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We investigate the effects of disorder characterizing a superconducting thin film on the proximity-induced
superconductivity generated by the film (in, e.g., a semiconductor) based on the exact numerical analysis of a
three-dimensional microscopic model. To make the problem numerically tractable, we use a recursive Green’s
function method in combination with a “patching approach” that exploits the short-range nature of the interface
Green’s function in the presence of disorder. As a result of the Fermi surface mismatch between the superconduc-
tor (SC) and the semiconductor (SM) in combination with the confinement-induced quantization of the transverse
SC modes, the proximity effect induced by a clean SC film is typically one to three orders of magnitude smaller
that the corresponding quantity for a bulk SC and exhibits huge thickness-dependent variations. The presence
of disorder has competing effects: on the one hand, it enhances the proximity-induced superconductivity and
suppresses its strong thickness dependence, on the other hand, it generates proximity-induced effective disorder
in the SM. The effect of proximity-induced disorder on the topological superconducting phase and the associated
Majorana modes is studied nonperturbatively.
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I. INTRODUCTION

The superconducting proximity effect, where a parent su-
perconductor (e.g., Al, Nb, Pb) induces superconductivity into
a nearby nonsuperconductor (a nonsuperconducting metal
or a semiconductor), is a fascinating physical phenomenon
arising from the tunneling of Cooper pairs from the super-
conductor into the proximate nonsuperconductor through a
contact interface. Proximity-induced superconductivity has
been known for 90 years [1] and has been well-studied
experimentally [2,3]. A hybrid system of particular inter-
est is a metallic superconductor (often Al) in contact with
a semiconductor, which generates proximity-induced super-
conductivity in the semiconductor [4,5]. The “textbook”
proximity effect [6] involving a semi-infinite superconduc-
tor in contact with a semi-infinite nonsuperconducting metal
is reasonably well understood [7]. It basically describes a
process where the nonsuperconductor develops a finite-size
region with proximity-induced superconductivity near the
interface, over a distance of the order of the coherence
length, through Cooper pair tunneling across the boundary.
In this case, there is no superconductivity induced in the bulk
of the nonsuperconductor. This boundary superconductivity
proximity-induced in bulk (nonsuperconducting) systems by a
bulk superconductor is significantly different from the subject
matter of our work, which concerns the proximity effect gen-
erated by a thin film parent superconductor proximity-coupled
to a finite size quasi-one-dimensional (1D) or quasi-two
dimensional (2D) nonsuperconductor (in our case a semicon-
ductor). In this case, both components of the hybrid structure

are small finite size subsystems and, typically, the whole
nonsuperconductor acquires proximity-induced superconduc-
tivity. This proximity phenomenon is often thought of in
terms of Andreev processes in a mesoscopic superconductor
[8–11].

Interest in the proximity effect generated by thin films
in superconductor (SC)-semiconductor (SM) hybrid systems
has increased enormously over the past decade as a result
of concrete theoretical proposals predicting the possibility of
inducing topological superconductivity and realizing local-
ized Majorana bound states (and the associated Majorana zero
modes) in a SM with strong spin-orbit coupling proximity-
coupled to a conventional (nontopological) SC [12–15]. The
subject is vast, with thousands of experimental and theo-
retical publications since 2010. Here, we focus on a crisp
theoretical understanding of the role of disorder (inside the
SC) in proximity-inducing superconductivity using thin SC
films. Hence, we do not provide a review of the vast subject
dedicated to the search for Majorana zero modes (MZMs)
in SC-SM structures, its successes and failures, and the
world-wide current activity, which has been partially reviewed
elsewhere [16–23]. Instead, we concentrate on the specific
role played by the disorder present inside a thin SC film
(particularly the surface disorder) in the superconducting
proximity effect induced by the film, a subject that has at-
tracted little attention in the literature in spite of its significant
potential importance.

After the great initial excitement generated by the ex-
perimental observation [24–28] of zero-bias conductance
peaks, which are predicted as possible signatures of
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Majorana bound states in SC-SM structures, it was realized
that disorder is playing an extremely important role in the
system [29–36] and, most likely, is essentially preventing
the predicted emergence of topological superconductivity in
experimentally available structures. In particular, in all early
experiments the proximity-induced superconducting gap was
extremely soft, i.e.. there was substantial weight associated
with subgap fermionic states. This was explained as arising
from disorder being present at the SM-SC interface [37] and,
according to this interpretation, the soft gap feature should
disappear (leading to a hard gap) if the SC-SM interface is
clean, e.g., if it is an epitaxial interface with no disorder.
Subsequent efforts resulted in the growth of epitaxial SC-SM
interfaces, which, indeed, led to a hard proximity-induced gap
[38]. More recently, however, it has been realized through
extensive simulations that disorder inside the semiconductor
(due to, e.g., the presence of charge impurities) is generat-
ing low energy Andreev bound states (ABSs) in the system
[39–43], which are most likely responsible for the zero bias
conductance peaks observed experimentally. Thus disorder
has emerged as the main enemy of topological proximity-
induced superconductivity and needs to be understood
thoroughly.

In contrast to the SM disorder, which has been extensively
discussed in the literature, very little has been done on under-
standing the role of disorder that may be present inside the
parent superconducting thin film. This is a rather surprising
omission since the disorder in the metallic SC film (made of
Al in most of the current SC-SM structures) would be much
stronger than the SM disorder because the SC film is highly
amorphous, with an electron mean free path that is likely
to be limited by the film thickness (< 10 nm), whereas the
corresponding SM mean free path is about an order of magni-
tude larger. Nonetheless, the (relatively weaker) SM disorder
is now known to be extremely detrimental to the realization
of topological superconductivity. Hence, why this neglect of
understanding the effects of SC disorder on the supercon-
ducting proximity effect, even if the SC disorder is extremely
strong (i.e., much stronger than any SM disorder)? In fact, an
early work [44] did claim that “the induced superconductivity
is strongly susceptible to disorder” in the SC, but it turned
out that this claim was technically incorrect [45]. On the
other hand, a correct perturbative calculation established the
immunity of the SM proximity effect to (weak) SC disorder
[46]. However, the actual SC disorder, which is characterized
by an energy scale > 10–100 meV, is orders of magni-
tude larger than the proximity-induced SM gap (∼0.1 meV),
so the diagrammatic weak-coupling arguments of Ref. [46]
may not apply. Considering the demonstrated importance of
the (relatively weaker) SM disorder and the nonperturba-
tive nature of the SC disorder, it is crucial to understand
in detail the role of SC disorder, both qualitatively and
quantitatively.

There is, however, another important problem regarding
the proximity effect generated in SC-SM hybrid structures by
thin SC films: the “Fermi surface mismatch” between the SC,
which is characterized by a Fermi energy ∼10 eV, and the
SM, which has a Fermi energy on the order ∼10–100 meV.
The relatively small SM Fermi energy corresponds to long
wavelength SM states that, in a clean hybrid system, will

only couple to SC states characterized by small values of the
wave vector k‖ parallel to the SM-SC interface. To generate
proximity-induced superconductivity, these long wavelength
SC states should also have low energy (comparable to the
SC gap). However, due to the finite size quantization of the
transverse modes in thin SC films such states may not be
available, except for fine tuned values of the film thickness.
In other words, in a clean thin SC film - SM structure, the
Fermi surface mismatch combined with the strong finite size
quantization of the transverse modes makes it typically im-
possible for SC proximity effect to manifest itself, because
electrons cannot tunnel coherently through the SC-SM in-
terface. Furthermore, the induced proximity effect has an
extremely strong dependence of the film thickness, with or-
ders of magnitude variations corresponding to changes in the
film thickness by one atomic layer. To the best of our knowl-
edge, the effect of SC disorder on this phenomenon has not
been properly studied in the literature.

In this work, we address both issues regarding the Fermi
surface mismatch in thin SC films and nonperturbative disor-
der effects by exactly solving the SC problem at the mean field
level, starting with a lattice Bogoliubov-de Gennes (BdG)
Hamiltonian that explicitly incorporates disorder. By focus-
ing on disorder located near the free surface of the thin SC
film, i.e., away from the SC-SM interface, we show that SC
disorder has competing effects: on the one hand, the presence
of SC disorder helps generate robust induced superconduc-
tivity by suppressing (or even eliminating) the Fermi surface
mismatch problem; on the other hand, SC disorder induces
effective disorder in the (active) SM component, which can
be detrimental to the realization of topological superconduc-
tivity. We demonstrate that, remarkably, (i) there exist surface
disorder models consistent with the realization of robust in-
duced superconductivity, i.e., there are disordered thin SC
films that can generate a proximity effect that is comparable
with the effect generated by a bulk superconductor and has
a weak dependence on the film thickness, and (ii) the cor-
responding induced effective disorder is consistent with the
presence of topological superconductivity, provided that the
SC-SM coupling is weak enough. This is an important result
that, on the one hand, demonstrates the feasibility of robust
topological superconductivity in SM-SC systems using thin
SC films, and, on the other hand, suggests that a detailed ex-
perimental study of the SC properties is critical to optimizing
the structure and enhancing the stability of the topological
phase.

The remainder of this paper is organized as follows. In
Sec. II, we present our theoretical model and the recursive
method for efficiently calculating the Green’s function of the
superconducting thin film at the interface. The numerical re-
sults are discussed in Sec. III, starting with the clean case
in Sec. III A, then considering a superconducting thin film
with surface disorder in Sec. III B. We specifically consider
two models of surface disorder, one consisting of a random
onsite potential within a thin layer (∼2 nm) near the surface
(Sec. III B 1), the other representing a model of surface
roughness (Sec. III B 2). Next, in Sec. IV, we assume that
the superconducting film with surface roughness is proximity-
coupled to a semiconductor nanowire and we determine the
effect of the (SC) surface disorder on the low-energy physics
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FIG. 1. (a) Schematic representation of a finite 3D superconduct-
ing film with surface roughness on the top surface. (b) Example of
proximity-coupled semiconductor-superconductor (SM-SC) struc-
ture containing a superconducting thin film. (c) Specific surface
roughness realization used in the calculations (see Secs. III B 2 and
IV). The parameter values are Lx = 1.025 μm, Ly = 51.3 nm, and
Lz = 6.25 ± 0.35 nm. Different shades of blue correspond to local
variations of the film thickness affecting the top three atomic layers.
Note that the wire is broken into two segments, for clarity.

of the wire. Our conclusions are discussed in Sec. V. Details
regarding a few important technical aspects and additional
numerical results are provided in Appendices A–D.

II. THEORETICAL MODEL

Our main goal is to understand the effect of disorder char-
acterizing a thin superconducting film on the superconducting
proximity effect induced by the film (see, e.g., Fig. 1). Within
a Green’s function approach, after “integrating out” the de-
grees of freedom of the SC subsystem, the proximity effect is
described by a self-energy contribution to the Green’s function
of the “active component,” e.g., a SM nanowire [see Fig. 1(b)]
or a quasi-2D electron gas hosted by a SM quantum well [47].
In turn, this self-energy is proportional to the Green’s function
GSC of the superconductor at the interface with the “active
component” (e.g., the SC-SM interface),

GSC(ω; r̃, r̃′) ≡ G̃(ω; r‖, r′
‖) = [(ω − HSC)−1 ]̃r,̃r′ , (1)

where r̃ = (x, y, z̃) is the 3D position vector of a point at the
interface defined by the condition z = z̃ and r‖ = (x, y) is the
corresponding 2D position vector. In Eq. (1), the superconduc-
tor is described at the mean-field level by the Bogoliubov-de
Gennes Hamiltonian HSC. More specifically, we use a tight-
binding model defined on a simple tetragonal lattice with
lattice parameters a (in the x-y plane) and c (along the z

direction) and having the second quantized form

HSC = −
∑

〈i, j〉

∑

σ

ti j ĉ
†
iσ ĉ jσ +

∑

i,σ

[V (ri) − εF ]ĉ†
iσ ĉiσ

+
∑

i

�0(ĉ†
i↑ĉ

†
i↓ + ĉi↓ĉi↑), (2)

where i = (ix, iy, iz ) labels the lattice site with position vec-
tor ri = (aix, aiy, ciz ), ĉ

†
iσ (ĉiσ ) is the creation (annihilation)

operator for an electron with spin σ located at site i, 〈i, j〉
are nearest-neighbor sites satisfying the condition |i − j| = 1,

and ti j are the corresponding hopping matrix elements, with
ti j = t if |ri − r j | = a (hopping in the x-y plane) and ti j = tz
if |ri − r j | = c (hopping along the z direction). The position-
dependent quantity V (ri ) ≡ Vi represents a disorder-generated
potential, εF is the Fermi energy of the SC, and �0 is the
pairing potential. Note that we neglect the possible position
dependence of �0 in the presence of disorder and we do
not consider the effect on �0 of an applied magnetic field.
These effects can be incorporated into the theory by solving
self-consistently a position-dependent gap equation, which
involves a substantial numerical cost and is beyond the scope
of this work. The key physical phenomenon of interest in this
work, which involves the role of SC disorder in the proximity
effect induced by a thin SC film, is not affected in any quali-
tative manner by these additional complications.

Next, we note that, due to the absence of spin-orbit cou-
pling, the SC Hamiltonian matrix has the block form

HSC =

⎛
⎜⎝

Hn 0 0 �0I

0 Hn −�0I 0
0 −�0I −Hn 0

�0I 0 0 −Hn

⎞
⎟⎠, (3)

with Hn being the Hamiltonian matrix that describes the spin-
degenerate electrons in the normal phase,

[Hn]i j = −ti j + (Vi − εF )δi j, (4)

while 0 and I are the zero and identity square matrices, respec-
tively, of dimension N = NxNyNz given by the number of sites
in the 3D lattice. This simple spin structure is inherited by
the interface Green’s function in Eq. (1), hence it is enough
to focus on one nontrivial block (e.g., the one containing
the +�0I contributions). Nonetheless, inverting the corre-
sponding 2N × 2N matrix can be numerically challenging if
the number of degrees of freedom is large (e.g., millions of
sites). To make the numerical procedure more efficient, we
use a recursive Green’s function method [48,49] that involves
solving the set of equations

G(�)(ω) =
[(

ωI − H (�)
n −�0I

−�0I ωI + H (�)
n

)
− �(�)(ω))

]−1

, (5)

�(�)(ω) =
(

−tzI 0
0 tzI

)
G(�−1)(ω)

(
−tzI 0

0 tzI

)
, (6)

where H (�)
n is the Hamiltonian matrix corresponding to layer

�, i.e., having elements [Hn]i j with iz = jz = �, and I is the
N‖ × N‖ identity matrix, with N‖ = NxNy. The recursive pro-
cedure is repeated Nz times starting with �(1) being equal
to the 2N‖ × 2N‖ zero matrix. Finally, we have G̃(ω) =
G(Nz )(ω).

Before presenting our main results, we point out that the
problem of calculating the interface Green’s function sim-
plifies considerably in the case of a clean system (Vi = 0).
Indeed, after performing a 3D discrete Fourier transform, we
obtain

G̃(ω, εnxny
) = −γ (ω, εnxny

)

(
ω −�0

−�0 ω

)

+ ζ (ω, εnxny
)

(
1 0
0 −1

)
, (7)
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where

γ (ω, εnxny
) =

2

Nz+1

Nz∑

nz=1

sin2
(

nzπ

Nz+1

)

E2
nxnynz

+�2
0−ω2

, (8)

ζ (ω, εnxny
) =

2

Nz+1

Nz∑

nz=1

Enxnynz
sin2

(
nzπ

Nz+1

)

E2
nxnynz

+�2
0−ω2

. (9)

The energy of the mode (nxnynz ) is Enxnynz
= εnz

+ εnxny
− εF ,

where

εnz
= 2tz

(
1 − cos

nzπ

Nz + 1

)
, (10)

εnxny
= 2t

(
2 − cos

nxπ

Nx + 1
− cos

nyπ

Ny + 1

)
. (11)

The quantity γ (ω, εnxny
) is related to the (normal phase) inter-

face density of states of the mode (nxny) at the Fermi energy,

ν̃
F
(εnxny

) = −
1

π
Im

[
2

Nz+1

Nz∑

nz=1

sin2
(

nzπ

Nz+1

)

ω − Enxnynz
+ iη

]

ω=0

. (12)

More specifically, we have

γ (ω, ε) =
π√

�2
0 − ω2

ν̃
F
(ε)|

η=
√

�2
0−ω2 . (13)

For an infinitely thick superconductor, Nz → ∞, the summa-
tion in Eq. (12) can be done explicitly and we have

ν̃∞
F

(εnxny
) =

1

πtz

√
1 −

(2tz + εnxny
− εF )2

4t2
z

. (14)

At this point, it is important to remember that our goal is to un-
derstand the proximity effect induced by the superconductor
when coupled to another subsystem (e.g., a semiconductor)
across the interface. Focusing on Majorana SM-SC hybrid
structures, we note that the relevant SM energy scales are
on the order of meV, up to tens of meV if we assume high
subband occupancy [50], which implies characteristic wave
vectors smaller than about 0.25 nm−1 for an InAs-based SM-
SC structure. Consequently, the relevant in-plane SC modes,
which are characterized by comparable values of the (in-
plane) wave vector, k‖(nx, ny) = (πnx/Lx, πny/Ly), have a
maximum energy scale on the order of 1–2 meV. On the other
hand, tz and εF have typical values on the order of 10 eV. We
conclude that the dependence on εnxny

in Eq. (14) is negligible,
so that the interface density of states for an infinitely thick
SC slab is practically described by a constant, ν̃∞

F
≡ ν̃∞

F
(0).

We choose this constant as the “natural unit” for the interface
Green’s function and we redefine the “amplitudes” γ and ζ in
Eq. (7) in terms of the dimensionless quantities g̃ and ṽ as

γ (ω, ε) =
πν∞

F√
�2

0 − ω2
g̃(ω, ε), ζ (ω, ε) = πν∞

F
ṽ(ω, ε).

(15)
The key quantity g̃(ω, ε) provides a measure of the “strength”
of the superconducting proximity effect generated by the SC
film relative to the effect induced by an infinitely thick super-

conductor. Of course, we have g̃(ω, ε)
Nz→∞−−−→ 1. Finally, we

note that the block structure of the interface Green’s function
given in Eq. (7) holds even in the presence of disorder, but
the quantities γ and ζ (or g̃ and ṽ) become N‖ × N‖ matrices.
Hence, in general, we have

G̃(ω; i, j) = πν∞
F

⎡
⎣g̃i j (ω)

−ωτ0+�0τx√
�2

0 − ω2
+ ṽi j (ω)τz

⎤
⎦, (16)

with i and j labeling lattice sites at the interface and τμ

being Pauli matrices associated with the particle-hole degree
of freedom.

The bulk of the numerical results presented below are
obtained using the following values of the model parame-
ters: lattice constants a = 1.22 nm (in-plane) and c = 1.17 Å
(in the z direction), hopping parameters t = h̄2/2mea2 =
25.57 meV (in-plane) and tz = 6.402 eV (in the z direction),
and pairing potential �0 = 0.33 meV. For calculations in-
volving different parameter values we explicitly provide those
values. We note that the chosen values of the in-plane param-
eters take into account the fact that only the low-lying modes
with k‖ � 0.25 nm−1 are physically relevant. On the other
hand, c was chosen as approximately half of the interlayer
spacing for Al along the (111) direction, while tz was deter-
mined by the values of the Fermi k-vector and Fermi velocity
for Al, kF = 17.5 nm−1 and vF = 2.02 × 106 m/s. Note that
this gives a Fermi energy εF = 18.7 eV, larger than the actual
value for Al. A more detailed discussion of this parameter
choice is provided in the next section.

III. NUMERICAL RESULTS: THE INTERFACE GREEN’S

FUNCTION OF A THIN SC FILM

In this section, we calculate numerically the interface
Green’s function G̃ of a thin SC film based on the theoretical
model described above. We focus on the “relative amplitude”
g̃, which plays the key role in the superconducting proxim-
ity effect, determining the induced pairing potential and the
proximity-induced energy renormalization (also see Sec. IV),
and investigate its dependence on the relevant quantities,
including the film thickness. The clean case, which clearly
illustrates the major problem associated with the Fermi sur-
face mismatch and the quantization of the transverse modes,
is discussed in Sec. III A; the effect of surface disorder is
investigated in Sec.III B.

A. The clean case

For a clean SC film, the relative amplitude g̃(ω, ε) of the
interface Green’s function can be determined using Eqs. (12)–
(15). Focusing on zero frequency, ω = 0, and taking into
account the fact that the SC states relevant to the proxim-
ity effect have small in-plane energy contributions (εnxny

∼
1–5 meV), we calculate the quantity 〈̃g(0)〉ε representing the
zero frequency Green’s function amplitude averaged over
energy within the range −10 meV < ε < 10 meV. The de-
pendence of Log〈̃g(0)〉ε on the film thickness Lz is shown
in Fig. 2(a). Note that, except for two specific Lz values, the
(average) interface Green’s function amplitude is 1–3 orders
of magnitude smaller than the corresponding quantity for a
bulk SC. Furthermore, g̃ varies strongly (by up to four orders
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FIG. 2. (a) Dependence of the averaged Green’s function “ampli-
tude”, g̃, on the SC film thickness, Lz, for a clean system. The relative
amplitude g̃(0, ε) was averaged over an energy window −10 meV <

ε < 10 meV. Note that Log[. . . ] represents the logarithm with base
10. The distance δLz ≈ 2.34 Å between two successive data points
corresponds to one atomic Al (111) layer. Note that SC films with
Lz ≈ 6.34 nm and Lz ≈ 9.4 nm have an (average) interface Green’s
function larger that the infinitely thick SC (by about one order of
magnitude), while all other thicknesses correspond to values of the
interface Green’s function 1-3 orders of magnitude smaller that the
bulk SC value. (b) Energy of the transverse band minimum, εnz

− εF

[Eq. (10)], closest to the Fermi energy as a function of the film
thickness. Note that the maxima in (a) correspond to transverse
bands having their minima very close to the Fermi energy. The
results for c = 0.117 Å (yellow dots) were shifted with respect to
those corresponding to c = 1.17 Å (red dots) by δLz = −0.47 nm
and δεnz

= 12.5 meV.

of magnitude) when the film thickness changes by a single
atomic layer. This behavior is due to the absence of low-
energy in-plane modes (nx, ny) with |ε| � 10 meV as a result
of the large interband spacing of the transverse modes nz,
εnz+1 − εnz

∼ 200–700 meV for the Lz range considered here.
These low-energy (in-plane) modes have total energies right
above the minima of the transverse bands, which are typically
far from the Fermi energy, as shown in Fig. 2(b). Furthermore,
the energies of the transverse band minima change (typically
by 100–200 meV) when the film thickness varies by one
atomic layer, which explains the strong dependence of g̃ on the
film thickness. The results in Fig. 2 clearly illustrate the fun-
damental problem of proximity-inducing superconductivity
using thin, clean SC films: confinement-generated quantiza-
tion (along the z direction) is inconsistent with the presence
of low-lying in-plane modes, except for specific values of the
film thickness. Realizing (clean) SC films that have low-lying
modes requires exquisite fine tuning (and luck, which is less
likely to happen in practice).

Before continuing our analysis we address a technical
aspect alluded to in the previous section. The hopping in
the z direction is determined by the lattice constant, c, and
the Fermi velocity, vF , of Al (rather than the Fermi energy,
εF ). Consequently, for c = 1.17 Å, the resulting Fermi en-
ergy is larger that the corresponding Al value. This issue

can be addressed by using a finer grid. For example, with a
lattice constant c = 0.117 Å one can practically match both
the Fermi velocity and the Fermi energy of Al and one gets
εF ≈ 11.7 eV. Of course, this involves a significant numer-
ical cost. However, the results in Fig. 2 show that paying
this numerical cost is not necessary. More specifically, since
the two sets of parameters (corresponding to red and yellow
dots in Fig. 2) are characterized by the same vF value, they
generate similar interband spacings near the Fermi energy, the
only difference being an overall shift by δLz = −0.47 nm and
δεnz

= 12.5 meV of the yellow points. In other words, as long
as we are interested in semiquantitative results (e.g., that the
probability of obtaining relative amplitudes g̃ of order one or
larger within the range of film thicknesses 4 < Lz < 15 nm
is about 7%), without focusing on specific quantitative in-
formation (e.g., the exact values of Lz that generate large g̃),
using a larger c value is physically consistent and numerically
convenient.

Next, we characterize the dependence of the zero-
frequency relative amplitude g̃ on the film thickness for a
SC film of finite width Ly = 51.3 nm, which corresponds to
Ny = 42 lattice sites. Note that the energy window (±10 meV)
used for the averaging in Fig. 2 is somewhat arbitrary. Instead,
we focus now on the wave vector range [0, kmax] that is rele-
vant for the low-energy physics in SM-SC hybrid structures.
Consider, for concreteness, that the semiconductor material is
InAs. Assuming that multiple confinement-induced SM bands
are occupied, the Fermi k-vector associated with the lowest-
energy occupied band is of the order of 0.25 nm−1, which
corresponds to a Fermi energy ∼100 meV. This energy scale
corresponds to (at most) 4–5 occupied ny modes. For a clean
system, the relative amplitude associated with the transverse
mode ny and k-vector k (along the x direction) is

g̃ny
(ω, k) = g̃(ω, εny

+ εk ), (17)

where εny
= 2t{1 − cos[nyπ/(Ny + 1)]} and εk = h̄2k2/2m.

Note that, due to the difference in the effective mass, the SC
energy corresponding to kmax is εkmax ≈ 2.4 meV, i.e., much
smaller than the corresponding SM energy. Also, we note that
Majorana physics is associated with the top occupied band
and is characterized by SM energy scales of up to a few meV.
In turn, this implies characteristic wave vectors smaller than
about 0.06 nm−1.

The thickness dependence of the relative amplitude av-
eraged over k ∈ [0, kmax], 〈̃gny

(0)〉k , for the lowest five ny

modes is shown in Fig. 3. Note that the curves correspond-
ing to different ny values are shifted, for clarity. Also note
the semiquantitative agreement with the results in Fig. 2(a)
and the relatively weak dependence on ny. We identify an
“optimal regime” characterized by g̃ values of order one,
specifically 0.316 < 〈̃gny

(0)〉k < 3.16 (green dots in Fig. 3).
In this regime, the proximity effect induced by the thin film is
comparable to that induced by a bulk superconductor. Lower
values of g̃ (black dots in Fig. 3) are likely to generate a
weak superconducting proximity effect, while larger values
(red dots in Fig. 3) are likely to put the hybrid system into
the strong coupling regime. None of these two scenarios is
optimal for generating robust topological superconductivity.
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FIG. 3. Dependence of the k-averaged g̃ny
(0) on the SC film

thickness, Lz, for a clean system of finite width Ly = 51.3 nm. The
relative amplitude g̃ny

(0, k) for the lowest five ny modes was averaged
over the k range 0 � k � 0.25 nm−1. Note that the corresponding
curves are shifted by 3(ny − 1), for clarity. Amplitudes smaller than
1/

√
10 (i.e., Log〈̃gny

(0)〉k < −0.5) are marked by black dots, while

amplitudes larger than
√

10 (i.e., Log〈̃gny
(0)〉k > 0.5) are marked

by red dots. The green dots correspond to “optimal” amplitudes,
0.316 < 〈̃gny

(0)〉k < 3.16, which are comparable to the amplitude
corresponding to an infinitely thick superconductor. Note that the
optimal regime can only be realized for a specific film thickness,
Lz ≈ 6.34 nm.

To illustrate the dependence of g̃ny
(ω, k) on the wave vector

k, we focus on three specific film thickness values: Lz =
6.3 nm, which corresponds to the “optimal regime,” Lz =
8 nm (low g̃ regime), and Lz = 9.4 nm (large g̃ regime). In
the low g̃ regime (middle panel in Fig. 4), there is almost no
dependence on k and ny, but the Green’s function amplitude is
about two orders of magnitude lower than the corresponding
bulk value, which makes the realization of a strong-enough
proximity effect extremely challenging. By contrast, the large
g̃ regime (bottom panel in Fig. 4), is characterized by a strong
dependence on k and ny. Note that we use Log[̃g] (instead of
g̃) to conveniently capture this dependence. Also note that the
k values corresponding to Majorana physics (k � 0.06) are in
the large g̃ regime (red lines) for all five ny bands. Finally,
the optimal regime (top panel in Fig. 4) is characterized by
a weak dependence on k and ny, but it is only accessible in
films of thickness Lz = 6.3 nm. We emphasize that deviations
from this value by one atomic layer automatically put the sys-
tem into the low g̃ regime. Furthermore, as discussed above,
changing the values of the model parameters (in particular
the lattice constant c) can result in small shifts of the nz

modes (see Fig. 2), which may make the optimal regime only
partially accessible (for certain low-ny modes) or completely
inaccessible within the Lz range considered here.

We conclude that generating a robust superconducting
proximity effect by using a clean, thin SC film would require
fine tuning the film thickness with atomic precision and, ul-
timately, sheer luck. In addition, the presence of an atomic
step would automatically result in a highly inhomogeneous
hybrid system, with regions of different SC film thickness

FIG. 4. Dependence of the relative amplitude g̃ny
(ω, k) on the

wave vector k (along the x direction) for three different film thick-
nesses. (Top) Optimal regime. Note that g̃ny

(ω, k) has a moderate,
smooth dependence on k and ny. The curves corresponding to dif-
ferent transverse modes are shifted by ny − 1, for clarity. (Middle)
Low g̃ regime. Note that g̃ny

(ω, k) is almost independent on k and
ny. The curves are shifted by 0.02(ny − 1). (Bottom) Large g̃ regime.
Note the very strong dependence on k and ny (by up to two orders
of magnitude). The curves are shifted by 2.5(ny − 1). The green
segments are in the optimal regime (̃gny

< 3.16) while red lines
correspond to g̃ny

> 3.16.

(e.g., along a proximitized SM wire) being characterized by
strengths of the proximity effect that differ by 1–3 orders
of magnitude. This behavior is generated by the Fermi sur-
face mismatch problem in combination with the strong finite
size quantization of the transverse modes and results in the
practical impossibility of inducing a robust, well-controlled
proximity effect using clean thin SC films.

B. Superconducting film with surface disorder

Our next objective is to investigate the effect of SC disor-
der on the interface Green’s function. Since the presence of
disorder breaks translation symmetry and relaxes the require-
ment of in-plane momentum conservation across the SC-SM
interface, one expects a disorder-induced enhancement of
the (typically small) values of g̃. Indeed, using a simplified
2D disorder model consisting of a random onsite potential
V (r) = V (x, z), Ref. [51] reports that “strong surface disor-
der lead(s) to a small enhancement of the proximity gap.”
A disorder-induced enhancement of the induced SC gap is
also found in Refs. [52,53], based, again, on a simplified 2D
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random potential model with V (r) = V (y, z). It is also
claimed (but not shown explicitly) that, “provided it is
sufficiently strong, (disorder) removes the nonmonotonic de-
pendence on the thickness of the superconducting layer.” In
Sec. III B 1, we investigate in detail the random onsite poten-
tial model and we find it somewhat unsatisfactory, in the sense
that, for reasonable values of the disorder potential amplitude,
this type of disorder does not eliminate the strong dependence
of the interface Green’s function on the film thickness (i.e.,
the variation of g̃ by 1–3 orders of magnitude for changes of
Lz by one atomic layer). In Sec. III B 2, we introduce a 3D
model of surface roughness that addresses this issue.

In the presence of disorder, the interface Green’s function
has the general form given by Eq. (16). It is convenient to
rewrite the matrices g̃ and ṽ using the (in-plane) eigenmodes
for the clean system,

ψnxny
(i) =

2√
(Nx +1)(Ny+1)

sin
nxixπ

Nx +1
sin

nyiyπ

Ny+1
, (18)

where i = (ix, iy) labels the position of a lattice site within the
x-y plane. The corresponding matrix elements are defined as

g̃nxny,n′
xn′

y
=

∑

i, j

ψnxny
(i) g̃i j ψn′

xn′
y
( j). (19)

A similar expression defines the matrix elements of ṽ in the
mode basis. Note that g̃nxny,n′

xn′
y
, which is diagonal in

the clean limit, has nonzero off-diagonal matrix elements in
the presence of disorder. However, to understand the effect
of disorder it is enough to focus on the diagonal contribu-
tions, which also facilitates the comparison with the clean
case. For the diagonal elements we will use the simplified
notation g̃ny

(ω, kx ) ≡ g̃nxny,nxny
(ω), with kx = nxπ/(Nx + 1)a.

Note that for a clean system in the long wavelength limit this
quantity becomes identical with the relative amplitude defined
by Eq. (17).

1. Onsite random potential model

We first consider a SC film covered with a 2 nm thick
amorphous oxide layer. Following Refs. [52,53], we model the
oxide by adding an onsite disorder potential Vdis(i) that takes
random values in the range [−Ud ,Ud ] for izc � 2 nm. Note
that the disorder potential has zero average and is spatially
uncorrelated,

〈Vdis(i)Vdis( j)〉 =
U 2

d

3
δ(i − j), (20)

where 〈. . . 〉 represents averaging over disorder realizations.
Also note that the actual strength of the disorder potential
depends on both the amplitude Ud and the lattice constants, so
that different models correspond to the same disorder strength
if the quantity Kd = ca2U 2

d has the same value. Consider,
for example, a disorder potential with amplitude Ud = 1 eV
on a lattice with parameters a = c = 0.1 nm, which corre-
sponds to Kd = 1000 meV2 nm3, similar to the values used
in Refs. [52,53]. The equivalent disorder for a system with
a = 0.38 nm and c = 0.117 nm, which correspond to a vol-
ume a2c approximately equal to the volume of the primitive
cell of Al, has an amplitude Ud ≈ 243 meV. We note that
having significantly smaller lattice constants (i.e., choosing a

FIG. 5. Thickness dependence of the diagonal relative amplitude
g̃ny

(ω, k) averaged over k ∈ [0, 0.25 nm−1] and over 50 different
disorder realizations for an infinitely long SC system with Ly =
50.2 nm and 2D random potential disorder within 2 nm from the
surface. The film thickness Lz includes the 2 nm oxide layer. The
curves corresponding to the lowest five ny modes are shifted by
3(ny − 1), for clarity. Note the rather weak dependence on ny. The
lattice parameters are a = 0.38 nm and c = 0.117 nm, which implies
Kd ≈ 1060 meV2 nm3 (top) and Kd ≈ 4240 meV2 nm3 (bottom).
Adding onsite disorder enhances the relative amplitude g̃ of the
interface Green’s function (also see Fig. 6) and slightly alleviates its
strong thickness dependence, but does not eliminate it.

finer discretization) would generate a random potential with
strong variations on length scales much smaller than the size
of the primitive cell, which is rather unphysical.

We start with a simplified 2D model that assumes a trans-
lation invariant system along the x direction, i.e., we consider
Vdis(i) = Vdis(iy, iz ). We calculate the relative amplitude
g̃ny

(ω, k) averaged over k, with 0 � k � 0.25 nm−1, and over
50 different disorder realizations. The results are shown in
Fig. 5. Comparison with Fig. 3 (the clean case) clearly shows
that the presence of disorder enhances the relative amplitude
g̃ of the interface Green’s function and, consequently, the
strength of the superconducting proximity effect induced by
the thin SC film. Note, however, that despite this enhancement
a disorder potential with Kd ≈ 1060 meV2 nm3 (top panel in
Fig. 5), which is similar to the effective disorder strength used
in Refs. [52,53], does not eliminate the strong dependence
of g̃ on the film thickness, Lz. In particular, one can still
notice variations of g̃ by up to three orders of magnitude
when Lz changes by one atomic layer. This issue, which we
dubbed the “fundamental problem of proximity-inducing
superconductivity using thin, clean SC films,” persists even
when we double the amplitude of the random onsite potential
to Ud = 500 meV (bottom panel in Fig. 5), although it is man-
ifestly less dramatic than in the clean case (see Fig. 3). A more
detailed analysis of the dependence of the amplitude g̃ on the
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FIG. 6. Enhancement of the average amplitude g̃ in the presence
of disorder. The quantity 〈〈̃g〉〉 is the average relative amplitude
shown in Fig. 5 further averaged over the transverse modes ny = 1, 5,
while 〈̃g0〉 is the relative amplitude of a clean system (with the same
dimensions as the corresponding disordered wire) averaged over
k ∈ [0, 0.25 nm−1] and over the transverse modes ny = 1, 5 (also see
Fig. 3). The red dots correspond to disorder-induced enhancements
by factors smaller than 2.

disorder potential is provided in Appendix A (see Fig. 19).
In addition, the results in Appendix A show explicitly that
(i) reducing the in-plane lattice constant (to a = 0.285 nm)
while correspondingly increasing the amplitude Ud so that
Kd remains constant generates an “equivalent” disorder
potential (see Fig. 20) and (ii) reducing the thickness of the
oxide layer (to 1 nm) slightly reduces the disorder-induced
enhancement of g̃ but does not affect significantly its
thickness dependence (Fig. 21). Finally, we find that the
strong thickness dependence of the interface Green’s function
can only be eliminated if we consider extremely strong,
unphysical disorder potentials, e.g., Ud = 10 eV in Fig. 22.

To better quantify the disorder-induced enhancement of the
interface Green’s function amplitude, we compare the average
relative amplitude g̃ in the presence of disorder with the aver-
age relative amplitude g̃ of the clean system. The parameters
for the disordered system are the same as in Fig. 5. In addition
to averaging over k and disorder realizations, we also average
g̃ over the lowest five ny modes. For the clean system, the
parameters are practically the same as in Fig. 3, except for
a slightly different width or the wire, Ly = 50.2 nm, which
coincides with the value in Fig. 5. Again, in addition to the
k-average, we also average over the lowest five ny modes. The
dependence of the averaged disorder-induced enhancement on
the film thickness is shown in Fig. 6. For Ud = 250 meV, the
presence of disorder enhances the relative amplitude of the
interface Green function by a factor that typically ranges from
2 to 5 (top panel in Fig. 6). Stronger disorder, Ud = 500 meV
(lower panel), results in a larger enhancement of g̃ (typically
by a factor 5–10), except for Lz = 9.4 nm, when the clean
system is in the large g̃ regime (see Fig. 3). We note that, in
general, the disorder-induced enhancement is significant, but
definitely not “dramatic,” particularly if we take into account
the small typical values of g̃ (of order 10−3–10−1) that char-
acterize the clean system (see Fig. 3).

The natural question is whether the features described
above are determined by our use of a simplified 2D dis-
order model, rather than being generic properties of the

FIG. 7. (Top) Thickness dependence of the average relative am-
plitude g̃ for a small finite system in the presence of 3D onsite random
potential disorder of amplitude Ud = 250 meV within 2 nm from
the surface. The finite system has dimensions Lx = 22 nm and Ly =
20.5 nm and is defined on a lattice with parameters a = 0.38 nm
and c = 0.117 nm, which implies Kd ≈ 1060 meV2 nm3, similar to
the top panel of Fig. 5. The curves corresponding to the lowest two
transverse modes, ny = 1 and ny = 2 (shifted, for clarity), represent
the relative amplitude averaged over the lowest two nx modes and
over 10 disorder realizations. (Bottom) Comparison between the
average relative amplitude g̃ of the system with 3D random potential
disorder (blue dots) and that of the system with 2D random potential
disorder shown in the top panel of Fig. 5 (orange dots). Note that
〈〈̃g(0)〉〉 is also averaged over ny.

(full 3D) onsite random potential model. In particular, is
the disorder-induced enhancement affected by the 2D nature
of the disorder potential? To address this question, we con-
sider now a finite system with Lx = 22 nm and Ly = 20.5 nm
having random onsite disorder of amplitude Ud = 250 meV
within a 2 nm layer near the surface, i.e., for 1 � iz � 17.
We calculate the diagonal elements gny

(ω, kx ) averaged over
kx � 0.28 nm−1, which implies nx � 2, and over 10 different
disorder realizations. The results are shown in Fig. 7. Note the
similarities with the results based on the 2D disorder model
corresponding to the same effective disorder strength, Kd ≈
1060 meV2 nm3, which are shown in the top panel of Fig. 5. In
the bottom panel of Fig. 7, we directly compare the diagonal
relative amplitudes averaged over k (kx), ny, and disorder
realizations for the two disorder models. Based on the semi-
quantitative agreement between the two sets of results, we
conclude that 2D random potential disorder has essentially the
same effect on the (average) interface Green’s function ampli-
tude as 3D random potential disorder. We emphasize that the
numbers of nx and ny modes explicitly considered in the cal-
culation depend on the size of the system trough the condition
that the corresponding wave vectors, kx(y) = nx(y)π/Lx(y), be
less than ∼0.3 nm−1. We also note that considering a rela-
tively small system (Lx = 22 nm, Ly = 20.5 nm) is physically
meaningful because in the presence of disorder the Green’s
function G̃(ω; i, j) becomes short ranged. This important fea-
ture will be discussed in detail in the next section.

Our conclusion, so far, is that the presence of disorder typi-
cally enhances the amplitude of the interface Green’s function
and, consequently, the proximity effect induced by the thin
SC film. However, adding an onsite disorder potential does
not eliminate the strong dependence of the interface Green’s

085429-8



PROXIMITY-INDUCED SUPERCONDUCTIVITY GENERATED … PHYSICAL REVIEW B 106, 085429 (2022)

function on the film thickness, Lz, which results in variations
of g̃ by up to three orders of magnitude when Lz changes by
one atomic layer. We note that extremely large values of the
random potential amplitude (Ud ∼ 10 eV) would solve this
issue and would generate an interface Green’s function that
is practically indistinguishable from that generated by a bulk
superconductor (see Appendix A), but assuming such large
amplitudes is physically problematic. Finally, note that, given
a certain disorder strength, the 3D disorder model does not
generate more enhancement than the simplified 2D model.

2. Surface roughness

The onsite disorder model investigated in Sec. III B 1
is rather unsatisfactory. First, since the surface oxide has
a large gap [54], one expects the amplitude of the wave
function in this region to practically vanish, which, in turn,
completely suppresses the effect of the random potential Vdis.
Most importantly, the model cannot explain the absence of a
strong thickness dependence of the interface Green’s function,
which is associated with the confinement-induced quanti-
zation along the z direction. Here, we consider a different
disorder model based on the assumption that the surface of
the superconductor (or the interface with the insulating oxide)
has roughness corresponding to variations of Lz by a few
atomic layers, e.g., |δLz| < 0.23 − 0.35 nm corresponding to
variations by ±(1–1.5) atomic layers. The technical details as-
sociated with the modeling of surface roughness are described
in Appendix B. In essence, we generate a random profile
with controlled in-plane and transverse length scales that lays
within the top few layers of the thin SC film. The lattice points
that are above this profile (i.e., inside the vacuum or oxide
region) are made inaccessible by defining a potential larger
than the Fermi energy. The potential below the random profile
(i.e., inside the superconducting Al) is zero. This defines a
rough surface (with controllable parameters) that will generate
electron scattering and mixing of “clean” quantum modes.
The effects of the rough surface on the interface Green’s
function are investigated below.

We begin with the thickness dependence of the average
relative amplitude of the interface Green’s function in the
presence of surface roughness. In particular, we consider a
finite SC film of dimensions Lx = 1.025 μm, Ly = 51.3 nm,
and different values of Lz in the presence of the specific
surface roughness realization shown in Fig. 1(c) and we calcu-
late the corresponding relative amplitude g̃ny

(0, kx ) averaged
over kx = nxπ/Lx as a function of the film thickness Lz. The
results are shown in Fig. 8. The striking difference between
these results and the clean case in Fig. 3, or the results in
Sec. III B 1 (see, e.g., Figs. 5 and 7) is the absence of
a strong Lz dependence within significant thickness ranges
(e.g., 8.46 � Lz � 10.1 nm). Moreover, within these ranges,
the relative amplitude is in the optimal regime, i.e., it has
values comparable with those corresponding to a bulk super-
conductor. This is one of the key results of this study, showing
explicitly that surface disorder (in this case surface roughness)
can result in the interface Green’s function of the thin SC film
being practically equivalent to the interface Green’s function
of a bulk SC over significant thickness ranges. In other words,
the presence of such surface disorder solves the “fundamental

FIG. 8. Dependence of the average relative amplitude, 〈̃gny
(0)〉kx

,
on the SC film thickness, Lz, for a system with surface roughness
corresponding to the specific realization shown in Fig. 1(c). The wire
has length Lx = 1.025 μm and width Ly = 51.3 nm. The relative
amplitude for the lowest five ny modes was averaged over kx , with
0� kx � 0.25 nm−1, which corresponds to nx � 82. The correspond-
ing curves are shifted by 3(ny − 1), for clarity. Note the absence of
a strong thickness dependence characteristic of the clean case (see
Fig. 3), which was still present in the onsite random potential model
(Figs. 5 and 7). The values of 〈̃gny

(0)〉kx
are in the optimal regime

within three relatively wide thickness ranges. The corresponding
disorder-induced enhancement of g̃ is dramatic, by up to three orders
of magnitude, except for Lz = 9.4 nm, which corresponds to the large
g̃ regime in a clean system (see Fig. 3), when the relative amplitude
is actually suppressed by the surface disorder.

problem” of proximity-inducing superconductivity using thin
SC films. We note that the surface roughness used in the
calculation was not “optimized” to minimize or eliminate the
low-̃g “windows” (black dots in Fig. 8).

For completeness, we also consider the explicit depen-
dence of the relative amplitude on the “wave vector” kx =
nxπ/Lx, which is the correspondent of the dependence shown
in Fig. 4 for a clean system. Specifically, Fig. 9 shows the
dependence of the (diagonal) relative amplitude g̃ny

(ω, kx ) on
the “wave vector” kx for a system with surface roughness hav-
ing the same parameters as in Fig. 8. Note that, except some
small disorder-induced fluctuations, the overall dependence
on kx (i.e., on the longitudinal mode nx) and on ny is weaker
than the dependence shown in the top panel of Fig. 4, which
corresponds to the “optimal regime” of a clean SC film (and
strikingly weaker that the dependence shown in the bottom
panel of Fig. 4). In particular, for Lz = 6.6 nm (top panel)
and Lz = 9.4 nm (bottom panel), which are thickness values
within the “optimal ranges” shown in Fig. 8, the interface
Green’s function has roughly the same value for all ny and kx

modes and, consequently, the strength of the superconducting
proximity effect affecting different low-energy modes in the
semiconductor is solely determined by the transverse profile
of these modes, i.e., by their amplitude at the SM-SC inter-
face. If, for example, these amplitudes are comparable, the
corresponding induced gaps will be comparable, as well. In
other words, in-plane wave vector matching plays no role in
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FIG. 9. Dependence of the relative amplitude g̃ny
(ω, kx ) on the

“wave vector” kx = nxπ/Lx for a system with surface roughness
having the same parameters as in Fig. 8 and three different values
of the film thickness, Lz. Note that kx � 0.25 nm−1 corresponds to
the longitudinal modes with nx � 82. The dependence on kx is char-
acterized by small (disorder-induced) fluctuations, but overall it is
rather weak.

the proximity effect induced by the SC thin film with surface
roughness. As a minor point, we note that surface disorder
does not always enhance g̃. For Lz = 9.4 nm, the presence of
surface roughness has reduced the value of g̃ny

(ω, kx ) by up
to two orders of magnitude, as the comparison between the
lower panels in Figs. 4 and 9 shows.

Next, we switch gears and focus on the real space proper-
ties of the relative amplitude g̃(ω; i, j). In particular, we focus
on the dependence on the longitudinal variables x = ixa and
x′ = jxa of the matrix elements that are diagonal in the ny

modes,

g̃ny
(ω; ix, jx ) =

∑

iy, jy

ψny
(iy )̃g(ω; i, j)ψny

( jy), (21)

where ψny
(iy) is the y component of the eigenmodes of

the clean system given by Eq. (18). We start with the de-
pendence on the longitudinal “shift” δx = |x′ − x|, which
characterizes the nonlocality of the interface Green’s function.
Figure 10 shows the dependence of the off-diagonal elements
g̃ny

(ω; ix, jx ) on the longitudinal distance δx = |ix − jx|a for
the mode ny = 1 and three different values of the film thick-
ness. The sharp decay with a characteristic length scale of
a few nanometers indicates that, in the presence of disor-
der, the interface Green’s function becomes short ranged.

FIG. 10. Dependence of the off-diagonal relative amplitude
|̃gny

(ω; x, x′)| on the longitudinal distance δx = |x′ − x| between two
points. The quantity was averaged over all positions x along the wire.
Note the sharp decay of g̃ with increasing δx, which reveals that
in the presence of surface disorder the interface Green’s function
becomes short ranged (i.e., quasilocal). Also note that the charac-
teristic decay length is significantly smaller than the width of the
wire (Ly = 51.3 nm). We have ω = 0, ny = 1, and three different film
thicknesses, all other parameters being the same as in Fig. 8.

Consequently, we can accurately calculate the (quasilocal)
interface Green’s function near a certain point x0 by only
considering explicitly a certain “patch” centered on x0 (rather
than simulating the whole system), as long as the “patch” is
large-enough as compared to the decay length of the inter-
face Green’s function. This is a key result that enables us
to simulate large systems by “covering” them using multi-
ple patches of numerically manageable size. The details of
our patching approach are provided in Appendix C. Note
that the original tight-binding model used in the calcula-
tions leading to the results shown in Figs. 8–12 is defined
on a lattice that has up to 3.67 × 106 points. We efficiently
solve this rather challenging numerical problem using the
recursive Green’s function method (see Sec. II) and the
patching approach, which dramatically reduce the numerical
cost.

Now we address the following fundamental question:
How is surface disorder “projected” onto the interface? In
particular, focusing on the low transverse modes ny � 5,
we investigate the dependence of the relative amplitude
g̃ny

(ω; x, x + δx) on the position x along the wire (for fixed
values of δx). We emphasize that addressing this problem
requires a 3D disorder model, as simplified 2D models with
disorder potentials V (r) = V (y, z) (see, e.g., Sec. III B 1)
involve translation invariance along the longitudinal (x) di-
rection. The dependence of the local (i.e., δx = 0) relative
amplitude on the position along the wire for systems of var-
ious thicknesses is shown in Fig. 11. For Lz = 5.2 nm (top
panel), the impact of surface roughness is minimal, which is
consistent with the result in Fig. 8 showing a weak disorder-
induced enhancement of g̃ for this value of the film thickness
(also compare with Fig. 3). On the other hand, for all values of
Lz that correspond to a significant disorder-induced enhance-
ment (or reduction for Lz = 9.4 nm) of the relative amplitude
we notice large position-dependent variations of g̃2(0; x, x) by
up to three orders of magnitude. We note that the other ny

085429-10



PROXIMITY-INDUCED SUPERCONDUCTIVITY GENERATED … PHYSICAL REVIEW B 106, 085429 (2022)

FIG. 11. Onsite relative amplitude g̃ny
(ω; x, x) as a function of

the position x along the wire for a system with parameters as in
Figs. 8–10 and different film thicknesses. Note the different scale
in the top panel. For Lz = 5.2 nm (top), the impact of surface rough-
ness is minimal, which is consistent with the corresponding weak
disorder-induced enhancement of g̃ shown in Fig. 8. For all other val-
ues of Lz, we notice huge position-dependent variations of the local
relative amplitude (by up to three orders of magnitude). The results
correspond to ny = 2 and ω = 0. A similar behavior characterizes all
relevant ny modes.

FIG. 12. Relative amplitude g̃2(0; x, x + δx) as a function of the
position x along the wire for a system with parameters as in Figs. 8–
10 and thickness Lz = 9.4 nm. The values of the local amplitude (top
panel, δx = 0) are the same as in the corresponding panel of Fig. 11.
Note that g̃ has large position-dependent fluctuations for all values
of δx, but there is an overall decay of the relative amplitude with
increasing δx, consistent with the results in Fig. 10.

modes are characterized by a similar behavior, but the details
(e.g., specific positions and heights of the maxima) are in
general different.

This general behavior also characterizes the off-diagonal
components corresponding to δx �= 0. The large position-
dependent fluctuations characterizing the nonlocal relative
amplitudes, g̃ny

(ω; x, x + δx), for a film of thickness Lz =
9.4 nm are illustrated in Fig. 12. Note, however, that there is an
overall decay of the (average) nonlocal relative amplitude with
increasing δx, consistent with the results in Fig. 10. We point
out that this type of strong position-dependent fluctuations
illustrated in Figs. 11 and 12 also characterize the quantity
ṽny

(ω; x, x + δx). Hence, we conclude that the presence of
surface roughness dramatically enhances the (typically small)
interface Green’s function of a thin SC film and suppresses
its strong thickness dependence over significant Lz windows,
but, on the other hand, generates large position-dependent
fluctuations of G̃. The impact of these fluctuations on the
stability of induced topological superconductivity (and the
correspondent Majorana zero modes) will be addressed in
the next section. We note that these key properties of the
interface Green’s function in the presence of surface disorder
are reinforced by the additional results presented in Ap-
pendix D, which correspond to a different surface roughness
realization.

So far, we have characterized the dependence of the relative
amplitude g̃i j (ω) of the interface Green’s function defined by
Eq. (16), or its representations in terms of in-plane eigen-
modes (nx, ny) [see Eq. (18)] on position and/or eigenmode
index. It is worth noting again that the quantity ṽi j (ω),
which describes the position and frequency dependence of
the second term in Eq. (16), shares with g̃ the key properties
discussed above. In particular, for a clean system the (average)
ṽ values depend strongly on the film thickness due to the
confinement-induced quantization of the nz modes. This is ex-
pected based on our previous discussion of g̃ and a comparison
of the expressions for γ and ζ (which are proportional to g̃

and ṽ, respectively) given by Eqs. (8) and (9). Furthermore,
including surface disorder alleviates or eliminates this strong
thickness dependence, but generates a strong dependence on
the position along the wire, as discussed in the context of
Figs. 11 and 12. The remaining question concerns the fre-
quency dependence of both g̃ and ṽ. To address this question,
we consider a patch of the SC film with surface roughness of
dimensions �x × �y = 58.6 × 51.3 nm and calculate the posi-
tion dependence of g̃ny

(ω; x, x + δx) and ṽny
(ω; x, x + δx) for

different values of ω < �0. The results are shown in Fig. 13.
Remarkably, the dependence on frequency is very weak as
long as ω is not too close to the superconducting gap edge
and is practically negligible for ω � �0/2. In general, this
is not the case for a clean system, except in the large Lz

(bulk) limit, when g̃ and ṽ become frequency-independent, as
discussed in Sec. II. The quasi-independence of the functions
g̃i j (ω) and ṽi j (ω) on the frequency (for values of ω not too
close to the gap edge) illustrated in Fig. 13 strengthens our
observation that, in the presence of surface roughness, the
interface Green’s function of a thin SC film is practically
equivalent to the corresponding quantity associated with a
bulk superconductor, except for the disorder-induced position-
dependent fluctuations.
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FIG. 13. (Top) Relative amplitude g̃3(ω; x, x + δx) as a function
of position x for two values of δx and four different frequencies. (Bot-
tom) Same dependence for the quantity ṽ3(ω; x, x + δx). Note that
the frequency dependence is negligible for ω � �0/2 ≈ 0.16 meV.
The system is a patch of the wire with surface roughness shown in
Fig. 1(c) of dimensions �x × �y = 58.6 × 51.3 nm.

IV. PROXIMITY-INDUCED DISORDER

The analysis presented in the previous section has revealed
that the presence of surface disorder, in particular surface
roughness, has complementary effects on the properties of
interface Green’s function. On the one hand, it reduces or
eliminates the strong dependence on the film thickness and
generates an interface Green’s function with properties similar
to those characterizing a bulk superconductor. In other words,
it solves the “fundamental problem” of inducing superconduc-
tivity using a thin SC film. On the other hand, the presence
of surface disorder is “projected” at the interface generating
strong position-dependent fluctuations of the Green’s func-
tion. The next natural question concerns the effect of these
fluctuations on the superconductivity proximity-induced by
the thin film. What is the effect of the proximity-induced
effective disorder generated by the SC film? For concreteness,
we focus on a Majorana-type hybrid wire consisting of a
semiconductor (SM) nanowire proximity coupled to a thin SC
film [see, e.g., Fig. 1(b)]. The key quantity describing the low-
energy properties of the hybrid system is the semiconductor
Green’s function

GSM(ω) = [ω − HSM − �SC(ω)]−1, (22)

where HSM is the Hamiltonian describing the SM subsystem.
For simplicity, we assume that the interband spacing between
the relevant transverse SM bands is large, so that we can
work within the independent band approximation [55]. In this
limit, the relevant low-energy physics is associated with a
single band, which can be modeled using the 1D effective

Hamiltonian

HSM =
∑

i,σ

[−tsm(â†
iσ âi+1σ + H.c.) + (ε0 + μ)â†

iσ âiσ ]

+
α

2

∑

i

[(â†
i↑âi+1↓ − â

†
i↓âi+1↑) + H.c.]

+�
∑

i

(â†
i↑âi↓ + H.c.), (23)

where tsm is the amplitude of the nearest-neighbor hopping,
ε0 = 2tsm, μ is the chemical potential, α is the Rashba spin-
orbit coupling parameter, and � is the (half) Zeeman splitting
generated by an external field applied along the direction of
the wire. The model is defined on a 1D lattice with lattice
constant a = 1.22 nm (same as the in-plane lattice constant
of the SC model) containing Nx = 840 points, which corre-
sponds to a wire length Lx = 1.025 μm. The values of the
model parameters were chosen to be relevant for InAs-based
structures: tsm = 1.11 eV (which corresponds to an effective
mass m∗ = 0.023m0) and αa = 250 meV Å.

The last term in Eq. (22) is a self-energy contribution
defined at the SM-SC interface and describing the proxim-
ity effect induced by the SC film after “integrating out” the
degrees of freedom associated with the superconductor. This
self-energy is proportional to the interface Green’s function of
the SC film discussed in the previous sections. For simplicity,
let us assume that the relevant SM band only couples signifi-
cantly to one ny mode, say ny = 2. Then, considering the spin
and particle-hole structure of the interface Green’s function
discussed in Sec. II, particularly Eq. (16), we have the (first
quantized) expression

�SC(ω) = −�
∑

i, j

g̃2(ω; i, j)√
�2

0 − ω2
(ωσ0τ0 + �0 σyτy)

+�
∑

i, j

ṽ2(ω; i, j)σ0τz, (24)

where σμ and τμ are Pauli matrices associated with the
spin and particle-hole degrees of freedom, respectively, and
�= πν∞

F
t̃ 2, with t̃ being an effective hopping across the

SM-SC interface. Based on our analysis in Sec. III B 2, the
frequency dependence of g̃ and ṽ is weak and, since we are fo-
cusing on the low-energy physics, we can safely neglect it and
use the values of these quantities at ω = 0. We point out that
the term proportional to �0 is responsible for the proximity-
induced pairing, while the term proportional to the frequency
ω is responsible for the proximity-induced renormalization of
all low-energy quantities [55]. Both these crucial terms are
controlled by the relative amplitude g̃2(i, j) ≡ g̃2(0; i, j). In
addition, the diagonal contributions proportional to ṽ2(i, i)
can be viewed as a proximity-induced random potential, while
the off-diagonal terms represent (random) hopping matrix el-
ements.

We emphasize that the effective coupling � depends on
materials properties of the SC (through the density of states
ν∞

F
) and on the transparency of the SM-SC interface combined

with the spatial profile of the relevant SM mode, in particular
its amplitude at the interface (through the effective hopping
t̃). On the other hand, all properties derived from the thin-film
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FIG. 14. Dependence of the density of states ρ(ω) on the chem-
ical potential and frequency/energy for two values of the Zeeman
splitting �. The effective SM-SC coupling is t̃ = 38.7 meV (� ≈
0.2 meV). For � = 0 (top), a finite gap of order 0.2 meV extends
throughout the entire μ range. For � = 1 meV the gap closes and a
near-zero energy mode emerges for μ � 1 meV. The full dependence
on the Zeeman field for μ = 0.5 meV (vertical cut) is shown in
Fig. 15.

nature of the SC, including the disorder effects, are contained
in g̃ and ṽ. Without disorder, these quantities (and particularly
g̃ ) are typically small, which practically implies the absence
of induced superconductivity. Disorder (e.g., on the SC sur-
face) enhances these quantities, but also induces effective
disorder inside the SM wire (through �SC). To evaluate the
effects of the induced disorder, we calculate the SM Green’s
function given by Eq. (22) with a self energy corresponding to
the SC interface Green’s function discussed in Sec. III B 2 for
a wire of thickness Lz = 6.6 nm. Note that the corresponding
onsite relative amplitude g̃2(i, i) is given by the red curve in
Fig. 11. Finally, we calculate the density of states (DOS) or
local the local density of states (LDOS) using the relations

ρ(ω) = −
1

π
ImTr[GSM(ω + iη)], (25)

ρ
L
(ω, i) = −

1

π
ImTr

L
[GSM(ω + iη)]ii, (26)

where Tr is the trace over position, spin, and the particle-hole
degree of freedom, while Tr

L
is the “local” trace over spin and

particle-hole variables. Note that both ρ and ρL also depend on
the control parameters μ (chemical potential) and � (Zeeman
splitting), as well as on the effective SM-SC coupling (̃t or �).

We start with a calculation of the DOS as function of
chemical potential and energy for a system with and without
Zeeman field. The results are shown in Fig. 14 for � = 0 (top
panel) and � = 1 meV (bottom panel). Note the clean induced
gap of order 0.6�0 characterizing the system in the absence
of a Zeeman field, i.e., for � = 0. The size of the induced
gap indicates that the SM-SC coupling (̃t = 38.7 meV) is in
the intermediate regime. Indeed, t̃ = 38.7 meV corresponds to
� ≈ 0.2 meV, while Fig. 9 (top panel) reveals that the low-kx

value of g̃(0, kx ) is of order 2; this implies a “total” SM-SC
effective coupling � g̃ ≈ 0.4 meV, which is comparable to
the SC gap of the parent superconductor (�0 = 0.33 meV)
placing the hybrid system in the intermediate coupling regime.
For � = 1 meV (bottom panel in Fig. 14), the gap closes and
a near-zero energy mode emerges within a finite μ range near

FIG. 15. DOS as a function of Zeeman field and energy for a
system with chemical potential μ = 0.5 meV and effective SM-SC
coupling t̃ = 38.7 meV. With increasing �, the lowest energy modes
merge into a near-zero-energy mode separated from the rest of the
spectrum by a finite quasiparticle gap. The LDOS corresponding to
� = 0.4 and 0.7 meV (vertical cuts) is shown in Fig. 16.

the bottom of the band. The low-energy mode is separated
from the rest of the spectrum by a finite quasiparticle gap.
This behavior is consistent with the emergence of induced
topological superconductivity and Majorana bound states at
finite Zeeman field.

Next, we fix the chemical potential at μ = 0.5 meV (ver-
tical cut in Fig. 14) and determine the DOS as function of
Zeeman field and energy. The spectrum shown in Fig. 15
has general features that are consistent with those expected
for a finite (relatively short) system supporting topological
superconductivity and Majorana physics. Note that the type
of behavior illustrated in Figs. 14 and 15 represents a generic
characteristic of the (minimal) Majorana model in the pres-
ence of weak (effective) disorder. This result may appear
surprising if we consider the large position-dependent fluctu-
ations of the relative amplitude g̃2 shown in Fig. 11 (red curve
corresponding to Lz = 6.6 nm). However, we should take into
account the characteristic length scale of these fluctuations,
which is significantly shorter than the characteristic length
scale associated with Majorana physics. The induced disorder
gets “averaged” over the relevant length scale resulting in
a weak effective disorder [41]. Further indication that the
effective disorder is weaker than suggested by the real space
dependence of g̃ is provided by the “Fourier transform” shown
in Fig. 9 (top panel), which is characterized by small fluctua-
tions within the relevant kx range.

To better understand the effects of weak effective disorder
we calculate the LDOS at two representative values of the
Zeeman field (marked by vertical cuts in Fig. 15). The results
are shown in Fig. 16. Let us focus on the features associated
with the two lowest energy modes shown in Fig. 15. Note that,
in the Majorana basis, these modes correspond to two pairs
of Majoranas (i.e., four Majorana modes). For � � 0.5 meV,
these modes collapse toward zero energy as we increase the
Zeeman field. Based on the results shown in the top panel of
Fig. 16, the lowest energy mode is an Andreev bound state
(i.e., a pair of overlapping Majorana modes) localized within
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FIG. 16. LDOS as a function of the position along the wire and
energy for a system with chemical potential μ = 0.5 meV, effective
SM-SC coupling t̃ = 38.7 meV, and Zeman field � = 0.4 meV (top)
or � = 0.7 meV (bottom). The highlighted features are generated by
the lowest energy modes shown in Fig. 15. In the top panel, these
features correspond to two ABSs having slightly different energies
and being localized within opposite sides of the wire. In the bottom
panel we notice a pair of Majorana modes localized near the opposite
ends of the wire and a low-energy ABS localized near the center of
the wire (arrows).

the left half of the wire, while the second-lowest mode is an
ABS localized on the right side of the wire. For � � 0.5 meV,
one mode sticks to zero energy, while the other acquires a
gap (see Fig. 15). As shown in the lower panel of Fig. 16, the
(near) zero energy mode consists of a pair of well-separated
Majoranas localized near the opposite ends of the wire, while
the finite energy mode is an ABS (i.e., a pair of overlapping
Majoranas) localized near the center of the wire. We point out
that the presence of weak disorder results in the asymmetry
of the ABS modes in the top panel (as well as other asym-
metric features in both panels) and in the localization of the
low-energy ABS in the lower panel. We emphasize that, as
a result of weak disorder, the lowest finite-energy mode (at
finite Zeeman field) is not a “bulk” state and does not couple
significantly to probes attached to the wire ends (particularly
the left end). For large-enough values of �, the well-separated
Majorana modes are protected by a finite quasiparticle gap.
However, we should remind the reader that we have not
included effects associated with the presence of an external
magnetic field in the calculation of the interface Green’s func-
tion for the SC film. These effects are expected to suppress the
parent SC gap and, implicitly, the induced pairing, eventually
driving the system into the strong SM-SC coupling regime.
As shown below, this will enhance the impact of induced
disorder.

Since the self-energy given by Eq. (24) is proportional to
�, increasing the SM-SC coupling is expected to enhance
the induced disorder. To verify this intuition, we consider
a stronger SM-SC coupling corresponding to t̃ = 50 meV,
i.e., � ≈ 0.345 meV. Note that the “total” effective coupling

FIG. 17. DOS as a function of Zeeman field and energy for a
system with chemical potential μ = 0.5 meV and effective SM-SC
coupling t̃ = 50 meV, which corresponds to � ≈ 0.345 meV. With
increasing �, the lowest energy modes merge into a zero-energy
mode and a low-gap finite energy mode. The LDOS corresponding
to � = 0.4 and 0.9 meV (vertical cuts) is shown in Fig. 18.

is now � g̃ ≈ 0.7 meV ∼ 2�0. The dependence of the cor-
responding DOS on Zeeman field and energy for a fixed
chemical potential μ = 0.5 meV is shown in Fig. 17. First,
comparison with Fig. 15 shows that, as a result of increasing
the SM-SC effective coupling, the zero-field induced gap is
slightly larger and the collapse toward zero energy of the
lowest energy modes occurs at a slightly higher value of the
Zeeman field. However, the striking difference is that, after
collapsing toward zero energy, the second lowest mode does
not acquire a gap larger than the typical interstate energy spac-
ing. In other words, the near-zero energy mode that emerges
above � ≈ 0.7 meV is no longer protected by a significant
quasiparticle gap. This already suggests that the stability of
the Majorana modes may be affected by disorder-induced
low-energy states. We note that, in practice, increasing the
SM-SC coupling from t̃ = 38.7 meV to t̃ = 50 meV can be
easily achieved using a back-gate potential that “pushes” the
electrons toward the SM-SC interface (recall that t̃ is roughly
proportional to the amplitude of the SM wave function at the
interface). This raises a serious concern regarding the practical
possibility of simultaneously controlling the chemical poten-
tial (of the SM wire) and the strength of the induced disorder.

To better understand the nature of the lowest energy modes,
we calculate the LDOS for � = 0.4 and 0.9 meV (verti-
cal cuts in Fig. 17). The results are shown in Fig. 18. For
� = 0.4 meV, the lowest energy modes are finite energy ABSs
localized near the ends of the system (top panel in Fig. 18).
The lowest energy modes at � = 0.9 meV correspond to a pair
of Majorana modes and a low-energy ABS (see bottom panel).
This is similar to the situation discussed before in the context
of Fig. 16, but with the significant difference that the energy
of the ABS is much lower. Also, notice that the Majorana
modes have finite spectral weight in the region where the
ABS is localized, which indicates that local perturbations in
this region may couple these modes. These features indicate
that the effective (proximity-induced) disorder characterizing
this system is stronger than that characterizing the system in
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FIG. 18. LDOS as a function of the position along the wire and
energy for a system with chemical potential μ = 0.5 meV, effective
SM-SC coupling t̃ = 50 meV, and Zeman field � = 0.4 (top) or
0.9 meV (bottom). The highlighted features in the bottom panel are
generated by the lowest energy modes shown in Fig. 17. Notice that
the pair of Majorana modes localized near the opposite ends of the
wire hybridizes with the low-energy ABS localized near the center
of the wire (arrows). By comparison with Fig. 16, the features in the
top panel (� = 0.4 meV) tend to be more localized and asymmetric,
which is an indication of stronger effective disorder.

Fig. 16. A further indication of stronger effective disorder is
that the features in the top panel of Fig. 18 are more localized
than the features in the top panel of Fig. 16, although they
correspond to the same value of �. Finally, note the strong
asymmetry between the Majorana modes localized near the
end of the wire, as compared to the more symmetric features
in Fig. 16. We emphasize that the low-energy ABS (marked
by arrows in Fig. 18) is localized away from the ends of
the system and, consequently, remains practically “invisible”
in (local or nonlocal) transport measurements. Increasing the
length of the system will lead to a proliferation of this type
of disorder-induced low-energy ABSs. Note that transport
gaps visible in an end-to-end charge transport measurement
[56–58] are associated with higher energy delocalized (bulk)
states and do not characterize the quasiparticle gaps associ-
ated with the “invisible” low-energy ABSs. In other words,
observing correlated zero-energy peaks in the differential con-
ductance measured at the ends of the wire and a finite gap in
the end-to-end transport does not eliminate the possibility of
having “invisible” disorder-induced low-energy ABSs local-
ized throughout the system.

Further increasing the effective SM-SC coupling results in
features that are even more localized and more asymmetric
and generates low-energy ABSs that do not acquire a gap
larger than the typical interstate energy spacing. This indicates
that increasing the effective SM-SC coupling (i.e., t̃ or �)
enhances the effective proximity-induced disorder [59,60].
We emphasize that this enhancement has nothing to do with
the physical disorder, which is the same (in this case the sur-
face roughness of the SC film), but with changing the effective

coupling t̃ , which can be done, for example, using a back
gate potential that “pushes” the SM wave functions toward
(or away from) the SM-SC interface. We also note that the
maximum values of the SM-SC coupling consistent with weak
induced disorder depend on the length scales characterizing
the physical disorder, as shown by a comparison between
the results discussed in this section and the additional results
presented in Appendix D, which correspond to a different
surface roughness profile.

V. CONCLUSION AND DISCUSSION

We have developed a nonperturbative theory of the prox-
imity effect induced by thin SC films with strong (surface)
disorder based on the exact numerical treatment of a 3D
microscopic model. The challenge associated with the high
numerical cost is addressed by combining a recursive Green’s
function method with a “patching” approach that exploits
the quasilocal nature of the interface Green’s function in the
presence of (strong) disorder. Focusing on SC-SM hybrid
structures, we find that the Fermi surface mismatch combined
with the strong confinement-induced quantization of the trans-
verse modes strongly suppress the proximity effect generated
by clean thin films, by up to three orders of magnitude as
compared to the proximity effect generated by a bulk SC,
and make it strongly dependent on the film thickness Lz. A
random onside model of surface disorder previously discussed
in the literature produces a moderate enhancement of the
proximity-induced superconductivity and does not suppress
significantly the strong, nonmonotonic thickness dependence.
However, we have constructed a model of surface roughness
capable of efficiently mixing the “clean” SC modes, which
results in a dramatic enhancement of the proximity effect (by
up to three orders of magnitude), and a complete suppres-
sion of the strong dependence on Lz over significant ranges
of thickness values. We find that, within these ranges, the
proximity-induced superconductivity generated by a thin SC
film is practically similar to the superconductivity induced by
a bulk SC. These results hold as long as the surface roughness
affects at least two atomic layers at the surface of the thin
SC film, or at the interface of the superconducting metal
with a surface oxide. Thus we explicitly demonstrate that the
presence of strong SC disorder is essential to inducing a robust
proximity effect using thin SC films.

The other face of strong SC disorder is the emergence
of induced effective disorder in the semiconductor. We in-
vestigate in detail the effect of the induced disorder on the
emergent topological superconductivity and the associated
low-energy modes. We demonstrate that the presence of SC
surface roughness, which leads to a robust proximity effect,
is consistent with the emergence of topological superconduc-
tivity and Majorana modes, provided the SC-SM coupling
does not exceed values corresponding to an induced (zero
field) gap up to about 0.6�0, where �0 is the parent SC gap.
Stronger values of the SC-SM coupling lead to the emergence
of disorder-induced low-energy ABSs, which can be localized
away from the ends of the system and remain “invisible” in a
transport measurement. In addition, the presence of stronger
induced disorder associated with a larger SC-SM coupling
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leads to the emergence of localized asymmetric spectral
features.

The presence of SC disorder both helps and hinders the
realization of topological superconductivity in SM-SC hybrid
Majorana platforms, with the competing effects being affected
differently by various disorder parameters (e.g., characteristic
length scales). The induced effective disorder also depends
on the SM-SC coupling. To consistently realize structures
with SC disorder capable to efficiently overcome the Fermi
surface mismatch while inducing weak effective disorder in
the SM nanowire, consistent with the emergence of a robust
topological SC gap, experimentalists must strike a careful bal-
ance through appropriate materials science development and
characterization and careful device engineering. Based on our
work, we cannot rule out the possibility that the experimental
finding of many SM-SC hybrid samples manifesting no SC
proximity effect is actually arising from the Fermi surface
mismatch problem not being fully compensated by the SC
film disorder. The subject merits careful materials science
investigations, since, as we find theoretically, many details
would matter.

We believe that our findings explain much of the exist-
ing phenomenology of SC-SM hybrid Majorana structures
and clearly establish that, while the SM disorder must be
eliminated as much as possible, SC disorder is not only ben-
eficial, but in fact essential to the manifestation of robust
proximity-induced superconductivity in the semiconductor
and, consequently, to the realization of topological Majorana
zero modes. However, this study also emphasizes the key
importance of a detailed experimental characterization of the
SC film. Outstanding issues include the characterization of
SC disorder (e.g., the characteristic length scales), the sys-
tematic study of the thickness dependence of the proximity
effect, the control of the effective SC-SM coupling, including
the possibility of simultaneously controlling both the SC-SM
coupling and the SM chemical potential, the detection of “hid-
den” disorder-induced low-energy ABSs, or the possibility
of increasing the thickness of the SC system by engineering
layered SC films involving two (or more) superconductors
with optimized properties. Our work provides valuable the-
oretical tools for dealing with these issues, but solving them
will ultimately require a substantial experimental effort. It is
ironic that the very first paper dealing with SC disorder in
SC-SM hybrid structures [44] had the ominous (but incor-
rect [45,46]) conclusion that SC-SM structures are unsuitable
for realizing topological superconductivity because of strong
SC disorder and now, 11 years later, our work concludes
that strong SC disorder not only is not detrimental, but,
in fact, is essential to realizing topological superconductiv-
ity and Majorana zero modes in SC-SM structures. With a
strong warning: details matter if one attempts to fabricate a
functional quantum device; the details regarding the strong
disorder in thin SC films remain an outstanding experimental
challenge.
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FIG. 19. Dependence of the average Green’s function amplitude
g̃ on the film thickness Lz for different values of the amplitude
Ud of a 2D onsite random potential located within 2 nm from the
surface. The relative amplitude g̃ is averaged over the wave vector k

(with 0 � k � 0.25 nm−1), the transverse mode ny (with 1 � ny � 5)
and 25 disorder realizations. The system has infinite length, width
Ly = 50.2 nm and is defined on a lattice with a = 0.38 nm and
c = 0.117nm. The values of Ud are given in meV and the correspond-
ing curves are shifted (by multiples of 3), for clarity. The curves for
Ud = 250 and 500 meV correspond to the results shown in Fig. 5.

APPENDIX A: SYSTEM WITH ONSITE

RANDOM DISORDER

Here, we provide additional results for the relative am-
plitude g̃ of a thin SC film with onsite random disorder at
the surface. Focusing on the simplified 2D disorder model,
we investigate the dependence on the disorder amplitude, the
impact of changing the lattice constant and the thickness of the
oxide layer, and the behavior of the system in the ultra-strong
disorder limit.

First, we calculate the dependence of the average Green’s
function amplitude g̃ on the film thickness for different values
of the disorder amplitude Ud for a system with 2D onsite
random disorder within 2 nm from the surface. The results
shown in Fig. 19 clearly indicate that stronger disorder gen-
erates more enhancement of the interface Green’s function
amplitude, hence a stronger superconducting proximity effect.
Nonetheless, the presence of disorder does not eliminate the
strong dependence on the film thickness. We emphasize that
the results in Fig. 19 (and other similar figures) show the log-
arithm (base 10) of g̃, so a variation by 1 in the figure implies
a variation by one order of magnitude of g̃. Also note that the
values of the lattice constants used in the calculation are the
same as in Fig. 5, which implies that Kd � 1000 meV2 nm3,
similar to the values used in Refs. [52,53], corresponds to
Ud � 250 meV. The strong thickness dependence persists
up to significantly larger disorder potential amplitudes (e.g.,
Ud = 750 meV in Fig. 19), despite the substantial disorder-
induced enhancement (by up to two orders of magnitude) of
the interface Green’s function amplitude.

Next, we investigate the impact of changing the (in-plane)
lattice constant a on the disorder-induced effects. Figure 20
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FIG. 20. Same as in Fig. 19, but for a system with lattice con-
stants a = 0.285 nm and c = 0.117nm. The values Ud of the random
potential amplitude correspond to the same value of Kd as the
corresponding curves in Fig. 19. For example, Ud = 333 meV corre-
sponds to Kd ≈ 1060 meV2 nm3 (same as Ud = 250 meV in Fig. 19),
while Ud = 1000 meV corresponds to Kd ≈ 9540 meV2 nm3 (same
as Ud = 750 meV in Fig. 19).

shows the dependence of the average relative amplitude g̃ on
the film thickness Lz and on the strength of the disorder poten-
tial for a model characterized by a lattice constant smaller than
the one in Fig. 19 (a = 0.285 nm, instead of a = 0.38 nm).
The reduction of the lattice constant (by a factor of 3/4) is
“compensated” by an enhancement of the random potential
amplitude (by a factor of 4/3), to obtain an effective disorder
strength equivalent (i.e., having the same value of Kd ) to
the disorder strength of the corresponding curves in Fig. 19.
Comparison with Fig. 19 (and the semiquantitative agree-
ment between the corresponding curves) shows explicitly that
models characterized by the same value of Kd = a2cU 2

d cor-
respond to systems with “equivalent” effective disorder.

At this point, it is worth noting an important technical
aspect. The disorder-induced enhancement of the interface
Green’s function is essentially due to a disorder-induced cou-
pling of the long wavelength in-plane modes (nx, ny) to modes
near the Fermi level having arbitrary quantum numbers. This
requires the presence of quantum states (with arbitrary quan-
tum numbers) near the Fermi energy. However, if the energy
of the transverse mode immediately below the Fermi level is
εnz

< εF − 8t , where 8t is the bandwidth associated with the
in-plane modes, there are no low-energy modes available. In
turn, the bandwidth depends on the in-plane lattice constant
as 8t = 4h̄2/mea2. Consequently, when using the onsite ran-
dom disorder model one should choose a value of the lattice
constant a that is small enough to ensure the presence of
low-energy states (near the Fermi level) for all Lz values of
interest. Further reducing the lattice constant will generate
“equivalent” disorder potentials for any given value of Kd , as
illustrated above.

The effect of reducing the thickness of the oxide layer by
a factor of two (as compared to the system in Fig. 19) is illus-
trated in Fig. 21. While direct comparison with Fig. 19 shows
a slight reduction of the disorder-induced enhancement of the

FIG. 21. Same as in Fig. 19, but for a system with onsite random
disorder within 1 nm from the surface. Reducing the thickness of the
oxide layer (by a factor of two) slightly reduces the disorder-induced
enhancement of g̃, but does not affect its thickness dependence.

relative amplitude, the thickness dependence of g̃ is basically
not affected. In particular, for a given value of Kd , the order of
magnitude of the (average) relative amplitude is determined
by the total film thickness, Lz, which includes the oxide layer.
One can consistently identify the values of Lz associated with
large (or small) relative amplitudes in Figs. 19–21, which
correspond to systems with 2D random potential disorder, or
in Fig. 7 (system with 3D random potential disorder) and one
can ultimately trace them back to the clean case shown in
Fig. 3. This demonstrates that, for reasonable values of the
disorder strength, the random potential model cannot elimi-
nate the strong dependence of the interface Green’s function
(hence, the dependence of the proximity-induced effect) on
the thickness of the SC film.

Finally, in Fig. 22, we show that, within this model,
the problem regarding the strong thickness dependence of
the interface Green’s function can only be eliminated if we

FIG. 22. Thickness dependence of the diagonal relative am-
plitude g̃ny

(ω, k) averaged over k ∈ [0, 0.25 nm−1] and over 50
different disorder realizations for an infinitely long SC system with
Ly = 50.2 nm and strong 2D random potential disorder of amplitude
Ud = 10 eV within 2 nm from the surface. The curves corresponding
to the lowest five ny modes are shifted by 2(ny − 1), for clarity.
Note that we represent the average relative amplitude, rather than
the logarithm of this quantity. The system is in the “optimal regime”
for all values of Lz.
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FIG. 23. Schematic representation of the surface roughness mod-
eling for a 1D “surface”. (Top) The “impurity potential” generated
by Eq. (B1) is separated by the red lines into four regions, each con-
taining approximately 25% of the lattice sites. (Bottom) The shaded
region “above” the random potential is nonsuperconducting (e.g.,
insulator or vacuum), while the white region represents the rough
surface of the superconductor. Each step (in the z direction) corre-
sponds to one atomic layer; the surface roughness in this schematic
example affects the top three layers.

consider an extremely strong disorder potential, e.g., Ud =
10 eV, which is rather unphysical. In this limit, the depen-
dence on Lz is weak and the disordered thin film is practically
equivalent to a bulk superconductor, i.e., 〈〈̃gny

〉k〉 ∼ 1. Note
that, in addition to enhancing the low-̃g values corresponding
to the clean system (black points in Fig. 3) by 1–3 orders
of magnitude, ultrastrong disorder also reduces the large g̃

corresponding to Lz = 9.4 nm (red points in Fig. 3), so that
the relative amplitude is in the “optimal regime” independent
of the film thickness.

APPENDIX B: MODELING THE SURFACE ROUGHNESS

Let us assume that surface roughness affects the top r

atomic layers of the SC film. To model the rough surface, we
first generate a fictitious 2D “impurity potential” defined as

Vimp(i) =
Nimp∑

p=1

exp

(
−

|i − ip|
λ

)
, (B1)

where i = (ix, iy) labels lattice sites in the x-y plane, ip de-
scribes the (randomly generated) position of “impurity” p,
Nimp is the total number of “impurities,” and λ is a parameter
that controls the characteristic length scale of the potential.
Next, we “cut” the “impurity potential” by r planes at heights
determined by the percentage of superconducting phase cor-
responding to each layer, as shown schematically in Fig. 23.
Finally, for all points that are “above” the “impurity potential”
(see Fig. 23) we add a local potential Vdis(ix, iy, iz ) = εF + U ,
with U = 4 eV. Basically, Vdis confines the electrons into the
superconducting region, i.e., it pushes them out of the non-
superconducting region (e.g., the black region in Fig. 23).
We note that the number of atomic layers affected by sur-
face roughness, hence the amplitude δLz of the thickness
fluctuations, is determined by the parameter r (i.e., the number
of “cutting” planes in our construction), while the in-plane
characteristic length scale is controlled by the “impurity” den-
sity, nimp = Nimp/LxLy, and by the parameter λ in Eq. (B1).

FIG. 24. Surface roughness realizations corresponding to a spe-
cific “impurity” distribution and two values of the parameter λ [see
Eq. (B1)]. Note that the wire of length Lx = 1.025 μm is broken
into two segments, for clarity. Also note that the top panel is the
same as Fig. 1(c). Roughness affects the top three atomic layers
(i.e., r = 3), which are only partially in the superconducting phase.
Four different shades of blue correspond to different values of the
superconducting wire thickness (i.e., the local thickness of the super-
conducting region) each covering approximately 25% of the surface.
The difference between the maximum (light blue) and minimum
(dark blue) values is approximately 0.7 nm (i.e., three atomic layers).

To illustrate the role of the parameter λ, we consider a SC
wire of length Lx = 1.025 μm and width Ly = 51.3 nm and
a specific random distribution of “impurities”, {i1, . . . , iNimp},
corresponding to a density nimp = 0.058 nm−2. We take r = 3,
i.e., the top three atomic layers are only partially in the
superconducting phase. The surface roughness profiles corre-
sponding to λa = 7 nm and λa = 21 nm are shown in Fig. 24
top and bottom panels, respectively. Clearly, increasing λ

generates surface roughness with larger in-plane character-
istic length. Repeating the procedure for a different random
distribution of “impurities” (all other parameters being the
same) allows us to generate random surface roughness profiles
with the same general characteristics, in particular same δLz

and in-plane characteristic length. We note that the surface
roughness realization shown in the top panel of Fig. 24 is used
in the numerical calculations presented in Sec. III B 2 and
Sec. IV. In addition, a surface roughness profile similar to that
shown in the bottom panel of Fig. 24, but having r = 2 (i.e.,
affecting the top two atomic layers) is used in the calculations
presented in Appendix D.

APPENDIX C: THE PATCHING APPROACH

To efficiently simulate large systems, i.e., finite 3D SC
films with large interface areas, we exploit the fact that in the
presence of disorder the interface Green’s function is short
ranged and its values in the vicinity of a given point do not
depend on the properties of the system (e.g., on the disorder
potential values) at distances much larger than the character-
istic decay length of the Green’s function, which is on the
order of a few nanometers. Consequently, we can calculate
the (quasilocal) Green’s function by explicitly simulating a
sufficiently large “patch” around the vicinity of interest.
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FIG. 25. (Top) Schematic representation of patch A9 and its
neighbors, A8 and A10 (orange lines) and of auxiliary patches B8

and B9 (dashed blue lines) that cover the boundary regions (gray
areas) of the A patching. The dimensions of the A patches are
�x × �y = 68.4 × 51.3 nm, while B patches have dimensions �x ×
�y = 58.6 × 51.3 nm. Note that �y = Ly, i.e., each patch covers the
entire width of the wire. The light orange shading corresponds to the
“bulk” of patch A9. Bottom: Dependence of the relative amplitude
g̃ny

(ω; x, x) on the longitudinal position x along the wire for a film
of thickness Lz = 8 nm. The values calculated using the A patches
are represented by the orange line, while the blue dashed lines are
obtained using the B patches. The final values of g̃ (see the middle
panel of Fig. 11) within the “bulk” regions are obtained using the
A patching (orange lines), while within the boundary regions (gray
areas) we use the B patching results (blue dashed lines). Note that in
the regions that are sufficiently far away from the boundaries of both
types of patches the two calculations give the same result (i.e., the
orange and blue dashed lines are on top of each other).

For specificity, let us consider the finite 3D SC film shown
in Fig. 1, which has Lx = 1.025 μm, Ly = 51.3 nm and a
surface roughness as shown in Fig. 1(c). First, we com-
pletely cover the wire with 15 patches (A1, A2, . . . , A15) of
dimensions �x × �y = 68.4 nm × 51.3 nm and calculate the
interface Green’s function within each patch. In the top
panel of Fig. 25, we represent schematically patch A9 and
its neighbors (orange lines). Given the quasilocality of the
Green’s function, the calculated values are accurate within
the “bulk” of each patch (the orange shaded area in Fig. 25
for path A9), but deviations are expected within the boundary
areas (gray shaded region in Fig. 25). To obtain the correct
values of G̃ in the boundary regions, we use 14 auxiliary
patches, B1, B2, . . . , B14, that cover these regions and cal-
culate G̃ within each auxiliary patch. A specific example is
shown in the bottom panel of Fig. 25. We emphasize that
for points x that are far-enough from the boundaries of both
types of patches the results obtained using A patches coincide
with those obtained using B patches. We explicitly checked
that this property holds for all relevant nonlocal Green’s
functions G̃ny

(ω; x, x′), i.e., for δx = |x − x′| � 16 nm (see
Fig. 10). Finally, we note that our patching approach can
be generalized to thin films with 2D (rather than quasi-1D)
surfaces/interfaces of arbitrary size and shape.

FIG. 26. Dependence of the averaged relative amplitude,
〈̃gny

(0)〉kx
, on the SC film thickness, Lz, for a system with surface

roughness similar to the specific realization shown in the lower
panel of Fig. 24, but having r = 2 (i.e., δLx = ±0.23 nm). The
wire has length Lx = 1.025 μm and width Ly = 51.3 nm. The rel-
ative amplitude for the lowest five ny modes was averaged over kx ,
with 0 � kx � 0.25 nm−1, which corresponds to nx � 82. The corre-
sponding curves are shifted by 3(ny − 1), for clarity. The thickness
dependence is much weaker than in the clean case (see Fig. 3), but
stronger than in Fig. 8. The average amplitude 〈̃gny

(0)〉kx
is in the

optimal regime for about 50% of the Lz values. The corresponding
disorder-induced enhancement is dramatic, by up to three orders of
magnitude. The proximity effect generated by systems corresponding
to the parameters inside the blue rectangle is discussed in the context
of Figs. 28–31.

APPENDIX D: SUPERCONDUCTING THIN FILM WITH

SURFACE ROUGHNESS: ADDITIONAL RESULTS

To strengthen our conclusions regarding the effects of
surface roughness, we consider a surface roughness profile
obtained using the same random distribution of fictitious im-
purities as in the main text (see Appendix B for details) but
having a larger in-plane characteristic length scale (corre-
sponding to λa = 21 nm, instead of λa = 7 nm) and a smaller
transverse length scale (δLx = ±0.23 nm corresponding to
r = 2, instead of δLx = ±0.35 nm, which corresponds to
r = 3). The roughness profile is almost identical to the profile
shown in the bottom panel of Fig. 24, except that it involves
the top two atomic layers (instead of the top three atomic
layers in Fig. 24). To evaluate the impact of surface disorder
on the interface Green’s function, we calculate the thickness
dependence of the zero-frequency relative amplitude averaged
over kx (with 0 � kx � 0.25 nm−1), similar to the calculation
leading to the results shown in Fig. 8. Comparing the results
shown in Fig. 26 with the results discussed in the main text
we note that the roughness profile considered here is generat-
ing a dramatic disorder-induced enhancement of the interface
Green’s function (by up to three orders of magnitude), but
it is less effective in suppressing the thickness dependence
of g̃ (as compared with the case discussed in the main text).
Perhaps surprisingly, this is mostly due to the larger in-plane
characteristic length scale, while reducing δLz (i.e., r) has
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FIG. 27. Dependence of the off-diagonal relative amplitude
|̃gny

(ω; x, x′)| on the longitudinal distance δx = |x′ − x| between two
points. The quantity was averaged over all positions x along the wire.
Note the sharp decay of g̃ with increasing δx, which reveals that in the
presence of surface disorder the interface Green’s function becomes
short ranged (i.e., quasilocal). Also note that the characteristic decay
length is larger than the decay length characterizing the system with
surface roughness shown in Fig. 10. We have ω = 0, ny = 1, and
three different film thicknesses, all other parameters being the same
as in Fig. 26.

a weaker impact. Without performing a systematic study of
the dependence on the parameters λ (which controls the in-
plane length scale) and r (which controls the transverse length
scale)—such a study involves an enormous numerical cost and
is marginally relevant in the absence of detailed experimental
information—we have verified that (i) surface roughness is
effective in generating a huge disorder-induced enhancement
of the interface Green’s function as long as r � 2 (i.e., if it
affects at least two atomic layers) and (ii) the dependence of
the disorder effect on λ is nonmonotonic (with a certain finite
in-plane length scale generating the maximum effect).

Having established that the surface roughness profile stud-
ied here corresponds to a weaker “effective surface disorder”
as compared to the case discussed in the main text, we in-
vestigate the real-space properties of the interface Green’s
function focusing on its nonlocal properties. Figure 27 shows
the dependence of the off-diagonal elements g̃ny

(ω; ix, jx ) on
the longitudinal distance δx = |ix − jx|a for the mode ny = 1
and three different values of the film thickness. Note that
the decay of the relative amplitude with increasing δx has a
characteristic length scale larger than the characteristic length
scale in Fig. 10. We associate this larger length scale with
the weaker effective disorder corresponding to this surface
roughness profile. In other words, stronger effective disorder
(generated by surface roughness) results not only in a weaker
thickness dependence of the interface Green’s function (which
approaches the value corresponding to a bulk SC), but also in a
more localized G̃. Physically, strong disorder is very effective
in scrambling the k modes of the clean system and, conse-
quently, the interface “looses” information about the spatial
location of the surface and the interface Green’s function of
the thin SC film becomes similar to interface Green’s function
of a bulk SC.

Next, we consider a hybrid SM-SC system and the effects
of proximity-induced disorder on the induced superconductiv-

ity and the low-energy states, similar to the analysis in Sec. IV.
In Sec. IV, we have shown that the induced disorder strength is
proportional to the “total” SM-SC coupling �〈̃g(0)〉kx

. Here,
we fix the SM-SC coupling, t̃ = 53.8 meV (� = 0.4 meV),
and focus on the thickness dependence of the proximity ef-
fect for the sequence of film thicknesses marked by the blue
rectangle in Fig. 26. We note that this value of the SC-SM
coupling places the systems corresponding to green dots in
Fig. 26 in the intermediate coupling regime (i.e., total SM-
SC coupling comparable to �0), the systems corresponding
to black dots in the weak coupling regime, and the system
with Lz = 7.49 (red dots in Fig. 26) in the strong coupling
regime.

We fix the chemical potential at μ = 0.5 meV and deter-
mine the dependence of the DOS on the Zeeman field � for
four thickness values: Lz = 7.49, 7.72, 7.96, and 8.19 nm
(leftmost four points inside the blue rectangle in Fig. 26).
The results shown in Fig. 28 clearly reveal the fundamental
problem of inducing (robust) superconductivity using thin
SC films, particularly the large variations in the proximity-
induced effect associated with variations of the film thickness
by one atomic layer. If, for example, the SC film has a
(maximum) thickness Lz = 7.49 nm within the left side of the
hybrid system and Lz = 7.72 nm within the right side (with
similar surface roughness throughout), the resulting hybrid
system will be highly inhomogeneous, with no low-energy
states revealed by any local measurement at the left end of
the wire (e.g., tunneling conductance measurements) and no
significant zero-field gap associated with local measurements
at the right end of the wire [see Figs. 28(a) and 28(b)].
Obviously, such an inhomogeneous system cannot support
Majorana zero modes at low-enough values of the Zeeman
field, i.e., before the collapse of the SC gap. In addition, we
note that the system with intermediate SM-SC coupling (c)
is characterized by a low-energy mode with (relatively large)
energy splitting oscillations for � � 0.45 meV. As we will
show below, this type of feature is generated by a pair of
partially overlapping Majorana modes localized at the two
ends of the wire.

To better understand the low-energy physics of a system
in the weak-coupling regime, we calculate the LDOS corre-
sponding to the vertical cuts in Fig. 28(b). The results are
shown in Fig. 29. There are two major features associated with
weak SM-SC coupling. First, because of the weak induced
pairing, there is no significant gap at zero Zeeman field and
no localized states, meaning that the characteristic localization
length is much larger than the size of the system. Second,
since the induced disorder is negligible, there are no disorder-
induced low-energy states and the spectral features are highly
symmetric.

Finally, we consider the sequence of seven consecutive
thickness values corresponding to “optimal” relative ampli-
tudes (green dots) in Fig. 26 (for ny = 2). For � = 0.4 meV,
all systems are in the intermediate SM-SC coupling regime.
The dependence of the DOS on the Zeeman field for μ =
0.5 meV and values of Lz corresponding to the sequence
of interest is shown in Fig. 30. As a result of the systems
being in the intermediate SM-SC coupling regime, at zero
magnetic field (� = 0) all systems have a finite induced
gap of order ∼0.3�0 − 0.6�0 (i.e., ∼0.1–0.2 meV). Upon
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FIG. 28. DOS as a function of Zeeman field and energy for a
system with chemical potential μ = 0.5 meV and effective SM-SC
coupling t̃ = 53.8 meV (� = 0.4 meV) for a sequence of four film
thicknesses. The other system parameters are the same as in Fig. 26.
The spectrum in (a) corresponds to a strongly coupled SM-SC system
and has no low-energy states within the range of Zeeman fields
investigated here. (b) and (d) correspond to weakly coupled systems,
while (c) shows the spectrum of a system with intermediate coupling.
The LDOS corresponding to � = 0.1 and 0.75 meV—vertical cuts in
panel (b)—is shown in Fig. 29.

applying an external magnetic field, the lowest energy modes
collapse toward zero energy at � ∼ 0.35–0.5 meV. The be-
havior at higher values of � corresponds to three different
scenarios. Most systems, more specifically the spectra in pan-
els (a-d) and (g), are characterized by a low-energy mode
separated from the rest of the spectrum by a finite quasi-
particle gap. Except panel (b), the low-energy mode exhibits
relatively large energy splitting oscillations indicative of finite
size effects. Indeed, the LDOS corresponding to the vertical
cuts in Figs. 30(a) and 30(g), which is shown in Fig. 31(a)
and 31(e), respectively, demonstrates that the lowest energy
BdG state corresponds to a pair of modes localized near
the ends of the wire and having characteristic length scales
comparable to the size of the system (hence, a significant
overlap). Also note that the LDOS features are highly sym-
metric, which implies low-effective disorder. In other words,
the features characterizing the spectra in Figs. 30(a)–30(d)
and 30(g) [also Fig. 28(c)] and the LDOS in Figs. 31(a)

FIG. 29. LDOS as a function of the position along the wire
and energy for a system with weak SM-SC coupling having Lx =
7.72 nm, chemical potential μ = 0.5 meV, effective SM-SC cou-
pling t̃ = 53.8 meV, and Zeman field � = 0.1 (top) or 0.75 meV
(bottom), corresponding to the vertical cuts in Fig. 28(b). The other
system parameters are the same as in Fig. 26. Note that, as a result
of negligible induced disorder, all states are delocalized and highly
symmetric.

and 31(e) indicate the emergence of (precursor) topologi-
cal superconductivity and Majorana bound states in a finite
size (relatively short) hybrid system with weak effective dis-
order. Of course, increasing the length Lx of such a wire
will result in the emergence of well-separated, topologically
protected MZMs.

The second scenario is illustrated by the spectrum in 30(f).
Note that Lz = 9.59 nm corresponds to the largest average
Green’s function amplitude in the sequence (see Fig. 26).
Comparison with the results in Fig. 17 suggests the pres-
ence of a disorder-induced low-energy ABS, in addition to a
pair of near-zero energy Majorana modes. The correspond-
ing LDOS, shown in Fig. 31(d) confirms this suggestion.
Moreover, it shows highly asymmetric and relatively localized
features characteristic of strong induced disorder. Note that
the disorder-induced ABS localized near the middle of the
wire has almost zero energy and is completely “invisible” in
transport measurements.

The third scenario is illustrated in Fig. 30(e) and cor-
responds to a proliferation of disorder-induced low-energy
states, as confirmed by the asymmetric features characterizing
the corresponding LDOS in Figs. 31(b) and 31(c). We point
out that the total SM-SC coupling in this system is weaker
than the coupling characterizing the system in Figs. 15 and 16,
which show weak disorder effects. In general, we have noticed
that for the surface roughness realization investigated here, the
transition from low-effective disorder to intermediate/high
induced disorder occurs at lower values of � (as compared
to the surface roughness discussed in the main text). In other
words, this surface roughness (characterized by larger in-
plane and shorter transverse characteristic length scales) is
less effective in enhancing the interface Green’s function and
suppressing its thickness dependence, but, for a given SM-SC
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FIG. 30. DOS as a function of Zeeman field and energy for a
system with chemical potential μ = 0.5 meV, effective SM-SC cou-
pling t̃ = 53.8 meV, and a sequence of seven film thickness values
(also see Fig. 26). All systems in this sequence are in the intermediate
coupling regime.

FIG. 31. LDOS as a function of the position along the wire and
energy for a system with chemical potential μ = 0.5 meV, effective
SM-SC coupling t̃ = 53.8 meV, and Zeman field and film thickness
values corresponding to the vertical cuts in Fig. 30. (a) and (e) show
the presence of (partially overlapping) Majorana modes emerging
inside a finite quasiparticle gap in a finite system with weak effective
disorder. (d) shows a pair of Majorana modes and a nearly degener-
ate disorder-induced ABS localized near the middle of the wire. A
proliferation of disorder-induced low-energy states is illustrated in
(b) and (c).

coupling �, it is more susceptible to generate strong induced
disorder. This property emphasizes once again the importance
of experimentally investigating the details of SC disorder and
identifying “optimal” disorder and SC film parameters that
can be reliably realized, which remain critical outstanding
tasks.
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