00 . =

c

©) .05 | r/A=5.4

= V/A= —10.0
0.00 -Aaaass vaasassasst WM

0 3 4
(um)

FIG. 9. The position dependence of the amplitude of the Majo-
rana wave functions, |x; 412 and | Xn B2 corresponding to the
lowest-energy states (n = 1,2) in Fig. 8. The values of the poten-
tial height 7}, and Zeeman field I' are indicated inside each
subplot. Note that the lowest-energy states (n = 1, red lines in
Fig. 8) correspond to a pair of Majorana modes localized near
the two ends of the nanowire (red and green modes), while the
potential-induced in-gap states (n = 2, green lines in Fig. 8)
correspond to a pair of (partially) overlapping Majorana modes
localized near the middle of the wire (purple and yellow modes).
In (c), at the Andreev crossing corresponding to I' &~ 5.4A in
Fig. 8(a), the two Majorana modes overlap completely.

lines in Fig. 8), correspond to a pair of (partially) overlap-
ping Majorana modes localized near the middle of the wire
(purple and yellow modes in Fig. 9). Note that the Majo-
rana modes generated by the potential well [Fig. 9(b)] have
a significantly stronger overlap than the Majorana modes
generated by the potential barrier [Fig. 9(a)]. Furthermore,
at the Andreev crossings, the two Majorana modes ;' and
x% completely overlap, generating a “regular” Andreev
bound state localized in the potential well. In general, how-
ever, the in-gap modes generated by the local potential
perturbation can be viewed as a pair of partially over-
lapping quasi-Majorana modes [51] or, alternatively, as
a partially separated Andreev bound state (PSABS) [23].
As shown below, partially overlapping (separated) Majo-
rana modes emerge generically in proximitized wires in
the presence of charged impurities.

Next, we characterize the effective potential generated
by charge impurities embedded within the wire by pro-
viding some specific examples and calculating the cor-
relation function (Vimp(2)Vimp(2')). The position depen-
dence of the effective impurity potential Vjn,(z) given by
Eq. (34) for two disorder realizations with impurity densi-
ties Mimp = 1.6 x 10" em™ and nymp = 4.7 x 10'° cm™=3,
respectively, is shown in Fig. 10. The first example corre-
sponds to a low impurity density of about five impurities
per micron, while the second example corresponds to an
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FIG. 10. The position dependence of the effective impurity
potential for two specific disorder realizations corresponding to
impurity densities (a) Ajmp = 1.6 X 10 ¢cm™ (linear density
Aimp = 5 um~") and (b) nimp = 4.7 x 10" cm™* (linear density
Aimp = 15 um~1). The chemical potential of the wire is tuned
near the bottom of the second subband. These impurity poten-
tials are used in the calculations discussed in Secs. IV B 1 and IV
B2.

intermediate regime with 15 impurities per micron. These
are relatively low impurity concentrations for semiconduc-
tor materials but within the current technological capa-
bility. Note that the amplitude of the strongest potential
peaks exceeds 5 meV, which corresponds to about 17A,
a significant perturbation (more than an order of magni-
tude larger than the SC gap) even taking into account its
relatively short range. The properties of the system in the
presence of the effective potential shown in Fig. 10(a) are
discussed in Sec. IV B 1, while the intermediate-impurity-
density regime corresponding to Vin, given in Fig. 10(b) is
investigated in Sec. IV B 2.

To obtain a more generic characterization of the effec-
tive impurity potential, we consider many disorder realiza-
tions consistent with given values of the impurity density
and calculate the correlation function (Vimp(2)Vimp(z')).
The results for a system with impurity densities 7;n, =
0.25 x 10'%,0.5 x 10'6, and 1 x 10'® cm™>, which corre-
spond to linear densities Ay, = 7.9, 15.9, and 31.8 um™!,
respectively, are shown in Fig. 11. Each curve is obtained
by averaging over 5 x 10° disorder realizations. Note that
the potential correlation function scales with the impu-
rity density. For the intermediate density, 7jm, = 0.5 X
10'® cm™3, the correlation function is characterized by a
central peak of height oc 1 meV? and a full width at half
maximum of about 40 nm.

Based on previous studies of disorder effects in Majo-
rana nanowires [17-20,23,24,52-54], we know that the
presence of disorder generally induces low-energy sub-
gap states. Also, the simple example illustrated in Figs. 8
and 9 suggests that, at least under certain conditions, these

(V(2)V(Z')) (meV?)

-125 0 125
z—2"(nm)

—250 250

FIG. 11. The correlation of the impurity potential for a system
with impurity densities 7y, = 0.25 x 10'® cm=3 (black), 7tim, =
0.5 x 10" cm™ (red), and nymp =1 x 10'® cm™ (green),
which correspond to linear densities Aimp = 7.9 pum™!, Aipp, =
15.9 um~!, and Aimp = 31.8 um™!, respectively. The system is
charge neutral (i.e., contains an equal number of Q = +e and
O = —e impurities), and has the chemical potential near the bot-
tom of the second subband. Each correlation function is obtained
by averaging over 5 x 10° disorder realizations. Note that the
potential correlation scales with the impurity density.

subgap states consist of partially overlapping Majorana
modes (or PSABSs) localized throughout the wire, in gen-
eral away from the ends of the system. Note, however, that
the presence of such nontopological (often called “trivial™)
ABSs does not necessarily affect the “genuine” topolog-
ical MZMs that emerge in the topological regime at the
ends of the system, as shown in Fig. 9. Therefore, it is
of crucial importance to characterize quantitatively the
spatial separation between Majorana modes and the edge-
to-edge correlation associated with the presence of MZMs
at the ends of the wire and investigate the effect of charge-
impurity-induced disorder on these quantities. To this
end, we introduce the Majorana separation length, g,
defined as follows. Let y,, with E, > 0, be a positive-
energy eigenstate of the BdG Hamiltonian and X,EL/ B be
its left (right) Majorana components. The corresponding
Majorana separation length is defined as

égﬁf, = (zpr) — (2ZuL), (39)
where (z,rr)) is the expectation value of the position
along the wire corresponding to the left (right) Majorana
component. Explicitly, we have

(40)

Nz
<Zn,J> = Z Z |X,§J)(Zi; V)NZZI‘:
=1

vor

where J € {L, R}, NV, is total number of sites, z; is the (dis-
cretized) z coordinate corresponding to site Z, and we sum
over the spin and particle-hole degrees of freedom indexed
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by v. Finally, we have

lyep = Max, [13(") FEU, sz)] ,

sep (41)
where F is a function that filters out the states outside a
small energy window centered at £ = 0. The details of the
filtering are not important, as this simply corresponds to the
energy resolution defining “zero energy” or “zero bias” in
the experiment. We choose the filter function to have the
form

F(EU,Q) = % [tanh <E%Z/l) — tanh (E%U)} .

(42)

Note that F ~ 0 for |E| > U and F =~ 1 for E =0,
while it smoothly interpolates between these values near
|E| ~ U over an energy scale 2. Throughout the rest of
this work, we set & = 0.2A and 2 = 0.1A. These are,
most likely, fairly generous estimates for defining the zero-
energy modes. Hence, according to Eq. (41), £s, measures
the largest separation length between the left and right
Majorana components of BdG states having a sufficiently
low energy, so as to be operationally considered a zero-
energy state. Next, we define the edge-to-edge correlation
associated with the BdG eigenstate {z, as

Co =\ WPWE FE,U,Q),

with WH® being the spectral weight at the left (right) end
of the system. Explicitly, we have

(43)

(Le)s

B =3 1w

where J € {L,R} and the summation over i is restricted
to sites that are within a distance /, of the corresponding
edge. Let ng be the state characterized by the largest Majo-
rana separation, i.e., Eéﬁg) = lsep. Typically, ng =1, i.e.,
the largest Majorana separation corresponds to the lowest-
energy mode, unless there is a “regular” (i.e., nonsepa-
rated) Andreev bound state. We define the edge-fo-edge
correlation as C = C,,. Note that 0 < C < 1, with C = 1
corresponding to a low-energy BdG state having its Majo-
rana components localized at the ends of the system, each
within a distance ¢, of the corresponding edge.

To benchmark these quantities, we start with a clean sys-
tem of length L = 4 pum and calculate the dependence of
the Majorana separation, £, and edge-to-edge correla-
tion, C, on the Zeeman field and chemical potential. The
corresponding “phase diagrams” are shown in Fig. 12. The
black lines mark the theoretically known phase boundary
[55] associated with the topological quantum phase transi-
tion. Remarkably, the area characterized by large values of

2
5

(44)

lsep/l- C
0.0 0.5 1.0 0.0 0.5 1.0
1.0
(a)
0.5
3
g 0.0
3
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I (meV) I (meV)
FIG. 12. (a) Majorana separation, £, and (b) edge-to-edge

correlation, C, maps for a clean system of length L = 4 um. The
black lines indicate the (bulk) topological quantum phase transi-
tion corresponding to I' = /2 + |A|2. The edge length used in
the definition of C [see Eq. (44)] is £, = 200 nm.

the Majorana separation, £s, < L, and large edge-to-edge
correlations, C > 0.5, practically coincides with the topo-
logical phase. This indicates that the two quantities capture
meaningful information about the Majorana zero modes
and the topological quantum phase transition. Note, for
example, that C decreases with an increasing Zeeman field
as a result of increasing the Majorana localization length,
&, which transfers some of the spectral weight outside the
edge regions defined by the length scale £, in Eq. (44).
We emphasize that the generation of 2D maps of the rele-
vant quantities as functions of various control parameters,
such as the Zeeman splitting and the chemical potential (or
applied back-gate potential), provides significantly more
information than focusing on specific parameter values.
As shown below, such maps are mandatory for properly
understanding the effects of disorder and should represent
the standard in both theoretical and experimental inves-
tigations of hybrid systems. We urge experimentalists to
always characterize the presence of (near) zero-energy
modes by providing 2D “phase-diagram” maps in the
magnetic field-gate voltage parameter space.

1. Low-impurity-density regime

We are now ready to consider a system with randomly
distributed charge impurities and investigate the effects
of this type of disorder using the quantities introduced
above. We start with a specific disorder realization cor-
responding to a relatively low impurity density, 7y, =
1.6 x 1015 ¢cm™, which means Ay, = 5 impurities per
micron. The position dependence of the impurity potential
Vimp(2) for this disorder realization is shown in Fig. 10(a).
The maps of the Majorana separation and edge-to-edge
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FIG. 13. (a) Majorana separation, £, and (b) edge-to-edge
correlation, C, maps for a disordered system of length L = 4 um
with impurity density sy, = 1.6 x 10 em™3 (Aimp =5 um™1).
The black lines indicate the topological quantum phase transition
for a clean system. The edge length used in the definition of C
[see Eq. (44)] is £, = 200 nm. Note that non-negligible values of
£sep and C occur outside the nominally topological region, while
these quantities are significantly suppressed in some areas within
this region.

correlation as functions of the Zeeman field and chemi-
cal potential are shown in Fig. 13. A comparison of these
maps with the corresponding “phase diagrams” in Fig. 12
reveals two distinctive features: the emergence of areas
with significant values of £, and C outside the nominally
topological region and the substantial suppression of these
quantities in certain areas within the topological region.
We emphasize that although the quantitative details of the
phase diagram in Fig. 13 depend on the specific disor-
der realization and on the corresponding impurity potential
(see Fig. 10) used in the calculation, these two distinctive
qualitative features are generic.

To better understand the significance of these features,
we calculate the low-energy spectrum as a function of the
Zeeman field for a fixed value of the chemical potential,
as well as the spatial profile of the Majorana components
corresponding to certain representative low-energy modes.
The results for u = 0 are shown in Fig. 14. The low-energy
spectrum in Fig. 14(a) shows the emergence of a near-zero-
energy mode for Zeeman fields I' 2 0.3 meV (red lines).
The lowest-energy mode is separated from other finite-
energy states by a small gap that increases significantly for
" 2 0.75 meV. This behavior may be surprising if judged
based on the information in Fig. 13, which, for u =0,
shows a strong suppression of C at higher values of the
Zeeman field. However, the spatial profiles of the Majo-
rana components shown in Figs. 14(b) and 14(c) clarify
the physics. Indeed, for I' = 0.5 meV the lowest-energy
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FIG. 14. (a) The low-energy spectrum as a function of the Zee-

man field for a system with the same parameters as in Fig. 13 and
u = 0. The red lines denote the lowest-energy mode. (b),(c) Spa-
tial profiles of the Majorana components corresponding to the
lowest BdG eigenstate (red and green) and the second lowest-
energy eigenstate (blue and yellow) for ' = 0.5 meV and I' =
1 meV, respectively. Note that in (c), the left Majorana compo-
nent of the lowest-energy state (green) is localized away from
the corresponding edge, which causes the collapse of the edge-
to-edge correlation C in Fig. 13 in the area around u = 0,T" =
1 meV.

state consists of two well-separated Majorana modes local-
ized near the ends of the system (green and red). The left
(green) Majorana has some overlap with a PSABS local-
ized nearby (yellow and blue), which represents the second
lowest BdG state but is weakly affected by the presence of
this bound state. Consequently, £, is comparable to the
length L of the wire and the edge-to-edge correlation C is
large. By contrast, at I' = 1 meV the left (green) Majo-
rana mode is “pushed” away from the end of the system,
which results in a reduction of the Majorana separation
length and the collapse of the edge-to-edge correlation. To
understand this behavior, note that the disorder potential
shown in Fig. 10(a) breaks the wire into several seg-
ments where the topological condition is locally satisfied,
ie., I'? > [V(z) — u]> + |AJ%. Each of these topological
segments results in two low-energy PSABSs, which can
couple with PSABSs of other topological segments. The
final low-energy spectrum then depends upon the details
of these couplings, which evolve in a nontrivial manner
with the Zeeman field. Hence the lowest-energy state can
sometimes shift in space as the Zeeman field changes, as is
seen in Fig. 14.

The example discussed above shows that a hybrid sys-
tem with a low concentration of charged impurities is
consistent with the emergence of well-separated near-
zero-energy Majorana modes. However, the presence of
disorder may “push” these modes away from the ends of
the system, which results in low values of the edge-to-edge
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correlation. In other words, the system can host “genuine”
MZMs, but they may be “invisible” to local probes coupled
to the ends of the wire. This severely limits the relevance
of tunnel spectroscopy as a tool for detecting the emer-
gence of Majorana zero modes in the presence of disorder,
even in the weakly disordered situation. To make further
connection with experiment, we calculate the local differ-
ential conductance for charge tunneling into the left and
right ends of the system. The results corresponding to a
system with the same parameters as in Fig. 14 are shown in
Fig. 15. One can clearly note two low-energy modes coa-
lescing toward zero energy and generating robust zero-bias
conductance peaks (ZBCPs) at both ends of the system.
At the left end, the ZBCP persists from I' = 0.3 meV to
I' ~ 0.7 meV and then it appears to split. However, as
revealed by the data in Fig. 14, the apparent splitting is
due to a PSABS localized near the left end, while the
“actual” Majorana mode (i.e., the “green” Majorana) does
not become gapped, instead becoming “invisible” to local
measurements at the edge, as it gets pushed away from
the end of the wire. Within the range 0.7 S T < 1.1 meV,
there is a robust ZBCP at the right end of the wire but no
ZBCP at the left end. This example clearly illustrates the
difficulty of correctly interpreting tunneling conductance
results in the presence of disorder. First, apparent splittings
of the ZBCP can be misleading, as they are not necessarily
associated with the mode that generates the ZBCP. Second,
the absence of edge-to-edge correlation does not necessar-
ily imply the absence of robust well-separated Majorana
modes; it may simply mean that (at least) one of these

G (e/h)
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0.16

00 02 04 06 08 1.0
I' (meV)

FIG. 15. The local differential conductance at (a) the left and
(b) the right ends of the wire for a system with the same param-
eters as in Fig. 14. Note that the zero-bias conductance peak
characterizing G is suppressed between 0.7 < T < 1.1 meV as
a result of the left Majorana mode being pushed away from the
edge, as shown in Fig. 14(c).
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FIG. 16. (a) The low-energy spectrum as a function of the Zee-

man field for a system with the same parameters as in Fig. 13
and 1 = 0.5 meV. The red lines denote the lowest-energy mode.
(b),(c) The spatial profiles of the Majorana components cor-
responding to the lowest BAdG eigenstate (red and green) and
the second lowest-energy eigenstate (blue and yellow) for I' =
0.5 meV and I' = 1 meV, respectively. Note that in (b), which
corresponds to the trivial regime, the Majorana modes strongly
overlap, generating two ABSs localized near the ends of the
system.

modes is localized away from the end of the wire. We
note that the conductance calculations shown in Fig. 15
are done in the tunneling limit, i.e., for high values of the
potential barrier amplitude. In addition, we consider some
finite dissipation, n = 20 weV. As a result, the height of
the ZBCP is much smaller than the quantized value and
there is some particle-hole asymmetry [21,43,56]. These
issues are well understood and do not in any way affect
our key qualitative conclusion of disorder possibly pushing
the zero mode away from the end and making it invisi-
ble in standard tunneling spectroscopy. In some sense, this
invisibility of the topological Majorana in the tunneling
measurement (a false negative) is the ironic counterpart of
the PSABS misleadingly producing nontopological zero-
bias conductance peaks mimicking Majorana zero modes
(a false positive).

Next, we consider another horizontal cut through the
phase diagram in Fig. 13 corresponding to i = 0.5 meV.
For this value of the chemical potential, the system is
characterized by large Majorana separations and edge-to-
edge correlations in the topological regime, i.e., for I 2
0.6 meV. Indeed, the spectrum shown in Fig. 16(a) is char-
acterized by a robust zero-energy mode (red line for ' 2
0.6 meV) and a sizable topological gap. Note the presence
of finite-energy in-gap states in the topologically trivial
regime (e.g., red lines for I' < 0.6 meV). These topolog-
ically trivial in-gap modes consist of Andreev bound states
with strongly overlapping Majorana components localized
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near the ends of the wire, as shown in Fig. 16(b). In the
topological regime, on the other hand, the system is char-
acterized by well-separated Majorana modes localized at
the ends of the system, as shown in Fig. 16(c) (the green
and red Majoranas) and is consistent with the large values
of £p and C in Fig. 13.

The conductance traces corresponding to the u =
0.5 meV cut are shown in Fig. 17. The presence of the
MZMs is revealed by the emergence of robust ZBCPs at
both ends of the system. Note, however, that the emergence
of the ZBCP looks rather different at the two ends, with two
low-energy modes coalescing toward zero energy clearly
visible at the right end and no apparent gap closing at the
left end. This behavior is due to the fact that the right Majo-
rana mode is adiabatically connected to the ABS localized
at the right end of the system, while the left Majorana is
connected to a trivial mode that has low spectral weight
at the left end of the system and couples weakly to the
corresponding probe, thus remaining “invisible.” Another
significant feature that is clearly manifested in Fig. 17(a)
is the enhancement of the ZBCP weight or height due to
the Majorana mode hybridizing with a bound state local-
ized in the barrier region. Indeed, in Fig. 17(a), one can
clearly note an ABS crossing zero energy at I' ~ 0.8 meV.
This mode is absent from the low-energy spectrum shown
in Fig. 16(a), a clear indication that it is generated by the
very presence of the barrier region that couples the system
to the normal lead, as this is not included in the calcu-
lation of the spectrum. This type of enhancement of the
ZBCP due to coupling to an ABS localized at the end of
the system is also visible in Fig. 15. The results presented
in Fig. 17 and discussed above indicate a serious problem
regarding tunnel conductance measurements: the end-to-
end conductance correlations, which are often thought to
be the decisive signature for the existence of topological
MZMs, may very well be quite imprecise (or even absent)
in the presence of (even weak) disorder. The absence of
such correlations can be quite generic in disordered sys-
tems and may imply either that one of the MZMs cannot
be accessed through tunnel spectroscopy at the wire end
(because it has been pushed away) or that the observed zero
mode is simply trivial. A comparison of the conductance
traces at the two ends of the system cannot discriminate
between these possibilities. However, the generation of
2D conductance maps over large parameter regions may
provide additional information, as discussed below.

Having clarified the features that characterize the nomi-
nally topological region of the phase diagrams in Fig. 13,
the natural question concerns the nature of the low-energy
states responsible for the emergence of high Majorana sep-
arations and significant edge-to-edge correlations in the
trivial region (of the pristine system) with © > 1 meV. To
address this question, we consider a vertical cut at fixed
Zeeman field I' = 1.1 meV. The dependence of the low-
energy spectrum on the chemical potential along this cut
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FIG. 17. The local differential conductance at the (a) left and
(b) right ends of the wire for a system with the same parameters
as in Fig. 16. Correlated zero-bias conductance peaks occur at the
two ends of the system for I' 2 0.65, consistent with the large C
values for £ = 0.5 meV and I 2 0.65 meV in Fig. 13. Note the
significant enhancement of the ZBCP in (a) due to the Majorana
mode hybridizing with a bound state localized within the barrier
region, which crosses zero energy at I' &~ 0.8 meV.

is shown in Fig. 18(a). For —1 < u < 1 meV, the system
is in the nominally topological regime and one can clearly
note the a near-zero-energy mode (red lines) protected by a
finite gap over most of this interval. The gap collapses for
u < —0.25 meV. Most interestingly, low-energy modes
are also present for 1 < u < 1.75 meV, i.e., in the nom-
inally trivial regime. To clarify the nature of these states,
we calculate their Majorana components for two values of
the chemical potential. The results are shown in Figs. 18(b)
and 18(c). The low-energy states can be viewed as super-
position of several partially overlapping Majorana modes.
Accidentally, Majorana components associated with the
lowest-energy state can have significant weights at the
ends of the system, which generates a finite edge-to-edge
correlation, as shown in Fig. 13(b). Such zero modes
accidentally arising from the disorder-induced overlap of
several Majorana modes cannot be construed as being
topological.

We have already pointed out the importance of gen-
erating 2D maps of the relevant quantities as functions
of various control parameters. To further emphasize this
point, we calculate the zero-bias differential-conductance
maps corresponding to charge tunneling into the left (Gy)
and right (Gg) ends of a system having the same param-
eters as in Fig. 13. In addition, we define the geometric
average of the left and right conductivities as a practical
measure of the edge-to-edge correlation. Specifically, we
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FIG. 18. (a) The low-energy spectrum as a function of the
chemical potential for a system with the same parameters as in
Fig. 13and " = 1.1 meV. The red lines denote the lowest-energy
mode. (b),(c) The spatial profiles of the Majorana components
corresponding to the lowest BAG eigenstate (red and green) and
the second lowest-energy eigenstate (blue and yellow) for two
values of the chemical potential marked by dashed purple lines in
(a). In (c), the Majorana components of the lowest-energy mode
(green and red) have nonzero spectral weights at the ends of the
system, which results in a finite edge-to-edge correlation C.

define

Cs = vV GLGp.

The results are shown in Fig. 19. We note that the
Cg map in Fig. 19(c) closely resembles the edge-to-edge
correlation map, C, in Fig. 13. This observation has two
important implications. First, Cs provides a good measure
of the edge-to-edge correlation that can be easily deter-
mined experimentally. Second, for large-scale calculations
(e.g., when doing statistics involving many disorder real-
izations—see below), one can focus on the numerically
less expensive quantity C, instead of the more experimen-
tally relevant quantity Cg, since we find the two to be
representing equivalent physics, even in the presence of
disorder. In addition, we note that for low-impurity con-
centrations, the (zero-energy) conductance maps provide a
reasonably good correspondence with the phase diagram
of the clean system, particularly in the low-field regime.
However, as shown below, this correspondence fades away
upon increasing the impurity concentration. This suggests
that the systematic mapping of the zero-bias conductance
at both ends of the system and of the corresponding cor-
relation Cg can provide a powerful experimental tool for
assessing the strength of the effective disorder potential.
Finally, we note that C has the highly desirable practical
property that it does not require identical tunnel barriers
at the two ends. As long as a difference between the two
barriers amounts to an overall enhancement or suppression

(45)
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FIG. 19. Zero-bias differential-conductance maps for a system
with the same parameters as in Fig. 13 but having normal leads
and tunnel barriers attached at both ends. (a)«(c) The conduc-
tance at the left (G,) and right (Gg) ends of a system and the
geometric average (Cg = /G Gg), respectively. Note that the
Cs map closely resembles the edge-to-edge correlation map, C,
in Fig. 13.

of G, relative to Gy, the corresponding factor is irrele-
vant when calculating the correlation Cs. We note that our
calculated conductance shown in Figs. 17 and 19 is char-
acterized by zero-bias values (G, Gg, and Cg) smaller
than the so-called Majorana quantization value of 2¢?/h,
as we consider relatively high tunnel barriers and include
a dissipation term. We emphasize that in the presence of
disorder, fine tuning the parameters to obtain quantized
values of the zero-bias conductance does not provide addi-
tional information regarding the nature of the underlying
low-energy mode. Instead, the production of detailed con-
ductance maps over extended ranges of tuning parameters,
similar to those in Fig. 19, can yield additional infor-
mation, including estimates of the disorder strength. We
think that the generation of such comprehensive maps is
what experiments should focus on, rather than fine tuning
parameters to achieve Majorana quantization.

2. Intermediate-impurity-density regime

How does the phenomenology discussed above depend
on the concentration of charge impurities, i.e., on the disor-
der strength? To address this question, we consider another
specific disorder realization corresponding to an inter-
mediate impurity density, 7ym, = 4.7 x 10" cm~3, which
means Ajnp = 15 impurities per micron. This is still rela-
tively low disorder in terms of the bulk doping magnitude
but it is three times larger than the low-disorder case
(Mimp = 5 um™') considered above. The position depen-
dence of the impurity potential Viyn,(z) for this disorder
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realization is shown in Fig. 10(b). We carry out the same
calculations as above and construct the maps correspond-
ing to the Majorana separation, {p, and edge-to-edge
correlation, C, as functions of the Zeeman field and the
chemical potential. The results are shown in Fig. 20.

In addition, we introduce a “projection map” based on
the following quantity:

0: esep = Emin,
P(Zsepv O =1-1, Zsep > Lmin and C < Crpin, (46)
l, Esep > fmin and C > Cmin-

In essence, P = 0 corresponds to low Majorana sep-
aration lengths (according to a criterion determined by
Lmin), P = —1 signals well-separated Majoranas that do
not generate a substantial edge-to-edge correlation (e.g.,
because one of the Majorana modes is pushed away
from the end of the system by the disorder potential),
while P =1 corresponds to the desired scenario involv-
ing well-separated Majoranas and substantial edge-to-edge
correlation. The projection map corresponding to £y, =
0.5L and Cpi, = 0.25 is shown in Fig. 20(c). As com-
pared to the corresponding maps in Fig. 13, the sup-
pression of the Majorana separation and edge-to-edge
correlation inside the nominally topological region is sig-
nificantly stronger. When comparing the two figures, note
that I extends to higher values in Fig. 20 than Fig. 13.
Nonetheless, there is a substantial area—the blue region in
Fig. 20(c)y—corresponding to large values of the Majorana

LeeplL C P
0.0 05 1.00.0 0.5

U (meV)

0.3 1.0 1.7
T (meV)

0.3 1.0 1.7
I (meV)

0.3 1.0 1.7
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FIG. 20. (a) Majorana separation, £, (b) edge-to-edge corre-
lation, C, and (c) projection, P, maps for a disordered system of
length L = 4 um with impurity density 7y, = 4.7 x 10" cm™
(Aimp = 15 um™"). The impurity potential Vimy(z) for this disor-
der realization is shown in Fig. 10(b). The black lines indicate the
topological quantum phase transition for a clean system. The pro-
jection map in (c) corresponds to £y, = 0.5L and Cppi, = 0.25.

separation ({sp > 2 um) but weak edge-to-edge corre-
lation. This suggests that, even at this level of impurity
concentration, there are segments of the wire that can be
viewed as effectively topological but their presence can-
not be revealed by local measurements at the ends of the
wire. By contrast, the areas corresponding to large values
of C are reduced to a few small islands. The underly-
ing disorder-induced nonperturbative rearrangement of the
Majorana spatial locations and the corresponding signa-
tures revealed by the Majorana phase diagrams are central
findings of our work.

To help connect these features to experimentally mea-
surable quantities, we generate the corresponding zero-bias
conductance maps, as well as the geometric correlation Cg,
for the intermediate-disorder case. The results are shown
in Fig. 21. First, we note the close resemblance between
the C map in Fig. 20(b) and the Cs map in Fig. 21(c),
with the exception of a few additional looplike features
present in the Cy map that are discussed below. Sec-
ond, we point out that, unlike the low-impurity-density
case shown in Fig. 19, the areas of high zero-bias con-
ductance are almost equally distributed inside and outside
the nominally topological region. This suggests a shift of
the chemical potential associated with the emergence of
low-energy modes toward higher values as the impurity
density increases, which is consistent with previous stud-
ies [57,58]. Note that this is not due to an actual shift
of the impurity-induced effective potential, as the average

G (0 = 0)(e?/h)

03 1.0 1.7 0.3 1.0 1.7 0.3 1.0 1.7

I (meV) I (meV) I (meV)

FIG. 21. Zero-bias differential-conductance maps for a sys-
tem with the same parameters as in Fig. 20 but having normal
leads and tunnel barriers attached at both ends. (a)(c) The
conductance at the left (G;) and right (Gg) ends of a system
and the geometric average (Cg = +/ G Gp), respectively. Note
that the correspondence between the conductance maps and the
topological phase boundary for the clean system (green line) is
weak.
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value of Viy, is close to zero regardless of the impurity
concentration (see Fig. 10).

To shed further light on the nature of various streaky
and loopy high-conductance features in Fig. 21, we con-
sider the differential conductance as a function of the
applied Zeeman field and potential bias for two specific
values of the chemical potential, © = 0 and u = 3 meV,
respectively. The first trace cuts through several narrow
uniformly dispersing high-conductance features that are
characteristic of the nominally topological region (see
Fig. 21). As revealed by the results shown in Fig. 22, these
features are associated with Andreev bound states crossing
zero energy at different values of the Zeeman field. Note
that robust ZBCPs signaling the presence of well-separated
Majorana modes are clearly visible at both ends of the sys-
tem but within different intervals of Zeeman fields. The
presence of these ZBCPs at ;1 = 0 is consistent with the
large values of the Majorana separation in Fig. 20(a), while
their emergence within different I' intervals is consistent
with the low values of C in Fig. 20(b). Note also that,
as mentioned before, the ZBCP is strongly enhanced as a
result of the Majorana modes hybridizing with the ABSs
localized near the ends of the wire. Particularly interesting
is the faint ZBCP near I =~ 0.6 meV, which is “revealed”
by the strong ABS mode that crosses zero energy at that
value of the Zeeman field.

G (e%/h)
0.10

0.0 0.5 1.0 1.5 2.0
I (meV)

FIG. 22. The local differential conductance at the (a) left and
(b) right ends of the wire for a system with the same parameters
as in Fig. 20 and chemical potential i = 0. Note the strong fea-
tures associated with Andreev bound states that cross zero energy
at different values of the Zeeman field. In (a), the hybridization of
these states with the Majorana mode leads to an enhancement of
the ZBCP (extremely faint near I' ~ 0.6 meV and clearly visible
above I' &~ 1.4 meV).

Next, we focus on the © = 3 meV trace, which cuts
through a looplike feature in Fig. 21(b) that has no equiva-
lent in Fig. 20. The corresponding low-energy spectrum is
shown in Fig. 23(a). Note that with an increasing Zeeman
field, several low-energy modes accumulate near zero
energy, with the first one crossing zero at I' ~ 0.8 meV
(red lines). To understand the nature of the low-energy
states, we calculate their component Majorana modes. As
shown in Fig. 23(b), for I' = 0.86 meV the lowest-energy
BdG state consists of a PSABS localized near the right
end of the wire [red and green Majorana components in
Fig. 23(b)]. On the other hand, the second lowest-energy
state is a “regular” ABS consisting of two nearly over-
lapping Majorana components (orange and blue) localized
at the left end of the system. As a consequence, both the
Majorana separation and the edge-to-edge correlation have
small values in the area around u = 3meV, I' = 0.86 meV
(see Fig. 20). At a higher Zeeman field, I' = 1.73 meV, the
Majorana components of the lowest-energy mode—green
and red in Fig. 23(c)—are well separated and localized
near the ends of the wire. This explains the large Majorana
separation and the finite edge-to-edge correlation charac-
terizing the corresponding region of the “phase diagrams”
in Fig. 20. Note, however, that these well-separated Majo-
rana modes have a significant overlap with the Majorana
components of higher-energy states, with which they can
easily hybridize in the absence of an energy gap that would

@ 45
<
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—0.3 1
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FIG. 23. (a) The low-energy spectrum as a function of the Zee-
man field for a system with the same parameters as in Fig. 20
and 4 = 3 meV. The red lines denote the lowest-energy mode.
(b),(c) Spatial profiles of the Majorana components correspond-
ing to the lowest BdG eigenstate (red and green) and the second
lowest-energy eigenstate (blue and yellow) for two values of
the Zeeman field, I' = 0.86 and 1.73 meV, respectively. Note
that the lowest-energy state in (b) has partially separated Majo-
rana components (i.e., quasi-Majorana modes) localized near the
right edge, while the lowest-energy state in (c) has well-separated
Majorana components.
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protect them. Consequently, £y, and C are highly sensi-
tive to variations of the control parameters, which explains
the “small-islands” structure of the corresponding region
of the phase diagram in Fig. 20.

Our analysis of the low-energy spectrum corresponding
to u =3 meV suggests that the looplike feature visible
in Fig. 21 around that value of the chemical potential
is associated with the quasi-Majorana mode (or PSABS)
emerging at the right edge of the system [see Fig. 23(b)].
To confirm this finding, we calculate the differential con-
ductance at the left and right ends of the system along
the same constant pu cut as the spectrum in Fig. 23(b).
The result in Fig. 24(b) clearly shows the emergence of
a nearly zero-bias conductance peak at the right edge of
the system that practically traces the lowest-energy mode
[red lines in Fig. 23(a)] for T’ < 1.4 meV. A maximum of
the zero-bias conductance occurs at I' ~ 0.8 meV, where
the quasi-Majorana mode crosses zero energy and the u =
3 meV cut intersects the looplike feature [see Figs. 21(b)
and 23(a)]. We conclude that the looplike features that
characterize the zero-bias conductance maps in Fig. 21
outside the nominally topological region are generated by
quasi-Majorana modes (or PSABSs) localized near the
ends of the system.

Now turning our attention to the left end of the sys-
tem, we note [see Fig. 24(a)] the presence of strong

G (e¥/h)
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0.0 0.5 1.0 1.5 2.0
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FIG. 24. The local differential conductance at the (a) left and
(b) right ends of the wire for a system with the same parame-
ters as in Fig. 23 but having normal leads and tunnel barriers
attached at both ends. The left conductance has no ZBCP for
I' < 1.5 meV, while the right conductance is characterized by
a strong nearly zero-energy feature associated with the looplike
feature in Fig. 21(b) and generated by the quasi-Majorana mode
shown in Fig. 23(b). At larger Zeeman fields, the differential con-
ductance is characterized by ZBCPs at both ends of the system,
which is consistent with a finite edge-to-edge correlation.

finite-bias conductance peaks for ' < 1.4 meV. These
peaks are generated by the ABS localized at the left end
of the system and representing the second-lowest BdG
state (see Fig. 23). We note that as a result of finite
broadening, the contribution of this state to the zero-bias
conductance G is finite, although small. However, when
combined with the large quasi-Majorana contribution to
Gy, it generates a nonzero contribution to the correlation
Cg, which can be clearly seen as “shadow” looplike fea-
ture in Fig. 21(c). This spurious correlation feature can
be eliminated by considering the finite-bias conductance
and suppressing Cg if the left and right contributions are
not associated with conductance peaks located within the
same energy window (E — 8E, E + §E), where §E is deter-
mined by the energy resolution. Nonetheless, the zero-bias
conductance maps, including the Cs map, can play a
crucial role as a first step in characterizing the system
and evaluating the effects of disorder. We suggest that
this type of comprehensive maps, rather than fine-tuned
and postselected “good-looking” traces, including traces
with conductance of approximately O(2¢*/h), should be
the standard protocol for the experimental characteriza-
tion of hybrid SM-SC devices. Finally, we note that for
' 2 1.5 meV the conductance is characterized by ZBCPs
at both the left and right ends, as shown in Fig. 24. This is
consistent with the finite edge-to-edge correlation expected
in this regime based on the “phase diagrams” shown in
Fig. 20.

We conclude this section with a few additional remarks
on the “phase diagrams” shown in Figs. 20 and 21. First,
we note that within the nominally topological regime, all
“phase diagrams” are characterized by stripy features that
disperse downward in p with an increasing Zeeman field.
We show that in the case of the conductance maps, these
features are associated with Andreev bound states local-
ized near the ends of the system that cross zero energy. In
certain cases, the presence of these ABSs may enhance an
otherwise “invisible” ZBCP generated by well-separated
Majorana modes, which results in a finite edge-to-edge
correlation. Second, we note that the features located out-
side the nominally topological region have qualitatively
different characteristics. The conductance maps show sev-
eral rounded looplike features that we identify as being
associated with partially separated Majorana modes (or
quasi-Majoranas). As discussed above, these features can
be eliminated from the correlation map using additional
finite-bias information. The remaining features have a
stripy character and are present in all “phase diagrams.”
However, unlike the stripy features emerging in the topo-
logical region, these “trivial stripes” disperse upward in
@ with an increasing Zeeman field. Note that a quali-
tatively similar behavior can be observed even at lower
impurity concentrations, as revealed by the “phase dia-
grams” in Figs. 13 and 19. These observations suggest that
detailed zero-bias conductance maps could help identify
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nominally topological regions even when the presence of
disorder suppresses the “standard” Majorana phenomenol-
ogy expected in a clean system. Note, however, that these
results are not expected to hold if the system is charac-
terized by a small intersubband spacing (i.e., it is not in
the in the independent-subband regime) or if the disor-
der strength exceeds a certain threshold (i.e., the system
is in the strong-disorder regime). For small intersubband
spacings, even weak disorder will make the system behave
as a random disordered class-D system because of the
essentially random nature of the resultant intersubband
couplings, which become comparable to the intrasubband
terms.

3. Charge-impurity statistics

We investigate the effects of impurity-induced disor-
der for two specific disorder realizations corresponding to
two different impurity concentrations. The natural ques-
tions are as follows. (i) What is the generic behavior of
the system for arbitrary disorder realizations correspond-
ing to a given impurity concentration? (ii) What is the
dependence of the results on the impurity concentration?
To effectively address these questions, we need to define
some quantities that provide a “global” description of the
2D maps discussed in the previous section. To this end,
we first define the “filter function” x (w, I'; £min, Cmin, Emin)
that selects control parameter values consistent with cer-
tain minimum requirements associated with the presence
of well-separated Majorana modes capable of generating
edge-to-edge correlations. Specifically, we have

x(n,I)=06 (Esep - gmin) O (C = Ciin) © (Eg_Emin) >
47

where ®(x) is the step function, ®(x > 0) =1, O(x <
0) =0, and E, = E; — Ey, with E| and E; being the low-
est and second-lowest positive eigenenergies, respectively,
is the quasiparticle gap separating the lowest-energy state
from the rest of the spectrum. Note that x = 1 if the Majo-
rana separation length is larger than £,,,, the edge-to-edge
correlation larger than Cpy, and the quasiparticle gap larger
than E,;,, while x = 0 otherwise. Next, we introduce the
quantity M (I") defined as the total chemical potential range
that satisfies the “good-Majorana” criterion, x (i, ") =1,
for a given value of the Zeeman field. Specifically, we have

M) = f % (1, T) di. (48)

Note that for a clean system and “reasonable” values of
Linins Cmin, and Epin, we have M (') = 0 for I < A, i.e.,in
the topologically trivial regime, and M (') = 24/T'2 — A2
for ' > A. In other words, for a clean system, M (")
is a measure of the “thickness” of the topological region
along the p direction at a given value of the Zeeman field.

For example, I' — A (from above) implies M — 0, pre-
cisely giving the lowest Zeeman field associated with the
pristine topological quantum phase transition. In addition,
we define the average quasiparticle gap within the region
satisfying the “good-Majorana” condition as

~ 1
E, (') = M) /Eg () x (u, T) dpa. (49)

To test the relevance of these quantities, we calcu-
late the disorder averages (M) and (E,) as functions of
the impurity concentration for two values of the Zee-
man field and different sets of filter-function parameters,
(Cmin/L, Cinin, Emin/A). The results for a wire of length
L =4 pm are shown in Fig. 25, while the results corre-
sponding to a shorter wire with L = 2 pum are presented
in Fig. 26. The averages corresponding to each value of
the impurity density, Aimp, are calculated using 500 dif-
ferent disorder realizations. Note that if a given impurity
realization is characterized by M = 0, E, is undefined and
we do not include it in the calculation of (E,). First, we
observe that (M) collapses with an increasing impurity
density, reaching negligible values for impurity densities
of the order of 1020 impurities per micron. This means
that for higher impurity concentrations, there are practi-
cally no “good Majoranas” in the system. We point out
that for the Majorana separation criterion, we use a rather
generous value, /i, = 0.5L, which does not guarantee the
localization of the well-separated Majorana modes near
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FIG. 25. The disorder-averaged chemical potential range,

(M), and the quasiparticle gap, (E), as functions of the impu-
rity density for a system of length L =4 um. The first (a),(c)
and second (b),(d) columns correspondto I' = 0.5 meVandI' =
1 meV, respectively. The results corresponding to different sets
of filter-function parameters, ({min/L, Cinin, Emin/A), are color
coded: (0.5,0,0), blue; (0.5,0.2,0), green; (0.5,0.2,0.05), red;
(0.5,0.2,0.1), black. Note that the maximum impurity density,
Limp = 30 um™!, corresponds to 7imp, = 9.4 x 10> cm 3.
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FIG. 26. The same as Fig. 25 for a wire of length L = 2 pum.

the ends of the wire. This is particularly significant in
Fig. 25(b), where introducing the edge-to-edge correlation
requirement Cp,i, = 0.2 strongly reduces (M) as compared
to the case Cpi, = 0 (blue dots). On the other hand, the
fact that the blue dots in Fig. 25(b) correspond to finite
values of (M) over the entire range of impurity densi-
ties reveals that even in the presence of relatively strong
disorder, the system contains well-separated Majoranas.
However, these Majoranas do not generate edge-to-edge
correlations. In other words, some segments of a long wire
are likely to be in the topological superconducting phase
but these segments have a concentration-dependent typi-
cal length (which is unknown experimentally) that is less
than the length L of the wire. Therefore, their presence can-
not be established based on the edge-to-edge correlation,
which is negligible. This observation is consistent with the
specific examples discussed in Secs. IV B 1 and IV B 2.
Note that for the shorter system (see Fig. 26), imposing
the additional filter C > 0.2 does not reduce (M) drasti-
cally. This is due to the fact that Majorana modes with
Lsep > L/2 are significantly more likely to generate edge-
to-edge correlations in a shorter wire, as compared to a
longer wire. Finally, regarding the average quasiparticle
gap, (E,), we note a sharp drop at low impurity density,
followed by a slower decline toward a density-independent
plateau, which starts at Aimp ~ 15 um~!. The height of
the plateau is determined by the average interstate spacing,
which depends on the length of the wire being proportional
to 1/L.

The “global” quantities introduced above provide useful
tools for studying the effects of disorder on the Majo-
rana physics. Most importantly, they reveal the strong
dependence of the Majorana physics on the impurity con-
centration. In particular, the observation of edge-to-edge
correlations at relatively low values of the Zeeman field
requires the reduction of the impurity density below a
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FIG. 27. The disorder-averaged chemical potential range,

(M), and the quasiparticle gap, (Eg), as functions of the spin-
orbit coupling strength, «, for a wire of length L =4 um. The
red circles and green crosses correspond to Aimp = 7.5 pum, and
Aimp = 15 pum, respectively. The filter-function parameters are
Liin/L = 0.5, Cyin = 0.2, and Eppiy = 0.

certain threshold of about 1520 impurities per micron.
This type of analysis can be also useful for optimizing the
system parameters. As an example, we consider the depen-
dence on the spin-orbit coupling strength. Figure 27 shows
the dependence of (M) and (Eg) on the spin-orbit coupling
strength « for a wire of length L = 4 pum for two impu-
rity densities and two values of the Zeeman field. Typi-
cally, increasing the spin-orbit coupling strength enhances
both (M) and (E,). However, for Ajnp, = 15 um™! (green
crosses), the dependence of the average energy gap on « is
weak, while (M) shows a significant enhancement only at
larger values of the Zeeman field and for « = 25 meV nm.
Finally, we point out that throughout this work, the value
of the spin-orbit coupling strength is & = 20 meV nm,
which we consider as relatively optimistic. While for large
enough Zeeman fields, (M) and (E,) can be enhanced by
having a stronger spin-orbit coupling, there is not much
room for optimizing the low-field regime. Note, however,
that at large field values, the topological gap itself may be
rather small and, again, optimization becomes a challenge
even in this regime.

V. CONCLUSIONS

We carry out a comprehensive microscopic theoretical
study of disorder effects arising from the inevi-
table presence of charge impurities in superconductor—
semiconductor nanowire hybrid structures, focusing on the
fate of the Majorana zero modes expected to emerge in
these systems. The work consists of four closely con-
nected, but distinct, theoretical components: (1) develop-
ing a fully self-consistent realistic Schrodinger-Poisson
scheme to calculate the effective impurity potential
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arising from the presence of charge impurities, which takes
into account electrostatic and screening effects due to the
superconductor and potential back gate, as well as the
screening by the free charge in the wire; (2) carrying
out full solutions of the BAdG equations in the presence
of disorder by incorporating the effective impurity poten-
tial calculated self-consistently for a multiband system,
as well as the superconducting proximity effect, the spin-
orbit coupling, and the applied Zeeman field; (3) obtaining,
based on the solutions of the BAG equations, effective
“phase diagrams” as functions of the control parame-
ters (i.e., the Zeeman field and the chemical potential)
in the presence of disorder and investigating their depen-
dence on the disorder strength; and (4) calculating the
tunnel conductance at both ends of the system and gener-
ating the corresponding “phase diagrams,” which provides
insight into the existing tunnel spectroscopy experiments
on Majorana nanowires. Since the work involves multiple
aspects, we have specific conclusions regarding each com-
ponent of the theory already included in the corresponding
section of this paper. Instead of repeating what is already
described and discussed in depth in Secs. III and IV, we
summarize our most important conclusions regarding the
role of charge-impurity-induced disorder from the per-
spective of the ongoing search for non-Abelian Majorana
modes in superconductor—semiconductor-nanowire hybrid
structures.

We show that the superconductor plays a rather limited
role in screening the impurity potential, while substantial
screening arises from the free charges in the nanowire. We
provide a simple two-parameter empirical fitting formula
for the effective screened potential, which should be useful
for future simulations of Majorana devices. Quantitatively,
we find that the effective impurity potential has typical
amplitudes of the order of 1.5-2 meV and typical decay
lengths of about 812 nm.

We find that disorder produces zero-energy states out-
side the pristine topological phase boundary and we
analyze in depth the nature of these states and their pos-
sible experimental signatures. We also find that within
the nominally topological regime, the system can host
well-separated Majorana modes even in the presence of
significant disorder levels but that, typically, the presence
of these modes is not associated with a significant edge-
to-edge correlation. A key finding in this context is that
disorder may often push Majorana zero modes away from
the wire ends, thus making them invisible to local (end-of-
wire) tunnel spectroscopy. Thus, it is entirely possible (and
likely) to miss the presence of Majorana zero modes in a
disordered nanowire when using tunneling spectroscopy
simply because this is a local probe sensitive only to
states localized at the wire ends. Hence, in the presence
of disorder, long segments within the bulk of the wire
may be topologically nontrivial, with Majorana modes
emerging at their ends, but the wire ends themselves may

contain no Majorana modes, which dramatically reduces
the probability of observing edge-to-edge
correlations.

We establish that detailed 2D maps of the zero-bias
conductance as a function of the Zeeman splitting (i.e.,
the magnetic field in the laboratory) and the chemical
potential (i.e., the gate voltage in the laboratory) may
be the most effective operational way to search for the
“hidden” topological superconductivity and the associ-
ated Majorana modes. The current experimental focus on
looking for large zero-bias peaks with conductance of
approximately 2e?/h by fine tuning the control parameters
is unlikely to solve the outstanding questions regarding the
nature of the low-energy states responsible for these peaks.
First, a large zero-bias peak obtained through careful fine
tuning and postselection may have nothing to do with
topological Majorana modes and, second, this procedure
is likely to lead to strong confirmation bias in the experi-
ment. Instead, the creation of zero-bias conductance maps
in the extensive parameter space of the gate voltage and the
magnetic field using the cleanest possible samples and the
comparison of these maps to our theoretical results may
be a much more systematic way of searching for Majo-
rana physics, without suffering from any confirmation bias.
In addition, this would provide much-needed estimates of
the disorder strength characterizing actual superconductor-
semiconductor hybrid devices and an effective way of
testing future materials improvements that aim at reducing
disorder.

We find that for reasonably realistic (but still somewhat
optimistic) parameter choices, genuine well-separated
topological Majorana modes should exist in nanowires for
impurity densities up to 5 x 10> cm™3, which corresponds
to around 15 impurities per micron. This would mean
that a 2—4-um-long nanowire can contain up to 30—60
charge impurities but that cleaner samples, with a charge-
impurity density below 10" ¢cm™3, may be necessary in
practice, since we ignore any disorder arising from possi-
ble interface defects or imperfections. Such a low intrinsic
doping of less than 10'3 cm™ is a challenge but is by no
means out of reach in semiconductor materials growth, as
impurity contents below 10> cm™ have been achieved in
MBE-grown GaAs structures [59].

Our final conclusion is that charge impurities cause
serious problems but by no means destroy the topology
in hybrid nanowires, as long as their concentration is
maintained below a certain threshold. Future experiments
should provide estimates of the disorder levels that char-
acterize existing hybrid systems, while a systematic effort
should be dedicated to the production of much cleaner
wires, with significantly lower impurity content, where
Majorana zero modes could emerge easily and manifest
the full range of their expected phenomenology.

The implications of our work for the realization of
Majorana zero modes and topological qubits are hopefully
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obvious and may be far-reaching. Since superconductor-
semiconductor nanowire hybrid platforms are by far the
leading TQC candidates, by virtue of the tunability of
the system through electrical gating and variation of
the magnetic field, and because semiconductor growth
enables the realization of very pure materials, our detailed
macroscopic quantitative analysis of all relevant aspects
of Majorana physics in the SM-SC platform in the pres-
ence of charge-impurity disorder hopefully provides the
community with clear and quantitative guidelines on how
to make progress. Obtain samples with 105 per cm® or
less impurity content, produce 2D parameter maps of the
zero-bias differential conductance over extended parame-
ter regions, beware of the possibility that impurities may
push the Majorana bound states away from the edges, so
that topology may be hidden in tunnel spectroscopy at the
ends, do not focus on trying to find Majorana quantization
(which are often spurious), instead focus on the totality of
the parameter space rather than fine tuning, carry out con-
ductance correlations in the way proposed in the current
work as a function of the magnetic field and the gate volt-
age by doing tunneling from both ends, and try to obtain
nonlocal correlations not just from the two ends but along
the wire. Our work establishes the existence of topologi-
cal Majorana modes in the system in the presence of some
amount of charge impurity even when the disorder poten-
tial is significantly larger than the SC gap, provided that
the impurity concentration is not too high. This is a highly
encouraging result, which should inspire efforts toward
creating Majorana qubits.

ACKNOWLEDGMENTS

This work is supported by National Science Founda-
tion (NSF) Grant No. 2014156 and by the Laboratory for
Physical Sciences.

APPENDIX: FITTING EFFECTIVE IMPURITY
POTENTIALS TO AN ANALYTIC FUNCTION

As alluded to in the main text [see also Eq. (29)],
the effective potential of a single charge impurity located
at z = 0 can be captured well by fitting both the effec-
tive impurity and redistribution potentials to exponential
functions,

Vau @) = Vi (2) + VS, (@), (A1)
Vil (@) = Bipge” /i, (A2)
Vs (2) = —Bige /e, (A3)
where Bi , and Bf, are the amplitudes of the effective

impurity and redistribution potentials, respectively, k?mp
and A7, are the corresponding decay lengths, and « is the
subband index. We place a minus sign in front of B}, to

(a) (b)
l AN
3 0.0 A —
%2_ Q=_e 3—05' Q=+e
é Ximp =6 Nnm §, Ximp = 18 nm
:" Yimp =10 nm : —1.0 Yimp =10 nm
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0 100 200 0 100 200
12| (nm) |z| (nm)
FIG. 28. Examples of the effective potential (black solid lines)

and the fitted effective potential (red dashed lines) from impuri-
ties of charge (a) Q = —e and (b) Q = e, using the fitting Eqs.
(A1-A3). The transverse positions of the impurities are indi-
cated in the panels. The average absolute error between the exact
and fitted potentials for |z| < 100 nm is (a) 0.03 meV and (b)
0.07 meV, respectively.

emphasize that the redistribution potential (partially) sup-
presses the impurity charge potential. Two examples of
this fitting are shown in Fig. 28, for a negative and positive
elementary impurity charge with the @ = 2 subband tuned
to the Fermi level. We find excellent agreement between
the actual and fitted potential in both cases. Indeed, the
average absolute error, [V55 — V§f2|, within 100 nm of
the impurity is only (a) 0.03 meV and (b) 0.07 meV,
respectively. Note that we find the average absolute error
to be of this order for all impurity locations sampled.
Generically, we find that cases with a negative charge
impurity fit slightly better to Egs. (A1)+A3) than positive-
charge-impurity cases. This is due to a more prominent
“hump” feature after first crossing V, , = 0 for positively
charged impurities compared to negatively charged impu-
rities. Nevertheless, the fitting is exceptional for both
impurity charge signs.

While Egs. (A1){A3) represent an excellent approxi-
mation for the effective potential, they require four fitting
parameters, which may be cumbersome if one wants to
construct a phenomenological model of charge-impurity
disorder without explicitly performing numerically expen-
sive Schrdodinger-Poisson calculations. This motivates us
to investigate whether the various fitting parameters dis-
play correlations to reduce the number of necessary input
parameters. We indeed find this to be the case. The result-
ing correlations are shown in Figs. 29, 30, and 31 and
discussed below.

The effective redistribution amplitude B7,;

tion of the effective impurity amplitude B |

as a func-
is shown
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FIG. 29. The effective redistribution amplitude B, ver-
sus the effective impurity amplitude Bj =~ when the o =
2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. The amplitudes are extracted from fitting the effective
potential of 19 evenly spaced impurity locations within the
transverse profile of the nanowire. The dashed lines are linear-
regression fits to the matching color data. See Table I for the
fitting parameters.

in Fig. 29 for several different subbands tuned to the
Fermi level. The amplitudes come from fitting the effec-
tive impurity and redistribution potentials to Eqgs. (A2)
and (A3), with each data point corresponding to a dif-
ferent impurity location in the transverse profile of the
wire. For this data set, 19 evenly spaced positions in the
cross section of the nanowire are sampled. We observe

FIG. 30. A comparison of the impurity and redistribution
(inverse) decay lengths, ()»flmp)‘1 and (A%,)"!, when the o =
2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. The decay lengths are extracted from fitting the effective
potential of 19 evenly spaced impurity locations within the trans-
verse profile of the nanowire. The (a) top and (b) bottom panels
correspond to Q = +e and Q = —e, respectively. The dashed
lines are linear-regression fits to the matching color data. See
Table II for fitting parameters.

0.00 4~

0 2 4 6 8
Bimp (MeV)
FIG. 31. A comparison of the impurity amplitude B¢

o

imp
and the (inverse) decay length (kimp)‘1 when the o =
2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. The amplitude and decay lengths are extracted from fitting
the effective potential of 19 evenly spaced impurity locations
within the transverse profile of the nanowire. The impurity
charge QO = —e. The dashed lines are linear-regression fits to the

matching color data. See Table III for fitting parameters.

a general linear trend between the two amplitudes for all
three subbands in which the magnitude of the redistribu-
tion amplitude increases with increasing magnitude of the
impurity amplitude, as seen in the linear fit lines (dashed
lines). The positive sign of the slope makes physical sense,
since increasing the magnitude of the impurity amplitude
should increase the redistribution of free charge around the
impurity to (partially) counteract the perturbation of the
electrostatic environment. What’s not obvious, however,
is that a linear relationship should capture the dependency
rather well. After all, the Schrodinger-Poisson equations
should be expected to behave nonlinearly due to the inter-
play between the various occupied subbands. To quantify
how well the linear fit captures the relationship, we gather
the fitting parameters into Table 1. In particular, we wish to
draw attention to the coefficient of determination, 72, which
indicates how much of the variance of the data is explained
by the linear model. For all except the (@ = 4,0 = —e)

TABLE 1. The fitting parameters of the dashed lines in Fig. 29
corresponding to the fitting equation, By, = mbBj, +b. The

imp
coefficient of determination 7> for each linear fit is given in the
final column, where > = 1 indicates a perfect fit.

(o, 0) m b (meV) 7

2,+e) 0.30 —0.46 0.91
2, —e) 0.07 0.41 0.53
(3, +e) 0.29 —0.64 0.75
(3,—e) 0.13 0.30 0.52
(4, +e) 0.43 —0.36 0.79
4, —e) 0.12 0.81 0.34
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TABLEII. The fitting parameters of the dashed lines in Fig. 30
corresponding to the fitting equation, (Af,) ™" = m(Af, ) ™" +b.
The coefficient of determination #? for each linear fit is given in

the final column, where 7> = 1 indicates a perfect fit.

(o, 0) m b (nm™") r?

2,+e) 0.18 0.016 0.83
2,—e) 0.11 0.013 0.46
3,+e) 0.13 0.017 0.63
3,—e) 0.22 0.009 0.59
4,4e) 0.12 0.023 0.45
4,—e) 0.19 0.014 0.32

case, the linear fit explains over half of the variance (** >
0.5). Moreover, Q = e cases display particularly high 7
values. We also note that the 7 coefficient diminishes on
average with an increasing subband index, o, suggesting
that the Schrodinger-Poisson equations are behaving with
increasing nonlinearity as occupation is increased.

Similar to the effective potential amplitudes, we com-
pare the (inverse) decay lengths of the effective redistri-
bution and impurity potentials in Fig. 3 with the subband
o = 2,3, or 4 tuned to the Fermi level. Again, we observe
general linear trends and fit the data from each subband to a
line. The fitting parameters are gathered in Table II. The 7
coefficients are of similar size to what is found in studying
the relationship between the potential amplitudes (Table I)
but are slightly smaller, indicating that the decay lengths
behave in a slightly more nonlinear manner.

Finally, we study the correlation between the amplitude
of the effective impurity potential B and (inverse) decay

length ()\‘i"mp)’1 in Fig. 31. In contrast to Figs. 29 and 30,
we only consider Q = —e, since flipping the signto Q = e
only changes the sign of the amplitude, B{ . The fitting
parameters are gathered in Table III. On the one hand, we
observe large coefficients of determination, 7> = 0.87 and
0.80, for @« = 2 and 3, respectively. On the other hand,
7> = 0.07 for o = 3. These indicate that the relationship
between the effective impurity amplitude and the inverse
decay length is captured well by a linear fit for o = 2
and 3 but not for « = 4. Evidently, as the wave function
moves away from the SM-SC interface with increasing «,
the electrostatics become more subtle and the relationship

TABLEIIIL. The fitting parameters of the dashed lines in Fig. 31
corresponding to the fitting equation, ()\‘i"mp)*1 =mBj, +b.The

coefficient of determination 72 for each linear fit is given in the
final column, where * = | indicates a perfect fit.

(o, 0) m (meV~! nm~) b (mm1) r?

2,—e) 0.012 0.018 0.87
(3,—e) 0.014 0.005 0.80
4, —e) 0.003 0.042 0.07

between the amplitude and (inverse) decay length becomes
more complicated.

We are now in a strong position to create realistic
phenomenological models of charge-impurity disorder in
SM-SC hybrid nanowires using only one or two parame-
ters from which we need to sample. We accomplish this by
leveraging the information we have just laid out regard-
ing the linear relationships between the various fitting
parameters. In the case of low-occupancy (¢ < 3 in this
case), the relationships between the four fitting parame-
ters, B, Biug» (Aﬁnp)*l, and (A%,)~", are well described
by all three linear relationships studied in this appendix.
Therefore, one only needs to sample the Bf,  distribution
to create a realistic model of disorder. Given a Bﬁnp value,
we only have to plug it into the linear equations given in
Tables I-III and the corresponding parameters, m and b
(also in the tables), to obtain the other three fitting param-
eters. In the case of higher occupancy (¢ > 4 in this case),
the relationship between B‘;nP and ()\‘i"mp)’1 is not repre-
sented well by a linear fit. Therefore, we need to sample
from both Bf = and (Af‘mp)‘l to create a realistic disorder

model. The other two fitting parameters, B}; and (Xfed)_l,
however, can still be obtained using the linear equations
and corresponding parameters in Tables I and II. We then
have a convenient and accurate way of producing realis-
tic disorder potential profiles due to charge impurities in
Majorana SM-SC hybrid nanowires.
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