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We address an outstanding problem that represents a critical roadblock in the development of the

Majorana-based topological qubit using semiconductor-superconductor hybrid structures: the quantitative

characterization of disorder effects generated by the unintentional presence of charge impurities within

the hybrid device. Given that disorder can have far-reaching consequences for the Majorana physics but

is intrinsically difficult to probe experimentally in a hybrid structure, providing a quantitative theoretical

description of disorder effects becomes essential. To accomplish this task, we develop a microscopic the-

ory that (i) provides a quantitative characterization of the effective potential generated by a charge impurity

embedded inside a semiconductor wire proximity coupled to a superconductor layer by solving self-

consistently the associated three-dimensional Schrödinger-Poisson problem, (ii) describes the low-energy

physics of the hybrid structure in the presence of s-wave superconductivity, spin-orbit coupling, Zeeman

splitting, and disorder arising from multiple charge impurities by using the results of (i) within a standard

free-fermion approach, and (iii) links the microscopic results to experimentally observable features by

generating tunneling differential-conductance maps as a function of the control parameters (e.g., Zeeman

field and chemical potential). We find that charge impurities lead to serious complications regarding the

realization and observation of Majorana zero modes, which have direct implications for the development

of Majorana-based qubits. More importantly, our work provides a clear direction regarding what needs to

be done for progress in the field, including specific materials-quality and semiconductor-purity targets that

must be achieved to create a topological qubit.

DOI: 10.1103/PhysRevApplied.16.054053

I. INTRODUCTION

Majorana nanowires have been among the most inten-

sively studied topics in physics since 2010, when it was

theoretically proposed that semiconductor-superconductor

(SM-SC) hybrid platforms could host non-Abelian anyonic

Majorana zero modes (MZMs) [1–4] in the combined pres-

ence of s-wave superconductivity, spin-orbit coupling, and

Zeeman spin splitting. The subject has also attracted seri-

ous technological attention, way beyond its physics con-

text, since Microsoft Corporation chose this system as its

preferred platform for creating a fault-tolerant topological

quantum computer [5–9]. A large number of experiments

have followed up on the theoretical predictions using InSb

or InAs nanowires and Al or Nb superconductors, gen-

erating a lot of excitement with reported observations of

zero-bias conductance peaks in tunneling spectroscopy

[10–16], which have been interpreted as possible signa-

tures of the putative MZMs. It has, however, become clear

by now that most of the experimental samples are likely

to contain potential disorder, which strongly affects the
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interpretation of the tunneling experiments and opens up

the possibility that the ubiquitous zero-bias peaks show-

ing up in the experiments may actually be generated

by disorder-induced nontopological fermionic low-energy

Andreev bound states [17–26]. The subject is very much

in flux and, in the absence of a clear understanding and

characterization of disorder effects, much of what is going

on experimentally remains problematic, in spite of high-

profile experimental publications with claims of Majorana

discovery appearing regularly.

This is the background and the context of the current

theoretical work, in which we take a step back and ask

a fundamental question: What happens if the nanowire,

instead of being pristine, has disorder arising from unin-

tentional charge impurities residing in it? The scenario

considered in this question is not hypothetical, since unin-

tentional charge impurities (“low doping”) constitute the

commonest type of disorder in high-quality semiconduc-

tor materials [27]. There is evidence that the experimental

nanowires do, in fact, have substantial disorder. Given the

considerable confusion about the situation surrounding the

Majorana nanowire experiments and the intrinsic difficulty

of directly measuring disorder in hybrid nanostructures,
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we think it is appropriate to take a quantitative micro-

scopic approach to the problem by first solving exactly the

single-impurity problem within a self-consistent numeri-

cal scheme and then using the results to study topological

superconductivity and Majorana physics in the presence of

impurity disorder within the standard free-fermion theory.

More specifically, this is what we do in this paper.

First, we provide a quantitative characterization of the

effective potential generated by a charge impurity embed-

ded inside a semiconductor wire proximity coupled to a

superconductor layer by solving self-consistently the asso-

ciated three-dimensional (3D) Schrödinger-Poisson prob-

lem. Next, using the single-impurity effective potential

obtained self-consistently, we construct disorder potentials

associated with the presence of multiple charge impurities

and solve numerically the Bogoliubov–de Gennes (BdG)

equations that describe the hybrid system in the presence

of s-wave superconductivity, spin-orbit coupling, Zeeman

splitting, and disorder arising from charge impurities. We

also carry out first-principles charge-transport calculations

and determine the tunneling differential conductance as

a function of various systems parameters (e.g., disorder

strength, chemical potential, and Zeeman splitting). Along

the way, we introduce a number of quantities that facili-

tate the characterization of the low-energy physics in the

presence of disorder (e.g., the Majorana separation length

and the edge-to-edge correlation) and describe several pro-

tocols that enable a more efficient extraction and use of

experimentally accessible information (e.g., construction

of zero-bias conductance-correlation maps). Given that the

work presented in this paper is multifaceted, with many

independent results of importance in their specific con-

texts, we first provide a summary of our key findings,

with references to the relevant equations and figures (see

Sec. II), so that the reader uninterested in the technical

details can simply learn about our main results without

going through the rest of the paper, with all its technical

complexity.

We anticipate that our work is central to the

development of a Majorana-based topological quantum

computer (TQC), as it addresses a critical outstanding

problem facing the realization of topological qubits using

hybrid nanostructures, which is the platform on which

the Microsoft Corporation is working. In particular, our

finding that charge impurities in the environment lead to

serious complications regarding the realization and obser-

vation of Majorana zero modes has obvious direct impli-

cations for the development of Majorana-based qubits and

the TQC. Our work provides a full microscopic-based

description of how experimentally available Majorana

nanowires behave in the presence of charge-impurity dis-

order of varying strength. Hopefully, our work provides a

clear future direction regarding what needs to be done for

progress in the field, as well as quantitative measures of

the maximum allowed impurity concentrations consistent

with the full manifestation of topological MZMs in hybrid

nanostructures. In particular, based on our extensive real-

istic calculations, we provide specific materials-quality

and semiconductor-purity targets that must be achieved

to create a topological qubit, hopefully providing a clear

blueprint for future progress toward building a TQC. Our

intention is to establish a clear goal of using nanowires

with impurity concentrations around 1015 per cm3 or

lower for TQC hardware to be feasible using Majorana

qubits. This is a challenging target but by no means an

impossible one.

The remainder of this paper is organized as follows. In

Sec. II, we provide a summary of our key results and dis-

cuss their significance in the context of the ongoing exper-

imental effort to realize topological superconductivity and

Majorana zero modes using SM-SC hybrid structures.

The case of a single charge impurity embedded within a

proximity-coupled nanowire is investigated in Sec. III. The

model used in our analysis is described in Sec. III A, the

details of the self-consistent Schrödinger-Poisson scheme

for calculating the effective impurity-induced potential are

presented in Sec. III B, and the results of the numeri-

cal calculations are discussed in Sec. III C. Section IV

is dedicated to the multi-impurity case, with Sec. IV A

describing the effective single-band model used in our

analysis and Sec. IV B discussing the results of the numer-

ical calculations and their implications for the low-energy

physics of hybrid nanostructures with charge impurities.

Our concluding remarks are presented in Sec. V.

II. SUMMARY OF KEY RESULTS

In this section, we provide a brief summary of our key

results and indicate the relevant equations and/or figures.

For technical details and in-depth discussion of the results,

the reader should consult the corresponding paragraphs in

Secs. III and IV.

(a) We provide a quantitative description of the effec-

tive potential [see Eq. (28) and Fig. 3] generated

by a charge impurity embedded into a semiconductor-

wire–superconductor nanostructure (Fig. 1) by solv-

ing self-consistently the corresponding 3D Schrödinger-

Poisson problem [Eqs. (1) and (2)].

(b) We show that the position dependence of the effec-

tive impurity potential has a simple functional form [see

Eq. (29)], with two controlling parameters: the amplitude

and decay length of the impurity potential in the absence

of redistribution of free charge. This can help future device

modeling in the presence of disorder, by circumventing

the need to explicitly address a numerically demanding 3D

Schrödinger-Poisson problem.

(c) We determine the distribution of the effective

impurity-potential parameters by sampling 169 possible

impurity locations evenly distributed over the hexagonal
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cross section of the semiconductor wire and show that the

typical values of the amplitude are of the order of 1.5–2

meV, while the typical decay lengths are about 8–12 nm

(Fig. 5).

(d) We demonstrate that the screening by the supercon-

ductor has a limited effect on reducing the magnitude and

characteristic length scale of the effective impurity poten-

tial inside the semiconductor (Fig. 6). On the other hand,

screening by the free charge in the wire has considerable

effects (Fig. 7) and has to be incorporated self-consistently

to obtain a quantitative description of the low-energy

physics in the presence of charge impurities.

(e) We show that the presence of multiple charge impu-

rities embedded inside the wire generates a correlated

disorder potential (Fig. 10) characterized by a correla-

tion function having a central peak of height on the order

1 meV2 and full width at half maximum in the range

20–40 nm (Fig. 11). The correlation function scales with

the impurity concentration.

(f) We introduce the precisely defined concepts of

Majorana separation length [Eqs. (39–41)] and the edge-

to-edge correlation [Eqs. (43–44)] as useful theoretical

tools for characterizing the effects of impurity-induced

disorder and we connect them to the differential tunnel

conductance [Eq. (45)].

(g) We show that generating comprehensive maps that

cover large ranges of control parameters (Figs. 13, 19,

20, and 21), rather than focusing on specific postselected

traces, constitutes a productive approach to understand-

ing disorder effects in hybrid devices. We suggest that this

should be the standard protocol for the experimental char-

acterization of these devices, instead of the current focus

on postselected fine-tuned features, which is potentially

prone to serious confirmation-bias problems and provides

no relevant information on the effects of disorder.

(h) We find that in the low-impurity-density regime,

the system is characterized by well-separated Majorana

modes and finite edge-to-edge correlations within large

areas inside the nominally topological region, demonstrat-

ing topological immunity to weak disorder (Figs. 13, 14,

16, and 19).

(i) In the intermediate-impurity-density regime, the

parameter regions corresponding to significant edge-to-

edge correlations reduce to relatively small isolated islands

located both inside and outside the nominally topological

region (Figs. 20 and 21). There is still a significant region

corresponding to well-separated Majorana modes (Fig. 20)

but, typically, these modes are localized away from the

edges of the system and remain “invisible” to local probes

applied to these edges (e.g., tunneling spectroscopy at the

wire ends).

(j) We show that the zero-bias conductance maps (in

the tuning-parameter space) are characterized by qualita-

tively different features inside and outside the nominally

topological regime (Figs. 19 and 21). This suggests that

detailed zero-bias conductance maps could help identify

nominally topological regions even when the presence of

disorder suppresses the “standard” Majorana phenomenol-

ogy expected in a clean system.

(k) We introduce “global” parameters that character-

ize the properties of the Majorana bound states emerging

in the system in the presence of charge impurities [Eqs.

(48–49)] and we calculate the dependence of the disorder-

averaged “global” parameters on the impurity concentra-

tion (Figs. 25 and 26) and spin-orbit coupling strength

(Fig. 27).

(l) We find that well-separated Majorana modes can

generically emerge in the presence of charge impurities

up to relatively high impurity concentration levels but, for

a given wire length, the presence of these well-separated

Majoranas translates into significant edge-to-edge cor-

relations only if the impurity concentration is below a

critical threshold (Figs. 25 and 26). The existence of a

disorder-dependent characteristic length scale is particu-

larly significant in the context of the exponential protection

of Majorana modes, which is necessary for fault-tolerant

qubit operations.

III. SINGLE CHARGE IMPURITY

In this section, we investigate a single charge impurity

embedded within a semiconductor (SM) nanowire prox-

imity coupled to a superconductor (SC). In particular, we

address the key question regarding the magnitude and

characteristic length scale of the potential inhomogene-

ity induced by the charge impurity. The screening due to

the presence of the superconductor and of a nearby metal-

lic gate, as well as the effects due to the redistribution of

free charge within the SM wire, are incorporated using

a position-dependent self-consistent Schrödinger-Poisson

scheme. Our model for describing the SM-SC hybrid struc-

ture with an embedded charge impurity is introduced in

Sec. III A and the self-consistent Schrödinger-Poisson

method is presented in Sec. III B, while the results of our

analysis are discussed in Sec. III C.

A. Model

We consider the hybrid device represented schemati-

cally in Fig. 1, which consists of a hexagonal semicon-

ductor nanowire of radius R (purple in Fig. 1) having a

thin superconducting layer (green) deposited on two of its

facets. A metallic back gate (black) separated from the

hybrid nanowire by a thin dielectric layer of thickness d

(gray) is used to tune the band edges of the low-energy

SM subbands near the Fermi level. Up to minor modifica-

tions of the device geometry, e.g., having additional side

gates or depositing the SC on more than two facets, this

setup corresponds to the most prevalent type of SM-SC

hybrid device used experimentally for exploring Majorana
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FIG. 1. A schematic representation of the SM-SC hybrid
device with an embedded charge impurity. A semiconductor

nanowire (purple) of radius R is proximity coupled to a thin

superconductor (green). An impurity (yellow sphere) of charge
Q embedded within the semiconductor nanowire will create a

potential inhomogeneity. The band edges of the low-energy SM
subbands can be tuned near the Fermi level using a back gate

(black) separated from the wire by a thin dielectric layer (gray).

physics [10–12,14,26,28–33]. The key additional ingredi-

ent, which represents the focus of this study, is a charge

impurity Q embedded inside the SM wire, as is indicated

in Fig. 1 by a yellow sphere. In our theory, the effects

induced by the presence of the charge impurity are cal-

culated exactly within a position-dependent self-consistent

Schrödinger-Poisson formalism.

At this stage, the SM nanowire is modeled using a

simple effective-mass Hamiltonian given by

H = − �2

2m∗ ∇2 − eφ (�r) , (1)

where m∗ is the effective mass, ∇2 is the Laplacian opera-

tor in 3D space, and φ is the electrostatic potential inside

the wire. We assume that the wire is infinitely long. The

potential φ must satisfy the Poisson equation,

∇ · [ε(�r)∇φ(�r)] = −ρ(�r), (2)

where ε(�r) is a material-dependent dielectric constant tak-

ing different values inside the dielectric, the SM wire, and

the surrounding vacuum and ρ is the charge density within

the wire. We impose Dirichlet boundary conditions on the

bottom gate and the surface of the superconductor with

potential values Vg and VSC, respectively. Note that the

boundary condition on the SC surface accounts for the

band bending of the SM conduction band near the SM-SC

interface [34,35]. In addition, we impose Neumann bound-

ary conditions on the sides and top of the full simulation

region for Eq. (2), which are a distance b � R away from

the nanowire. Note that this choice of boundary conditions

on the outer boundaries has a negligible impact on the

potential within the nanowire [36]. It is convenient (and

physically appealing) to break the total charge density into

three components,

ρ (�r) = ρo (x, y) + ρimp (�r) + ρred (�r) , (3)

where ρo is the free-charge density inside the SM wire in

the absence of a charge impurity, ρimp is the charge den-

sity associated with the impurity, and ρred accounts for the

redistribution of free charge due to the presence of the

impurity, i.e., describes the screening cloud. Note that ρo

is translation invariant along the direction parallel to the

wire, which we take as the z direction. The charge impu-

rity is modeled as a small sphere of radius Rimp and uniform

charge density, given by

ρimp(�r) =
{

3Q

4πR3
imp

, |�r − �rimp| ≤ Rimp,

0, |�r − �rimp| > Rimp,
(4)

where �rimp = ximpêx + yimpêy is the position vector of the

impurity. Note that, without loss of generality, we assume

zimp = 0. Finally, the free-charge density is related to the

occupied electronic states,

ρf (�r) = ρo (x, y) + ρred (�r) = −2e
∑

n

|ψn (�r)|2 f (En, T) ,

(5)

where ρf is the total free-charge density, En and ψn are

the nth eigenenergy of the Hamiltonian (1) and the corre-

sponding eigenstate, respectively, f is the Fermi function,

T is the temperature, and the factor of 2 accounts for spin

degeneracy. Note that Eq. (5) couples Eqs. (1) and (2),

known as the Schrödinger-Poisson equations. The free-

charge density and the electrostatic potential are given by

the self-consistent solution of these equations.

Before presenting our method for solving the

Schrödinger-Poisson problem, a few comments about the

model are warranted. First, note that we neglect the key

ingredients responsible for the emergence of Majorana

physics in a SM-SC hybrid structure, namely proximity-

induced superconductivity, spin-orbit coupling, and Zee-

man splitting. These additional contributions to the effec-

tive Hamiltonian, which are included in the finite-wire

model discussed in Sec. IV, are characterized by energy

scales much smaller than the typical interband spacing

associated with the Hamiltonian in Eq. (1), the potentials

Vg and VSC, and the bare potential of the charge impurity.

In other words, the spatial profile of eigenstates ψn and,

implicitly, the charge density ρf (�r) and the potential φ(�r),
are mainly determined by the terms already included in

Eq. (1) and by the boundary conditions, while the addi-

tional terms are expected to generate small perturbations.

Note also that we do not explicitly include the SC sub-

system in the Hamiltonian but consider it in the boundary

conditions. Of course, the coupling between the SM and
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SC is crucial for inducing superconductivity within the SM

wire through the proximity effect. Moreover, it is known

that proximity coupling to the superconductor renormal-

izes the low-energy spectrum of the hybrid system [9] and

generates a shift of the SM subbands [37]. However, these

effects can be accounted for in our model by modifying

the effective mass and shifting Vg and VSC appropriately.

Consequently, to avoid the dramatic increase of the com-

putational cost associated with including the SC in the

Hamiltonian, we do not explicitly consider the SC degrees

of freedom. We stress, however, that the SC still plays an

important role in our model due to the band bending gen-

erated by the Dirichlet boundary condition imposed on φ

at the SC surface.

B. Self-consistent Schrödinger-Poisson scheme

We start by decomposing the electrostatic potential into

three components, similar to Eq. (3). Explicitly, we have

φ (�r) = φo (x, y) + φimp (�r) + φred (�r) , (6)

where φo is the electrostatic potential in the absence of

a charge impurity and φimp and φred are solutions of the

Poisson equation, with ρimp and ρred as source terms,

respectively. The Dirichlet boundary conditions for

nonzero values of Vg and VSC are imposed on φo, while

φimp and φred are subject to trivial boundary conditions.

Next, we rewrite the Hamiltonian as

H = Ho + H ′, (7)

with

Ho = − �2

2m∗ ∇2 − eφo (x, y) , (8)

H ′ = −eφimp (�r) − eφred (�r) . (9)

Here, Ho is the Hamiltonian of the clean system (i.e.,

the wire without a charge impurity) and H ′ represents the

perturbation due to the presence of the impurity. We first

solve the Schrödinger-Poisson equations with H = Ho.

Details regarding the self-consistent numerical procedure

can be found in Refs. [36,38]. The key output of this ini-

tial calculation is a set {
(
εα,o, ϕα

)
|α ∈ N} of transverse

eigenenergies and corresponding eigenmodes. Note that

the transverse wave function ϕα satisfies the eigenvalue

equation

Ho

[
ϕα (x, y) eikz

]
=

(
εα,o + �2k2

2m∗

) [
ϕα (x, y) eikz

]
, (10)

for arbitrary values of k. In other words, ϕα represents the

k-independent transverse profile of the α subband for a

clean system, while εα,o is the energy of the correspond-

ing band edge (i.e., the bottom of the band). Since {ϕα} is a

complete orthonormal set of transverse functions, we use it

as a basis to expand the states of the full Hamiltonian (7).

Explicitly, we have

ψn (�r) =
∑

α

ϕα (x, y) gn,α(z), (11)

where ψn is the nth eigenstate of Eq. (7) and gn,α(z) is a

yet-undetermined function of z. In principle, all subbands

may contribute to each eigenstate. In practice, however,

only a limited number of low-energy subbands contribute

significantly to the low-energy eigenstates of the Hamil-

tonian. We therefore project the eigenstate (11) of the full

Hamiltonian onto a low-energy subspace defined by sub-

bands with εα,o < εcut, where εcut is a finite cutoff energy

larger than any other relevant energy scale in the prob-

lem. Note that the accuracy of this low-energy projection

can be tested by increasing εcut, i.e., including additional

transverse modes in the low-energy basis. The basis is

large enough if further increasing it generates a negligible

change of the final results.

Next, we point out that introducing a charge impurity

breaks the translation invariance along the z axis, making

the assumption of an infinite system rather inconvenient.

To address this issue, we impose periodic boundary con-

ditions with a supercell of length 
 sufficiently large so

that charge impurities in neighboring supercells have a

negligible effect on one another. In these conditions, the

electrostatic potential within the large supercell will be

practically identical to the potential of an infinitely long

system within a region of length 
 containing the impu-

rity. We introduce the following Fourier transforms of the

potential and charge density:

φi (�r) =
∑

m

φ̃i,m(x, y)eiGν z, (12)

ρi (�r) =
∑

m

ρ̃i,m(x, y)eiGν z, (13)

where Gν = 2πm/
 is a reciprocal lattice vector, ν ∈ Z,

and i ∈ {imp, red} designates different components defined

in Eqs. (3) and (6). The substitution of Eqs. (12) and (13)

into the Poisson equation (2) yields

[
∇⊥· (ε∇⊥) − εG2

ν

]
φ̃i,m(x, y) = −ρ̃i,ν(x, y), (14)

for all possible values of ν, where ∇⊥ is the del opera-

tor in the x-y plane. This reduces the original 3D Poisson

equation to a set of independent two-dimensional (2D)

screened Poisson equations with decay length |G−1
ν |. Note

that the 3D version of Eq. (14) with a point charge has

the solution exp(−|Gν |r)/(4πεr), where r is the radial dis-

tance from the point charge, which clearly illustrates the

screening effect due to the Gν term. These 2D screened

Poisson equations are significantly less costly numerically,
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as compared to the original 3D Poisson equation. As a

result, we are able to efficiently perform high-resolution

calculations of the self-consistent potential near the impu-

rity. By contrast, achieving similar results using a brute-

force approach to the 3D Poisson equation would require

a dense discretization around the impurity, which would

lead to significant costs in terms of both memory and

computational time.

With periodic boundary conditions, the low-energy

expansion of the eigenstates of the full Hamiltonian

becomes

|n, kz〉 =
εα,o<εcut∑

α=1

∑

ν

|α, ν, kz〉An,kz
α,ν , (15)

where kz ∈ (−π/
, π/
] is the crystal momentum in the

z direction, An,kz
α,ν = 〈α, ν, kz|n, kz〉 ∈ C, and the basis state

|α, ν, kz〉 is given by

〈�r|α, ν, kz〉 = ϕα (x, y)
ei(Gν+kz)z

√
L

, (16)

where L is the total length of the system and the bra-ket

notation is introduced for convenience. Note that kz is a

good quantum number due to the discrete translation sym-

metry with period 
. Calculation of the Hamiltonian matrix

elements yields

〈α, ν, kz|Ho|β, ν ′, kz〉 = εα,ν(kz)δα,βδq,ν′ , (17)

〈α, ν, kz|H ′|β, ν ′, kz〉 = Ṽ
α,β

imp,ν′−ν
+ Ṽ

α,β

red,ν′−ν
, (18)

where

εα,ν(kz) = εα,o + �2

2m∗ (Gν + kz)
2 , (19)

Ṽ
α,β
i,ν = −e

∫
ϕ∗

αφ̃i,νϕβdxdy, (20)

with i ∈ {imp, red}. Using this representation, the charge

density can be expressed in the following compact form:

ρ̃f ,m (x, y) = −e

L

∑

n,kz

∑

α,β

∑

ν′
A

n,kz

α,ν′
∗
A

n,kz

β,ν′+ν

× f
[
En(kz), T

]
ϕ∗

α(x, y)ϕβ(x, y), (21)

where En(kz) is the eigenenergy of the nth eigenstate

with crystal momentum kz. Equation (20) shows that both

φimp and φred generically have diagonal and off-diagonal

matrix elements corresponding to intra- and intersubband

couplings. Consequently, the eigenstates of the full Hamil-

tonian will be linear combinations of basis states involving

several transverse modes. However, if the energy spacing

between subbands is significantly larger than the perturba-

tion terms, Ṽ
α,β
imp,ν and Ṽ

α,β
red,ν , with α 
= β, the intersubband

mixing is small and the subband index α becomes an

“almost good” quantum number. This motivates us to con-

sider the independent-subband approximation, in which

we neglect any Hamiltonian matrix element between dif-

ferent subbands, i.e., 〈α, ν, kz|H |β, ν ′, kz〉 = 0 for α 
= β,

when calculating the self-consistent potential. Within this

approximation, the subband index becomes a good quan-

tum number and we can write the eigenstates as

|α, n, kz〉 =
∑

ν

|α, ν, kz〉An,kz
α,ν , (22)

where An,kz
α,ν = 〈α, ν, kz|α, n, kz〉. The free-charge density

reduces to

ρ̃f ,ν (x, y) = −e

L

∑

n,kz

∑

α

∑

ν′
A

n,kz

α,ν′
∗
A

n,kz

α,ν′+ν

× f
[
Eα,n(kz), T

] |ϕα(x, y)|2 . (23)

Finally, we can write the matrix elements of φred in a

compact form by introducing the subband Green’s func-

tion, g̃m,α , defined as the solution of the Poisson equation,

[
∇⊥· (ε∇⊥) − εG2

ν

]
g̃ν,α(x, y) = −e |ϕα(x, y)|2 , (24)

with trivial boundary conditions, and the Green’s function

tensor,

g̃β,γ
ν,α =

∫
ϕ∗

β g̃ν,αϕγ dxdy. (25)

With these notations, the relevant matrix elements

become

Ṽ
β,γ
red,ν =

∑

α

g̃β,γ
ν,α nα,ν , (26)

with

nα,ν = 1

L

∑

n,kz

∑

ν′
A

(n,kz)

α,ν′
∗
A

(n,kz)

α,ν′+ν
f
[
Eα,n(kz), T

]
, (27)

for ν 
= 0. If ν = 0, the structure of Eq. (27) remains

the same but the quantity nα,0 associated with the clean

system must be subtracted, as it is already incorporated

in φo. Note that while Eq. (26) gives both diagonal

and off-diagonal matrix elements, within the independent-

subband approximation only the diagonal contributions

containing tensor elements of the form g̃β,β
ν,α are relevant

for the self-consistent calculation of the potential. Also,

we point out that once g̃
β,γ
ν,α and Ṽ

α,β
imp,ν have been cal-

culated using the self-consistent wave functions of the
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clean system, the problem reduces to finding nα,ν self-

consistently. We perform this task using a simple iterative

mixing scheme. An iteration is numerically inexpensive,

since each subband corresponds to an independent one-

dimensional (1D) Schrödinger equation that determines

the eigenstates |α, n, kz〉. In fact, the largest computation

cost corresponds to calculating the elements g̃
β,γ
ν,α of the

Green’s function tensor. Note also that while the subbands

are independent as far as solving the Schrödinger equation

is concerned, they still affect each other through Eq. (26),

since nα,ν enters the expression of Ṽ
β,β
red,ν for all α and

β. Therefore, our independent-subband approximation still

captures the main contribution due to intersubband elec-

trostatic screening. In addition, we explicitly check that

neglecting intersubband coupling has a negligible effect on

the spectrum of the full Hamiltonian.

Once the self-consistent solution is found, we Fourier

transform the matrix elements of the potential back to real

space and define the effective impurity-potential matrix

elements,

Vα,β (z) =
∑

ν

(
Ṽ

α,β
imp,ν + Ṽ

α,β
red,ν

)
eiGν z. (28)

These quantities provide information regarding the

amplitude and characteristic length scale of the potential

inhomogeneity induced by the charge impurity. Note that

the diagonal element Vα,α (z) can be interpreted as an effec-

tive 1D potential for the α subband. On the other hand, the

off-diagonal element Vα,β (z) couples the subbands α and

β in a position-dependent manner.

For the numerical calculations, we choose parameter

values that roughly correspond to the currently exist-

ing InAs-Al- and InSb-Al-nanowire–superconductor plat-

forms, while being somewhat on the reasonably optimistic

side. We emphasize that our qualitative and semiquantita-

tive conclusions do not depend on the details of our param-

eter choice. Specifically, we use the following parameter

values: radius of SM nanowire R = 35 nm, dielectric thick-

ness d = 10 nm, superconductor thickness WSC = 10 nm,

SM permittivity εSM = 15.15, dielectric permittivity εd =
24, effective mass meff = 0.023, work-function difference

VSC = 110 meV, radius of charge impurity Rimp = 2.5 nm,

supercell size 
 = 500 nm, energy cutoff for transverse

modes εcut = 20 meV, and kinetic energy cutoff of plane

waves along the z direction εkin
cut = 3 eV. Fourier coeffi-

cients satisfying |ν| ≤ 200 are used for the electrostatic

potential and charge-density expansions, and the trans-

verse mesh spacing within the semiconductor for the

Poisson, screened Poisson, and Schrödinger equations is

aSM = 1 nm.

C. Results

To understand the qualitative and quantitative charac-

teristics of the effective potential generated by a charge

impurity embedded inside the semiconductor wire, we start

with a calculation of the impurity potential φimp, which

corresponds to the second term in the decomposition given

by Eq. (6). We note that φimp is the solution of the Pois-

son equation (2) with a source term given by ρimp from

Eq. (4) and homogeneous Dirichlet boundary conditions

on the surface of the superconductor and the metallic gate.

Consequently, in addition to the bare 1/r potential of the

charge impurity, φimp includes the screening effect due to

the presence of the SC layer and the metallic back gate.

However, it does not include the screening effect due to

the redistribution of the free charge within the wire, which

corresponds to φred in Eq. (6).

Maps of the screened potential amplitudes at z = 0 (i.e.,

in the plane containing the impurity) and z = 10 nm for

two different impurity locations are shown in Fig. 2. The

left panels correspond to an impurity located in the middle

of the wire, while the right panels show the potential of an

impurity located near the SM-SC interface. While at z = 0

the potentials generated by the two impurities are compara-

ble (see the top panels in Fig. 2), further away the potential

of the central impurity is much stronger than the poten-

tial generated by the other impurity (lower panels). This

indicates that the potential of the impurity located near the

SM-SC interface has a significantly shorter decay length

than the central impurity, which is the result of a stronger

screening by the superconductor. We conclude that while

the characteristic length scale of the screened potential

(a)

(c)

(b)

(d)

FIG. 2. Impurity potential maps, φimp(x, y), within the semi-
conductor region for two impurity locations: (a),(c) the middle

of the wire, (ximp, yimp) = (0, 0) and (b),(d) close to the SM-SC
interface (top and upper right facets), (ximp, yimp) = (15, 25) nm.

The potential amplitudes at z = 0, i.e., in plane containing the

impurities, are comparable (top panels), while at z = 10 nm
the potential of the central impurity is much stronger than the

potential generated by the other impurity (lower panels) as a

result of weaker screening by the superconductor. Note the dif-
ferent energy scales for the upper and lower panels. The impurity

charge Q = e is used for both impurity locations.
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depends strongly on the location of the impurity relative

to the SM-SC interface and the back gate, the maximum

amplitude of φimp is of the order of tens of millielectron-

volts regardless of the location of the charge impurity. This

is at least one order of magnitude larger than the char-

acteristic energy scale associated with Majorana physics.

Without additional screening, the presence of charge impu-

rities inside the hybrid device would have catastrophic

effects on the stability of topological superconductivity

and Majorana zero modes. This is a quantitative finding

of considerable significance in the search for Majorana

zero modes, as it clearly reveals the fragility of the quan-

tum energy scale associated with Majorana physics (e.g.,

the topological gap of approximately 0.1 meV or less),

which can be easily overwhelmed by the huge (essentially

classical) impurity energy scale (approximately 10 meV).

This further emphasizes the critical need for clean samples

and the role of screening in limiting the impurity-induced

potential.

Next, we perform the full self-consistent Schrödinger-

Poisson calculation and determine the effective impurity-

potential matrix elements defined by Eq. (28). For con-

creteness, we focus on a system that, in the absence of

the impurity, has the bottom of the fourth subband at the

chemical potential, which is realized by properly tuning the

gate potential Vg . Since Majorana physics is controlled by

the top occupied subband, the relevant effective potential

matrix elements Vα,β correspond, in this case, to α = 4 and

β = 3, 4, 5, with the diagonal element V4,4(z) representing

the intrasubband effective impurity potential and the off-

diagonal elements V4,3 and V4,5 providing a measure of the

impurity-induced intersubband coupling. The dependence

of the effective potential matrix elements on the distance

|z| from the plane containing the impurity is shown in

Fig. 3. We consider two cases: positive charge impurity,

Q = +e (left side of Fig. 3), and negative charge impu-

rity, Q = −e (right side). In both cases, the location of the

impurity in the transverse plane is given by (ximp, yimp) =
(23, 0) nm. First, we note that the off-diagonal contribu-

tions are smaller than, but comparable to, the diagonal

term. If the intersubband spacing is much larger than

�E ∼ 1 meV, the impurity-induced intersubband coupling

is negligible and one can accurately describe the system

within the independent-subband approximation. If, on the

other hand, the intersubband spacing is comparable to (or

lower than) �E, intersubband coupling becomes important

and the system has to be treated explicitly as a multisub-

band system. In this scenario, the system is expected to be

prone to the formation of topologically trivial low-energy

states due to impurity-induced intersubband coupling [39].

On the other hand, in the independent-subband regime, the

system is expected to be less sensitive to impurity-induced

disorder. This study focuses on the more favorable scenario

involving well-separated subbands. We note that access-

ing this regime depends critically on ensuring low subband

FIG. 3. The dependence of the effective potential matrix ele-
ments on the distance |z| from the plane containing the impurity

for a system having the chemical potential near the bottom of

the fourth subband. The left side corresponds to a positively
charged impurity with Q = +e, while the right side corresponds

to a negative charge, Q = −e. Both impurities are located at

(ximp, yimp) = (23, 0) nm. The black solid lines correspond to the
relevant intrasubband effective potential, V4,4, while the green

and red dashed lines represent the intersubband matrix elements,
V4,3 and V4,5, respectively.

occupancy [36]. We emphasize that in systems character-

ized by small intersubband energy separation, which is

generically the case at high occupancy (e.g., for α > 10),

intersubband coupling may prevent the realization of a

robust topological phase even in the absence of disor-

der [39]. Here, we focus on the situation corresponding

to large intersubband energy splittings and low subband

occupancies, where the intersubband coupling (induced by,

e.g., charge impurities) can be safely neglected. Note that,

in principle, the subband occupancy can be kept low by

properly tuning the gate voltage, Vg .

The diagonal matrix elements (full black lines in Fig. 3)

are characterized by amplitudes of a few millielectronvolts

and decay lengths of the order of 10 nm. In general, the

amplitude of the potential generated by a negative charge

is slightly larger than the amplitude of a positive charge

potential corresponding to the same subband and impurity

location. This is a screening effect arising from the free

charge being made of electrons, which are more effective

in screening a positively charged impurity. Note that the

dependence of V4,4 on z is not monotonic, being charac-

terized by a fast decay at short distances followed by a

change of sign and a slow decay at long distances. Remark-

ably, this behavior, which turns out to be quite generic, is

captured well by the following empirical function:

Vα,α(z) = Bα
impe

−|z|/λα
imp − Bα

rede−|z|/λα
red , (29)

where the four fitting parameters, Bα
imp, Bα

red, λα
imp, and λα

red,

depend on the band index, α, and also on the specific
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location of the impurity, (ximp, yimp). Details regarding

the fitting procedure, its accuracy, and numerical fitting

parameters are provided in Appendix A. Note that the

first and second terms in Eq. (29) account for the effec-

tive impurity and redistribution potentials, respectively.

Moreover, while there are four fitting parameters in the

Eq. (29), which, in principle, are independent, we show

in Appendix A that correlations between the fitting param-

eters imply that one only needs to input Bα
imp or Bα

imp and

λα
imp, i.e., two independent parameters, to obtain a realistic

disorder potential. This has two major implications. First,

to understand the dependence of the effective impurity

potential on the band index and the position of the impu-

rity, it is enough to study the dependence of the amplitude

and decay length on these parameters, which substantially

simplifies our analysis. Second, the simple form of Eq. (29)

provides an extremely useful phenomenological model

for describing charge impurities embedded within SM-

SC hybrid devices. Combined with our quantitative results

described below, this enables the study of disorder gen-

erated by charge impurities without actually performing

a full numerically intensive Schrödinger-Poisson calcu-

lation. The validation of the relatively simple empirical

fitting of the impurity potential defined by Eq. (29) is a

central result of our work.

Our next task is to determine the dependence of the

amplitude and decay length characterizing the effective

disorder potential Vα,α(z) on the position of the impurity

and the subband index. Here, we define the amplitude as

Vα,α(z = 0), while the decay length ξα is obtained by find-

ing z such that Vα,α(z) = Vα,α(0) exp(−1). We emphasize

that within the independent-subband regime, the only rele-

vant matrix element is the diagonal element corresponding

to the top occupied subband. In turn, the occupancy of the

SM subbands is controlled by the applied gate potential Vg .

To acquire some intuition, we first consider a specific

example involving a system having the bottom of the sec-

ond subband near the chemical potential. A map showing

the dependence of the amplitude V2,2(0) on the position

of the impurity is provided in Fig. 4(b). We note that

the amplitude of the effective impurity potential depends

strongly on the position of the impurity. The largest ampli-

tude corresponds to locations where the second transverse

mode has high spectral weight. This is not surprising, con-

sidering that V2,2(0) is a matrix element of a short-range

quantity over the second subband. Note also that as a

result of having a finite work-function difference, VSC, the

lowest-energy modes tend to be localized in the vicinity of

the SM-SC interface. Higher-energy modes, on the other

hand, are more evenly spread over the cross section of

the wire. The subband-dependent amplitude of the effec-

tive impurity potential Vα,α(0) exhibits a similar depen-

dence on the position of the charge impurity. To describe

quantitatively the distribution of potential amplitudes, we

generate a histogram of the amplitude corresponding to

(a) (b)

FIG. 4. (a) A histogram of the effective potential amplitude

V2,2(0). The data are taken from 169 impurity locations sam-

pled evenly over the hexagonal cross section. (b) The effective
potential amplitude V2,2(0) as a function of the impurity posi-

tion, (ximp, yimp). Note that the largest amplitude corresponds to

locations where the second transverse mode has high spectral
weight.

169 impurity locations sampled evenly over the hexago-

nal cross section of the wire. The results are shown in

Fig. 4(a). Note that as a result of the second subband

being localized near the SM-SC interface, the distribu-

tion is skewed toward lower amplitudes. For higher-energy

modes, the amplitude distributions are more uniform, as a

consequence of the wider distribution of spectral weight

associated with those modes.

Our analysis of the position dependence of V2,2(0) sug-

gests that, in general, a compact characterization of the

potential amplitude Vα,α(0) can be obtained by simply

focusing on the distribution obtained by sampling the

hexagonal cross section of the wire. Note that the effective

potential Vα,α is relevant when the bottom of the corre-

sponding subband is in the vicinity of the Fermi level. We

characterize the distributions by specifying the minimum

and maximum values of the potential amplitude, as well as

the values corresponding to the median (50%), 25%, and

75%. A similar procedure can be used to compactly charac-

terize the distribution of decay lengths. The results for sub-

bands 2–10 are shown in Fig. 5. The orange lines indicate

the median (50%), the boxes correspond to the 25%–75%

range, and the whiskers mark the upper and lower bound-

aries of the distribution. We note that the distributions

corresponding to a given subband α are obtained for a

value of the applied gate potential Vg that tunes the bottom

of the subband near the chemical potential. As indicated in

Fig. 5, for Vg = 0 the system has the fourth subband near

the chemical potential. Accessing lower-energy subbands

requires depleting the wire, i.e., applying a negative gate

potential. Higher-energy bands, on the other hand, become

relevant at positive Vg values. We note that the typical val-

ues of the effective potential amplitude are of the order of
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(a)

(b)

FIG. 5. Distributions of (a) the intrasubband effective potential
amplitude, Vα,α(0), and (b) the decay length, ξα , for the subbands

α = 2 − 10 with Q = −e. Note that the distributions correspond-

ing to α = 1 are not shown. The bottom of each subband is tuned
to the Fermi level by adjusting the gate potential Vg . The orange

lines indicate the median (50%) of the distribution, the boxes cor-

respond to the 25%–75% range, and the whiskers mark the upper
and lower boundaries of the distribution. Each subband distribu-

tion is sampled over 169 impurity locations evenly distributed
over the hexagonal cross section of the semiconductor wire.

2 meV, significantly larger than the typical superconduct-

ing energy scales associated with Majorana physics. The

typical decay lengths are in the range 8–12 nm for α ≥ 3,

while the lowest-energy subbands are characterized by

longer (typical) decay lengths and wider distributions due

to the localization of the corresponding transverse modes

near the SM-SC interface.

An important question that can be raised at this point

concerns the role of the superconductor in screening the

impurity potential. To address it, we consider a charge

impurity embedded inside a semiconductor wire in the

absence of the superconductor layer. Note that the only

change with respect to the calculations described above is

the elimination of the Dirichlet boundary condition φ =
VSC at the SC surface. The distributions of the intrasubband

effective potential amplitude, Vα,α(0), and decay length,

ξα , for the even subbands with 2 ≤ α ≤ 10 are shown in

Fig. 6. Note that in the absence of superconductor-induced

band bending, the values of Vg associated with differ-

ent subbands are different from the corresponding values

in Fig. 5. The key result of this calculation, which is

(a)

(b)

FIG. 6. The same as Fig. 5 but for a system without a super-

conductor layer. The distributions correspond to even subbands

with index (from left to right) 2 ≤ α ≤ 10. Note that, as com-
pared to the results shown in Fig. 5, the typical values of the

amplitude of the effective impurity potential are larger by at most
a factor of 2, while the typical decay lengths are only slightly

larger, which indicates that screening by the superconductor has

a rather limited effect.

revealed by the comparison of Figs. 5 and 6, is that screen-

ing by the superconductor does not generate a dramatic

effect, as it reduces the typical amplitude of the effective

impurity potential by at most a factor of 2 and slightly

shortens the typical decay length. This behavior is mainly

due to the fact that the impurities inside the SM wire are

typically located too far from the SM-SC interface for

the superconductor to drastically screen out the impurity

potential.

Another important question regards the screening of

the impurity potential due to the free-charge redistribu-

tion in the wire. To characterize the renormalization of

the band-dependent effective potential due to free-charge

redistribution, we introduce the amplitude screening fac-

tor, Z (A)
α , and the integrated screening factor, Z (I)

α , defined

as follows:

Z (A)
α = Vα,α(z = 0)

V
imp
α,α (z = 0)

, (30)

Z (I)
α =

∫
Vα,α(z)dz

∫
V

imp
α,α (z)dz

, (31)
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where V
imp
α,α (z) is the real-space diagonal matrix element of

the impurity potential,

Vimp
α,α (z) =

∑

ν

Ṽ
α,α
imp,νeiGν z, (32)

with Ṽ
α,α
imp,ν given by Eq. (20). Note that using Eq. (28), the

effective potential can be written as Vα,α(z) = V
imp
α,α (z) +

Vred
α,α(z), where V

imp
α,α includes the bare impurity potential

contribution and the screening by the superconductor and

the metallic gate, while Vred
α,α is the contribution due to free-

charge redistribution. A specific example corresponding to

a positive charge impurity embedded inside a system hav-

ing the chemical potential near the bottom of the second

subband is given in Fig. 7(a). Note that Vred
α,α has a larger

decay length and a smaller amplitude than the impurity

potential. This is a general property responsible for the sign

change of the effective potential and the “hump” (“dip” for

negative impurities) feature starting near z ≈ 30 nm.

The average screening factors averaged over different

transverse impurity positions for a system with different

occupancy levels are shown in Figs. 7(b) and 7(c), for

positively and negatively charged impurities, respectively.

(a) (b)

(c)

FIG. 7. (a) The position dependence of the effective impurity

potential V2,2 (black line) and its impurity component, V
imp

2,2 (blue

dashed line), and the free-charge redistribution component, Vred
2,2

(orange dashed line), for a positively charged impurity placed

at ximp = −18 nm, yimp = 10 nm inside a wire having the sec-
ond subband tuned to the Fermi level. (b) The average amplitude

screening, Z (A)
α (red circles), and the average integrated screen-

ing Z (I)
α (green circles), for a positively charged impurity, Q =

+e, embedded in a wire having the chemical potential tuned near

the bottom of different subbands. The bars correspond to one

standard deviation, which ranges from 0.03 to 0.13. Each sub-
band distribution is sampled over 169 impurity locations evenly

distributed over the hexagonal cross section of the semiconduc-

tor wire. (c) The same as (b) for a negatively charge impurity,
Q = −e. Note that the screening by the free charge of nega-

tive impurities is significantly less effective than the screening

of positive impurities.

First, note that Z (A)
α is a measure of short-range screening,

while Z (I)
α takes into account long-range contributions.

Since, in general, Vred
α,α has a longer decay length than V

imp
α,α ,

we have Z (I)
α < Z (A)

α . Second, the screening by the free

charge of positive impurities is significantly more effective

than the screening of negative impurities. In particular, the

integrated screening factor, Z (I)
α , has values smaller than

0.2 for all subbands, indicating that the contribution from

the “hump” feature almost cancels the contribution from

the central dip. In fact, in the case of the sixth subband, the

average integrated screening factor for Q = e is actually

negative, indicating overscreening by the free charge. In

addition, we note that the screening of negative impurities

is more effective when the subband occupancy increases,

while in the case of positive impurities the dependence

on the subband index is weak. Our analysis demonstrates

that screening due to free-charge redistribution in the wire

is a significant effect that has to be taken into account to

obtain a quantitative description of the low-energy physics

in the presence of charge impurities. This is physically rea-

sonable, since the free charge inside the SM wire resides

within the same spatial region as the impurity, making its

screening effect quantitatively dominant.

We conclude this section with a comment on the rele-

vance of the results obtained here to understanding Majo-

rana physics in SM-SC structures. On the one hand,

the matrix elements of the effective impurity potential

obtained numerically from the self-consistent solution of

the Schrödinger-Poisson problem can be used to investi-

gate hybrid devices containing a finite number of randomly

distributed charge impurities. The single-impurity matrix

elements should represent an excellent approximation, as

long as the typical distance between neighboring impuri-

ties is much larger than the characteristic decay length ξ ,

so that each impurity can be considered as independent.

In addition to the “high-energy” ingredients described in

Sec. III A, the model used in this type of investigation

should include the key ingredients necessary for the emer-

gence of topological superconductivity, i.e., proximity-

induced superconductivity, spin-orbit coupling, and Zee-

man splitting. We pursue this path in the next section. On

the other hand, the single-impurity results described above

can be used to construct phenomenological models with

an effective impurity potential given by in Eq. (29) and

relevant parameters—i.e., amplitude Aα and decay length

ξα—having distributions similar to those shown in Fig. 5

(for more details regarding the construction of phenomeno-

logical models, see Appendix A). This type of approach

enables the efficient investigation of the disordered system

over a large parameter space without the need to address

a numerically demanding 3D Schrödinger-Poisson prob-

lem. Hence, in addition to the results discussed below,

Majorana device modeling should indirectly benefit from

our phenomenological characterization of the impurity

potential given by Eq. (29).
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IV. MULTIPLE CHARGE IMPURITIES

In this section, we consider a hybrid nanowire with

multiple embedded charge impurities and investigate the

effect of the impurity-induced potential on the low-energy

physics, focusing on the fate of the Majorana zero-energy

modes that emerge in the clean system. Our analysis is

based on two working assumptions. (i) We consider sys-

tems with low-to-intermediate impurity concentrations,

which are characterized by average distances between

neighboring impurities that are much larger than the char-

acteristic length of the effective (single) impurity potential.

This allows us to work within the independent-impurity

approximation, in which each charge impurity generates

an effective potential that is independent of the presence of

other impurities and can be described using the approach

discussed in the previous section. (ii) We assume that

the intersubband spacing is much larger than all other

relevant energy scales. This allows us to work within

the independent-band approximation, which neglects the

effects of intersubband coupling. Within this approxi-

mation, the low-energy physics can be accurately cap-

tured using an effective single-band model. We note that

the independent-band approximation is expected to break

down in systems with high subband occupancy [36]. Note

also that in systems with low intersubband spacing, the

effects of impurity-induced disorder are expected to be sig-

nificantly stronger than the effects described below, due

to additional contributions from impurity-induced inter-

subband couplings [39]. So, the situation discussed here

is, in some sense, the most optimistic scenario conducive

to the emergence of topological Majorana modes; strong

disorder, high subband occupancy, and, implicitly, small

intersubband spacing will simply make the situation worse,

with topological physics being practically impossible to

achieve in SM-SC hybrid platforms. The effective single-

band model for a hybrid wire with multiple charge impuri-

ties is introduced in Sec. IV A. The results of our numerical

analysis are discussed in Sec. IV B.

A. Model

Within the independent-subband approximation, the

system can be described using an effective 1D single-band

model [1,4] defined by the BdG Hamiltonian,

H =
(

− �2

2m∗ ∂2
z − μ − iαR∂zσy + �σz

)
τz

− �σyτy + Vimp (z) τz, (33)

where m∗ is the effective mass, μ is the chemical potential,

αR is the Rashba spin-orbit coupling coefficient, � is the

Zeeman energy, � is the induced superconducting pairing,

Vimp is the effective potential generated by the presence

of charge impurities, and σi and τi, with i = x, y, z, are

Pauli matrices in spin and particle-hole spaces, respec-

tively. Note that all parameters in Eq. (33) are assumed

to be position independent and that we use the values

m∗ = 0.023, αR = 20 meV nm, and � = 0.3 meV unless

stated otherwise. Note that these correspond to optimistic

parameter values of InAs-Al hybrid nanowires.

On the other hand, the impurity potential has the form

Vimp (z) =
Nimp∑

m=1

Vα,α (z − zm; Qm, xm, ym) , (34)

where Nimp is the total number of impurities embedded

within the wire, Vα,α is the effective potential generated

by a single impurity, i.e., the intrasubband matrix element

given by Eq. (28), rm = (xm, ym, zm) describes the position

of impurity m, and Qm indicates its charge. We assume

charge neutrality and consider an equal number of posi-

tive (Q = +e) and negative (Q = −e) elementary charges

distributed randomly throughout the wire. Each disorder

realization corresponds to a specific set of Nimp impurity

positions {rm} and a set of Nimp charges {Qm}. Note that

(xm, ym) can take 169 different values sampled evenly over

the hexagonal cross section of the nanowire, while zm can

take any value corresponding to a lattice site of the dis-

cretized version of Eq. (33), with az = 4 nm being the

lattice spacing. For concreteness, we assume that chemical

potential is tuned near the bottom of the second subband,

so that the relevant matrix elements Vα,α entering Eq. (34)

correspond to α = 2. These matrix elements are calcu-

lated self-consistently following the procedure described

in Sec. III B. The low-energy eigenvalues and the cor-

responding eigenstates of the Hamiltonian (33) are then

obtained using the Lanczos method [40].

To facilitate the connection with experimental tunneling

spectroscopy, we also calculate the differential conduc-

tance for charge tunneling into the left or the right end

of the wire. This is realized by connecting the proximi-

tized wire to semi-infinite leads at both ends and using the

Blonder-Tinkham-Klapwijk (BTK) formalism [41]. The

normal leads are modeled by the Hamiltonians

HL(R) =
[
− �2

2m∗ ∂2
z − μl + VL(R) (z)

]
τz, (35)

where the labels L and R designate the left and right leads,

respectively, μl is the chemical potential of the leads, and

VL and VR are tunnel-barrier potentials at the left and

right ends of the system, respectively. The tunnel barri-

ers are square potential barriers of amplitude VB and length

LB = 20 nm, located at the ends of the corresponding leads

directly adjacent to the proximitized wire. To evaluate

the scattering matrix S, we consider the retarded Green’s
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function,

G (ω) =
[
ω − H̄ − �L (ω) − �R (ω) + iη

]−1
, (36)

where H̄ is the (discretized) Hamiltonian containing the

sites within the proximitized region, as well as the barrier

sites, plus one additional site on each side of the system,

immediately outside the corresponding barrier region, �L

and �R are the self-energies obtained by integrating out

the degrees of freedom associated with the left and right

leads [42], respectively, and η ∈ R+ accounts for dissi-

pative broadening [21,43]. The boundary elements of the

Green’s function (36) are calculated using the recursive

Green’s function algorithm [44]. In turn, these elements

can be related to the scattering matrix, S, using the Fisher-

Lee relations [45]. Finally, the scattering-matrix elements

are used to calculate the local conductance [41],

Gi = e2

h

[
2 − Tr(See

ii ) + Tr(Seh
ii )

]
, (37)

where See
ii and Seh

ii describe the reflection of incoming elec-

trons with energy ω into electrons and holes, respectively,

and i = L, R. The numerical values of the parameters

used in the differential-conductance calculations are μl =
20 meV, VB = 40 meV, LB = 20 nm, and η = 20 μeV.

Before discussing the results, a few comments are war-

ranted. By taking the effective impurity potential, Vimp, in

Eq. (34) to be a sum of single impurity potentials, we are

neglecting any change of the potential due to interimpu-

rity coupling. This is expected to be a good approximation,

provided that the typical spacing between charge impu-

rities is larger than the single-impurity-potential decay

length, i.e., in the low-to-intermediate impurity-density

regime. The results shown in Fig. 5 indicate that the decay

length is in the range ξ ≈ 5–25 nm, which is significantly

less than the typical impurity separation length for low-

to-intermediate impurity densities. Note that for higher

impurity densities, we find that Majorana physics is com-

pletely destroyed by disorder, a conclusion that is unlikely

to be modified by including interimpurity coupling effects.

The fact that strong disorder destroys the Majorana physics

in nanowires and other superconducting systems is now

well accepted.

Finally, we note that the generalization of the single-

band formalism discussed here to a multisubband approach

is straightforward. The generalized effective model is a 1D

multisubband model with intersubband coupling induced

by the off-diagonal matrix elements of the effective poten-

tial, Vα,β , with α 
= β. As shown in Sec. III C, these

elements are typically smaller than, but comparable to,

the corresponding diagonal elements (see Fig. 3). The

intersubband coupling terms are expected to become rele-

vant when the intersubband spacing �E between subbands

close to the Fermi level is comparable to the magnitude

of Vα,β , which implies �E � 1 meV. For the case inves-

tigated here, which corresponds to the second subband

being tuned near the chemical potential, the intersub-

band spacing is �E ∼ 10 meV, significantly larger than

the amplitude of the effective potential matrix elements.

Consequently, we can safely ignore the disorder-induced

intersubband coupling. High occupancy, on the other hand,

is associated with a reduction of the intersubband spac-

ing [36] and a multisubband approach becomes necessary.

We emphasize that in the multisubband regime the sys-

tem is less robust against disorder [39,46]. Therefore, our

independent-subband treatment provides upper bounds for

impurity concentrations consistent with various aspects of

Majorana physics. In other words, we are considering the

most favorable scenario in order to predict the upper bound

on the allowed disorder that would still enable topological

Majorana physics to emerge in realistic SM-SC structures.

B. Results

The numerical results discussed in this section cor-

respond to a charge-neutral system containing an equal

number of positively and negatively charged impurities

with charges Q = +e and Q = −e, respectively. Posi-

tive charges create local potential wells, while negatively

charged impurities generate effective potential barriers.

To gain some intuition regarding the effects induced by

the two types of potential perturbations (i.e., “well” and

“barrier”), we first consider a wire of length L = 4.2 μm

having an “artificial” potential perturbation localized near

the middle of the wire and consisting of a square poten-

tial well (barrier) of width Lb = 50 nm and height Vb =
−10� (Vb = +10�), where � = 0.3 meV is the induced

pair potential. The dependence of the corresponding low-

energy spectra on the applied Zeeman field is shown in

Figs. 8(a) and 8(b). Note that the short-range potential per-

turbation induces subgap states (green lines in Fig. 8) when

the system is in the topological regime [47,48], which

can act as a source of quasiparticle poisoning in Majo-

rana qubits [49]. Note also that the characteristic energy of

the in-gap mode generated by the potential barrier is much

lower than the energy of the in-gap mode generated by the

potential well, except for an isolated zero-energy crossing

at Zeeman field � ≈ 5.4�.

The difference between the in-gap mode induced by the

potential well and that generated by the potential barrier

is further illustrated by the dependence of these modes on

the amplitude of the square potential. This dependence is

shown in Fig. 8(c) for a fixed value of the Zeeman field,

� = 3�. Note that the potential well generates an in-gap

mode with an energy comparable to the topological gap,

except a few isolated Andreev crossings. By contrast, the

mode generated by the potential barrier collapses toward

zero energy with increasing Vb. This is a specific example
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(a)

(b)

(c)

FIG. 8. The low-energy spectrum as a function of the Zeeman

splitting for a wire of length L = 4.2 μm having a square poten-
tial well (a) or barrier (b) localized near its center. The width

of the square potential is Lb = 50 nm and its height is (a) Vb =
−10� and (b) Vb = 10�. The red and green lines correspond to
the first and second lowest-energy modes, respectively. (c) The

spectrum as a function of Vb/� for a Zeeman field � = 3�. The

blue solid and dashed lines indicate matching parameters in (c)
and in (a) and (b), respectively.

of a near-zero-energy subgap mode induced by an inhomo-

geneous potential, a scenario extensively discussed in the

literature.

To identify the nature of the in-gap modes, we calculate

the corresponding wave functions in the Majorana repre-

sentation. More specifically, let ψ±En(z), with 0 ≤ E1 ≤
E2, be the lowest-energy eigenstates of the BdG Hamil-

tonian. We define the following Majorana components

associated with the low-energy BdG states [50]:

χA
n (z) = 1√

2

[
ψEn(z) + ψ−En(z)

]
,

χB
n (z) = i√

2

[
ψEn(z) − ψ−En(z)

]
. (38)

Note that χA
n and χB

n are not eigenstates of the

BdG Hamiltonian, except for En = 0, and we have

〈χA
n |H |χA

n 〉 = 〈χB
n |H |χB

n 〉 = 0 and 〈χA
n |H |χB

n 〉 = iEn. The

position dependence of the amplitude of the Majorana

wave functions corresponding to the in-gap states from

Fig. 8 is shown in Fig. 9. The lowest-energy states, n = 1

(red lines in Fig. 8), correspond to a pair of Majorana

modes localized near the two ends of the nanowire (red and

green modes in Fig. 9). On the other hand, the in-gap states

induced by the square potential perturbation, n = 2 (green

(a)

(b)

(c)

FIG. 9. The position dependence of the amplitude of the Majo-

rana wave functions, |χA
n |2 and |χB

n |2, corresponding to the
lowest-energy states (n = 1, 2) in Fig. 8. The values of the poten-

tial height Vb and Zeeman field � are indicated inside each

subplot. Note that the lowest-energy states (n = 1, red lines in
Fig. 8) correspond to a pair of Majorana modes localized near

the two ends of the nanowire (red and green modes), while the

potential-induced in-gap states (n = 2, green lines in Fig. 8)
correspond to a pair of (partially) overlapping Majorana modes

localized near the middle of the wire (purple and yellow modes).

In (c), at the Andreev crossing corresponding to � ≈ 5.4� in
Fig. 8(a), the two Majorana modes overlap completely.

lines in Fig. 8), correspond to a pair of (partially) overlap-

ping Majorana modes localized near the middle of the wire

(purple and yellow modes in Fig. 9). Note that the Majo-

rana modes generated by the potential well [Fig. 9(b)] have

a significantly stronger overlap than the Majorana modes

generated by the potential barrier [Fig. 9(a)]. Furthermore,

at the Andreev crossings, the two Majorana modes χA
2 and

χB
2 completely overlap, generating a “regular” Andreev

bound state localized in the potential well. In general, how-

ever, the in-gap modes generated by the local potential

perturbation can be viewed as a pair of partially over-

lapping quasi-Majorana modes [51] or, alternatively, as

a partially separated Andreev bound state (PSABS) [23].

As shown below, partially overlapping (separated) Majo-

rana modes emerge generically in proximitized wires in

the presence of charged impurities.

Next, we characterize the effective potential generated

by charge impurities embedded within the wire by pro-

viding some specific examples and calculating the cor-

relation function 〈Vimp(z)Vimp(z
′)〉. The position depen-

dence of the effective impurity potential Vimp(z) given by

Eq. (34) for two disorder realizations with impurity densi-

ties nimp = 1.6 × 1015 cm−3 and nimp = 4.7 × 1015 cm−3,

respectively, is shown in Fig. 10. The first example corre-

sponds to a low impurity density of about five impurities

per micron, while the second example corresponds to an
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(a)

(b)

FIG. 10. The position dependence of the effective impurity

potential for two specific disorder realizations corresponding to

impurity densities (a) nimp = 1.6 × 1015 cm−3 (linear density
λimp = 5 μm−1) and (b) nimp = 4.7 × 1015 cm−3 (linear density

λimp = 15 μm−1). The chemical potential of the wire is tuned

near the bottom of the second subband. These impurity poten-
tials are used in the calculations discussed in Secs. IV B 1 and IV

B 2.

intermediate regime with 15 impurities per micron. These

are relatively low impurity concentrations for semiconduc-

tor materials but within the current technological capa-

bility. Note that the amplitude of the strongest potential

peaks exceeds 5 meV, which corresponds to about 17�,

a significant perturbation (more than an order of magni-

tude larger than the SC gap) even taking into account its

relatively short range. The properties of the system in the

presence of the effective potential shown in Fig. 10(a) are

discussed in Sec. IV B 1, while the intermediate-impurity-

density regime corresponding to Vimp given in Fig. 10(b) is

investigated in Sec. IV B 2.

To obtain a more generic characterization of the effec-

tive impurity potential, we consider many disorder realiza-

tions consistent with given values of the impurity density

and calculate the correlation function 〈Vimp(z)Vimp(z
′)〉.

The results for a system with impurity densities nimp =
0.25 × 1016, 0.5 × 1016, and 1 × 1016 cm−3, which corre-

spond to linear densities λimp = 7.9, 15.9, and 31.8 μm−1,

respectively, are shown in Fig. 11. Each curve is obtained

by averaging over 5 × 105 disorder realizations. Note that

the potential correlation function scales with the impu-

rity density. For the intermediate density, nimp = 0.5 ×
1016 cm−3, the correlation function is characterized by a

central peak of height ∝ 1 meV2 and a full width at half

maximum of about 40 nm.

Based on previous studies of disorder effects in Majo-

rana nanowires [17–20,23,24,52–54], we know that the

presence of disorder generally induces low-energy sub-

gap states. Also, the simple example illustrated in Figs. 8

and 9 suggests that, at least under certain conditions, these

FIG. 11. The correlation of the impurity potential for a system

with impurity densities nimp = 0.25 × 1016 cm−3 (black), nimp =
0.5 × 1016 cm−3 (red), and nimp = 1 × 1016 cm−3 (green),

which correspond to linear densities λimp = 7.9 μm−1, λimp =
15.9 μm−1, and λimp = 31.8 μm−1, respectively. The system is
charge neutral (i.e., contains an equal number of Q = +e and

Q = −e impurities), and has the chemical potential near the bot-

tom of the second subband. Each correlation function is obtained
by averaging over 5 × 105 disorder realizations. Note that the

potential correlation scales with the impurity density.

subgap states consist of partially overlapping Majorana

modes (or PSABSs) localized throughout the wire, in gen-

eral away from the ends of the system. Note, however, that

the presence of such nontopological (often called “trivial”)

ABSs does not necessarily affect the “genuine” topolog-

ical MZMs that emerge in the topological regime at the

ends of the system, as shown in Fig. 9. Therefore, it is

of crucial importance to characterize quantitatively the

spatial separation between Majorana modes and the edge-

to-edge correlation associated with the presence of MZMs

at the ends of the wire and investigate the effect of charge-

impurity-induced disorder on these quantities. To this

end, we introduce the Majorana separation length, 
sep,

defined as follows. Let ψEn , with En ≥ 0, be a positive-

energy eigenstate of the BdG Hamiltonian and χ
(L/R)
n be

its left (right) Majorana components. The corresponding

Majorana separation length is defined as


(n)
sep = 〈zn,R〉 − 〈zn,L〉, (39)

where 〈zn,L(R)〉 is the expectation value of the position

along the wire corresponding to the left (right) Majorana

component. Explicitly, we have

〈zn,J 〉 =
∑

ν

Nz∑

i=1

∣∣χ (J )
n (zi, ν)

∣∣2
zi, (40)

where J ∈ {L, R}, Nz is total number of sites, zi is the (dis-

cretized) z coordinate corresponding to site i, and we sum

over the spin and particle-hole degrees of freedom indexed
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by ν. Finally, we have


sep = Maxn

[

(n)

sepF (En,U , �)

]
, (41)

where F is a function that filters out the states outside a

small energy window centered at E = 0. The details of the

filtering are not important, as this simply corresponds to the

energy resolution defining “zero energy” or “zero bias” in

the experiment. We choose the filter function to have the

form

F (E,U , �) = 1

2

[
tanh

(
E − U

�

)
− tanh

(
E + U

�

)]
.

(42)

Note that F ≈ 0 for |E| � U and F ≈ 1 for E = 0,

while it smoothly interpolates between these values near

|E| ≈ U over an energy scale �. Throughout the rest of

this work, we set U = 0.2� and � = 0.1�. These are,

most likely, fairly generous estimates for defining the zero-

energy modes. Hence, according to Eq. (41), 
sep measures

the largest separation length between the left and right

Majorana components of BdG states having a sufficiently

low energy, so as to be operationally considered a zero-

energy state. Next, we define the edge-to-edge correlation

associated with the BdG eigenstate ψEn as

Cn =
√

W
(L)
n W

(R)
n F (En,U , �) , (43)

with W
(L/R)
n being the spectral weight at the left (right) end

of the system. Explicitly, we have

W(J )
n =

∑

ν

(
e)J∑

i

∣∣χ (J )
n (zi, ν)

∣∣2
, (44)

where J ∈ {L, R} and the summation over i is restricted

to sites that are within a distance le of the corresponding

edge. Let n0 be the state characterized by the largest Majo-

rana separation, i.e., 

(n0)
sep = 
sep. Typically, n0 = 1, i.e.,

the largest Majorana separation corresponds to the lowest-

energy mode, unless there is a “regular” (i.e., nonsepa-

rated) Andreev bound state. We define the edge-to-edge

correlation as C = Cn0
. Note that 0 ≤ C ≤ 1, with C ≈ 1

corresponding to a low-energy BdG state having its Majo-

rana components localized at the ends of the system, each

within a distance 
e of the corresponding edge.

To benchmark these quantities, we start with a clean sys-

tem of length L = 4 μm and calculate the dependence of

the Majorana separation, 
sep, and edge-to-edge correla-

tion, C, on the Zeeman field and chemical potential. The

corresponding “phase diagrams” are shown in Fig. 12. The

black lines mark the theoretically known phase boundary

[55] associated with the topological quantum phase transi-

tion. Remarkably, the area characterized by large values of

(a) (b)

G (meV) G (meV)

FIG. 12. (a) Majorana separation, 
sep, and (b) edge-to-edge
correlation, C, maps for a clean system of length L = 4 μm. The

black lines indicate the (bulk) topological quantum phase transi-

tion corresponding to � =
√

μ2 + |�|2. The edge length used in

the definition of C [see Eq. (44)] is 
e = 200 nm.

the Majorana separation, 
sep � L, and large edge-to-edge

correlations, C > 0.5, practically coincides with the topo-

logical phase. This indicates that the two quantities capture

meaningful information about the Majorana zero modes

and the topological quantum phase transition. Note, for

example, that C decreases with an increasing Zeeman field

as a result of increasing the Majorana localization length,

ξ , which transfers some of the spectral weight outside the

edge regions defined by the length scale 
e in Eq. (44).

We emphasize that the generation of 2D maps of the rele-

vant quantities as functions of various control parameters,

such as the Zeeman splitting and the chemical potential (or

applied back-gate potential), provides significantly more

information than focusing on specific parameter values.

As shown below, such maps are mandatory for properly

understanding the effects of disorder and should represent

the standard in both theoretical and experimental inves-

tigations of hybrid systems. We urge experimentalists to

always characterize the presence of (near) zero-energy

modes by providing 2D “phase-diagram” maps in the

magnetic field-gate voltage parameter space.

1. Low-impurity-density regime

We are now ready to consider a system with randomly

distributed charge impurities and investigate the effects

of this type of disorder using the quantities introduced

above. We start with a specific disorder realization cor-

responding to a relatively low impurity density, nimp =
1.6 × 1015 cm−3, which means λimp = 5 impurities per

micron. The position dependence of the impurity potential

Vimp(z) for this disorder realization is shown in Fig. 10(a).

The maps of the Majorana separation and edge-to-edge
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(a) (b)

G (meV) G (meV)

FIG. 13. (a) Majorana separation, 
sep, and (b) edge-to-edge

correlation, C, maps for a disordered system of length L = 4 μm

with impurity density nimp = 1.6 × 1015 cm−3 (λimp = 5 μm−1).
The black lines indicate the topological quantum phase transition

for a clean system. The edge length used in the definition of C

[see Eq. (44)] is 
e = 200 nm. Note that non-negligible values of

sep and C occur outside the nominally topological region, while

these quantities are significantly suppressed in some areas within

this region.

correlation as functions of the Zeeman field and chemi-

cal potential are shown in Fig. 13. A comparison of these

maps with the corresponding “phase diagrams” in Fig. 12

reveals two distinctive features: the emergence of areas

with significant values of 
sep and C outside the nominally

topological region and the substantial suppression of these

quantities in certain areas within the topological region.

We emphasize that although the quantitative details of the

phase diagram in Fig. 13 depend on the specific disor-

der realization and on the corresponding impurity potential

(see Fig. 10) used in the calculation, these two distinctive

qualitative features are generic.

To better understand the significance of these features,

we calculate the low-energy spectrum as a function of the

Zeeman field for a fixed value of the chemical potential,

as well as the spatial profile of the Majorana components

corresponding to certain representative low-energy modes.

The results for μ = 0 are shown in Fig. 14. The low-energy

spectrum in Fig. 14(a) shows the emergence of a near-zero-

energy mode for Zeeman fields � � 0.3 meV (red lines).

The lowest-energy mode is separated from other finite-

energy states by a small gap that increases significantly for

� � 0.75 meV. This behavior may be surprising if judged

based on the information in Fig. 13, which, for μ = 0,

shows a strong suppression of C at higher values of the

Zeeman field. However, the spatial profiles of the Majo-

rana components shown in Figs. 14(b) and 14(c) clarify

the physics. Indeed, for � = 0.5 meV the lowest-energy

(a)

(b)

(c)

FIG. 14. (a) The low-energy spectrum as a function of the Zee-

man field for a system with the same parameters as in Fig. 13 and
μ = 0. The red lines denote the lowest-energy mode. (b),(c) Spa-

tial profiles of the Majorana components corresponding to the

lowest BdG eigenstate (red and green) and the second lowest-
energy eigenstate (blue and yellow) for � = 0.5 meV and � =
1 meV, respectively. Note that in (c), the left Majorana compo-

nent of the lowest-energy state (green) is localized away from
the corresponding edge, which causes the collapse of the edge-

to-edge correlation C in Fig. 13 in the area around μ = 0, � =
1 meV.

state consists of two well-separated Majorana modes local-

ized near the ends of the system (green and red). The left

(green) Majorana has some overlap with a PSABS local-

ized nearby (yellow and blue), which represents the second

lowest BdG state but is weakly affected by the presence of

this bound state. Consequently, 
sep is comparable to the

length L of the wire and the edge-to-edge correlation C is

large. By contrast, at � = 1 meV the left (green) Majo-

rana mode is “pushed” away from the end of the system,

which results in a reduction of the Majorana separation

length and the collapse of the edge-to-edge correlation. To

understand this behavior, note that the disorder potential

shown in Fig. 10(a) breaks the wire into several seg-

ments where the topological condition is locally satisfied,

i.e., �2 > [V(z) − μ]2 + |�|2. Each of these topological

segments results in two low-energy PSABSs, which can

couple with PSABSs of other topological segments. The

final low-energy spectrum then depends upon the details

of these couplings, which evolve in a nontrivial manner

with the Zeeman field. Hence the lowest-energy state can

sometimes shift in space as the Zeeman field changes, as is

seen in Fig. 14.

The example discussed above shows that a hybrid sys-

tem with a low concentration of charged impurities is

consistent with the emergence of well-separated near-

zero-energy Majorana modes. However, the presence of

disorder may “push” these modes away from the ends of

the system, which results in low values of the edge-to-edge
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correlation. In other words, the system can host “genuine”

MZMs, but they may be “invisible” to local probes coupled

to the ends of the wire. This severely limits the relevance

of tunnel spectroscopy as a tool for detecting the emer-

gence of Majorana zero modes in the presence of disorder,

even in the weakly disordered situation. To make further

connection with experiment, we calculate the local differ-

ential conductance for charge tunneling into the left and

right ends of the system. The results corresponding to a

system with the same parameters as in Fig. 14 are shown in

Fig. 15. One can clearly note two low-energy modes coa-

lescing toward zero energy and generating robust zero-bias

conductance peaks (ZBCPs) at both ends of the system.

At the left end, the ZBCP persists from � = 0.3 meV to

� ≈ 0.7 meV and then it appears to split. However, as

revealed by the data in Fig. 14, the apparent splitting is

due to a PSABS localized near the left end, while the

“actual” Majorana mode (i.e., the “green” Majorana) does

not become gapped, instead becoming “invisible” to local

measurements at the edge, as it gets pushed away from

the end of the wire. Within the range 0.7 � � � 1.1 meV,

there is a robust ZBCP at the right end of the wire but no

ZBCP at the left end. This example clearly illustrates the

difficulty of correctly interpreting tunneling conductance

results in the presence of disorder. First, apparent splittings

of the ZBCP can be misleading, as they are not necessarily

associated with the mode that generates the ZBCP. Second,

the absence of edge-to-edge correlation does not necessar-

ily imply the absence of robust well-separated Majorana

modes; it may simply mean that (at least) one of these

(a)

(b)

G (meV)

G (e2/h)

FIG. 15. The local differential conductance at (a) the left and
(b) the right ends of the wire for a system with the same param-

eters as in Fig. 14. Note that the zero-bias conductance peak

characterizing GL is suppressed between 0.7 � � � 1.1 meV as
a result of the left Majorana mode being pushed away from the

edge, as shown in Fig. 14(c).

(a)

(b)

(c)

FIG. 16. (a) The low-energy spectrum as a function of the Zee-
man field for a system with the same parameters as in Fig. 13

and μ = 0.5 meV. The red lines denote the lowest-energy mode.

(b),(c) The spatial profiles of the Majorana components cor-
responding to the lowest BdG eigenstate (red and green) and

the second lowest-energy eigenstate (blue and yellow) for � =
0.5 meV and � = 1 meV, respectively. Note that in (b), which
corresponds to the trivial regime, the Majorana modes strongly

overlap, generating two ABSs localized near the ends of the

system.

modes is localized away from the end of the wire. We

note that the conductance calculations shown in Fig. 15

are done in the tunneling limit, i.e., for high values of the

potential barrier amplitude. In addition, we consider some

finite dissipation, η = 20 μeV. As a result, the height of

the ZBCP is much smaller than the quantized value and

there is some particle-hole asymmetry [21,43,56]. These

issues are well understood and do not in any way affect

our key qualitative conclusion of disorder possibly pushing

the zero mode away from the end and making it invisi-

ble in standard tunneling spectroscopy. In some sense, this

invisibility of the topological Majorana in the tunneling

measurement (a false negative) is the ironic counterpart of

the PSABS misleadingly producing nontopological zero-

bias conductance peaks mimicking Majorana zero modes

(a false positive).

Next, we consider another horizontal cut through the

phase diagram in Fig. 13 corresponding to μ = 0.5 meV.

For this value of the chemical potential, the system is

characterized by large Majorana separations and edge-to-

edge correlations in the topological regime, i.e., for � �
0.6 meV. Indeed, the spectrum shown in Fig. 16(a) is char-

acterized by a robust zero-energy mode (red line for � �
0.6 meV) and a sizable topological gap. Note the presence

of finite-energy in-gap states in the topologically trivial

regime (e.g., red lines for � � 0.6 meV). These topolog-

ically trivial in-gap modes consist of Andreev bound states

with strongly overlapping Majorana components localized
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near the ends of the wire, as shown in Fig. 16(b). In the

topological regime, on the other hand, the system is char-

acterized by well-separated Majorana modes localized at

the ends of the system, as shown in Fig. 16(c) (the green

and red Majoranas) and is consistent with the large values

of 
sep and C in Fig. 13.

The conductance traces corresponding to the μ =
0.5 meV cut are shown in Fig. 17. The presence of the

MZMs is revealed by the emergence of robust ZBCPs at

both ends of the system. Note, however, that the emergence

of the ZBCP looks rather different at the two ends, with two

low-energy modes coalescing toward zero energy clearly

visible at the right end and no apparent gap closing at the

left end. This behavior is due to the fact that the right Majo-

rana mode is adiabatically connected to the ABS localized

at the right end of the system, while the left Majorana is

connected to a trivial mode that has low spectral weight

at the left end of the system and couples weakly to the

corresponding probe, thus remaining “invisible.” Another

significant feature that is clearly manifested in Fig. 17(a)

is the enhancement of the ZBCP weight or height due to

the Majorana mode hybridizing with a bound state local-

ized in the barrier region. Indeed, in Fig. 17(a), one can

clearly note an ABS crossing zero energy at � ≈ 0.8 meV.

This mode is absent from the low-energy spectrum shown

in Fig. 16(a), a clear indication that it is generated by the

very presence of the barrier region that couples the system

to the normal lead, as this is not included in the calcu-

lation of the spectrum. This type of enhancement of the

ZBCP due to coupling to an ABS localized at the end of

the system is also visible in Fig. 15. The results presented

in Fig. 17 and discussed above indicate a serious problem

regarding tunnel conductance measurements: the end-to-

end conductance correlations, which are often thought to

be the decisive signature for the existence of topological

MZMs, may very well be quite imprecise (or even absent)

in the presence of (even weak) disorder. The absence of

such correlations can be quite generic in disordered sys-

tems and may imply either that one of the MZMs cannot

be accessed through tunnel spectroscopy at the wire end

(because it has been pushed away) or that the observed zero

mode is simply trivial. A comparison of the conductance

traces at the two ends of the system cannot discriminate

between these possibilities. However, the generation of

2D conductance maps over large parameter regions may

provide additional information, as discussed below.

Having clarified the features that characterize the nomi-

nally topological region of the phase diagrams in Fig. 13,

the natural question concerns the nature of the low-energy

states responsible for the emergence of high Majorana sep-

arations and significant edge-to-edge correlations in the

trivial region (of the pristine system) with μ > 1 meV. To

address this question, we consider a vertical cut at fixed

Zeeman field � = 1.1 meV. The dependence of the low-

energy spectrum on the chemical potential along this cut

(a)

(b)

G (meV)

G (e2/h)

FIG. 17. The local differential conductance at the (a) left and
(b) right ends of the wire for a system with the same parameters

as in Fig. 16. Correlated zero-bias conductance peaks occur at the

two ends of the system for � � 0.65, consistent with the large C

values for μ = 0.5 meV and � � 0.65 meV in Fig. 13. Note the

significant enhancement of the ZBCP in (a) due to the Majorana

mode hybridizing with a bound state localized within the barrier
region, which crosses zero energy at � ≈ 0.8 meV.

is shown in Fig. 18(a). For −1 � μ � 1 meV, the system

is in the nominally topological regime and one can clearly

note the a near-zero-energy mode (red lines) protected by a

finite gap over most of this interval. The gap collapses for

μ � −0.25 meV. Most interestingly, low-energy modes

are also present for 1 � μ � 1.75 meV, i.e., in the nom-

inally trivial regime. To clarify the nature of these states,

we calculate their Majorana components for two values of

the chemical potential.The results are shown in Figs. 18(b)

and 18(c). The low-energy states can be viewed as super-

position of several partially overlapping Majorana modes.

Accidentally, Majorana components associated with the

lowest-energy state can have significant weights at the

ends of the system, which generates a finite edge-to-edge

correlation, as shown in Fig. 13(b). Such zero modes

accidentally arising from the disorder-induced overlap of

several Majorana modes cannot be construed as being

topological.

We have already pointed out the importance of gen-

erating 2D maps of the relevant quantities as functions

of various control parameters. To further emphasize this

point, we calculate the zero-bias differential-conductance

maps corresponding to charge tunneling into the left (GL)

and right (GR) ends of a system having the same param-

eters as in Fig. 13. In addition, we define the geometric

average of the left and right conductivities as a practical

measure of the edge-to-edge correlation. Specifically, we

054053-19



WOODS, DAS SARMA, and STANESCU PHYS. REV. APPLIED 16, 054053 (2021)

(a)

(b)

(c)

FIG. 18. (a) The low-energy spectrum as a function of the

chemical potential for a system with the same parameters as in
Fig. 13 and � = 1.1 meV. The red lines denote the lowest-energy

mode. (b),(c) The spatial profiles of the Majorana components
corresponding to the lowest BdG eigenstate (red and green) and

the second lowest-energy eigenstate (blue and yellow) for two

values of the chemical potential marked by dashed purple lines in
(a). In (c), the Majorana components of the lowest-energy mode

(green and red) have nonzero spectral weights at the ends of the

system, which results in a finite edge-to-edge correlation C.

define

CG =
√

GLGR. (45)

The results are shown in Fig. 19. We note that the

CG map in Fig. 19(c) closely resembles the edge-to-edge

correlation map, C, in Fig. 13. This observation has two

important implications. First, CG provides a good measure

of the edge-to-edge correlation that can be easily deter-

mined experimentally. Second, for large-scale calculations

(e.g., when doing statistics involving many disorder real-

izations—see below), one can focus on the numerically

less expensive quantity C, instead of the more experimen-

tally relevant quantity CG, since we find the two to be

representing equivalent physics, even in the presence of

disorder. In addition, we note that for low-impurity con-

centrations, the (zero-energy) conductance maps provide a

reasonably good correspondence with the phase diagram

of the clean system, particularly in the low-field regime.

However, as shown below, this correspondence fades away

upon increasing the impurity concentration. This suggests

that the systematic mapping of the zero-bias conductance

at both ends of the system and of the corresponding cor-

relation CG can provide a powerful experimental tool for

assessing the strength of the effective disorder potential.

Finally, we note that CG has the highly desirable practical

property that it does not require identical tunnel barriers

at the two ends. As long as a difference between the two

barriers amounts to an overall enhancement or suppression

(a) (c)(b)

G (meV) G (meV)G (meV)

G (w = 0)(e2/h)

FIG. 19. Zero-bias differential-conductance maps for a system

with the same parameters as in Fig. 13 but having normal leads
and tunnel barriers attached at both ends. (a)–(c) The conduc-

tance at the left (GL) and right (GR) ends of a system and the

geometric average (CG = √
GLGR), respectively. Note that the

CG map closely resembles the edge-to-edge correlation map, C,

in Fig. 13.

of GL relative to GR, the corresponding factor is irrele-

vant when calculating the correlation CG. We note that our

calculated conductance shown in Figs. 17 and 19 is char-

acterized by zero-bias values (GL, GR, and CG) smaller

than the so-called Majorana quantization value of 2e2/h,

as we consider relatively high tunnel barriers and include

a dissipation term. We emphasize that in the presence of

disorder, fine tuning the parameters to obtain quantized

values of the zero-bias conductance does not provide addi-

tional information regarding the nature of the underlying

low-energy mode. Instead, the production of detailed con-

ductance maps over extended ranges of tuning parameters,

similar to those in Fig. 19, can yield additional infor-

mation, including estimates of the disorder strength. We

think that the generation of such comprehensive maps is

what experiments should focus on, rather than fine tuning

parameters to achieve Majorana quantization.

2. Intermediate-impurity-density regime

How does the phenomenology discussed above depend

on the concentration of charge impurities, i.e., on the disor-

der strength? To address this question, we consider another

specific disorder realization corresponding to an inter-

mediate impurity density, nimp = 4.7 × 1015 cm−3, which

means λimp = 15 impurities per micron. This is still rela-

tively low disorder in terms of the bulk doping magnitude

but it is three times larger than the low-disorder case

(λimp = 5 μm−1) considered above. The position depen-

dence of the impurity potential Vimp(z) for this disorder
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realization is shown in Fig. 10(b). We carry out the same

calculations as above and construct the maps correspond-

ing to the Majorana separation, 
sep, and edge-to-edge

correlation, C, as functions of the Zeeman field and the

chemical potential. The results are shown in Fig. 20.

In addition, we introduce a “projection map” based on

the following quantity:

P(
sep, C) =

⎧
⎪⎨
⎪⎩

0, 
sep ≤ 
min,

−1, 
sep > 
min and C < Cmin,

1, 
sep > 
min and C > Cmin.

(46)

In essence, P = 0 corresponds to low Majorana sep-

aration lengths (according to a criterion determined by


min), P = −1 signals well-separated Majoranas that do

not generate a substantial edge-to-edge correlation (e.g.,

because one of the Majorana modes is pushed away

from the end of the system by the disorder potential),

while P = 1 corresponds to the desired scenario involv-

ing well-separated Majoranas and substantial edge-to-edge

correlation. The projection map corresponding to 
min =
0.5L and Cmin = 0.25 is shown in Fig. 20(c). As com-

pared to the corresponding maps in Fig. 13, the sup-

pression of the Majorana separation and edge-to-edge

correlation inside the nominally topological region is sig-

nificantly stronger. When comparing the two figures, note

that � extends to higher values in Fig. 20 than Fig. 13.

Nonetheless, there is a substantial area—the blue region in

Fig. 20(c)—corresponding to large values of the Majorana

(a) (c)(b)

G (meV) G (meV)G (meV)

FIG. 20. (a) Majorana separation, 
sep, (b) edge-to-edge corre-

lation, C, and (c) projection, P, maps for a disordered system of
length L = 4 μm with impurity density nimp = 4.7 × 1015 cm−3

(λimp = 15 μm−1). The impurity potential Vimp(z) for this disor-

der realization is shown in Fig. 10(b). The black lines indicate the
topological quantum phase transition for a clean system. The pro-

jection map in (c) corresponds to 
min = 0.5L and Cmin = 0.25.

separation (
sep > 2 μm) but weak edge-to-edge corre-

lation. This suggests that, even at this level of impurity

concentration, there are segments of the wire that can be

viewed as effectively topological but their presence can-

not be revealed by local measurements at the ends of the

wire. By contrast, the areas corresponding to large values

of C are reduced to a few small islands. The underly-

ing disorder-induced nonperturbative rearrangement of the

Majorana spatial locations and the corresponding signa-

tures revealed by the Majorana phase diagrams are central

findings of our work.

To help connect these features to experimentally mea-

surable quantities, we generate the corresponding zero-bias

conductance maps, as well as the geometric correlation CG,

for the intermediate-disorder case. The results are shown

in Fig. 21. First, we note the close resemblance between

the C map in Fig. 20(b) and the CG map in Fig. 21(c),

with the exception of a few additional looplike features

present in the CG map that are discussed below. Sec-

ond, we point out that, unlike the low-impurity-density

case shown in Fig. 19, the areas of high zero-bias con-

ductance are almost equally distributed inside and outside

the nominally topological region. This suggests a shift of

the chemical potential associated with the emergence of

low-energy modes toward higher values as the impurity

density increases, which is consistent with previous stud-

ies [57,58]. Note that this is not due to an actual shift

of the impurity-induced effective potential, as the average

(a) (c)(b)

G (meV) G (meV)G (meV)

G (w = 0)(e2/h)

FIG. 21. Zero-bias differential-conductance maps for a sys-

tem with the same parameters as in Fig. 20 but having normal

leads and tunnel barriers attached at both ends. (a)–(c) The
conductance at the left (GL) and right (GR) ends of a system

and the geometric average (CG = √
GLGR), respectively. Note

that the correspondence between the conductance maps and the
topological phase boundary for the clean system (green line) is

weak.
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value of Vimp is close to zero regardless of the impurity

concentration (see Fig. 10).

To shed further light on the nature of various streaky

and loopy high-conductance features in Fig. 21, we con-

sider the differential conductance as a function of the

applied Zeeman field and potential bias for two specific

values of the chemical potential, μ = 0 and μ = 3 meV,

respectively. The first trace cuts through several narrow

uniformly dispersing high-conductance features that are

characteristic of the nominally topological region (see

Fig. 21). As revealed by the results shown in Fig. 22, these

features are associated with Andreev bound states crossing

zero energy at different values of the Zeeman field. Note

that robust ZBCPs signaling the presence of well-separated

Majorana modes are clearly visible at both ends of the sys-

tem but within different intervals of Zeeman fields. The

presence of these ZBCPs at μ = 0 is consistent with the

large values of the Majorana separation in Fig. 20(a), while

their emergence within different � intervals is consistent

with the low values of C in Fig. 20(b). Note also that,

as mentioned before, the ZBCP is strongly enhanced as a

result of the Majorana modes hybridizing with the ABSs

localized near the ends of the wire. Particularly interesting

is the faint ZBCP near � ≈ 0.6 meV, which is “revealed”

by the strong ABS mode that crosses zero energy at that

value of the Zeeman field.

(a)

(b)

G (meV)

G (e2/h)

FIG. 22. The local differential conductance at the (a) left and

(b) right ends of the wire for a system with the same parameters

as in Fig. 20 and chemical potential μ = 0. Note the strong fea-
tures associated with Andreev bound states that cross zero energy

at different values of the Zeeman field. In (a), the hybridization of

these states with the Majorana mode leads to an enhancement of
the ZBCP (extremely faint near � ≈ 0.6 meV and clearly visible

above � ≈ 1.4 meV).

Next, we focus on the μ = 3 meV trace, which cuts

through a looplike feature in Fig. 21(b) that has no equiva-

lent in Fig. 20. The corresponding low-energy spectrum is

shown in Fig. 23(a). Note that with an increasing Zeeman

field, several low-energy modes accumulate near zero

energy, with the first one crossing zero at � ≈ 0.8 meV

(red lines). To understand the nature of the low-energy

states, we calculate their component Majorana modes. As

shown in Fig. 23(b), for � = 0.86 meV the lowest-energy

BdG state consists of a PSABS localized near the right

end of the wire [red and green Majorana components in

Fig. 23(b)]. On the other hand, the second lowest-energy

state is a “regular” ABS consisting of two nearly over-

lapping Majorana components (orange and blue) localized

at the left end of the system. As a consequence, both the

Majorana separation and the edge-to-edge correlation have

small values in the area around μ = 3 meV, � = 0.86 meV

(see Fig. 20). At a higher Zeeman field, � = 1.73 meV, the

Majorana components of the lowest-energy mode—green

and red in Fig. 23(c)—are well separated and localized

near the ends of the wire. This explains the large Majorana

separation and the finite edge-to-edge correlation charac-

terizing the corresponding region of the “phase diagrams”

in Fig. 20. Note, however, that these well-separated Majo-

rana modes have a significant overlap with the Majorana

components of higher-energy states, with which they can

easily hybridize in the absence of an energy gap that would

(a)

(b)

(c)

FIG. 23. (a) The low-energy spectrum as a function of the Zee-

man field for a system with the same parameters as in Fig. 20

and μ = 3 meV. The red lines denote the lowest-energy mode.
(b),(c) Spatial profiles of the Majorana components correspond-

ing to the lowest BdG eigenstate (red and green) and the second

lowest-energy eigenstate (blue and yellow) for two values of
the Zeeman field, � = 0.86 and 1.73 meV, respectively. Note

that the lowest-energy state in (b) has partially separated Majo-

rana components (i.e., quasi-Majorana modes) localized near the
right edge, while the lowest-energy state in (c) has well-separated

Majorana components.
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protect them. Consequently, 
sep and C are highly sensi-

tive to variations of the control parameters, which explains

the “small-islands” structure of the corresponding region

of the phase diagram in Fig. 20.

Our analysis of the low-energy spectrum corresponding

to μ = 3 meV suggests that the looplike feature visible

in Fig. 21 around that value of the chemical potential

is associated with the quasi-Majorana mode (or PSABS)

emerging at the right edge of the system [see Fig. 23(b)].

To confirm this finding, we calculate the differential con-

ductance at the left and right ends of the system along

the same constant μ cut as the spectrum in Fig. 23(b).

The result in Fig. 24(b) clearly shows the emergence of

a nearly zero-bias conductance peak at the right edge of

the system that practically traces the lowest-energy mode

[red lines in Fig. 23(a)] for � � 1.4 meV. A maximum of

the zero-bias conductance occurs at � ≈ 0.8 meV, where

the quasi-Majorana mode crosses zero energy and the μ =
3 meV cut intersects the looplike feature [see Figs. 21(b)

and 23(a)]. We conclude that the looplike features that

characterize the zero-bias conductance maps in Fig. 21

outside the nominally topological region are generated by

quasi-Majorana modes (or PSABSs) localized near the

ends of the system.

Now turning our attention to the left end of the sys-

tem, we note [see Fig. 24(a)] the presence of strong

(a)

(b)

G (meV)

G (e2/h)

FIG. 24. The local differential conductance at the (a) left and

(b) right ends of the wire for a system with the same parame-
ters as in Fig. 23 but having normal leads and tunnel barriers

attached at both ends. The left conductance has no ZBCP for

� � 1.5 meV, while the right conductance is characterized by
a strong nearly zero-energy feature associated with the looplike

feature in Fig. 21(b) and generated by the quasi-Majorana mode

shown in Fig. 23(b). At larger Zeeman fields, the differential con-
ductance is characterized by ZBCPs at both ends of the system,

which is consistent with a finite edge-to-edge correlation.

finite-bias conductance peaks for � � 1.4 meV. These

peaks are generated by the ABS localized at the left end

of the system and representing the second-lowest BdG

state (see Fig. 23). We note that as a result of finite

broadening, the contribution of this state to the zero-bias

conductance GL is finite, although small. However, when

combined with the large quasi-Majorana contribution to

GR, it generates a nonzero contribution to the correlation

CG, which can be clearly seen as “shadow” looplike fea-

ture in Fig. 21(c). This spurious correlation feature can

be eliminated by considering the finite-bias conductance

and suppressing CG if the left and right contributions are

not associated with conductance peaks located within the

same energy window (E − δE, E + δE), where δE is deter-

mined by the energy resolution. Nonetheless, the zero-bias

conductance maps, including the CG map, can play a

crucial role as a first step in characterizing the system

and evaluating the effects of disorder. We suggest that

this type of comprehensive maps, rather than fine-tuned

and postselected “good-looking” traces, including traces

with conductance of approximately O(2e2/h), should be

the standard protocol for the experimental characteriza-

tion of hybrid SM-SC devices. Finally, we note that for

� � 1.5 meV the conductance is characterized by ZBCPs

at both the left and right ends, as shown in Fig. 24. This is

consistent with the finite edge-to-edge correlation expected

in this regime based on the “phase diagrams” shown in

Fig. 20.

We conclude this section with a few additional remarks

on the “phase diagrams” shown in Figs. 20 and 21. First,

we note that within the nominally topological regime, all

“phase diagrams” are characterized by stripy features that

disperse downward in μ with an increasing Zeeman field.

We show that in the case of the conductance maps, these

features are associated with Andreev bound states local-

ized near the ends of the system that cross zero energy. In

certain cases, the presence of these ABSs may enhance an

otherwise “invisible” ZBCP generated by well-separated

Majorana modes, which results in a finite edge-to-edge

correlation. Second, we note that the features located out-

side the nominally topological region have qualitatively

different characteristics. The conductance maps show sev-

eral rounded looplike features that we identify as being

associated with partially separated Majorana modes (or

quasi-Majoranas). As discussed above, these features can

be eliminated from the correlation map using additional

finite-bias information. The remaining features have a

stripy character and are present in all “phase diagrams.”

However, unlike the stripy features emerging in the topo-

logical region, these “trivial stripes” disperse upward in

μ with an increasing Zeeman field. Note that a quali-

tatively similar behavior can be observed even at lower

impurity concentrations, as revealed by the “phase dia-

grams” in Figs. 13 and 19. These observations suggest that

detailed zero-bias conductance maps could help identify
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nominally topological regions even when the presence of

disorder suppresses the “standard” Majorana phenomenol-

ogy expected in a clean system. Note, however, that these

results are not expected to hold if the system is charac-

terized by a small intersubband spacing (i.e., it is not in

the in the independent-subband regime) or if the disor-

der strength exceeds a certain threshold (i.e., the system

is in the strong-disorder regime). For small intersubband

spacings, even weak disorder will make the system behave

as a random disordered class-D system because of the

essentially random nature of the resultant intersubband

couplings, which become comparable to the intrasubband

terms.

3. Charge-impurity statistics

We investigate the effects of impurity-induced disor-

der for two specific disorder realizations corresponding to

two different impurity concentrations. The natural ques-

tions are as follows. (i) What is the generic behavior of

the system for arbitrary disorder realizations correspond-

ing to a given impurity concentration? (ii) What is the

dependence of the results on the impurity concentration?

To effectively address these questions, we need to define

some quantities that provide a “global” description of the

2D maps discussed in the previous section. To this end,

we first define the “filter function” χ(μ, �; 
min, Cmin, Emin)

that selects control parameter values consistent with cer-

tain minimum requirements associated with the presence

of well-separated Majorana modes capable of generating

edge-to-edge correlations. Specifically, we have

χ (μ, �) = �
(

sep − 
min

)
� (C − Cmin)�

(
Eg −Emin

)
,

(47)

where �(x) is the step function, �(x > 0) = 1, �(x <

0) = 0, and Eg = E2 − E1, with E1 and E2 being the low-

est and second-lowest positive eigenenergies, respectively,

is the quasiparticle gap separating the lowest-energy state

from the rest of the spectrum. Note that χ = 1 if the Majo-

rana separation length is larger than 
min, the edge-to-edge

correlation larger than Cmin and the quasiparticle gap larger

than Emin, while χ = 0 otherwise. Next, we introduce the

quantity M (�) defined as the total chemical potential range

that satisfies the “good-Majorana” criterion, χ(μ, �) = 1,

for a given value of the Zeeman field. Specifically, we have

M (�) =
∫

χ (μ, �) dμ. (48)

Note that for a clean system and “reasonable” values of


min, Cmin, and Emin, we have M (�) = 0 for � < �, i.e., in

the topologically trivial regime, and M (�) = 2
√

�2 − �2

for � > �. In other words, for a clean system, M (�)

is a measure of the “thickness” of the topological region

along the μ direction at a given value of the Zeeman field.

For example, � → � (from above) implies M → 0, pre-

cisely giving the lowest Zeeman field associated with the

pristine topological quantum phase transition. In addition,

we define the average quasiparticle gap within the region

satisfying the “good-Majorana” condition as

Ẽg (�) = 1

M (�)

∫
Eg (μ, �) χ (μ, �) dμ. (49)

To test the relevance of these quantities, we calcu-

late the disorder averages 〈M 〉 and 〈Ẽg〉 as functions of

the impurity concentration for two values of the Zee-

man field and different sets of filter-function parameters,

(
min/L, Cmin, Emin/�). The results for a wire of length

L = 4 μm are shown in Fig. 25, while the results corre-

sponding to a shorter wire with L = 2 μm are presented

in Fig. 26. The averages corresponding to each value of

the impurity density, λimp, are calculated using 500 dif-

ferent disorder realizations. Note that if a given impurity

realization is characterized by M = 0, Ẽg is undefined and

we do not include it in the calculation of 〈Ẽg〉. First, we

observe that 〈M 〉 collapses with an increasing impurity

density, reaching negligible values for impurity densities

of the order of 10–20 impurities per micron. This means

that for higher impurity concentrations, there are practi-

cally no “good Majoranas” in the system. We point out

that for the Majorana separation criterion, we use a rather

generous value, lmin = 0.5L, which does not guarantee the

localization of the well-separated Majorana modes near

(a) (b)

(d)(c)

FIG. 25. The disorder-averaged chemical potential range,

〈M 〉, and the quasiparticle gap, 〈Ẽg〉, as functions of the impu-
rity density for a system of length L = 4 μm. The first (a),(c)

and second (b),(d) columns correspond to � = 0.5 meV and � =
1 meV, respectively. The results corresponding to different sets
of filter-function parameters, (
min/L, Cmin, Emin/�), are color

coded: (0.5, 0, 0), blue; (0.5, 0.2, 0), green; (0.5, 0.2, 0.05), red;

(0.5, 0.2, 0.1), black. Note that the maximum impurity density,
λimp = 30 μm−1, corresponds to nimp = 9.4 × 1015 cm−3.
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(a) (b)

(c) (d)

FIG. 26. The same as Fig. 25 for a wire of length L = 2 μm.

the ends of the wire. This is particularly significant in

Fig. 25(b), where introducing the edge-to-edge correlation

requirement Cmin = 0.2 strongly reduces 〈M 〉 as compared

to the case Cmin = 0 (blue dots). On the other hand, the

fact that the blue dots in Fig. 25(b) correspond to finite

values of 〈M 〉 over the entire range of impurity densi-

ties reveals that even in the presence of relatively strong

disorder, the system contains well-separated Majoranas.

However, these Majoranas do not generate edge-to-edge

correlations. In other words, some segments of a long wire

are likely to be in the topological superconducting phase

but these segments have a concentration-dependent typi-

cal length (which is unknown experimentally) that is less

than the length L of the wire. Therefore, their presence can-

not be established based on the edge-to-edge correlation,

which is negligible. This observation is consistent with the

specific examples discussed in Secs. IV B 1 and IV B 2.

Note that for the shorter system (see Fig. 26), imposing

the additional filter C > 0.2 does not reduce 〈M 〉 drasti-

cally. This is due to the fact that Majorana modes with


sep > L/2 are significantly more likely to generate edge-

to-edge correlations in a shorter wire, as compared to a

longer wire. Finally, regarding the average quasiparticle

gap, 〈Ẽg〉, we note a sharp drop at low impurity density,

followed by a slower decline toward a density-independent

plateau, which starts at λimp ≈ 15 μm−1. The height of

the plateau is determined by the average interstate spacing,

which depends on the length of the wire being proportional

to 1/L.

The “global” quantities introduced above provide useful

tools for studying the effects of disorder on the Majo-

rana physics. Most importantly, they reveal the strong

dependence of the Majorana physics on the impurity con-

centration. In particular, the observation of edge-to-edge

correlations at relatively low values of the Zeeman field

requires the reduction of the impurity density below a

(a) (b)

(c) (d)

FIG. 27. The disorder-averaged chemical potential range,

〈M 〉, and the quasiparticle gap, 〈Ẽg〉, as functions of the spin-

orbit coupling strength, α, for a wire of length L = 4 μm. The
red circles and green crosses correspond to λimp = 7.5 μm, and

λimp = 15 μm, respectively. The filter-function parameters are


min/L = 0.5, Cmin = 0.2, and Emin = 0.

certain threshold of about 15–20 impurities per micron.

This type of analysis can be also useful for optimizing the

system parameters. As an example, we consider the depen-

dence on the spin-orbit coupling strength. Figure 27 shows

the dependence of 〈M 〉 and 〈Ẽg〉 on the spin-orbit coupling

strength α for a wire of length L = 4 μm for two impu-

rity densities and two values of the Zeeman field. Typi-

cally, increasing the spin-orbit coupling strength enhances

both 〈M 〉 and 〈Ẽg〉. However, for λimp = 15 μm−1 (green

crosses), the dependence of the average energy gap on α is

weak, while 〈M 〉 shows a significant enhancement only at

larger values of the Zeeman field and for α � 25 meV nm.

Finally, we point out that throughout this work, the value

of the spin-orbit coupling strength is α = 20 meV nm,

which we consider as relatively optimistic. While for large

enough Zeeman fields, 〈M 〉 and 〈Ẽg〉 can be enhanced by

having a stronger spin-orbit coupling, there is not much

room for optimizing the low-field regime. Note, however,

that at large field values, the topological gap itself may be

rather small and, again, optimization becomes a challenge

even in this regime.

V. CONCLUSIONS

We carry out a comprehensive microscopic theoretical

study of disorder effects arising from the inevi-

table presence of charge impurities in superconductor–

semiconductor nanowire hybrid structures, focusing on the

fate of the Majorana zero modes expected to emerge in

these systems. The work consists of four closely con-

nected, but distinct, theoretical components: (1) develop-

ing a fully self-consistent realistic Schrödinger-Poisson

scheme to calculate the effective impurity potential
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arising from the presence of charge impurities, which takes

into account electrostatic and screening effects due to the

superconductor and potential back gate, as well as the

screening by the free charge in the wire; (2) carrying

out full solutions of the BdG equations in the presence

of disorder by incorporating the effective impurity poten-

tial calculated self-consistently for a multiband system,

as well as the superconducting proximity effect, the spin-

orbit coupling, and the applied Zeeman field; (3) obtaining,

based on the solutions of the BdG equations, effective

“phase diagrams” as functions of the control parame-

ters (i.e., the Zeeman field and the chemical potential)

in the presence of disorder and investigating their depen-

dence on the disorder strength; and (4) calculating the

tunnel conductance at both ends of the system and gener-

ating the corresponding “phase diagrams,” which provides

insight into the existing tunnel spectroscopy experiments

on Majorana nanowires. Since the work involves multiple

aspects, we have specific conclusions regarding each com-

ponent of the theory already included in the corresponding

section of this paper. Instead of repeating what is already

described and discussed in depth in Secs. III and IV, we

summarize our most important conclusions regarding the

role of charge-impurity-induced disorder from the per-

spective of the ongoing search for non-Abelian Majorana

modes in superconductor–semiconductor-nanowire hybrid

structures.

We show that the superconductor plays a rather limited

role in screening the impurity potential, while substantial

screening arises from the free charges in the nanowire. We

provide a simple two-parameter empirical fitting formula

for the effective screened potential, which should be useful

for future simulations of Majorana devices. Quantitatively,

we find that the effective impurity potential has typical

amplitudes of the order of 1.5–2 meV and typical decay

lengths of about 8–12 nm.

We find that disorder produces zero-energy states out-

side the pristine topological phase boundary and we

analyze in depth the nature of these states and their pos-

sible experimental signatures. We also find that within

the nominally topological regime, the system can host

well-separated Majorana modes even in the presence of

significant disorder levels but that, typically, the presence

of these modes is not associated with a significant edge-

to-edge correlation. A key finding in this context is that

disorder may often push Majorana zero modes away from

the wire ends, thus making them invisible to local (end-of-

wire) tunnel spectroscopy. Thus, it is entirely possible (and

likely) to miss the presence of Majorana zero modes in a

disordered nanowire when using tunneling spectroscopy

simply because this is a local probe sensitive only to

states localized at the wire ends. Hence, in the presence

of disorder, long segments within the bulk of the wire

may be topologically nontrivial, with Majorana modes

emerging at their ends, but the wire ends themselves may

contain no Majorana modes, which dramatically reduces

the probability of observing edge-to-edge

correlations.

We establish that detailed 2D maps of the zero-bias

conductance as a function of the Zeeman splitting (i.e.,

the magnetic field in the laboratory) and the chemical

potential (i.e., the gate voltage in the laboratory) may

be the most effective operational way to search for the

“hidden” topological superconductivity and the associ-

ated Majorana modes. The current experimental focus on

looking for large zero-bias peaks with conductance of

approximately 2e2/h by fine tuning the control parameters

is unlikely to solve the outstanding questions regarding the

nature of the low-energy states responsible for these peaks.

First, a large zero-bias peak obtained through careful fine

tuning and postselection may have nothing to do with

topological Majorana modes and, second, this procedure

is likely to lead to strong confirmation bias in the experi-

ment. Instead, the creation of zero-bias conductance maps

in the extensive parameter space of the gate voltage and the

magnetic field using the cleanest possible samples and the

comparison of these maps to our theoretical results may

be a much more systematic way of searching for Majo-

rana physics, without suffering from any confirmation bias.

In addition, this would provide much-needed estimates of

the disorder strength characterizing actual superconductor-

semiconductor hybrid devices and an effective way of

testing future materials improvements that aim at reducing

disorder.

We find that for reasonably realistic (but still somewhat

optimistic) parameter choices, genuine well-separated

topological Majorana modes should exist in nanowires for

impurity densities up to 5 × 1015 cm−3, which corresponds

to around 15 impurities per micron. This would mean

that a 2–4-μm-long nanowire can contain up to 30–60

charge impurities but that cleaner samples, with a charge-

impurity density below 1015 cm−3, may be necessary in

practice, since we ignore any disorder arising from possi-

ble interface defects or imperfections. Such a low intrinsic

doping of less than 1015 cm−3 is a challenge but is by no

means out of reach in semiconductor materials growth, as

impurity contents below 1013 cm−3 have been achieved in

MBE-grown GaAs structures [59].

Our final conclusion is that charge impurities cause

serious problems but by no means destroy the topology

in hybrid nanowires, as long as their concentration is

maintained below a certain threshold. Future experiments

should provide estimates of the disorder levels that char-

acterize existing hybrid systems, while a systematic effort

should be dedicated to the production of much cleaner

wires, with significantly lower impurity content, where

Majorana zero modes could emerge easily and manifest

the full range of their expected phenomenology.

The implications of our work for the realization of

Majorana zero modes and topological qubits are hopefully
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obvious and may be far-reaching. Since superconductor-

semiconductor nanowire hybrid platforms are by far the

leading TQC candidates, by virtue of the tunability of

the system through electrical gating and variation of

the magnetic field, and because semiconductor growth

enables the realization of very pure materials, our detailed

macroscopic quantitative analysis of all relevant aspects

of Majorana physics in the SM-SC platform in the pres-

ence of charge-impurity disorder hopefully provides the

community with clear and quantitative guidelines on how

to make progress. Obtain samples with 1015 per cm3 or

less impurity content, produce 2D parameter maps of the

zero-bias differential conductance over extended parame-

ter regions, beware of the possibility that impurities may

push the Majorana bound states away from the edges, so

that topology may be hidden in tunnel spectroscopy at the

ends, do not focus on trying to find Majorana quantization

(which are often spurious), instead focus on the totality of

the parameter space rather than fine tuning, carry out con-

ductance correlations in the way proposed in the current

work as a function of the magnetic field and the gate volt-

age by doing tunneling from both ends, and try to obtain

nonlocal correlations not just from the two ends but along

the wire. Our work establishes the existence of topologi-

cal Majorana modes in the system in the presence of some

amount of charge impurity even when the disorder poten-

tial is significantly larger than the SC gap, provided that

the impurity concentration is not too high. This is a highly

encouraging result, which should inspire efforts toward

creating Majorana qubits.
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APPENDIX: FITTING EFFECTIVE IMPURITY

POTENTIALS TO AN ANALYTIC FUNCTION

As alluded to in the main text [see also Eq. (29)],

the effective potential of a single charge impurity located

at z = 0 can be captured well by fitting both the effec-

tive impurity and redistribution potentials to exponential

functions,

Vα,α (z) = Vimp
α,α (z) + Vred

α,α (z) , (A1)

Vimp
α,α (z) = Bα

impe
−|z|/λα

imp , (A2)

Vred
α,α (z) = −Bα

rede−|z|/λα
red , (A3)

where Bα
imp and Bα

red are the amplitudes of the effective

impurity and redistribution potentials, respectively, λα
imp

and λα
red are the corresponding decay lengths, and α is the

subband index. We place a minus sign in front of Bα
red to

(b)(a)

FIG. 28. Examples of the effective potential (black solid lines)

and the fitted effective potential (red dashed lines) from impuri-
ties of charge (a) Q = −e and (b) Q = e, using the fitting Eqs.

(A1–A3). The transverse positions of the impurities are indi-

cated in the panels. The average absolute error between the exact
and fitted potentials for |z| ≤ 100 nm is (a) 0.03 meV and (b)

0.07 meV, respectively.

emphasize that the redistribution potential (partially) sup-

presses the impurity charge potential. Two examples of

this fitting are shown in Fig. 28, for a negative and positive

elementary impurity charge with the α = 2 subband tuned

to the Fermi level. We find excellent agreement between

the actual and fitted potential in both cases. Indeed, the

average absolute error, |Vexact
2,2 − Vfit

2,2|, within 100 nm of

the impurity is only (a) 0.03 meV and (b) 0.07 meV,

respectively. Note that we find the average absolute error

to be of this order for all impurity locations sampled.

Generically, we find that cases with a negative charge

impurity fit slightly better to Eqs. (A1)–(A3) than positive-

charge-impurity cases. This is due to a more prominent

“hump” feature after first crossing Vα,α = 0 for positively

charged impurities compared to negatively charged impu-

rities. Nevertheless, the fitting is exceptional for both

impurity charge signs.

While Eqs. (A1)–(A3) represent an excellent approxi-

mation for the effective potential, they require four fitting

parameters, which may be cumbersome if one wants to

construct a phenomenological model of charge-impurity

disorder without explicitly performing numerically expen-

sive Schrödinger-Poisson calculations. This motivates us

to investigate whether the various fitting parameters dis-

play correlations to reduce the number of necessary input

parameters. We indeed find this to be the case. The result-

ing correlations are shown in Figs. 29, 30, and 31 and

discussed below.

The effective redistribution amplitude Bα
red as a func-

tion of the effective impurity amplitude Bα
imp is shown
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FIG. 29. The effective redistribution amplitude Bα
red ver-

sus the effective impurity amplitude Bα
imp when the α =

2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. The amplitudes are extracted from fitting the effective

potential of 19 evenly spaced impurity locations within the

transverse profile of the nanowire. The dashed lines are linear-
regression fits to the matching color data. See Table I for the

fitting parameters.

in Fig. 29 for several different subbands tuned to the

Fermi level. The amplitudes come from fitting the effec-

tive impurity and redistribution potentials to Eqs. (A2)

and (A3), with each data point corresponding to a dif-

ferent impurity location in the transverse profile of the

wire. For this data set, 19 evenly spaced positions in the

cross section of the nanowire are sampled. We observe

(a)

(b)

FIG. 30. A comparison of the impurity and redistribution
(inverse) decay lengths, (λα

imp)
−1 and (λα

red)
−1, when the α =

2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi

level. The decay lengths are extracted from fitting the effective
potential of 19 evenly spaced impurity locations within the trans-

verse profile of the nanowire. The (a) top and (b) bottom panels

correspond to Q = +e and Q = −e, respectively. The dashed
lines are linear-regression fits to the matching color data. See

Table II for fitting parameters.

FIG. 31. A comparison of the impurity amplitude Bα
imp

and the (inverse) decay length (λα
imp)

−1 when the α =
2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi

level. The amplitude and decay lengths are extracted from fitting

the effective potential of 19 evenly spaced impurity locations
within the transverse profile of the nanowire. The impurity

charge Q = −e. The dashed lines are linear-regression fits to the

matching color data. See Table III for fitting parameters.

a general linear trend between the two amplitudes for all

three subbands in which the magnitude of the redistribu-

tion amplitude increases with increasing magnitude of the

impurity amplitude, as seen in the linear fit lines (dashed

lines). The positive sign of the slope makes physical sense,

since increasing the magnitude of the impurity amplitude

should increase the redistribution of free charge around the

impurity to (partially) counteract the perturbation of the

electrostatic environment. What’s not obvious, however,

is that a linear relationship should capture the dependency

rather well. After all, the Schrödinger-Poisson equations

should be expected to behave nonlinearly due to the inter-

play between the various occupied subbands. To quantify

how well the linear fit captures the relationship, we gather

the fitting parameters into Table I. In particular, we wish to

draw attention to the coefficient of determination, r2, which

indicates how much of the variance of the data is explained

by the linear model. For all except the (α = 4, Q = −e)

TABLE I. The fitting parameters of the dashed lines in Fig. 29

corresponding to the fitting equation, Bα
red = mBα

imp + b. The

coefficient of determination r2 for each linear fit is given in the

final column, where r2 = 1 indicates a perfect fit.

(α, Q) m b (meV) r2

(2, +e) 0.30 −0.46 0.91

(2, −e) 0.07 0.41 0.53

(3, +e) 0.29 −0.64 0.75
(3, −e) 0.13 0.30 0.52

(4, +e) 0.43 −0.36 0.79

(4, −e) 0.12 0.81 0.34
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TABLE II. The fitting parameters of the dashed lines in Fig. 30
corresponding to the fitting equation, (λα

red)
−1 = m(λα

imp)
−1 + b.

The coefficient of determination r2 for each linear fit is given in

the final column, where r2 = 1 indicates a perfect fit.

(α, Q) m b (nm−1) r2

(2, +e) 0.18 0.016 0.83

(2, −e) 0.11 0.013 0.46
(3, +e) 0.13 0.017 0.63

(3, −e) 0.22 0.009 0.59
(4, +e) 0.12 0.023 0.45

(4, −e) 0.19 0.014 0.32

case, the linear fit explains over half of the variance (r2 >

0.5). Moreover, Q = e cases display particularly high r2

values. We also note that the r2 coefficient diminishes on

average with an increasing subband index, α, suggesting

that the Schrödinger-Poisson equations are behaving with

increasing nonlinearity as occupation is increased.

Similar to the effective potential amplitudes, we com-

pare the (inverse) decay lengths of the effective redistri-

bution and impurity potentials in Fig. 3 with the subband

α = 2, 3, or 4 tuned to the Fermi level. Again, we observe

general linear trends and fit the data from each subband to a

line. The fitting parameters are gathered in Table II. The r2

coefficients are of similar size to what is found in studying

the relationship between the potential amplitudes (Table I)

but are slightly smaller, indicating that the decay lengths

behave in a slightly more nonlinear manner.

Finally, we study the correlation between the amplitude

of the effective impurity potential Bα
imp and (inverse) decay

length (λα
imp)

−1 in Fig. 31. In contrast to Figs. 29 and 30,

we only consider Q = −e, since flipping the sign to Q = e

only changes the sign of the amplitude, Bα
imp. The fitting

parameters are gathered in Table III. On the one hand, we

observe large coefficients of determination, r2 = 0.87 and

0.80, for α = 2 and 3, respectively. On the other hand,

r2 = 0.07 for α = 3. These indicate that the relationship

between the effective impurity amplitude and the inverse

decay length is captured well by a linear fit for α = 2

and 3 but not for α = 4. Evidently, as the wave function

moves away from the SM-SC interface with increasing α,

the electrostatics become more subtle and the relationship

TABLE III. The fitting parameters of the dashed lines in Fig. 31

corresponding to the fitting equation, (λα
imp)

−1 = mBα
imp + b. The

coefficient of determination r2 for each linear fit is given in the

final column, where r2 = 1 indicates a perfect fit.

(α, Q) m (meV−1 nm−1) b (nm−1) r2

(2, −e) 0.012 0.018 0.87

(3, −e) 0.014 0.005 0.80

(4, −e) 0.003 0.042 0.07

between the amplitude and (inverse) decay length becomes

more complicated.

We are now in a strong position to create realistic

phenomenological models of charge-impurity disorder in

SM-SC hybrid nanowires using only one or two parame-

ters from which we need to sample. We accomplish this by

leveraging the information we have just laid out regard-

ing the linear relationships between the various fitting

parameters. In the case of low-occupancy (α ≤ 3 in this

case), the relationships between the four fitting parame-

ters, Bα
imp, Bα

red, (λα
imp)

−1, and (λα
red)

−1, are well described

by all three linear relationships studied in this appendix.

Therefore, one only needs to sample the Bα
imp distribution

to create a realistic model of disorder. Given a Bα
imp value,

we only have to plug it into the linear equations given in

Tables I–III and the corresponding parameters, m and b

(also in the tables), to obtain the other three fitting param-

eters. In the case of higher occupancy (α ≥ 4 in this case),

the relationship between Bα
imp and (λα

imp)
−1 is not repre-

sented well by a linear fit. Therefore, we need to sample

from both Bα
imp and (λα

imp)
−1 to create a realistic disorder

model. The other two fitting parameters, Bα
red and (λα

red)
−1,

however, can still be obtained using the linear equations

and corresponding parameters in Tables I and II. We then

have a convenient and accurate way of producing realis-

tic disorder potential profiles due to charge impurities in

Majorana SM-SC hybrid nanowires.
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