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We consider theoretically the physics of bulk topological superconductivity accompanied by boundary non-
Abelian Majorana zero modes in semiconductor-superconductor (SM-SC) hybrid systems consisting of finite
wires in the presence of correlated disorder arising from random charged impurities. We find the system to
manifest a highly complex behavior due to the subtle interplay between finite wire length and finite disorder,
leading to copious low-energy in-gap states throughout the wire and considerably complicating the interpretation
of tunneling spectroscopic transport measurements used extensively to search for Majorana modes. The presence
of disorder-induced low-energy states may lead to the nonexistence of end Majorana zero modes even when
tunneling spectroscopy manifests zero-bias conductance peaks in local tunneling and signatures of bulk gap
closing/reopening in the nonlocal transport. In short wires within the intermediate disorder regime, apparent
topology may manifest in small ranges (“patches”) of parameter values, which may or may not survive the long-
wire limit depending on various details. Because of the dominance of disorder-induced in-gap states, the system
may even occasionally have an appropriate topological invariant without manifesting isolated end Majorana zero
modes. We discuss our findings in the context of a recent breakthrough experiment from Microsoft reporting
the simultaneous observations of zero-bias conductance peaks in local tunneling and gap opening in nonlocal
transport within small patches of parameter space. Based on our analysis, we believe that the disorder strength to
SC-gap ratio must decrease further for the definitive realization of non-Abelian Majorana zero modes in SM-SC
devices.
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I. INTRODUCTION

Recent theoretical study has emphasized the key role of
disorder in Majorana experiments, establishing that many
features of the experimental observations, which are often
construed to be signatures of topological Majorana zero
modes, may actually be arising entirely from disorder effects
in the trivial phase [1]. Since the presence of disorder is
inevitable in experimental samples [1–6], it is crucial to un-
derstand all aspects of disorder in the Majorana physics. Much
of the recent theoretical study has focused on the tunnel con-
ductance spectroscopy in disordered systems, with the goal
to critically analyze Majorana experiments reporting zero-
bias conductance peaks as evidence for the topological phase
and leading to the conclusion that disorder can occasionally
generate such zero-bias peaks in the trivial phase, mimick-
ing Majorana zero modes. The current community consensus
is that neither the topological phase nor the Majorana zero
mode has likely been observed experimentally, with essen-
tially all features of the observed tunneling spectroscopy in the
published experimental literature in semiconductor nanowires
being explicable as the appearance of disorder-induced “ugly”
conductance peaks arising from low-energy trivial Andreev
bound states [1].

Very recently, a notable experimental paper [7] from
Microsoft has appeared reporting the observation of a topo-
logical gap in InAs-Al semiconductor-superconductor hybrid

structures using a combination of local and nonlocal tunneling
conductance data, as well as a detailed theoretical protocol
controlling data collection and analysis. The extracted topo-
logical gap (∼25 µeV) is relatively small [7] in comparison
with the typical values of the transport broadening (∼1 meV)
associated with the unintentional disorder present in the start-
ing 2D InAs material used in the experiment. It should be
noted that the “topological gap” here is extracted from the
antisymmetrized nonlocal conductance [8], and is a length-
dependent property to characterize the finite-size devices. In
the thermodynamic limit, the nonlocal conductance vanishes
because of Anderson localization, except in the vicinity of the
topological quantum phase transition (TQPT) [9] where the
nonlocal conductance is characterized as an Andreev rectifier
[8]. The current experiments [7] take advantage of the finite
size of the system to use the transport gap as a characterization
of disordered devices. Measuring or directly estimating the
disorder strength in the “active region,” where a topological
superconducting state is supposed to emerge, is difficult and
therefore, the actual disorder in the samples is unknown, ex-
cept for the starting mobility of the basic material being low
(∼50 000 cm2/V s), which implies considerable disorder.

Inspired by this experiment and motivated by the ubiq-
uitous presence of disorder in Majorana devices and by
the intrinsic difficulty of estimating its strength, in the cur-
rent paper we carry out an in-depth theoretical analysis of
the underlying Majorana physics as a function of disorder,
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focusing (in the first part of the paper) on the low-energy
spectral properties of the system and (in the second part) on
its transport properties, which have been the primary object of
most theoretical (and essentially all experimental) papers on
the subject. As much as possible, we use the best estimates
for realistic disorder in our calculations, and use parameters
close to the ones provided in Ref. [7], although no attempt is
made for any direct comparison with the experimental data.
Our goal is to develop a comprehensive picture of the low-
energy spectral features in disordered nanowires as functions
of disorder, Zeeman field, chemical potential, and wire length,
so that we gain an understanding of different disorder-induced
regimes and of the corresponding low-energy properties of
the hybrid system, which may or may not be “visible” in
transport measurements. We find that disorder is associated
with some essential aspects of the low-energy physics that
remain invisible to both local and nonlocal transport mea-
surements, which complicates a straightforward analysis of
the experimental data. In particular, in certain regimes one
should be careful interpreting a transport gap as being the
topological gap because it may actually by associated with
finite-size effects. There are cases when increasing the size
of the system will not enhance the protection of the Majo-
rana bound states that may emerge at the ends of the wire.
Distinguishing this type of disorder-induced regime from the
regime that enables the robust topological protection of the
Majorana end modes is of critical theoretical and practical
importance.

In the second part of the paper, we combine both spectral
and transport calculations, along with direct estimates of the
relevant topological invariants, to comment on the effective
“topological phase” of the system, both as a function of disor-
der and as a function of wire length. One important finding, as
alluded to above, is that the manifestation of a gap in the non-
local conductance may not necessarily imply that the system
hosts non-Abelian Majorana zero modes, as gap features may
arise from disorder-induced low-energy bound sates with long
localization length in finite systems. Thus, although the use of
full tunneling transport spectroscopy measuring both local and
nonlocal conductance simultaneously from both wire ends is
an experimental breakthrough of major import, we must still
be careful in discerning disorder effects in finite (relatively
short) wires producing misleading signals of topology in ex-
periments. What is necessary is the observation of the putative
topological features (e.g., a gap) over a relatively large pa-
rameter space, e.g., over a large range of the applied magnetic
field. The observation of concrete topological features over
a large parameter regime seems to be necessary for the un-
ambiguous manifestation of a topological phase with stable
Majorana zero modes. This necessitates systems with larger
values of gap to disorder ratios than are available today, but the
Microsoft experiment has paved the way for future success.
The thrust of this paper is calculating the low-energy spectral
(and transport) features of disordered Majorana nanowires re-
alized in semiconductor-superconductor hybrid structures, in
both long- and short-wire limits, so that a clear general picture
emerges for understanding future experiments and their impli-
cations. As such, we focus in the first part of the paper on the
density of states calculations, including both total integrated
density of states and spatially resolved local density of states,

as functions of disorder, Zeeman field, chemical potential,
and wire length. Our main goal is theoretical transparency of
the matters of principle, rather than simulations of specific
experimental conditions; hence, we use a simple effective
model for the Majorana nanowire and realistic correlated
long-range disorder, without incorporating any unnecessary
complications that require unknown adjustable parameters.
The disorder also affects the trivial SC below TQPT by pro-
ducing subgap Andreev bound states, but does not destroy
the trivial SC gap at low-enough magnetic field values. The
region around the pristine TQPT gets increasingly dominated
by low-energy subgap states with increasing disorder, which
leads to the eventual suppression of the TQPT itself for very
strong disorder. Key additional aspects of the second part are
obtaining the appropriate transport topological invariant and
the Majorana localization (or coherence) length to ascertain
the topological property and the integrity of the end Majorana
zero modes in the nanowire along with the transport and spec-
tral properties. The two parts use very similar, but not always
identical parameters, ensuring that the two parts are accessible
independently without referring to each other and explicitly
showing that our main results are not a consequence of some
parameter fine tuning. We use realistic parameter vales for the
currently accessible InAs-Al SM-SC hybrid nanowire systems
based on estimates given in Ref. [7].

The remainder of this paper is organized as follows. In
Sec. II, we provide a background for the role of disorder
in topological superconductors, emphasizing the thermody-
namic limit in contrast with the finite disordered nanowires
being considered in the current paper. We describe the the-
oretical model and our approach in Sec. III. In Sec. IV we
provide detailed numerical results and analysis for the spectral
properties of disordered nanowires in SM-SC systems, calcu-
lating and discussing both the total density of states (DOS)
and the spatially resolved local density of states (LDOS)
for ideal wires (Sec. IV A) and both long disordered wires
(Sec. IV B) and short disordered wires (Sec. IV C). In Sec. V,
we discuss our results for the topological patches, present-
ing local and nonlocal conductance along with topological
invariants for small regimes (“patches”) in parameter space
manifesting aspects of topological properties and describing
our inferred topological phase diagrams in the presence of
disorder. Sections V A, V B, V C, and V D respectively de-
scribe the topological invariant, the topological phase, the
topological patches, and a summary of the implications of the
results of Sec. V for the current experimental samples. We
conclude in Sec. VI with a detailed discussion of our results in
the context of the Microsoft experiment, focusing on the role
of disorder on the topological properties of finite nanowires in
SM-SC hybrid systems.

II. BACKGROUND

Since the key physics suppressing topology in Majorana
nanowires is disorder, it is useful to provide a brief review
of what is already known about disorder effects in SM-SC
hybrid structures in the context of Majorana physics. This
background puts the current study in a proper perspective.

The importance of disorder for one-dimensional spinless
p-wave SC (i.e., which is the effective topological phase in
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the Majorana nanowires in our SM-SC hybrid systems) was
pointed out a long time ago [10], when it was established
that strong disorder destroys the topological SC by causing
a quantum phase transition to a trivial localized phase in
the thermodynamic limit. This happens when the disorder is
strong enough to cause the mean-free path or the localization
length (they are the same in 1D systems) to become shorter
than the SC coherence length. Since the SC coherence length
(the localization length) increases (decreases) with decreasing
SC gap (increasing disorder), the importance of the effective
dimensionless ratio of the topological SC gap to the disorder
strength as a crucial controlling parameter has been known
for a long time. Here SC gap refers to the spectral gap in
the absence of disorder. A disordered time-reversal broken
superconductor has a vanishing spectral gap in the thermo-
dynamic limit [10]. In the thermodynamic limit, there are
just two phases: a trivial Anderson localized phase for strong
disorder (i.e., small values of gap to disorder ratio) and a
topological SC phase for weak disorder (i.e., large values of
gap to disorder ratio) separated by a quantum critical point.
It was later shown that the topological SC remains stable
to weak disorder in SM-SC nanowires, even in the presence
of interaction, thus guaranteeing the existence of a topolog-
ical phase as long as the disorder is not too strong [11]. In
addition, disorder creates an effective Griffiths phase with
the production of low-energy subgap localized states in the
topological phase, leading eventually to the suppression of
the topological SC for strong-enough disorder [10]. This early
study on disorder effects on topological SC was later extended
to the SM-SC nanowire systems by several groups, but the
key physics discussed in the current paper was not revealed or
discussed in any of these early publications [12–21].

How do these disorder-induced thermodynamic quantum
phase considerations of 1D topological SC systems affect
our system of finite disordered nanowires in the SM-SC
hybrid structures? The pristine Majorana nanowire has a Zee-
man field (or chemical potential)-driven topological quantum
phase transition (TQPT) from a trivial (spinful s-wave) SC
phase to a topological (spinless p-wave) SC phase at a criti-
cal field. This field-driven TQPT survives weak disorder, but
disappears in the strong-disorder regime because the topolog-
ical SC itself is suppressed for strong disorder. The disorder
also affects the trivial SC below TQPT by producing subgap
Andreev bound states, but does not destroy the trivial SC
gap at low-enough magnetic field values. However, the re-
gion around the pristine TQPT gets increasingly dominated
by low-energy subgap states with increasing disorder with
the eventual suppression of the TQPT itself for very strong
disorder. Thus, disorder produces subgap states, and strong
disorder eventually destroys the TQPT and the topological SC
phase in the nanowire. There are, however, serious issues aris-
ing from the finite wire length, which complicate the physics
as we discuss in the current paper.

The TQPT is ill defined even for the disorder-free pristine
system in “short” nanowires with the length being smaller
than the SC coherence length. In such, short wires, the end
MZMs overlap producing Majorana oscillations with no non-
Abelian zero modes localized at the wire ends independent of
whether a bulk gap closes/opens or not [22]. Disorder in finite
wires therefore is highly problematic since disorder-induced

low-energy states may hybridize with the overlap-induced
Majorana split modes, complicating any simple physical pic-
ture based on the long-wire pristine case. A serious additional
complication is that the crossover length from “short” to
“long” limit is quantitatively unknown and cannot be di-
rectly estimated experimentally in disordered nanowires. The
crossover obviously depends on the disorder strength as well
as the basic wire parameters such as SC gap and Fermi
velocity. It is clear that all early experiments in Majorana
nanowires, before the Microsoft experiment, are most cer-
tainly in the short-wire limit as the wire length is typically
∼1 micron in all of these early experiments, which misinter-
preted the observation of disorder-induced low-energy subgap
Andreev bound states as Majorana signatures. Whether the
current wire length (∼3 microns) used in the Microsoft exper-
iment is long enough is unknown at this point. The existence
of the end localized MZMs in the topological phase is com-
promised seriously by disorder, particularly in “short” wires,
since the MZM wave functions may overlap. Thus, there are
several complications to consider with increasing disorder in
finite SM-SC nanowires: Destruction of the topological SC
and the TQPT as well as the role of the low-energy subgap
localized states induced by disorder affecting the end MZMs.
The only clean result is that the TQPT and the topologi-
cal SC survive weak disorder for long wires, and hence a
large gap to disorder ratio (>1) guarantees the existence of
MZMs in long wires (which are non-Abelian if the wire is
long enough). Unfortunately, it is unclear the extent to which
the current samples, even in the breakthrough Microsoft
experiment, are in the weak-disorder (and/or long-wire)
regime since the actual effective disorder in the nanowire
SM-SC samples is unknown from independent in situ

measurements.
Based on our analysis, we believe that the current sam-

ples in the Microsoft experiment are in an “intermediate”
disorder regime, which, depending on the precise conditions,
may be either the weak- or the strong-disorder situation.
This is reflected in the reported operational “topological”
gaps being rather small [7] and existing over rather narrow
regimes of system parameters (e.g., magnetic field and gate
voltage). Thus, the reported topological regimes are “topo-
logical patches” existing with small SC gaps over narrow
regions of the parameter space in the magnetic field and gate
voltage. Our whole study is focused on understanding the
complex nature of this intermediate patchy effective phase
where the copious existence of disorder-induced low-energy
subgap states in finite wires considerably complicates the
interpretation of various topological signatures, which are
defined specifically for the pristine (and infinite) system,
and ultimately undermines the stability of the Majorana end
modes that may emerge. Our focus here is on the spectral
properties, signatures of bulk gap, and the topological phase
diagram, and not on the local tunneling-induced zero-bias
conductance peaks (ZBCPs), which we have studied exten-
sively elsewhere (see Ref. [1] and references therein). It is
now well established that disorder may occasionally induce
trivial ZBCPs (arising from Andreev bound states) mimicking
MZM induced ZBCPs in disordered samples (and all earlier
experiments have most likely seen these trivial ZBCPs), and
this is not discussed much in this paper.
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We also mention that the effective disorder in SM-SC
nanowires is Coulomb disorder arising from unintentional
random charged impurities invariably present in the system.
Thus, the disorder must be characterized by both a strength
and a correlation length as emphasized in our earlier work
[5,23]. The physics of Coulomb disorder is fundamentally
different from the short-range on-site disorder often used in
studying Anderson localization, but is crucial to understand-
ing Majorana nanowires in SM-SC systems.

III. THEORETICAL MODEL AND APPROACH

In an ideal (i.e., clean and infinitely long) Majorana wire,
the topological quantum phase transition (TQPT) driven by
the Zeeman field � (or the chemical potential μ) is character-
ized by the closing and reopening of the (bulk) quasiparticle
gap at critical points � = �c(μ). In the topological phase,
finite Majorana wires host a pair of mid-gap Majorana zero
modes (MZMs) localized at the two ends of the system. The
MZMs are separated by a finite-energy gap from all quasi-
particle excitations. What becomes of this picture in a finite
system in the presence of disorder? We address this key ques-
tion by analyzing the numerical solution of a tight-binding
model of the wire in the presence of disorder. There are several
important aspects that we need to consider. First, finite-size
effects generate energy gaps that “mask” the vanishing of the
quasiparticle gap (at the TQPT and elsewhere) and induce
Majorana splitting oscillations (due to the overlap of the wave
functions corresponding to the two Majorana end modes),
making it difficult to clearly identify the topological phase
(which, strictly speaking, is only defined in the thermody-
namic limit). On the other hand, we have a finite numerical
resolution associated with a finite broadening of the spectral
features. Hence, to address the finite-size problem, we con-
sider systems that are long enough, so that the induced energy
gaps are below our numerical energy resolution. In the cal-
culations, we typically consider systems of length L = 40 µm
(i.e., at least one order of magnitude longer than the hybrid
systems investigated experimentally), but a few results are
checked using longer wires. Short systems (L = 3 µm) are
also considered, to make the connection with the experimen-
tal conditions. Second, the difference between “bulk states”
and “edge states” can become ambiguous in the presence of
disorder. To eliminate this ambiguity, we remove the edges
and consider a disordered “Majorana ring”. Of course, there
are no end MZMs in the ring configuration. To connect with
experimentally relevant conditions, we also investigate the
role of open boundary conditions, in particular the emergence
of MZMs in the presence of disorder.

Based on the above considerations, we model the semi-
conductor (SM) component of the Majorana wire using a
single-orbital one-dimensional (1D) tight-binding model that
is numerically accessible and contains a relatively small num-
ber of parameters. Numerical accessibility is required due
to the relatively large size of the system, while the small
number of system parameters simplifies the analysis of the
low-energy physics. We note that enriching the model, e.g.,
including multi-orbital physics [24,25], amounts to enlarging
the parameter space; our model corresponds to all possible
“additional system parameters” having trivial values. The 1D

tight-binding model is described by the (second quantized)
Hamiltonian

H =
N

∑

i=1

∑

σ

{−t (ĉ†
iσ ĉi+1σ + H.c.) + [Vdis(i) − μ]ĉ†

iσ ĉiσ }

+
N

∑

i=1

{

�(ĉ†
i↑ĉi↓ + h.c.) +

α

2
(ĉ†

i↑ĉi+1↓

− ĉ
†
i↓ĉi+1↑ + H.c.)

}

, (1)

where i labels the sites of a 1D lattice with lattice con-
stant a, ĉ

†
iσ (ĉiσ ) is the creation (annihilation) operator for an

electron with spin σ located at site i, and Vdis(i) is a (position-
dependent) disorder potential. The other model parameters
are: t nearest-neighbor-hopping amplitude, μ chemical po-
tential, � (half) Zeeman splitting, and α Rashba spin-orbit
coupling. To describe a Majorana ring, we identify the sites
i = N + 1 and i = 1 in Eq. (1); “standard” open bound-
ary conditions are obtained by eliminating the hopping and
spin-orbit coupling contributions associated with the pair of
sites (N, 1). Note that Eq. (1) corresponds to the “standard”
tight-binding model for hybrid SM-SC Majorana structures
[26–29], which has been studied extensively for more than 10
years, both theoretically and experimentally [1].

The SM wire is proximity coupled to a thin superconduct-
ing film that induces a finite pairing potential. In the presence
of finite Zeeman splitting generated by a magnetic field par-
allel to the wire, the superconducting gap of the parent SC
is suppressed and eventually vanishes when the applied field
exceeds a certain critical value B0. We model this behavior by
assuming a field-dependent SC gap

�(�) = �0

[

1 −
(

�

�0

)2
]

, (2)

where �0 is the parent SC gap at B = 0 and �0 = 1
2 gμBB0

is the critical Zeeman field in the SM nanowire (μB being
the Bohr magneton and g the gyromagnetic ratio of the semi-
conductor). The field dependence of the parent SC gap is
illustrated in Fig. 1. Note that the magnitude of the zero-field
gap, �0 = 0.3 meV, is comparable to the values expected for
Al thin films; the critical Zeeman field, �0 = 2 meV, corre-
sponds to g ≈ 17 for B0 ≈ 4 T, which probably overestimates
the values characterizing Al-based structures by a factor 2−3.
We note that these specific effective parameter values, which,
in practice, are likely to vary from sample to sample even
for nominally identical systems, are not crucial for our gen-
eral considerations. However, an important point is that there
exists a finite critical field B0, i.e., it is not experimentally pos-
sible to increase the applied Zeeman field arbitrarily to access
the topological phase because at a high-enough field the bulk
Al gap is quenched and all SC gaps vanish. The existence of
the critical field B0, where the bulk SC gap collapses (thus
suppressing all topological physics in the SM-SC system), is a
property of the system beyond Majorana physics that imposes
an important constraint on the experimental situation.

Upon “integrating out” the SC degrees of freedom, the
proximity effect induced in the SM wire is approximately
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FIG. 1. Parent SC gap as function of the applied Zeeman field
for a system with �0 = 0.3 meV and �0 = 2 meV [see Eq. (2)]. The
green shaded region corresponds to the SC quasiparticle spectrum.
The properties of the hybrid SM-SC system will be investigated
within the low-energy regime, E < 100 µeV (highlighted area).

described by the on-site self-energy contribution

�SC (ω,�) = −γ
ω σ0τ0 + �(�) σyτy

√

�(�)2 − ω2
, (3)

where σμ and τμ are Pauli matrices associated with the spin
and particle-hole degrees of freedom, respectively, and γ is
the effective SM-SC coupling. In the numerical calculations
we use the value γ = 0.21 meV, which, for �0 = 0.3 meV,
corresponds to an induced gap (at zero magnetic field) of
about 0.125 meV. Equation (3) is expected to represent a good
approximation of the self-energy generated by a disordered
thin film in the limit of weak SM-SC coupling. We emphasize
that disorder in the SC represents a necessary ingredient for
obtaining a robust proximity effect (because of the Fermi
surface mismatch effect at the SM-SC interface) [30]. In the
presence of disorder (in the SC), the self-energy �SC , which
is proportional to the Green’s function of the superconductor
at the interface, becomes quasilocal. Furthermore, the effects
due to “induced disorder” are negligible in the weak coupling
limit, γ < �(�). Note, however, that for Zeeman field values
approaching the critical field �0 the system crosses into the
strong coupling regime, γ > �(�), where the effects of “in-
duced disorder” are expected to become significant [30,31].
Hence, our approximation overestimates the stability of the
topological phase by neglecting the effects of “induced dis-
order”, which are due to disorder necessarily present in the
parent SC.

The low-energy properties of the hybrid SM-SC system are
described by the effective semiconductor Green’s function

GSM (ω) = [ω I4N − HBdG − �SC ⊗ IN ]−1, (4)

where IM is an M × M identity matrix, �SC is the 4 × 4
self-energy matrix given by Eq. (3), and HBdG is a 4N × 4N

matrix representing the contribution to the (first quantized)
Bogoliubov-de Gennes (BdG) Hamiltonian given by the semi-
conductor, i.e., corresponding to the Hamiltonian in Eq. (1).
The quantities of interest that we focus on are the density of
states (DOS) ρ, and the local density of states (LDOS) ρL,
given by

ρ(ω) = −
1

π
ImTr[GSM (ω + iη)], (5)

FIG. 2. Schematic representation of the slicing used in the recur-
sive Green’s function method for (a) a system with open boundary
conditions and (b) a Majorana ring. For simplicity, we assume that
the number N of lattice sites is even. In addition to the hopping t ,
nearest-neighbor slices are coupled through spin-orbit contributions
[see Eqs. (10) and (11)]. In (b) there are intraslice hoping and spin-
orbit contributions for slices i = 1 and i = N/2 [Eq. (14)].

ρL(ω, i) = −
1

π
ImTrL[GSM (ω + iη)]ii, (6)

where Tr is the trace over position (i ∈ {1, 2, . . . , N}), spin,
and the particle-hole degree of freedom, while TrL is the
“local” trace over spin and particle-hole variables. The pa-
rameter η > 0 provides a (small) finite broadening of the
spectral features and determines the energy resolution of our
numerical solution. Typical values used in the calculations are
η ∼ 0.5−2 µeV. Note that both ρ and ρL only involve the
on-site Green’s function, i.e., the diagonal matrix elements
[GSM (ω + iη)]ii. While calculating the on-site Green’s func-
tion can be done by simply performing the matrix inversion
in Eq. (4), this brute force approach becomes numerically
inefficient for large systems, particularly if one has to explore
large regions of the parameter space. To address this technical
challenge, we use a recursive Green’s function method [32,33]
that involves 3N inversions of 4 × 4 matrices for a system
with open boundary conditions or 3N/2 inversions of 8 × 8
matrices for a Majorana ring. More specifically, we divide
the system into nearest-neighbor-coupled slices, as shown in
Fig. 2, and define the auxiliary left (GL) and right (GR) Green’s
functions with on-slice values G

L(R)
i given by

G
L(R)
i =

[

g−1(i) − �
L(R)
i

]−1
, (7)

�L
i = T T GL

i−1T , (8)

�R
i = T GR

i+1T
T . (9)

For a system with open boundary conditions (i.e., a “standard”
Majorana wire), the interslice coupling T is given by the 4 × 4
matrix

T = −tσ0τz +
iα

2
σyτz. (10)

For the Majorana ring, we introduce a new set of Pauli ma-
trices λμ, associated with the two sites within each slice [see
Fig. 2(b)]. The corresponding interslice coupling is the 8 × 8
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matrix

T = −tσ0τzλ0 +
iα

2
σyτzλz. (11)

The local inverse Green’s function g−1(i) can be separated into
position-independent and position-dependent contributions.
For the Majorana wire, the local inverse Green’s function is
a 4 × 4 matrix of the form

g−1(i) = g−1
0 (ω) − Vdis(i) σ0τz, (12)

with a position-independent contribution given by

g−1
0 (ω) = ω

(

1 +
γ

√

�(�)2 − ω2

)

σ0τ0 − (ε0 − μ)σ0τz

− �σxτz +
γ�(�)

√

�(�)2 − ω2
σyτy, (13)

where the constant ε0 = 2t cos[π/(N + 1)] was included for
convenience, to define the chemical potential with respect
to the bottom of the SM band. For the Majorana ring,
the position-independent contribution becomes g−1

0 (ω) →
g−1

0 (ω)λ0, while the position-dependent contribution takes the
form

−
1

2
Vdis(i) σ0τz(λ0 + λz ) −

1

2
Vdis(N + 1 − i) σ0τz(λ0 − λz )

− tσ0τzλx(δi,1 + δi,N/2) +
α

2
σyτzλy(δi,1 − δi,N/2), (14)

where δi, j is the Kronecker delta.
The left Green’s function and the corresponding self-

energy are determined recursively using Eqs. (7) and (8),
starting with the slice i = 1 and �L

1 = 0 (where 0 represents
the appropriate zero matrix). Similarly, we calculate the right
Green’s function and �R

i using Eqs. (7) and (9), starting
with i = N , �R

N = 0 (for a system with open boundary con-
ditions) or i = N/2, �R

N/2 = 0 (for a Majorana ring). Finally,
we calculate the Green’s function of interest (to be used for
determining the DOS and LDOS) using the expression

[GSM]ii =
[

g−1(i) − �L
i − �R

i

]−1
, (15)

with �L
i and �R

i determined recursively, as described above.
In the numerical calculations, unless explicitly stated oth-

erwise, we use the following values of the model parameters:
lattice constant a = 10 nm; number of lattice sites N = 4000
(which corresponds to a system length L = Na = 40 µm);
nearest-neighbor hopping t = 12.7 meV (corresponding to an
effective mass m = 0.03m0, with m0 being the free electron
mass); Rashba spin-orbit coupling coefficient α = 1.25 meV
(i.e., 125 meV Å); parent superconducting gap at zero mag-
netic field �0 = 0.3 meV; critical Zeeman field associated
with the collapse of the parent SC gap �0 = 2 meV; effec-
tive SM-SC coupling γ = 0.21 meV. These parameters are
realistic (although slightly optimistic) estimates of the param-
eters characterizing the currently used experimental SM-SC
systems.

IV. NUMERICAL RESULTS: LOW-ENERGY

DOS AND LDOS

In this section we calculate the low-energy properties of
a hybrid semiconductor-superconductor wire in the presence
of disorder using the modeling tools described above and
focusing on the density of states (DOS) and the local DOS
(LDOS). We first summarize some key properties of an ideal
(i.e., clean and infinitely long) system, to use them as a bench-
mark. Next, we consider a long-disordered Majorana system
(corresponding to the parameter values given at the end of
the previous section) and investigate the impact of disorder
on the low-energy spectral features. These results will help
us disentangle the disorder effects from finite-size effects,
which are ubiquitous (and significant) in short systems. Fi-
nally, we discuss the low-energy properties of shorter systems
(L ∼ 3 µm) and identify characteristic signatures associated
with relevant disorder regimes. Note that disentangling the
finite-size effects from disorder effects is critical for a full un-
derstanding of the spectral properties of the SM-SC systems.

A. Ideal Majorana wires

An infinitely long clean system is translation invariant and
the corresponding Fourier transform of the Green’s function
has the form

GSM =

[

ω

(

1 +
γ

√

�(�)2 − ω2

)

σ0τ0 − ξ (k)σ0τz

− (�σx + α sin ka σy)τz +
γ�(�)

√

�(�)2 − ω2
σyτy

]−1

,

(16)

with ξ (k) = 2t (1 − cos ka) − μ. The low-energy states are
given by the poles of the Green’s function, i.e., the solutions of
the equation det[GSM (ω, k)] = 0. The phase boundary associ-
ated with the topological quantum phase transition (TQPT)
corresponds to the zero-energy solutions for k = 0, i.e., the
solutions of the equation det[GSM (0, 0)] = 0. Explicitly, the
phase boundary between the trivial and topological SC phases
is given by the equation � = �c(μ), with −

√
�2

0 − γ 2 � μ �√
�2

0 − γ 2 and

�c(μ) =
√

μ2 + γ 2. (17)

In addition, � = �0 defines the boundary between the gapped
SC phases and the large-field (trivially) gapless phase. The
corresponding topological phase diagram is shown in Fig. 3,
with the yellow, red, and dark gray areas representing the
trivial SC, topological SC, and gapless phases, respectively.
Note that, within the approximations used in this paper (i.e.,
single-band model, local proximity-induced self-energy, no
magnetic field orbital effects) the boundary of the topologi-
cal SC phase is uniquely determined by two parameters: the
effective SM-SC coupling (γ , which controls the minimum
value of the Zeeman field associated with the TQPT) and the
critical field associated with the collapse of the parent SC gap
(�0, which controls the upper limit of the gapped phases). In
particular, for strongly coupled systems (large γ ) with low
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FIG. 3. Topological phase diagram of an ideal (clean and in-
finitely long) Majorana wire described by the effective Green’s
function in Eq. (16). The yellow, red, and dark gray areas represent
the trivial SC, topological SC, and gapless phases, respectively. The
phase boundary between the trivial and topological SC phases (black
line) is given by Eq. (17). The low-energy DOS as function of
Zeeman field or chemical potential and energy along the horizontal
(μ = ±0.73 meV) and vertical (� = 0.75 meV) blue lines is shown
in Fig. 4. Phase diagrams for disordered Majorana rings correspond-
ing to control parameters within the highlighted area are shown in
Fig. 14.

values of the SM g factor or low critical field B0 (implying
reduced values of �0) the topological phase of the ideal system
shrinks and eventually disappears for �0 � γ . Finally, we note
that, in practice, the chemical potential can be controlled using
electrostatic gates. In turn, the applied electrostatic potential
changes the transverse profile of the wave functions in the
SM wire and, implicitly, the effective SM-SC coupling γ

[34–36]. This effect can be incorporated into the model by
assuming γ = γ (μ). The phase diagram in Fig. 3 is obtained
within the assumption that the variation of the effective SM-
SC coupling over the relevant chemical potential range, |μ| �
2 meV, is negligible. However, we emphasize that within the
weak/intermediate SM-SC coupling regime, the shape of the
phase boundary is basically controlled by γ (0) and is weakly
dependent on γ (μ) − γ (0). This behavior is a consequence of
Eq. (17) giving �c(μ) ≈ |μ| + γ (μ)2/2|μ| ≈ |μ| for |μ| �
3γ (μ), i.e., almost everywhere, except the “tip” of the topo-
logical region, where γ (μ) ≈ γ (0).

To illustrate the dependence of the quasiparticle gap on
the control parameters, we calculate the DOS as a function
of energy (within the low-energy window 0 � ω � 100 µeV)
and Zeeman field or chemical potential (corresponding to
the cuts along the light blue lines in Fig. 3). Note that, for

FIG. 4. Density of states as function of energy and Zeeman field
(upper two panels) or chemical potential (lower panel) corresponding
to the cuts marked by light blue lines in Fig. 3. White/light yellow
shades indicate high DOS. The green region is above the collapsing
parent SC gap (see Fig. 1). Note that the quasiparticle gap vanishes at
points corresponding to the topological phase boundary (see Fig. 3),
i.e., μ = ±0.73 meV and � = 0.75 meV or � = �0 = 2 meV. The
spectral function along the cuts marked by horizontal white lines
is shown in Fig. 5. In all figures (showing DOS or LDOS re-
sults) throughout this section brighter (darker) colors indicate higher
(lower) DOS values, with white corresponding to the maximum value
and black indicating zero DOS.

a translation-invariant system, we have ρ(ω) =
∑

k A(ω, k),
with the spectral function A(ω, k) = (−1/π )ImTr[GSM (ω +
iη, k)]. The results are shown in Fig. 4. As expected, upon
approaching the topological phase boundary � = �c(μ) by
varying the Zeeman field or the chemical potential, the quasi-
particle gap closes, then, after crossing into a topologically
different SC phase it reopens. The vanishing of the quasipar-
ticle gap at the TQPT is associated with a V-shaped feature
characterized by high DOS (white shading in Fig. 4). In
addition, the quasiparticle gap vanishes at the critical field
� = �0, where the parent SC gap collapses and the entire
system becomes gapless. As general trends, we note that
the topological gap (i.e., the quasiparticle gap characterizing
the system with control parameters within the red region in
Fig. 3) typically increases with the chemical potential and, for
μ > 0, it typically decreases with increasing �. For the model
parameter values used in this study the maximum topological
gap is about 60 µeV, which is consistent with the clean-limit
estimates for InAs-Al systems being used currently.

To better understand the nature of the states responsible for
various low-energy features, we calculate the spectral function
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FIG. 5. Dependence of the spectral function A(ω, k) on Zeeman
field and wave vector along the cuts marked by white lines in Fig. 4.
Note that the high DOS V-shaped features in Fig. 4 are associated
with long-wavelength states (k ≈ 0). The low-field, low-k branch
in the upper panel is associated with the higher-energy spin sub-
band (HESS), while the the high-field, high-k branch in the upper
panel and the spectral features in the lower panel are associated
with the lower-energy spin subband (LESS). A schematics of the
spin subbands is shown in Fig. 6. Note that, upon approaching the
gapless regime, �(�) ↘ ω (i.e., � → 1.83 meV in the upper panel),
the spectral features loose weight and diverge either toward large-k
values (upper branch) or toward k = 0 (lower branch).

A(ω, k) along the cuts marked by white lines in Fig. 4. The
results are shown in Fig. 5. In addition, we have determined
the spin structure of various contributions by calculating the
spin-resolved spectral function Aσ (ω, k) for the spin direc-
tion parallel to the applied Zeeman field (not shown). The
key conclusions are the following. First, the high DOS V-
shaped features in Fig. 4 responsible for the closing and
reopening of the quasiparticle gap at the TQPT are associ-
ated with long-wavelength states having k � 0.01 nm−1. In
the presence of disorder, these long-wavelength states are the
first to become localized. Second, for negative values of μ

(i.e., chemical potential below the bottom of the SM band
at zero magnetic field) the low-energy spectral contributions
are associated with the lower-energy spin subband (Fig. 5,
bottom panel), while for μ > 0 there are contributions from
both spin subbands (Fig. 5, top panel). The contribution as-
sociated with the higher-energy spin subband is characterized
by relatively low wave-vector values (e.g., k < 0.02 nm−1 in
Fig. 5), while the contribution from the lower-energy spin sub-
band has significantly larger characteristic wave vectors (e.g.,
k > 0.035 nm−1 in Fig. 5, top panel). This behavior can be
easily understood by considering the schematic spin subband
structure shown in Fig. 6. We note that for positive (and rel-
atively large) values of the chemical potential the topological
gap is (mostly) controlled by states with large characteristic
wave vectors associated with the lower-energy spin subband.
In turn, these states are expected to be more robust against
localization by disorder (as compared to the low-k states),
i.e., more delocalized. By contrast, the low-k states associated
with the higher-energy spin subband are expected to become

FIG. 6. Schematic representation of the spin subbands for posi-
tive (left panel) and negative (right) values of the chemical potential
in the presence of a finite Zeeman field. The characteristic k vectors
for quasiparticles having energy ω correspond to the intersections
with the dashed horizontal lines. For μ > 0 there are low-energy
quasiparticles associated with both the higher-energy (red lines) and
the lower-energy (blue lines) spin subbands, while for μ < 0 the are
only contributions from the lower-energy subband. Note that this
schematics does not incorporate the effects of proximity-induced
energy renormalization.

localized even in the presence of relatively weak disorder.
This behavior will be investigated in detail in the next section.
Our third conclusion concerns the behavior of the spectral
function in the vicinity of gapless regime, where the parent
gap approaches ω (from above), �(�) ↘ ω (see top panels
of Figs. 4 and 5). In this regime, the ratio γ /

√

�(�)2 − ω2

in Eq. (16) diverges, which implies strong-energy and quasi-
particle renormalization [37]. On the one hand, this leads to
a reduced quasiparticle weight. On the other hand, it results
in the effective “flattening” of the lower-energy spin subband
(blue lines in Fig. 6)—the subband with low-energy contri-
butions at large � values—and the “migration” of the two
branches of characteristic quasiparticle wave vectors toward
large-k values and toward k = 0, respectively. Both effects
can be clearly observed in the upper panel of Fig. 5 for
� → 1.83 meV.

B. Low-energy disorder effects in long Majorana systems

The effects of disorder on the low-energy physics of the hy-
brid structure are investigated based on a correlated disorder
potential of the form

Vdis(i) = V0

⎡

⎣

Ndis
∑

p=1

(−1)p

2
exp

(

−
|i − jp|

λ

)

− V

⎤

⎦, (18)

where V0 is the amplitude of the disorder potential and
Ndis represents the number of “effective impurities” having
random locations jp and generating impurity potentials
Vp(i) = (−1)p/2 exp(−|i − jp|/λ). The parameter V is the
average (over the lattice index i) of the first term in the square
parentheses, which ensures that the position average of Vdis is
zero (i.e., there is no overall shift of the chemical potential).
In the numerical calculations, for a 40-µm-long wire, we have
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FIG. 7. Dependence of the characteristic correlation function
given by Eq. (19) on distance. Note that the disorder correlation
length is about 15 nm. Inset: Spectral signature of the disorder po-
tential corresponding to the disorder-averaged absolute value of the
Fourier transformed Vdis given by Eq. (20). The results were obtained
by averaging over 500 disorder realizations.

Nimp = 2 × 104 (i.e., five effective impurities per micron)
and λ = 0.8 (i.e., λa = 8 nm). The disorder potential has a
characteristic correlation function

〈Vdis(i)Vdis(i
′)〉 = V 2

0 f (�x), (19)

with �x = |i − i′|a. The dependence of the correlation func-
tion f on �x is shown in Fig. 7. To further characterize the
disorder potential, we calculate the spectral signature defined
as the disorder-averaged absolute value of the Fourier trans-
formed disorder potential 〈|Vdis(k)|〉 with

Vdis(k) =
√

2

N + 1

N
∑

i=1

Vdis(i) sin(ika). (20)

Note that each disorder realization corresponds to a different
set of (random) impurity positions { jp}p=1,Ndis

in Eq. (18).
The result is shown in Fig. 7 as an inset. The key feature is
that the spectral signature of the disorder potential is almost
constant over the relevant range of wave-vector values (also
see Fig. 5), which implies that the disorder potential will
have comparable impact on all low-energy states. Note that,
as a result of the position average of Vdis being zero (by con-
struction), we have Vdis(k = 0) = 0. We note that our model
disorder is qualitatively consistent with the estimated effective
disorder corresponding to experimental SM-SC structures, but
we make no effort to “realistically” simulate a specific SM-SC
structure.

Next, we focus on the particular disorder realization that
will be used in subsequent calculations. The dependence of
the corresponding disorder potential Vdis on the position along
the wire is shown in the top panel of Fig. 8. We also calcu-
late a “smooth” disorder potential obtained by suppressing
all Fourier components of the original potential with k �
0.025 nm−1 (see bottom panel of Fig. 8). We note that the
original and the “smooth” disorder potentials have similar
impacts on the long-wavelength (low-k) states (see Fig. 5),
but the effect of the “smooth” potential on the large-k states
is minimal. The features of the disorder potential that are
effective in localizing long-wavelength states can be identified
as features of the “smooth” potential, e.g., deep minima in
Fig. 5 (lower panel).

FIG. 8. Top: Position dependence of the disorder potential used
in the calculations discussed in this section. Bottom: “Smooth” disor-
der potential obtained from the Fourier components of the potential
in the upper panel with wave vectors k � 0.025 nm−1. The original
and “smooth” potentials have similar impacts on the long-wavelength
(low-k) states (see Fig. 5). The red rectangles mark 3 µm segments
that will be studied in Sec. IV C as disorder realizations “A” and “B”
in a short wire.

After this preparatory work, we are finally ready to in-
vestigate the impact of disorder on the TQPT. We start with
the Zeeman field dependence of the low-energy DOS for
a system with μ = −0.73 meV, which corresponds to the
middle panel of Fig. 4 in the “ideal” case. Specifically, we
consider a 40-µm-long Majorana ring in the presence of the
disorder potential shown in the top panel of Fig. 8 with overall
amplitude V0. The dependence of the low-energy DOS on
the Zeeman field for different V0 values is shown in Fig. 9.
First, we note that the result for the clean system (V0 = 0) is
practically identical to the “ideal” case illustrated in Fig. 4,
which demonstrates that the system under investigation is
long enough (L = 40 µm) within our energy resolution (η =
2 µeV). We point out that, unlike Fig. 4, the energy window
in Fig. 9 includes both positive and negative values, −100 �

ω � 100 µeV. Second, we note that the quasiparticle gap in
the nominally topological phase, which has a maximum value
of about 20 µeV in the clean system, gets reduced by disor-
der and completely collapses for V0 � 0.4 meV. Hence, for
V0 � 0.4 meV the system has quasiparticles with arbitrarily
low energy for all values of the Zeeman field above �∗(V0) <

�c(μ) ≈ 0.76 meV. We note that, upon increasing the size of
the system, these low-energy states form a quasicontinuum.
We also remind the reader that the system is a Majorana ring,
hence these low-energy states do not include possible MZMs
localized near the ends of an open boundary system.

To get further insight, we also consider the positive chem-
ical potential regime. In Fig. 10 we show the energy and
Zeeman field dependence of the DOS for a system with μ =
0.73 meV and different values of the overall disorder potential
amplitude V0. The maximum value of the topological gap
(in the clean system) is about 55 µeV. Upon increasing the
disorder strength, the system becomes gapless (above a certain
Zeeman field value) for V0 � 0.8 meV. Again, increasing the
size of the system results in a quasicontinuous gapless spec-
trum. The crucial feature revealed by the sequence shown in
Fig. 10 is that two different “mechanisms” contribute to the
extinction of the quasiparticle gap, as the disorder strength
increases: the expansion of the linearly dispersing gapless
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FIG. 9. Dependence of the low-energy DOS on energy and ap-
plied Zeeman field for a 40-µm-long Majorana ring with μ =
−0.73 µeV and disorder potential corresponding to the top panel
of Fig. 8 with overall amplitude V0. The values of V0 are given in
meV. The quasiparticle gap is reduced by disorder and collapses
above a certain (disorder-dependent) value of the Zeeman field for
V0 � 0.4 meV.

modes associated (mainly) with HESS states toward higher
Zeeman fields and the collapse of the quasiparticle gap associ-
ated with LESS states. The first mechanisms is controlled by
low-k states within the higher-energy spin subband (HESS),
while the second mechanism is associated with high-k states
from the lower-energy spin subband (LESS). The correspond-
ing characteristic k vectors are given in Fig. 5 (top panel).

The most straightforward way to disentangle the two mech-
anisms is to consider the system in the presence of the
“smooth” potential shown in the lower panel of Fig. 8 that
mainly affects the long wavelength HESS states. A com-
parison between the effects of the “original” and “smooth”
potentials for a system with chemical potential μ = 0.73 meV
is shown in Fig. 11. First, note that the LESS states are weakly
affected by the “smooth” potential, being characterized by a
quasiparticle gap similar to that of a clean system (for compar-
ison, see Fig. 10, top panel). By contrast, the HESS spectrum,
which in the clean system is gapped everywhere except at the
critical point � = �c ≈ 0.76 meV, becomes essentially gap-
less over a wide Zeeman field range, 0.38 � � � 1.57 meV.
Taking the limit L → ∞ and assuming a properly bounded
disorder potential (which essentially limits the maximum Zee-
man field associated with zero-energy crossings for given
values of the disorder strength and chemical potential), the

FIG. 10. Dependence of the low-energy DOS on energy and Zee-
man field for a Majorana ring of length L = 40 µm having chemical
potential μ = 0.73 meV and different values of the disorder strength
V0 (with values given in meV). For the clean system (top panel), the
contributions associated with the lower-/higher-energy spin subbands
(LESS/HESS) are explicitly marked. The corresponding characteris-
tic wave vectors are given in Fig. 5 (top panel). For V0 � 0.8 meV,
the quasiparticle gap collapses above a Zeeman field of the order γ

(where γ is the effective SM-SC coupling).

system becomes gapless for all Zeeman field values within
a certain range. As shown below (Fig. 12), these low-energy
modes (mainly) associated with low-k HESS states are local-
ized around local minima of the “smooth” potential, which are
scattered throughout the ring. The bounded disorder practi-
cally limits the strength of these local minima. Alternatively, if
we consider, for example, Gaussian disorder, rare strong local
minima can occur, which implies that, for a given value of
the overall disorder amplitude V0, low-energy modes localized
near these minima can emerge at arbitrarily large Zeeman field
values. Nonetheless, the key property of the low-energy spec-
trum in the presence of the “smooth” disorder potential is the
existence of a “partial” gap associated with the high-k LESS
states (see lower panel of Fig. 11). We note that for μ < 0
the low-energy spectral features are associated with a single
spin subband and, consequently, there is a smooth crossover
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FIG. 11. Comparison between the effects of the “original” and
“smooth” disorder potentials shown in Fig. 8 (with overall amplitude
V0 = 0.8 meV) on a system with μ = 0.73 meV. The top panel is
identical to the lowest panel in Fig. 10. Note that the “smooth” poten-
tial (lower panel) has a minimal effect on the high-k LESS states, but
induces gapless HESS states over a large Zeeman field range. The
zero-energy modes near � ≈ 0.5 meV (highlighted region) result
from the disorder-induced collapse of the trivial gap associated with
HESS states (also see Fig. 10). In the upper panel, the zero-energy
DOS is augmented by contributions from LESS states.

between low-k and large-k contributions (see Fig. 5), hence,
between the two “mechanisms”. However, since the topolog-
ical phase is most stable in the positive chemical potential
regime (which, consequently, is the most relevant regime) and
because various system parameters affect low-k and large-k
states differently, it is practically useful to distinguish between
the two “mechanisms”.

The relative importance of the two “mechanisms” that con-
tribute to the collapse of the quasiparticle gap is determined
by the system parameters. On the one hand, the maximum
“width” of the topological phase along the Zeeman field axis
is controlled by the effective SM-SC coupling γ and by the
critical Zeeman field �0 associated with the collapse of the
parent SC gap. Specifically, for a clean system the topological
phase corresponds to

√

γ 2 + μ2 � � � �0, with a maximum
width equal to �0 − γ . Increasing the disorder strength V0

results in the emergence (within both the trivial and topologi-
cal phases) of (isolated) gapless modes localized near minima
of the (“smooth”) disorder potential. In addition, increasing
disorder reduces that quasiparticle gap that characterizes the
large-k states associated with the lower-energy spin subband;
this gap is controlled by the parent gap �0, the spin-orbit
coupling α, and the effective SM-SC coupling γ (see below,
Fig. 15). Finally, the relative impact of disorder on the low-
and high-k states depends on the characteristic length scale of
the disorder potential, as shown explicitly in Fig. 11. The main
focus of this study is to understand in detail the low-energy
properties of the system in the regime characterized by the
(near) collapse of the “partial quasiparticle gap” associated
with large-k states.

At this point, it is useful to provide more detail on the real
space properties of the states responsible for the low-energy
features shown in Fig. 10. More specifically, we calcu-
late the position dependence of the LDOS associated with

FIG. 12. Position dependence of the LDOS associated with spe-
cific low-energy modes in a disordered Majorana ring with L =
40 µm, chemical potential μ = 0.73 meV, and additional parameters
corresponding to representative features in Fig. 10. Note that x = 0
and x = 40 µm represent the same point on the ring. Modes A (red
filling) and B (yellow filling) are associated with zero-energy cross-
ings occurring at Zeeman field values (a) �A = 0.889 meV and �B =
0.877 meV (for V0 = 0.2 meV) and (b) �A = 1.568 meV and �B =
1.564 meV (for V0 = 0.8 meV). These modes represent strongly lo-
calized disorder-induced Andreev bound states that cross zero energy
at points that can be continuously traced within the (μ, �,V0 ) param-
eter space. The zero-energy LDOS contributions C1 (calculated at
�C1 = 0.703 meV) and C2 (at �C2 = 0.573 meV), which result from
the collapse of the quasiparticle gap in the vicinity of the TQPT of
the clean system (see Fig. 10), consist of highly delocalized modes
extending throughout the entire system. D1 − D4 are finite-energy
contributions associated with LESS modes near the edge of the
“partial gap”. The corresponding energies are: (c) ωD1 = 22.2 µeV
and ωD2 = 25.6 µeV; (d) ωD3 = 2.7 µeV and ωD4 = 4.6 µeV. Note
that for V0 = 0.8 meV the “partial gap” has practically collapsed (see
Fig. 10).

(i) modes characterized by a linear low-energy dispersion,
which generate distinct zero-energy crossings at certain (dis-
crete) values of the Zeeman field; (ii) modes associated with
the zero-energy DOS in the vicinity of the critical Zeeman
field �c corresponding to the TQPT of the clean system; and
(iii) finite-energy LESS modes near the edge of the “partial
gap” associated with high-k states. Several representative ex-
amples are shown in Fig. 12. First, we consider the linearly
dispersing modes (associated with low-k states) that cross zero
energy at certain values of the Zeeman field. Modes A and
B shown in Figs. 12(a) and 12(b) are two specific examples.
In general, these modes are strongly localized near minima
of the “smooth” potential. For example, modes A and B are
localized near the minima at x ≈ 18.4 µm and x ≈ 14.5 µm,
respectively (see lower panel of Fig. 8). We note that the
characteristic length scale of these states is (typically) less
that one micron and decreases as one increases the amplitude
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of the disorder potential. We also note that the points at which
the energy of these modes vanishes can be continuously traced
within the (μ,�,V0) parameter space; Figs. 12(a) and 12(b)
show these modes at two different sets of parameters.

Next, we consider zero-energy modes in the vicinity of
the critical Zeeman field �c corresponding to the TQPT of
the clean system. Specific examples include the states C1

and C2 (blue shading) shown in Figs. 12(a) and 12(b). Note
that these zero-energy modes correspond to values of the
Zeeman field lower than the critical value for the clean sys-
tem, �c(μ) ≈ 0.76 meV. The most relevant characteristic of
these modes is that they are highly delocalized, with spectral
weight distributed throughout the entire system. This feature
is independent of the size of the system, in the sense that
upon increasing L one can still find C-type delocalized states,
although typically within a narrower range of Zeeman fields.
Below we investigate the dependence of this type of state on
the control parameters (see Fig. 16 below).

Finally, we consider D-type low-energy modes associated
with large-k (LESS) states. Specific examples are shown
in Figs. 12(c) and 12(d). There are several critical features
associated with this type of states. First, although they are lo-
calized in the presence of disorder, their characteristic length
scale is relatively large—several microns, up to tens of mi-
crons. Consequently, in short wires (i.e., in systems with
lengths of a few microns) these states can be practically
delocalized, i.e., they can extend throughout the entire sys-
tem. Second, the large characteristic momenta associated with
these modes are clearly revealed by the highly oscillatory
nature of the corresponding LDOS (see the shape of the black
and blue lines corresponding to the D modes in Fig. 12).
Third, the low-energy D-type modes are ubiquitous in the
regime characterized by the collapse of the gap associated
with large-k states. This is in contrast with the highly localized
modes associated with low-k states (e.g., the A and B modes
discussed above), which disperse (approximately) linearly and
become gapped under small variations of the Zeeman field
or chemical potential. Most importantly, in a long (but finite)
wire the probability of having low-energy D-type modes near
the ends of the system is significant (unlike the corresponding
probability for strongly localized modes, which are relatively
rare and isolated).

Before investigating in more depth the properties of the
low-energy LDOS in the regime characterized by gapless
large-k modes, let us determine more quantitatively the pa-
rameter values associated with this regime. In particular,
we want to estimate the disorder strength above which the
whole topological phase is characterized by the presence of
(arbitrarily) low-energy large-k modes. First, we consider the
dependence of the zero-energy DOS on the Zeeman field
and disorder strength (V0) for fixed values of the chemi-
cal potential. The results are shown in Fig. 13. For V0 = 0
(clean system), the points characterized by a nonvanishing
zero-energy DOS (i.e., � ≈ 0.76 meV in the top panel and
� ≈ 0.33 meV in the bottom panel) mark the TQPT between
the low-field trivial phase and the high-field topological phase.
Note that the corresponding zero-energy mode is delocalized.
In the presence of disorder (V0 > 0), the TQPT is expected to
occur at values of the critical field different from those charac-
terizing the clean system, but within the range characterized

FIG. 13. Map of the zero-energy DOS as function of Zeeman
field and disorder strength for a Majorana ring of length L = 40 µm
with chemical potential μ = 0.73 meV (top) and μ = 0.25 meV
(bottom). The collapse of the quasiparticle gap associated with large-
k states occurs at V0 ≈ 0.9 meV in the top panel and V0 ≈ 0.7 meV in
the lower panel. The modes A/B, C, and D denote disorder-induced
strongly localized, delocalized, and weakly localized states, respec-
tively, as discussed in the text (also see Fig. 12).

by high values of the zero-energy DOS (light yellow/white
in Fig. 13), where delocalized C-type modes can be found.
The line-like features that fan out of the high DOS region
are associated with highly localized (low characteristic k)
states (A and B type). The collapse of the quasiparticle gap
associated with large-k states is revealed by the presence
of zero-energy D-type modes, which occur above a certain
(μ-dependent) disorder strength. Typically, this characteristic
disorder strength increases with the chemical potential. How-
ever, we note that for V0 � V ∗

0 ≈ 1 meV the entire parameter
region that could host a topological phase becomes gapless
(for D-type modes).

To corroborate this picture, we also map the zero-energy
DOS as function of the Zeeman field and chemical potential
for different values of the disorder strength. The correspond-
ing “phase diagrams” are shown in Fig. 14. We note that,
indeed, the (partial) quasiparticle gap associated with D-type
states first collapses at low (negative) values of the chemi-
cal potential; with increasing V0, low-energy large-k modes
start to emerge at higher μ values and at V0 = 0.8 meV they
cover almost the entire topological region, consistent with our
estimate of V ∗

0 . In addition, we note that, with increasing dis-
order, the minimum Zeeman field at which zero-energy modes
occur becomes weakly dependent on the chemical potential,
with �min ≈ γ (where γ = 0.21 meV is the effective SM-SC
coupling) in the strong-disorder limit. Finally, we point out
that for a disorder strength V0 = 0.4 meV, which is a factor of
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FIG. 14. “Phase diagrams” obtained by mapping the zero-energy DOS of a Majorana ring (L = 40 µm) as function of Zeeman field and
chemical potential for different values of the disorder strength. The gapless large-k D-type modes first emerge at low (negative) values of the
chemical potential, then, upon increasing V0, expand into the region characterized by larger chemical values.

only about 2.5 less than V ∗
0 , the system in characterized by a

large gapped topological region, with an area comparable to
the area of the topological phase of a clean system.

Before continuing our analysis, we point out that the
estimate V ∗

0 ≈ 1 meV corresponds to the specific system
parameters used in this calculation, in particular Rashba
spin-orbit coupling αR = αa = 125 meV Å, parent SC gap
(at zero field) �0 = 0.3 meV, and effective SM-SC coupling
γ = 0.21 meV. A natural question concerns the impact of
these parameters on the disorder strength associated with the
collapse of the large-k quasiparticle gap. While a detailed
quantitative characterization of this impact is beyond the
scope of this paper, we provide a qualitative characterization
in Fig. 15, which shows the dependence of the low-energy
DOS on the disorder strength V0 for a system with L = 40 µm,
μ = 0.5 meV, � = 1.4 meV, and different values of α, �0,
or γ . First, by comparing the top two panels, we notice
that enhancing the strength of the spin-orbit coupling (SOC)
enhances the stability of the LESS quasiparticle gap against
disorder. This is consistent with the well-known dependence
of the topological gap (in clean systems) on the magnitude of
the Rashba SOC coefficient [27]. Next, enhancing the gap of
the parent SC generates an overall enhancement of the quasi-
particle gap, but does not affect the zero-energy states (except
by increasing their relative weight within the SM wire). This
behavior can be easily understood by analyzing the structure
of the SM Green’s function, e.g., in Eq. (16). Indeed, at ω = 0
the anomalous contribution becomes γ σyτy (i.e., independent
of �0), while the quasiparticle residue, Z = [1 + γ /�(�)]−1

only affects the weight of the zero-energy modes, not their
dependence on the system parameters. These considerations
also hold in the presence of disorder. Finally, the lowest panel
in Fig. 15 shows that increasing the effective SM-SC coupling
enhances the stability of the LESS quasiparticle gap against
disorder (in the SM). Note, however, that strong SM-SC cou-
pling may also enhance the (possible adverse) effects induced
by disorder in the parent SC [30], which is not included in this
calculation. This can be particularly relevant in the vicinity of
�0 (the Zeeman field associated with the collapse of the parent
SC gap), where γ � �(�) and the system is in the strong

SM-SC coupling regime. Note that such a regime exists even
for systems that are weakly coupled at zero field (γ < �0).
In our case, for the parameters used throughout this paper
(except Fig. 15), γ > 2�(�) for � � 1.6 meV; the results cor-
responding to this regime should be interpreted with caution,

FIG. 15. Dependence of the low-energy DOS on energy and
disorder strength for a ring of length L = 40 µm, chemical poten-
tial μ = 0.5 meV, Zeeman field � = 1.4 meV, and different system
parameters. The parameter values that are not explicitly given in each
panel (in units of meV) are α = 1.25 meV, �0 = 0.3 meV, and γ =
0.21 meV. In the lowest panel (γ = 0.6 meV), one can distinguish
the gap edge associated with both LESS states (∼40 µeV in the clean
limit) and HESS states (∼70 µeV in the clean limit).
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as the stability against disorder may have been overestimated
by neglecting disorder inside the parent SC. Finally, we point
out that (i) for disorder strengths less than V0 ≈ 0.4 meV
the disorder effects are minimal for all parameter values and
(ii) the best strategy for protecting the quasiparticle gap (other
than reducing disorder) involves enhancing the SOC and SM-
SC coupling strengths in combination with using a larger gap
parent SC (to minimize the strong SM-SC coupling regime).
In addition, this would reduce the characteristic length scales
of the low-energy modes, which are large compared to the
typical lengths of hybrid systems realized in the laboratory
(see Fig. 12; also Figs. 18–20 below).

Returning to our main analysis, we address the question
regarding the location of delocalized (C-type) zero-energy
modes (see Fig. 12) within the control parameter space.
For specificity, we focus on a system with disorder strength
V0 = 0.6 meV and identify which of the modes that generate
the zero-energy DOS shown in the corresponding panel of
Fig. 14 are delocalized. To efficiently characterize a delocal-
ized mode, we introduce following measure, which we dub
the “weakest link”,

W L = Mini0

⎡

⎣

i0+δ
∑

i=i0

ρL(0, i)

⎤

⎦, (21)

where ρL(ω, i) is the local density of states (LDOS) at site
i and δ = δL/a defines a segment of the Majorana ring of
length δL. The site indices are defined modulus N (consistent
with the ring geometry). The quantity W L defined by Eq. (21)
represents the lowest spectral weight of a zero-energy mode
within an arbitrary segment of length δL. A system containing
no zero-energy states or localized zero-energy modes will
be characterized by small values of W L, while delocalized
zero-energy modes will be associated with the maxima of W L,
as their spectral weight is distributed throughout the entire
system.

The dependence of W L on Zeeman field and chemical
potential for a Majorana ring with L = 40 µm and disorder
strength V0 = 0.6 meV is shown in Fig. 16. For the calculation
of W L we have considered weak-link segments of length δL

ranging from 500 nm to 2 µm; the results are essentially the
same (up to an irrelevant overall factor). The range of Zeeman
fields associated with the presence of delocalized zero-energy
modes (corresponding to maxima of W L) is relatively narrow
for �0.25 meV, but becomes significant at lower values of the
chemical potential. Nonetheless, one can clearly observe that
for μ � 0.4 meV the delocalized zero-energy modes emerge
outside the topological region associated with the clean sys-
tem (i.e., to the left of the “ideal” topological phase boundary
marked by red circles in Fig. 16), while for low values of the
chemical potential the delocalized zero-energy modes emerge
well inside the “ideal” topological phase. This is consistent
with the expected location of the topological phase boundary
in the presence of disorder. Furthermore, upon reducing the
disorder strength the location of the W L maxima approaches
the “ideal” topological phase boundary, which is expected
based on the overall dependence of the parameter space region
characterized by nonvanishing zero-energy DOS on disorder
(see Fig. 14). On the other hand, further increasing the disor-
der strength increases the range of Zeeman fields associated

FIG. 16. “Weakest link” defined by Eq. (21) for a Majorana ring
of length L = 40 µm and disorder strength V0 = 0.6 meV as function
of the Zeeman field for different chemical potential values ranging
from μ = −0.5 meV (bottom curve) to μ = 1.05 meV (top curve) in
steps of 0.05 meV. The curves are shifted for clarity. The maxima
of W L correspond to delocalized zero-energy modes. The red circles
mark the topological phase boundary of a clean system. The low-
energy spectral properties of the system along the cuts marked A, B,
and C are investigated below (Figs. 17–20).

with the presence of W L maxima, which makes this method
of estimating the location of the phase boundary unreliable
in the strong-disorder limit. In this context, we note that
large values of W L can be generated not only by delocalized
C-type modes, but also by (essentially) localized D-type zero
modes having characteristic length scales comparable to the
size of the system. To eliminate these contributions, one has
to increase the size of the system.

Next, we focus on an open system with parameter values in
the vicinity of the region characterized by W L maxima. More
specifically, we calculate the low-energy DOS along the cuts
marked A, B, and C in Fig. 16 for a Majorana wire, i.e., a
system with open boundary conditions. We emphasize that
all system parameters (including the disorder potential) are
the same as in Fig. 16, but we use open (instead of periodic)
boundary conditions. The results are shown in Fig. 17. First,
we consider cut A, which extends on both sides of the clean
topological boundary, but is positioned to the right of the
region characterized by a W L maximum (see Fig. 16). The
top panel of Fig. 17 reveals the presence of many low-energy
modes (note that the energy range is ±4 µeV), some of them
crossing zero energy or even “sticking” near zero energy over
some finite (relatively short) Zeeman field interval. However,
the most notable feature is a zero-energy mode that extends
along the entire cut corresponding to a Zeeman field range
�� = 0.2 meV. We note that this zero-energy mode can be
traced all the way up to � = �0 (not shown). Moreover, for
� � 1.2 meV this mode sits in the middle of a finite quasipar-
ticle gap (see, e.g., the panel corresponding to V0 = 0.6 meV
in Fig. 14) and can be clearly identified as a pair of Majorana

085416-14



SPECTRAL PROPERTIES, TOPOLOGICAL PATCHES, … PHYSICAL REVIEW B 108, 085416 (2023)

FIG. 17. Low-energy DOS for a Majorana wire (i.e., a system
with boundaries) along the cuts marked A, B, and C in Fig. 16.
The (fixed) system parameters are the same as in Fig. 16. The
chemical potential values corresponding to the three cuts are: (A)
μ = 0.6 meV (top panel); (B) μ = −0.25 meV (middle); (C) μ =
0.25 meV (bottom). In panels (A) and (C) one can clearly identify
a zero-energy mode extending throughout the entire Zeeman field
range associated with the corresponding cuts; the energy of this mode
is less than 0.1 µeV, i.e., much smaller than all other relevant energy
scales. In panel (B) there are only short segments characterized by
zero-energy modes. The LDOS corresponding to the vertical (blue)
cuts in panels (A), (B), and (C) are shown in Figs. 18–20, respec-
tively. The finite-energy modes labeled 1, 2, . . . , 6 in panel (C) are
explicitly identified in Fig. 20.

zero modes (MZMs). On the other hand, in Fig. 17(A) one
can clearly notice variations of the spectral intensity charac-
terizing the zero-energy mode. To unambiguously determine
the nature of the zero-energy mode in cut A and identify the
source of the spectral intensity variations, we calculate the
local density of states (LDOS) as a function of energy and
position along the wire for the representative cuts marked
by blue lines in Fig. 17(A). The corresponding results are
shown in Fig. 18. We note the presence of zero-energy modes
localized near the ends of the wire for all three values of
the Zeeman field. To determine if these are Majorana modes
or regular (fermionic) BdG states [or zero-energy Andreev
bound states (ABSs)], we use the following easy-to-check
property of the zero-energy LDOS:

πη
∑

i∈�Lα

ρL(0, i) =

{

1 if α ≡ MZM,

2 if α ≡ Z−BdG,
(22)

where �Lα is the segment of the wire that supports the spec-
tral weight associated with mode α and η is the broadening
used in the calculation of the LDOS. As long as the modes
are well separated, applying this criterion is convenient and
unambiguous. Using this method we have verified that the
robust zero-energy mode in Fig. 17(A) corresponds to a pair
of MZMs localized near the ends of the wire and that the re-
gions with higher (zero-energy) spectral intensity correspond
to additional “regular” BdG states having (near) zero energy
(typically within a narrow Zeeman field range). Specific ex-
amples include the modes marked Z-BdG in Fig. 18. We
conclude that cut A is within the topological phase and that
the presence of disorder has shifted the topological phase

FIG. 18. LDOS as function of position along the wire and energy
corresponding to the vertical (blue) cuts in Fig. 17(A). For all three
values of the Zeeman field one can identify a pair of MZMs localized
near the ends of the wire (MZM1 and MZM2, respectively). For � =
0.545 meV and � = 0.7 meV there are additional zero-energy modes
(marked Z-BdG) representing “regular” BdG states localized inside
the wire. Note that some of the finite-energy BdG states are localized
near the ends of the wire (see, e.g., the middle panel).

boundary to lower Zeeman field values (as compared to the
clean case), as suggested by the position of the W L maximum.

Next, we consider cut B (see Fig. 16), which is well
within the “clean” topological region, but to the left of the
W L maxima. As shown in the middle panel of Fig. 17, in
this case there is no stable zero-energy mode; only “acciden-
tal” zero-energy crossings and short, isolated segments that
support zero-energy modes. To identify the nature of these
modes, we calculate the LDOS for three representative values
of the Zeeman field (vertical blue lines). The corresponding
results are shown in Fig. 19. For � = 0.6 meV (top panel), one
can clearly identify the zero-energy mode as a Z-BdG state
localized near the middle of the wire. The relative stability
of this mode (over a Zeeman field range of about 0.02 meV;
see Fig. 17) can be explained as a result of the Majorana
components being partially separated spatially, i.e., forming
a so-called partially separated ABS (ps-ABS) [38], or a pair
of quasi-Majoranas [39], localized near the middle of the
wire. Again, this was explicitly verified using the criterion
in Eq. (22). Upon slightly increasing the Zeeman field, the
ps-ABS becomes gapped, as illustrated in the middle panel
of Fig. 19. In this context, we note that by establishing the
correspondence between the low-energy modes at two differ-
ent values of the Zeeman field (see arrows in Fig. 19) one
can identify the DOS features in Fig. 17 associated with each
mode (even when there are accidental degeneracies at a given
field value). The lower panel in Fig. 19 confirms that the
zero-energy modes along cut B are (trivial) disorder-induced
Z-BdGs (typically located inside the wire). We conclude that
cut B lies within the trivial phase, again consistent with the
estimated phase boundary obtained based on the W L maxima.
As an additional observation, we point out that the LDOS
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FIG. 19. LDOS as function of energy and position corresponding
to the vertical (blue) cuts in Fig. 17(B). The modes responsible for
the zero-energy features in Fig. 17(B) are (regular) Z-BdG states
consisting of a pair of partially separated Majorana modes localized
within the wire (see top and bottom panels). Small variations of the
Zeeman field result in a gapped lowest-energy mode (middle panel).
The vertical arrows connect the LDOS features associated with spe-
cific low-energy modes at � = 0.6 meV and � = 0.612 meV. Each
mode corresponds to a specific “line” in Fig. 17.

shown in Fig. 19 reveals the presence of low-energy modes at
one or both ends of the wire. A finite resolution differential
conductance measurement will generate zero-bias conduc-
tance peaks (ZBCPs) associated with these edge modes. Of
course, the height of the ZBCPs will not be quantized, but
they may be stable over a finite Zeeman field range and may
(accidentally) generate correlated signatures at the two ends.
Finally, we point out that when the edge modes are ps-ABSs
(which closely mimic the local Majorana phenomenology),
the characteristic separation length is determined by disorder,
not by the length of the system.

Finally, cut C (see Fig. 16), which is inside the “clean”
topological region and to the right of the W L maxima, gen-
erated a stable zero-energy mode that extends throughout the
entire Zeeman field range, as shown in the bottom panel of
Fig. 17. Furthermore, we have explicitly verified that this
zero-energy mode is associated with the presence of well-
separated MZMs and can be traced all the way up to � = �0.
The energy and position dependence of the LDOS corre-
sponding to the Zeeman field values marked by blue lines in
Fig. 17(C) are shown in Fig. 20. We explicitly identify the
contributions associated with the modes labeled 1, 2, . . . , 6 in
Fig. 17(C). One notable feature is the relatively large length
scale of MZM1 (several microns) at all Zeeman field val-
ues and MZM2 (about 15 µm) for � = 0.99 meV. In short
wires, this is expected to result in a strong overlap of the
Majorana modes (see Sec. IV C). Another significant feature
is the presence of low-energy BdG edge modes, consistent
with the results for cuts A and B. We emphasize that the
energy of these modes can be lower than the experimen-
tal resolution corresponding to a tunneling experiment and,
consequently, the BdG edge modes can generate zero-bias

FIG. 20. LDOS as function of energy and position corresponding
to the vertical (blue) cuts in Fig. 17(C). The LDOS features associ-
ated with the modes labeled 1, 2, . . . , 6 in Fig. 17(C) are explicitly
identified. Note that for � = 0.825 meV (middle panel) MZM1 is
located about three microns away from the left end of the wire,
while low-energy mode “4” is an edge mode. Also note that for
γ = 0.99 meV (bottom panel), MZM2 and low-energy edge mode
“6” have very large characteristic length scales (about 15 µm).

conductance peaks even in the absence of a MZM, or can
generate additional contributions when a MZM is present.
The last notable feature in Fig. 20 concerns the location of
MZM1 in the middle panel (� = 0.825 meV). Note that most
of the corresponding spectral weight is located more than
three microns away from left edge of the system. We also
point out that this type of scenario becomes more likely as the
disorder strength increases. To verify if the system is in the
topological or the trivial phase, we extend the wire and check
if the MZM “migrates” towards the new edge or gets pinned
by disorder. Note that the additional segments should contain
disorder with the same parameters (e.g., overall amplitude,
characteristic length scale, etc.) as the “original” wire.

In this section we have investigated the low-energy spectral
properties of a long Majorana system (L = 40 µm), within
both the ring and wire geometries, in the presence of a dis-
order potential with a characteristic length scale of about
15 nm and different values of the overall amplitude V0 up to
1 meV. The hybrid system has weak effective semiconductor-
superconductor coupling (γ = 0.21 meV) and relatively weak
Rashba-type spin-orbit coupling (αR = 125 meV Å). Within
this parameter regime, we find that the (partial) quasiparticle
gap associated with the lower-energy spin subband (LESS)
decreases with increasing disorder strength and eventually
collapses, starting with regions of the parameter space in
the vicinity of the topological phase boundary. For V0 �
0.8 meV the entire topological phase is gapless (or nearly
gapless), while it still covers an area of the control parameter
space comparable to that corresponding to a clean system
(but shifted towards larger chemical potential values). The
corresponding low-energy modes are characterized by rela-
tively large characteristic wave vectors and long characteristic
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length scales, on the order of 100−101 µm. By contrast, the
low-energy states associated with the higher-energy spin sub-
band (HESS), which are characterized by lower values of the
characteristic wave vector, are strongly localized by disor-
der and correspond to “standard” low-energy Andreev bound
states localized throughout the system. In a system with open
boundary conditions (i.e., a Majorana wire), having (non-
Majorana) low-energy BdG edge modes becomes very likely
in the regime corresponding to a vanishing LESS quasiparticle
gap. The topological phase is characterized by the presence
of a pair of well-separated MZMs, with a separation length
determined by the system size; however, the MZMs are not
necessarily located at the very edge of the system, which
implies that coupling to them using an end-of-wire probe may
be difficult or practically impossible, particularly in the pres-
ence of low-energy BdG edge states. Note that a MZM plus a
low-energy BdG edge state corresponds to three hybridized,
partially overlapping Majorana modes. To obtain a robust
topological phase characterized by a sizable LESS quasipar-
ticle gap and relatively short characteristic length scales (on
the order of one micron or less in the relevant control param-
eter range) for the low-energy modes, including the MZMs,
one should not only bring the system into the low-disorder
regime (e.g., below V0 ≈ 0.6 meV for the system studied in
this section), but enhance the spin-orbit coupling strength,
the effective semiconductor-superconductor coupling of the
hybrid system, and the parent superconducting gap.

C. Disorder and finite-size effects in short Majorana systems

Hybrid Majorana wires realized in the laboratory are much
shorter than the system investigated in the previous section,
typically ranging between several hundred nanometers and a
few microns. The low-energy properties of a short Majorana
system are characterized by an interplay of disorder-induced
and finite-size effects. In this section we investigate these
effects by considering a hybrid system of length L = 3 µm,
in the ring and wire geometries, with materials-related param-
eters identical to those characterizing the long wire discussed
above and disorder potential corresponding to segments A or
B in Fig. 8.

We start with a calculation of the zero-energy DOS as
function of the Zeeman field and disorder potential strength
V0 for a 3-micron Majorana ring with disorder potential cor-
responding to disorder realization “A”. The result, shown
in Fig. 21, is the short-system equivalent of Fig. 13 (top
panel). As expected, for V0 = 0 (clean system) there is only
one zero-energy mode at the critical field �c ≈ 0.76 meV. In
the presence of disorder, multiple zero-energy modes emerge
within a Zeeman field range that becomes wider with increas-
ing V0. The manifest quantitative difference with respect to the
long system (see Fig. 13) is the (significantly) lower number
of zero-energy states within a given Zeeman field range.

To identify the nature of different zero-energy modes, we
calculate the position dependence of the LDOS for a few rep-
resentative states marked by blue circles in Fig. 21. The results
are shown in Fig. 22. Similar to the long-system case, at low
disorder (V0 � 0.6 meV) and Zeeman field values larger than
the critical field one can identify strongly localized modes,
e.g., L1 − L3 (see top panel of Fig. 22), which are (mainly)

FIG. 21. Zero-energy DOS as function of Zeeman field and dis-
order strength for a Majorana ring of length L = 3 µm with chemical
potential μ = 0.73 meV in the presence of a disorder potential cor-
responding to disorder realization “A” in Fig. 8 (top panel). The
zero-energy features should be compared with the corresponding
features for a long system (see top panel of Fig. 13). The position de-
pendence of the LDOS corresponding to the specific modes marked
by blue circles is shown in Fig. 22.

associated with low-k HESS states. Note that these states are
pinned near the minima of the “smooth” disorder potential.
All these states can also be identified in the long wire, near
the corresponding features of the disorder potential and for
similar values of the control parameters. The equivalent of
the delocalized (C-type) modes can also be found within a
control parameter region approximately corresponding to the
location of delocalized modes in Fig. 13. For example, for
V0 = 0.8 meV the C-type modes emerge at Zeeman fields
lower than �c ≈ 0.76 meV, consistent with the evolution of
the topological phase boundary with the disorder strength
discussed in the previous section. Finally, for strong-enough
disorder we can identify D-type modes, which have long
characteristic length scales and are (mainly) associated with
high-k LESS states. The crucial difference between the long
and short systems is that, while in the long system all D-type
states are localized, in the short system they extend through-
out the whole ring (i.e., they are practically delocalized; see
Fig. 22). This is not surprising, considering that the typi-
cal D-mode characteristic length scale for the long system
was found to be larger than three microns. The key question
concerns the effect of these delocalized (D-type) low-energy
modes on the stability on the Majorana bound states (MBSs)
that may emerge in systems with open boundary conditions
(i.e., wires). On the one hand, since the delocalized mode can
couple to a pair of MBSs, the “topological” protection of the
MBS pair is expected to be affected near the energy minima of
the delocalized mode. On the other hand, when these minima
occur within a parameter region that is topological in the long-
wire limit, pairs of (more or less stable) MBSs are expected to
emerge on both sides of a minimum (along a given direction
in parameter space). In other words, in short Majorana wires
the minima of the (effectively delocalized) D-type modes are
not associated with finite-size “remnant” topological phase
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FIG. 22. Position dependence of the LDOS associated with rep-
resentative low-energy modes (marked by blue circles in Fig. 21)
in a Majorana ring with the same parameters as in Fig. 21. The
modes L1, L2, and L3 correspond to V0 = 0.5 meV and Zeeman field
values � = 1.21, 1.17, and 0.91 meV, respectively. These modes are
strongly localized near the minima of the (smooth) disorder potential
(gray line in the top panel; also see Fig. 8, bottom panel). Note that
L1 is practically identical to mode A in Fig. 12, being generated
by the same local features of the disorder potential. Mode C (with
V0 = 0.8 meV and � = 0.45 meV) is reminiscent of the delocalized
mode C2 in Fig. 12. Modes D1 and D2 (with V0 = 0.8 meV and � =
1.92 and 1.27 meV, respectively) are associated with large-k (LESS)
states. Although the corresponding D-type modes in a long system
are localized (see Fig. 12), the corresponding characteristic length
scales are larger than the length of the short wire (L = 3 µm).

transitions. This observation is further supported by our anal-
ysis below.

Next, we calculate “phase diagrams” similar to those in
Fig. 14 for the short system with disorder realization “A”. In
addition to the zero-energy DOS for a Majorana ring, we also
provide the zero-energy DOS for the corresponding Majorana
wire, for comparison. In Fig. 23 we show the results for
weak disorder (V0 = 0.4 meV), while Fig. 24 illustrates the
strong-disorder case (V0 = 1.2 meV). There are two striking
differences between the weak- and strong-disorder cases. The
first one concerns the overall shape of the region containing
zero-energy DOS features. For a weakly disordered Majorana
ring (left panel of Fig. 23), the zero-energy DOS features
emerge in the vicinity of the “clean” topological phase bound-
ary. Also note the consistency of this diagram with the
corresponding panel of Fig. 14 (with the obvious difference
that the long wire supports more zero-energy modes). On the
other hand, for the Majorana ring with strong disorder (left
panel of Fig. 24), the zero-energy DOS features emerge within
the entire parameter region γ � � � �0, almost independent
of the chemical potential (within the considered range). We
point out that an estimate of the chemical potential range
over which the lowest field associated with the emergence of
zero-energy features is approximately μ independent provides
a measure of the disorder strength. For example, in Figs. 23
and 24 this range is approximately 2V0 (see also the diagrams
in Fig. 14, which exhibit a similar property). If, for a device

FIG. 23. “Phase diagrams” obtained by mapping the zero-energy
DOS of a Majorana ring of length L = 3 µm (left) and of the cor-
responding Majorana wire (right) as function of Zeeman field and
chemical potential. The disorder potential corresponds to disorder
realization “A” in Fig. 8, with an amplitude V0 = 0.4 meV. For com-
parison with the long-system case, see the corresponding panel in
Fig. 14. The energy dependence of the DOS along the cut marked
by the blue line (right panel) is shown in Fig. 26. Most of the
additional zero-energy features characterizing the wire (right panel)
are associated with Majorana modes localized near the ends of the
system (see Figs. 26 and 29).

realized in the laboratory, the lever arm associated with the
(back or top) gate potential is known (or can be estimated),
this method of evaluating the disorder strength can be applied
to experimentally measured data. At this point, we should
also emphasize that the minimum Zeeman field at which
zero-energy features emerge (which is practically given by
the effective semiconductor-superconductor coupling γ ) is an
important energy scale for characterizing the hybrid system.
On the one hand, γ controls the induced gap (at zero magnetic
field) and can be estimated (at least in the weak/intermediate

FIG. 24. Same as in Fig. 23, but for a system with strong
disorder, V0 = 1.2 meV. Note the similarities between the features
characterizing the Majorana ring (left) and the Majorana wire (right).
Also note that the minimum field associated with the emergence of
zero-energy modes is weakly dependent on the chemical potential.
The energy dependence of the DOS along the cut marked by the blue
line (right panel) is shown in Fig. 26.
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coupling regime) from the measured value of the gap. On
the other hand, combining this with the estimated value of
the minimum magnetic field at which zero-energy features
emerge, provides an estimate of the effective g factor.

The second important difference between the two disorder
regimes concerns the manifest distinction between the ring
and wire results at weak disorder (see Fig. 23), versus the sim-
ilarities characterizing the strong-disorder results (Fig. 24).
The additional zero-energy features in the right panel of
Fig. 23 are associated with the emergence of MBSs in the
system with open boundary conditions. These MBSs partially
overlap and the resulting mode undergoes energy splitting os-
cillations (also, see below Figs. 26 and 29). The stripy features
in the right panel are associated with the nodes of these oscil-
lations, which contribute to the zero-energy DOS. Also note
that features associated with localized states, which are not
affected by the boundary conditions, can be clearly identified
in both panels of Fig. 23. Turning now to the strong-disorder
case (Fig. 24), we point out that the close similarities between
the ring and wire results clearly indicate that the zero-energy
DOS features are essentially controlled by disorder, while the
boundary conditions have a weak effect. Note that this behav-
ior does not necessarily imply strong localization (although
it is definitely consistent with it); more information about the
characteristic length scales of the relevant low-energy states
are provided below (Fig. 32).

Our next goal is to provide a “global” characterization of
the location within the parameter space of delocalized states,
similar to the analysis done for the long system in the context
of Fig. 16. For concreteness, we focus on a short system
(L = 3 µm) with the same disorder amplitude as in Fig. 16,
V0 = 0.6 meV, and two different disorder realization (“A” and
“B” in Fig. 8). The corresponding dependence of the “weakest
link” defined by Eq. (21), with δL = 50−200 nm, on Zeeman
field and chemical potential is shown in Fig. 25. The most no-
table feature in Fig. 25 is the presence of zero-energy delocal-
ized states throughout most of the relevant parameter space.
This is a direct consequence of the system being in a parame-
ter regime characterized by relatively low spin-orbit coupling
and low effective semiconductor-superconductor coupling. As
discussed above, within this regime (i) the (partial) gap associ-
ated with large-k LESS states collapses even in the presence of
relatively weak disorder and (ii) the corresponding low-energy
modes have large characteristic length scales. The combina-
tion of these two effects results in the ubiquitous presence
of “delocalized” zero-energy modes throughout the parameter
space. We remind the reader that many of these modes are
D-type modes, which are effectively delocalized in a short
system, but become localized in long wires.

To gain further insight into the low-energy spectral prop-
erties of (relatively) short Majorana wires, we calculate the
energy and chemical potential dependence of the DOS along
a constant field cut corresponding to � = 0.75 meV (marked
by blue lines in Figs. 23–25) for different values of the dis-
order strength. The position of the cut was chosen to be well
within the topological region (as determined based on long-
wire calculations) for systems with relatively weak disorder
and to avoid the large Zeeman field and large chemical po-
tential regimes, where the finite-size effects associated with
the presence of large-k, long characteristic wavelength modes

FIG. 25. “Weakest link” defined by Eq. (21) for a Majorana ring
of length L = 3 µm and disorder strength V0 = 0.6 meV as function
of the Zeeman field for different chemical potential values ranging
from μ = −0.5 meV (bottom curve) to μ = 1.05 meV (top curve)
in steps of 0.05 meV. The curves are shifted for clarity. The top
panel corresponds to disorder realization “A”, while the bottom panel
is for a system with disorder realization “B”. The maxima of W L

correspond to extended zero-energy modes. The red circles mark the
topological phase boundary of a clean system. The energy depen-
dence of the DOS along the cuts marked by blue lines is given in
Figs. 26 and 27.

are expected to be rampant. Note that the size of the cut is
�μ ≈ 1 meV, which is almost five times larger than γ (i.e.,
the minimum Zeeman field associated with the emergence of
zero-energy features). The spectra shown in Fig. 26 are calcu-
lated in the presence of a disorder potential corresponding to
disorder realization “A”, while Fig. 27 shows similar results
for disorder realization “B”. Before discussing in detail the
relevant features revealed by these results, let us point out that
for an ideal (i.e., clean and long) system the corresponding
low-energy spectrum is characterized by a (partial) LESS gap
ranging from about 40 µeV to about 60 µeV and a HESS gap
that closes and reopens at � ≈ 0.76 meV (see Fig. 4). In the
presence of disorder, the HESS states are mostly associated
with localized low-energy modes, which can be easily iden-
tified (particularly at low/intermediate disorder) through the
characteristic, nearly linear x-shaped low-energy features. If
we ignore these features, the low-disorder system with V0 =
0.4 meV (top panels in Figs. 26 and 27) is characterized by
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FIG. 26. Low-energy DOS as function of chemical potential and
energy for a wire of length L = 3 µm in the presence of a disorder
potential corresponding to disorder realization “A” and different val-
ues of the overall amplitude V0 (explicitly given in meV). The LDOS
corresponding to the cuts marked by blue lines are given in Figs. 29,
31, and 32.

a (partial) quasiparticle gap of magnitude 20 − 40 µeV over
most of the chemical potential range considered here. In the
middle of the gap there is a low-energy mode that exhibits
energy splitting oscillations with an amplitude smaller than
5 µeV (i.e., about an order of magnitude smaller than the
partial LESS gap) over almost the entire μ range. Increasing
the disorder strength to V0 = 0.6 meV does not modify sig-
nificantly this qualitative picture, but results in smaller LESS
gaps and larger-energy splitting amplitudes for the low-energy
mode. Further increasing the disorder strength qualitatively
changes the low-energy features.

A key question concerns the topological or trivial nature
of the lowest-energy mode. To provide some perspective, we
first address this question in the context of a long, L = 80 µm
wire, half of which has a disorder potential as given in Fig. 8
(which includes the segments “A” and “B”), while the other
half corresponds to a different disorder realization (with the
same parameters). By analogy with Eq. (22), we define the
(total) number of MZMs within the wire as

M = πη

N
∑

i=1

ρL(0, i). (23)

In the calculation of the LDOS we use a broadening η =
10−5 meV. If the wire supports exactly one pair of (well-

FIG. 27. Same as in Fig. 26 for a disorder potential corre-
sponding to disorder realization “B”. Note that the main features
characterizing the system for a given disorder strength are qualita-
tively similar to those shown in the corresponding panel of Fig. 26.
The (nearly) linear, x-shaped low-energy features are associated with
localized modes. In the top panel (i.e., for relatively low disorder),
the lowest-energy mode, which consists of a pair of weakly overlap-
ping MBSs, is characterized by energy splitting oscillations with an
amplitude (typically) less than ∼5 µeV.

separated) MZMs having an energy splitting much smaller
than η, we get M = 2. If there are no states with energy
smaller that η, M will be less than 2, while if zero-energy
modes in addition to the pair of MZMs are present, we ob-
tain M > 2. The results corresponding to different values of
the disorder strength are shown in Fig. 28. We note that for
weak disorder (top two panels) the system is in the topo-
logical phase for 0 � μ � 1 meV. At intermediate disorder
(V0 = 0.8 meV), the wire is in the topological phase above
μ ≈ 0.3 meV and is topologically trivial below this value.
Finally, the strongly disordered system (V0 = 1.2 meV) is
topologically trivial over the entire parameter range consid-
ered in the calculation. We also note that there are many
zero-energy contributions (highlighted in blue) that are not
produced by a robust MZM pair. The narrow peaks are typ-
ically generated by states localized throughout the wire that
cross zero energy at specific values of the chemical potential.
The narrow plateaus (e.g., those corresponding to M ≈ 4 in
the V0 = 0.8 meV panel) are generated by ps-ABSs, i.e., pairs
of Majorana modes that are separated by distances smaller
than the length of the wire. In general, the presence of these
additional contributions is a direct indication of the plethora
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FIG. 28. Dependence of the number M of Majorana modes with
energy smaller that η = 10−5 meV on the chemical potential for a
long wire with L = 80 µm, � = 0.75 meV, and different values of the
disorder strengths V0. The yellow regions correspond to the presence
of a robust pair of MZMs, M = 2; additional zero-energy states
may emerge at specific values of the chemical potential (resulting in
M > 2). For V0 = 0.4 meV the system becomes trivial above μ ≈
1 meV, while in the strong-disorder limit (V0 = 1.2 meV) the system
is trivial throughout the entire chemical potential range shown in the
figure.

of low-energy modes that characterize the system in the weak
SOC, weak SM-SC coupling parameter regime.

Using the insight provided by Fig. 28, we return to the
analysis of the low-energy features in Figs. 26 and 27. In ad-
dition to the DOS, we also calculate the position dependence
of the LDOS for specific values of the chemical potential
marked by blue lines in the two figures. Starting with the
weak-disorder regime, we calculate the LDOS corresponding
to cuts α1, α2, and α3 for systems with V0 = 0.4 meV and β1,
β2, and β3 for V0 = 0.6 meV. The corresponding results are
shown in Fig. 29. Cut α1 illustrates a best case scenario for this
type of system. There is a relatively large quasiparticle gap
(>40 µeV) and two clearly defined Majorana modes localized
towards the ends of the wire. However, both the Majorana
modes and the finite-energy states have characteristic length
scales comparable to the size of the system (see top panel of
Fig. 29). As emphasized before, this is a direct consequence of
being in a parameter regime characterized by weak spin-orbit
and semiconductor-superconductor couplings and has nothing
to do with disorder. To further characterize the localization of
the Majorana modes, we calculate Log10[ρL(ω, x)/ρmax

L (ω],
where the LDOS is normalized (by its maximum value) for

FIG. 29. Position and energy dependence of the LDOS for sys-
tems with weak disorder. Different panels correspond to the cuts
marked by blue lines in Figs. 26 and 27. The corresponding values of
the chemical potential are: (α1) μ = 0.21 meV; (α2) μ = 0.94 meV;
(α3) μ = 0.4 meV; (β1) μ = 0.1 meV; (β2) μ = 0.06 meV; (β3) μ =
0.52 meV. Typically, the lowest-energy mode consists of a pair of
MBSs with characteristic length scales smaller than but comparable
to the size of the system, which, consequently, have a significant
overlap (as suggested in the top panel).

convenience. The results shown in Fig. 30 (top panel) clearly
indicate that the MBSs are characterized by length scales
of order 1 µm and by some exponential decay towards the
middle of the wire. For other parameter values, the situation
is less favorable, which implies that the low-energy physics
is characterized by strong finite-size effects. Cut α2 confirms
the presence of the low-energy Majorana modes near the high
end of the chemical potential range. Again, the character-
istic length scale of the Majorana modes is comparable to
the size of the system. One can also notice the presence of
additional low-energy modes near the ends of the system.
Cut α3 is near the edge of the largest-energy splitting of
the lowest-energy mode corresponding to V0 = 0.4 meV (see
Fig. 27). As shown in panel (α3) of Fig. 29 and in the cor-
responding panel of Fig. 30, this is a direct consequence of
the large overlap of the two MBSs, which basically form a
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FIG. 30. Position dependence of the logarithm (base 10) of the
LDOS (normalized by its maximum value along the wire) for repre-
sentative low-energy modes. The red shading corresponds to pairs of
zero-energy or low-energy Majorana modes from the corresponding
panels in Fig. 29. The blue shaded curve corresponds to the extended
state marked by arrows in Fig. 29.

delocalized low-energy mode that extends through the whole
system. The next low-energy state is characterized by a rel-
atively large gap (∼40 µeV) and is also delocalized. In this
context, we point out that for the parameters characteriz-
ing this system the presence of strongly overlapping MBSs
forming effectively delocalized low-energy modes is rather
generic. In turn, these “delocalized” modes may lead to the
vanishing of the transport gap. Of course, this finite-size effect
does not indicate the presence of a topological quantum phase
transition. For example, we may characterize the segment
0.4 � μ � 0.5 meV as “topologically trivial”, due to the large
splitting of the lowest-energy mode. However, upon expand-
ing the wire, the segment becomes topological, which implies
that there is no phase transition.

Turning now to the case V0 = 0.6 meV, we first point out
that cut β1 is characterized by the presence of a zero-energy
Majorana mode localized away from the left edge of the
system (while its counterpart is localized at the right end of
the wire). This is a disorder effect that is also present in long
wires (see, e.g., the middle panel of Fig. 20). Cut β2 is near
the minimum of an extended mode marked by arrows in the
corresponding panel of Fig. 29. The logarithm of the LDOS
corresponding to the delocalized mode is shown in Fig. 30
(blue shading). We can identify reasonably well-separated
pairs of Majorana modes in cut β2, as well as to the left
and right of the corresponding μ value. Hence, the minimum

of the delocalized mode is not related to a phase transition.
Cut β3 corresponds to a large-energy splitting of the lowest-
energy mode. Similar to the case α3, this is a consequence of
having strongly overlapping MBSs (see also the lower panel
in Fig. 30). We also point out the presence of a zero-energy
localized state (near the right end of the wire) corresponding
to the x-shaped feature in Fig. 27.

The main conclusions of our analysis of the weak-disorder
regime are twofold. First, as a consequence of the specific
parameter regime characterizing the system under investiga-
tion, the characteristic length scales of the Majorana modes
are comparable to the size of the system. In turn, the finite-
size effects in wires of length L = 3 µm are strong and the
Majorana modes are weakly protected, despite the disorder
being relatively weak. Second, one can identify reasonably
well-separated Majorana modes characterized by an energy
splitting that is small compared to the topological gap of
the clean system over large segments of chemical potential,
two to five times larger than the energy scale γ (associated
with the minimum Zeeman field at which zero-energy features
emerge). In the �-μ plane, these “topological” regions form
large “patches” (or “islands”) with characteristic linear sizes
larger than γ . Upon expanding the wire length, these large
patches merge into a single topological region.

For the system with intermediate disorder strength (cor-
responding to V0 = 0.8 meV), the DOS exhibits low-energy
modes with small energy splitting only within relatively short
μ segments with lengths of order γ (see Figs. 26 and 27).
To verify the Majorana nature of the low-energy modes, we
calculate the LDOS corresponding to representative values of
the chemical potential (marked by blue lines labeled γ1-γ4

in Figs. 26 and 27). The results shown in Fig. 31 confirm
the presence of reasonably well-separated Majorana modes
(particularly in panels γ1 and γ3). Again, we emphasize the
presence of low-energy states characterized by large length
scales (comparable to the size of the system). The presence
of these states is the combined effect of having stronger dis-
order and being in a parameter regime characterized by weak
SOC and weak SM-SC coupling. Some of these low-energy
states hybridize with both Majorana modes, affecting their
stability. A specific example is provided in panel γ3 of Fig. 31,
which shows a pair of well-separated MBSs hybridized with
a low-energy mode with energy of about 15 µeV. Note that
the low-energy mode has negligible amplitude near the left
end of the wire. A relatively small change in the chemical po-
tential enhances the hybridization, generating two low-energy
hybrid modes that extend throughout the whole system. The
presence of these modes may lead to a small (practically
vanishing) transport gap, but, again, this is not associated with
a phase transition. Upon increasing the size of the system
this finite-size effect disappears, as the separation of the two
MBSs increases and the hybridization with the (localized)
finite-energy mode becomes negligible.

The strong-disorder case is illustrated in the bottom panels
of Figs. 26 and 27, with the corresponding LDOS shown
in Fig. 32. First, we note that there is no stable low-energy
mode. The near-zero-energy features that emerge within nar-
row chemical potential ranges and appear to be consistent
with the presence of MBSs are investigated by calculating
the LDOS corresponding to μ values labeled δ1-δ3. As shown
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FIG. 31. Position and energy dependence of the LDOS for sys-
tems with intermediate disorder. Different panels correspond to the
cuts marked by blue lines in Figs. 26 and 27. The chemical poten-
tial values are: (γ1) μ = 0.54 meV; (γ2) μ = 0.88 meV; (γ3) μ =
0.94 meV; (γ4) μ = 0.9 meV.

in Fig. 32, the lowest-energy mode in panel δ2 is strongly
localized near the right end of the wire, while that in panel δ3

is roughly contained within the right half of the system. The
scenario in panel δ1 appears to be similar to the weak-disorder

FIG. 32. Position and energy dependence of the LDOS for sys-
tems with strong disorder and different chemical potential values
corresponding to the cuts marked by blue lines in Figs. 26 and 27.
The chemical potential values are: (δ1) μ = 0.79 meV; (δ2) μ =
0.38 meV; (δ3) μ = 0.74 meV.

case β1: a pair of partially separated Majorana modes with
one MBS (the left one) localized away from the corresponding
edge. However, there is a fundamental difference between the
two cases: increasing the length of the weakly-disordered sys-
tem increases the separation of the Majorana modes (and their
stability), while extending the size of the strongly-disorder
system has no effect on the Majorana modes (which become
a disorder-induced ps-ABS localized within the wire).

One main conclusion regarding the intermediate and
strong-disorder regimes is that the characteristic size of the
(connected) parameter space regions that support reasonably
well-separated Majorana modes decreases with increasing
disorder strength. For V0 = 0.8 meV (i.e., intermediate dis-
order) we have evaluated the characteristic size of these
“topological islands” (or “patches”) to be of order γ . We
also note that the emergence of these “islands” is, essentially,
a finite-size effect. Upon increasing the size of the system,
the “islands” corresponding to the topological regime grow
and eventually merge into a single region, while the “islands”
(“patches”) that emerge within parameter ranges correspond-
ing to the trivial phase shrink and disappear. This suggests that
investigating the dependence of the size of the “topological
islands” on the wire length (using wires of different lengths
fabricated under the same conditions) could corroborate (or
disprove) the topological nature of these “patches”. Another
important point is that a disordered system characterized
by weak spin-orbit and SM-SC couplings generically sup-
ports low-energy modes with large characteristic length scales
(comparable to the size of the system). While the energy
minima of such “effectively delocalized” states may generate
the apparent closing (and reopening) of the transport gap, they
are not (typically) associated with topological quantum phase
transitions. On the other hand, in (relatively) short systems
the low-energy extended states can overlap significantly with
the Majorana end modes, even when they are reasonably
well separated, potentially affecting their stability. Hence, the
energy gap characterising the extended states is an important
operational measure of the stability of the Majorana modes.
We emphasize, however, that the extended modes can overlap
strongly with the Majorana modes (which also have relatively
large characteristic length scales in this regime) even if they
do not extend throughout the whole wire, thus remaining
“invisible” in a transport experiment.

In the next section, we consider the issue of “topology”
in finite-size disordered SM-SC nanowires based on their
transport properties, by calculating the local and nonlocal
conductance, as well as the topological invariant defined in
terms of the zero-energy reflection matrix. We discuss the
relevance and the consequences of our findings in the context
of the ongoing experimental investigations of SM-SC hybrid
systems.

V. CONDUCTANCE CHARACTERIZATION

OF TOPOLOGICAL PATCHES

A. Topological invariant

One way to determine whether a one-dimensional super-
conductor is in a topological phase is to use the topological
charge Q defined from the zero-energy reflection matrix r
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according to the relation [9]

Q = Det(r). (24)

This quantity Q has also been referred to as the topological
visibility in the literature [40]. Particle-hole symmetry con-
strains Q to be real. For a system with a single lead Q = 1
for any finite system. Therefore, the reflection matrix r in the
above equation is defined from one of the normal leads of
a three-terminal superconducting device where −1 < Q < 1.
Points in parameter space where Q = 0 for a system longer
than the mean-free path describes a critical point of the system
with quantized thermal conductance [9]. This is the TQPT
in the SM-SC nanowires, with Q < (>)0 being topological
(trivial) by definition. This motivates the definition of the
scattering matrix topological invariant as Q = sign(Q) [41].
The topological superconducting phase, defined here conven-
tionally as Q = −1, is expected to be characterized by the
presence of a MZMs with a localization length comparable
to the coherence length (inverse Lyapunov exponent) ξ � L,
where L is the length of the superconducting wire. One can
estimate the Lyapunov exponent from the scattering matrix
using the exponential asymptotic scaling of the transmission
trans ∼ e−2L/ξ as

L/ξtrans = −(1/2)Log(trans), (25)

where trans is the total quasiparticle transmission probability
through the device. Note that we have now separated the
definition of “topological” (Q < 0) from the existence of end
MZMs (L > ξtrans), on a calculational level, and although
for infinite pristine systems, isolated MZMs must appear
whenever Q < 0, there is no such mathematical guarantee
for disordered finite systems. Indeed, we find that there are
situations where the topological patches have Q < 0, but there
are no end MZMs in the system because of the proliferation
of low-energy Andreev bound states throughout the bulk of
the wire completely destroying any meaningful distinction be-
tween the bulk and the boundary (as emphasized in Sec. IV in
describing the spectral properties). Such topological patches
are “topological” with an apparent gap, but do not carry any
MZMs at the ends even when apparent ZBCPs may appear
from both ends at finite temperatures because of the presence
of numerous disorder-induced low-energy Andreev bound
states.

B. Topological superconducting phase

Figure 33(a) shows the topological charge Q for a L =
3 µm long Majorana nanowire [28,29] with parameters chosen
to match InAs wires from the recent Microsoft experiment
[7], except that we ignore the magnetic field suppression of
the bulk superconducting order parameter. All calculations in
this section are done using the KWANT transport package [42].
Following the estimates from the recent experiment we choose
Rashba coupling α = 8 meV nm, bulk superconducting order
parameter �0 = 0.12 meV and the superconducting coupling
is δ = 0.15 meV. The topological charge is plotted in this fig-
ure versus the chemical potential μ of the Majorana nanowire
(controlled by the plunger gate) and the applied magnetic field
B. The disorder potential for this calculation is chosen to have
a correlation length of ξdis ∼ 30 nm with an RMS amplitude

μ
(

μ
(

FIG. 33. (a) Topological charge [Q = Det(r)] [see Eq. (24)] as a
function of magnetic field B and chemical potential μ in the super-
conductor for a L = 3 µm for parameters matched to InAs quantum
wire devices [7] and disorder amplitude Vdis = 0.8 meV shows a
regime of topological charge. (b) (L/ξ )trans = 1/2Log(trans) [see
Eq. (25)] corresponding to the topological charge shows the regimes
where the transmission is low enough [i.e., (L/ξ )trans � 2] to support
a well-defined topological phase. (c) LDOS at μ = 0.29 meV and
B = 0.42 T [with Q = −0.995 [marked by star in panel (a)] suggests
MZM at zero-energy localized at ends. (d) Plot of 1/2Log(LDOS),
i.e., cross sections of LDOS from (c) at two energies E = 0, 40 mK
shows linear decay of wave-function amplitude into the bulk with a
length-scale consistent with (L/ξ )trans = 2.6 at that point.

Vdis = 0.8 meV so as to support an unambiguous topological
phase in long wires with large L/ξtrans � 2 (see Fig. 34). The
putative topological phase boundary Q = 0 seen from the fig-
ure shows substantial mesoscopic fluctuations consistent with
previous results on short wires [12]. We mention that these
mesoscopic fluctuations are what lead to topological “patches
(or islands)” where Q < 0 regions over small parameter (e.g.,
magnetic field) regimes coexist with nearby nontopological
(Q > 0) regions in the parameter space as can be seen in
both Fig. 33 and (less so) Fig. 34. These fluctuations are seen
to be substantially reduced in the longer wire results shown
in Fig. 34. Some of the topological phase boundary can be
discerned through the vanishing of L/ξtrans seen in Fig. 33(b),
which would correspond to a quantized thermal conductance

μ
 (μ

 (

FIG. 34. [(a),(b)] Similar to Fig. 33 except for an L = 24 µm long
wire. This figure shows that the reference point marked by a star in
Fig. 33(a) is in the topological phase.
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FIG. 35. Conductance tensor Gab of a three-terminal Majorana device where a, b label leads L, R at a temperature of T = 40 mK. The
local conductances GLL and GRR show zero-bias conductance peak signatures of the topological phase. The nonlocal conductance GLR, GRL

can indicate a topological gap closure. The conductance Gab are plotted as magnetic field B and chemical potential μ is varied around the
reference point μ = 0.29 meV and B = 0.42 T in Fig. 33. (a) Shows a waterfall of Gab where B varies from B = 0.378 T to B = 0.462 T.
(b) Shows a waterfall of Gab where μ varies from μ = 0.24 meV to μ = 0.34 meV. The conductance curves in both panels are shifted vertically
symmetrically about the reference point to make the curves visible.

at the Q = 0 boundary [9]. The topological phase Q < 0 [seen
in blue in panel (a)] is seen in Fig. 33(b) to potentially support
localized MZMs based on the low transmission that can be
inferred from L/ξtrans > 2.

To verify this conjecture, we plot the LDOS as a function
of energy E and position x at a reference point μ = 0.29 meV
and B = 0.42 T in Fig. 33(c). This reference point, which
is marked by a star in Fig. 33(a), is at a parameter value
where the topological charge is Q = −0.995. Furthermore,
the reference point is deep in the topological region, away
from the fluctuating phase boundary for the long-wire phase
diagram shown in Fig. 34 and is in this sense unambiguously
in the topological superconducting phase. This, however, is
not obvious just by looking at the finite-size effective phase
diagram in Fig. 33. Note that to enhance visibility in panel
(c), the LDOS plot (in this and following figures) is raised
to power 1/3 to prevent localized states from dominating the
color scale. This has no impact on the qualitative interpreta-
tion of the figure and only implies that the color bar cannot
be interpreted quantitatively for these figures. We see that the
reference point LDOS at E = 0 shows strong intensity that
is localized near the ends of the wire. Thus, the system has
end MZMs here. The quantitative form of this localization
becomes clear in the sectional plot of the logarithm of the
LDOS at E = 0, 40 mK shown in Fig. 33(d). The peaks of
the Log(LDOS) shows a linear decrease from the ends of the
wire to the middle consistent with a the transmission estimate
L/ξtrans > 2 from transmission.

The topological charge Q is not measurable and even
the thermal conductance, which experimentally marks the
boundary Q = 0 [9] of the topological phase is difficult to
measure (and we know of no attempt to measure the thermal
conductance experimentally in this context). However, the
topological phases have been proposed to be electrically de-
tectable based on zero-bias peaks in local conductance [43] as
well as gaps in nonlocal conductance [8,44]. Figure 35 shows

the three-terminal conductance tensor Gab (with a, b labeling
leads L, R) at temperature T = 40 mK, which is consistent
with the apparent electron temperature in the recent experi-
ments [7]. The middle curve in each of these panels shows the
conductance of the reference topological point μ = 0.29 meV
and B = 0.42 T marked by a star in Fig. 33(a). The other
curves in Fig. 35(a) show the variation of the conductance
with changing magnetic field B while Fig. 35(b) shows varia-
tion with varying chemical potential μ. All parameters plotted
in this figure are in the topological phase according to the
topological invariant Q < 0 as is suggested by the presence of
a robust ZBCP in all local conductance curves GLL and GRR.
The nonlocal conductances GLR, GRL are more complicated
to interpret. While the reference point appears gapped with a
nearly flat nonlocal conductance, changing the magnetic field
B or chemical potential μ appears to rapidly close the gap
suggesting a very small patch in for the topological phase.
This contradicts the phase diagram Fig. 33(a), which shows a
rather contiguous region of topological phase with a relatively
low transmission according to Fig. 33(b). The apparent con-
tradiction is resolved by comparing the above plots with the
zero-temperature plot shown in Fig. 36, which shows a small
gap in the nonlocal conductance. This suggests that while a
robust topological phase might be possible for a L = 3 µm
wire, nonlocal conductance at T = 40 mK might not be able
to distinguish the relatively well-defined topological phase
discussed in this section with the regime of small topolog-
ical patches in the next subsection. Thus, not observing a
finite-temperature gap in the nonlocal conductance does not
necessarily rule out the existence of a topological phase!

C. Topological patch regime

Figure 37(a) shows the topological charge Q for a L =
3 µm long Majorana nanowire model [28,29] with parameters
chosen to match InAs wires from the recent Microsoft experi-
ment [7]. The topological charge is plotted in this figure versus
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FIG. 36. (a) Same as Fig. 35(a) repeated here for reference. (b) Presents the zero-temperature results from which panel (a) is generated at
T = 40 mK. We see that small gaps at T = 0 mK often disappear at T = 40 mK. While this is not apparent because of the vertical shift of the
conductances in the waterfall plots, we note that the T = 0 local conductance peak heights near zero bias are nearly (i.e., within 5%) quantized
with G ∼ 2G0 both from the left (i.e., GLL) and right (i.e., GRR).

the chemical potential μ of the Majorana nanowire (controlled
by the plunger gate) and the applied magnetic field B. The dis-
order potential for this calculation is chosen to have an RMS
amplitude Vdis = 1.5 meV (larger than the value 0.8 µeV used
in the examples of Figs. 33–36), which supports only small
topological patches. The putative topological phase boundary
Q = 0 seen from the figure shows substantial mesoscopic
fluctuations, including islands of topological phase in the non-

μ
 (

μ
 (

FIG. 37. (a) Topological charge [Q = Det(r)] as a function of
magnetic field B and chemical potential μ in the superconductor for
a L = 3 µm for same parameters as Fig. 33 with disorder amplitude
increased Vdis = 1.5 meV shows topological patches (b) (L/ξ )trans =
1/2Log(trans) corresponding to the topological charge shows the
regimes where the transmission is low enough [i.e., (L/ξ )trans �

2] to support a well-defined topological phase. (c) LDOS at μ =
0.28 meV and B = 0.56 T [with Q = −0.846, marked by star
in panel (a)] shows delocalized zero-energy state. (d) Plot of
1/2Log(LDOS), i.e., cross sections of LDOS from (c) at two
energies E = 0, 40 mK shows delocalized state consistent with
(L/ξ )trans = 0.8 at that point.

topological region, which is consistent with previous results
on short wires [12]. These fluctuations are seen to be sub-
stantially reduced in the longer-wire results shown in Fig. 38
and reveal an unambiguously trivial superconducting phase
for this system. These topological patches are also eliminated
by increasing the strength of the disorder by 30% as seen in
Fig. 42 (see below). The topological patch Q < 0 [seen in blue
in panel (a)] is seen in Fig. 38(b) might be expected to support
MZMs based on the nontrivial topological invariant. Thus,
finding topological patches in finite wires with small gaps may
not necessarily imply the robust existence of topology even
when these patches satisfy the Q < 0 criterion, as emphasized
already in Sec. IV.

Despite the suggestion of MZMs, the LDOS as a func-
tion of energy E and position x at the reference point μ =
0.28 meV and B = 0.56 T [star in Fig. 37(a)] shown in
Fig. 37(c) indicates a zero-energy state that is delocalized
across the wire. This delocalization is confirmed by the sec-
tional plot of the logarithm of the LDOS at E = 0, 40 mK
shown in Fig. 37(d). The peaks of the Log(LDOS) appear
to be relatively uniform from the ends of the wire to the
middle of the wire, which is consistent with the relatively
high transmission [(L/ξ )trans = 0.8]. Even in the absence of

μ
 (

μ
 (

FIG. 38. [(a),(b)] Similar to Fig. 37 except for an L = 40 µm long
wire. This figure shows that the topological patch reference point
marked by a star in Fig. 37(a) when extended to a longer wire ends
up in the trivial phase.
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FIG. 39. Conductance tensor Gab of a three-terminal Majorana device where a, b label leads L, R at a temperature of T = 40 mK. The
local conductances GLL and GRR show zero-bias conductance peak signatures of the topological phase. The nonlocal conductance GLR, GRL

can indicate a topological gap closure. The conductance Gab are plotted as magnetic field B and chemical potential μ is varied around the
reference point μ = 0.29 meV and B = 0.42 T in Fig. 33. (a) Shows a waterfall of Gab where B varies from B = 0.378 T to B = 0.462 T.
(b) Shows a waterfall of Gab where μ varies from μ = 0.24 meV to μ = 0.34 meV. The conductance curves in both panels are shifted vertically
symmetrically about the reference point to make the curves visible.

localized zero-bias peaks, we find that the end conductance
at the reference point, shown as the middle curve in each of
these panels of Fig. 39 displays a zero-bias conductance peak
at both ends. The other curves in Fig. 39(a) show the variation
of the conductance with changing magnetic field B while
Fig. 35(b) shows variation with varying chemical potential
μ. Variation of the magnetic field suggests a robust ZBCP
in all local conductance curves GLL and GRR despite the fact
that only a few of these curves are in the topological phase.
This is quite different from the variation of the chemical
potential, which seems to split the ZBCP rather rapidly. The
nonlocal conductances GLR, GRL shows that reference point
is gapped with a nearly flat nonlocal conductance. However,

changing the magnetic field B or chemical potential μ appears
to rapidly close this gap, which would be interpreted as a
very small topological patch according to the criteria used to
analyze the experimental data [7]. While this is qualitatively
consistent with the phase diagram Fig. 37(a) surrounding the
reference point, the patch from the topological gap appears
rather smaller than the theoretical one for this example. The
absence of end localized MZMs could be diagnosed from
the zero-temperature local conductance (Fig. 40), which show
ZBCPs to be strongly split and substantially below quantiza-
tion.

The delocalized zero-energy state in the LDOS in
Figs. 37(c) and 37(d) was accompanied by a low transmission.

FIG. 40. (a) Same as panel Fig. 35(a) repeated here for reference. (b) Presents the zero-temperature results from which panel (a) is
generated at T = 40 mK. We see that small gaps at T = 0 mK often disappear at T = 40 mK. The local zero-bias conductance peaks on
the right are seen to be strongly split and substantially below quantization. This is also true to a lesser extent for most of the ZBCPs on the left.
This can be thought to be a result of strong hybridization of the zero-energy state with other states.
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FIG. 41. (a) Zoom in of Fig. 37(a) shows a reference point
μ = 0.29 meV and B = 0.61 T (with Q = −0.983) marked by star.
(b) Shows that this point has weak transmission, i.e., (L/ξ )trans ∼ 1.9
and may support a well-defined topological phase. (c) LDOS at
shows a somewhat localized state where the DOS dips significantly
in the middle, which is confirmed by the section of the LDOS plot
on a log scale (d).

However, a closer examination of the same phase diagram
in the vicinity of the topological patch shown in Fig. 41(a)
shows that a slightly different reference point (μ = 0.29 meV
B = 0.61 T) shows a much stronger topological charge Q =
−0.983. The corresponding transmission shown in Fig. 41(b)
is also found to be much smaller corresponding to an effective
length (L/ξ )trans ∼ 1.9. Indeed, this less that 10% change of
the reference point along either direction relative to Fig. 37
introduces a dip in the the middle of the profile of the LDOS
shown in Fig. 41(c). An examination of the log plot Fig. 41(d),
shows that this dip is consistent with the transmission coher-
ence length ξtrans. Thus, topology in this more disordered case
for the finite system has no end MZMs even in the patches
where the Q < 0 condition is unambiguously satisfied. Going
to long wires in this case establishes decisively that the short-
wire topological patches were simply finite-size fluctuations
and cannot be construed to be “topological” in any practical
sense since there are no end MZMs in the system. We empha-
size that transport experiments cannot detect the existence or
not of the end MZMs unless the local conductance is robustly
quantized at 2e2/h—just seeing a ZBCP does not ensure the
existence of MZMs [3].

D. Summary of analysis of topological patches

To summarize the findings of this section, an intermediate
strength of disorder (∼1.5 meV) for a finite-length nanowire
leads to a topological “phase diagram” with small topo-
logical patches (Fig. 37). This is consistent with previous
analysis of topological superconductors [7,12]. Stronger dis-
order (∼2.0 meV) eliminates even the patches at L = 3 µm
(Fig. 42). Here we use quotation marks to refer to phase
diagram because a finite-size system does not technically
represent a phase unless it can be shown to survive extension
to the so-called thermodynamic limit. Indeed, the parameters
that demonstrate such topological patches at L = 3 µm are

FIG. 42. [(a),(b)] Similar to Fig. 37 except for increased disorder
Vdis = 2.0 meV. This figure shows that the topological patches in
Fig. 37 are eliminated with increasing disorder.

found to be topologically trivial over the broad vicinity of
the patches for longer wires (see Fig. 38), making it clear
that the wires are nontopological in a thermodynamic sense.
However, the finite wire still shows somewhat robust ZBCPs
and a gap at a reference point for the L = 3 µm long wire (see
Fig. 39), which are characteristics that could be associated
with MZMs [7]. However, an examination of the LDOS in
Fig. 37 shows something essentially delocalized making this
interpretation difficult to justify. On the other hand, the wire
with slightly lower disorder (Fig. 33) is found to show expo-
nentially localized MZMs in the LDOS as well as a relatively
large topological regime. In this case the topological regime
falls within the range of the topological phase of a longer wire
(Fig. 34) that is essentially in the thermodynamic limit with
weak fluctuations. However, even the intermediate disorder
topological patch regime does show a singular point (Fig. 41)
with a potentially localized MZM and low transmission. The
challenge is that this point cannot be separated from the delo-
calized MZM state by transport measurements at T = 40 mK,
making the intermediate disorder topological patch regime
problematic to interpret. Unless the topological patch is sta-
ble over a reasonably large parameter regime (e.g., magnetic
field) for the finite wire, we cannot be sure that the system
is topological in any operational sense even if the nonlocal
conductance manifests a small gap in this patch.

VI. CONCLUSIONS

Motivated by the recent Majorana nanowire experiment
from Microsoft Quantum [7], we have carried out an exten-
sive analysis of the “topological” properties of finite length
disordered semiconductor nanowires (e.g., InAs) proximitized
by a superconductor (e.g., Al) in the presence of spin-orbit
coupling and Zeeman splitting [24–29]. The key issues are the
extent to which topology can be inferred based on simultane-
ous local and nonlocal tunneling conductance spectroscopy,
and the precise meaning of such an inference. In particular,
we investigate the density of states, the local density of states,
the Majorana localization length, the relevant topological in-
dex (in the scattering geometry), and the conductance matrix
(i.e., both local and nonlocal components) to conclude that
disordered finite-length nanowires may produce mixed signals
with respect to the existence or not of topological properties
depending on system parameters, disorder strength, and the
wire length. For example, just seeing a gap opening in the
nonlocal conductance over some small regions of parameter
values, which superficially implies the existence of a topo-
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logical gap, may be misleading because the corresponding
local density of states may not manifest any Majorana zero
modes at the wire ends. Such superficial signatures of an
apparent topological gap may simply reflect the existence of
disorder-induced low-energy states with localization lengths
comparable to the wire length. The only way to ensure “topol-
ogy” is to find a topological gap region, which is stable over
a large range of parameter values (e.g., magnetic field and
gate voltage). The typical magnetic-field range over which the
topological signatures should remain stable is expected to be
comparable to the typical magnetic field where the zero-bias
conductance peaks show up. The key problem we identify is
that the existence of gap closing and opening signatures in
nonlocal conductance along with the existence of zero-bias
conductance peaks in the local conductance, by themselves,
are not definitive in ascertaining “topology” in finite disor-
dered wires, unless such features persist over a large variation
in the tuning parameters, such as the Zeeman splitting and
chemical potential. To make things even more complicated,
there is the possibility that occasionally real MZMs may be
localized somewhat away from the ends of the system, thus
producing no signatures in the local tunneling and leading to
an erroneous conclusion that the system is trivial (since no
ZBCP shows up from tunneling at the end). A similar false
negative may also arise in the nonlocal tunneling where the
gap reopening signal may occasionally be far too weak for it
to effectively manifest itself in the experiment even when a
real topological gap actually exists.

One key aspect of the current SM-SC nanowire samples
playing a crucial role in the Majorana physics is the fact that
the relative magnitudes of the three important length scales in
the problem are comparable: mean-free path (or localization
length), SC coherence length, and the wire length. Of these
three length scales, only the wire length is approximately
(∼3 microns) known in the Microsoft experiment. Our best
estimates of the other two length scales indicate that the con-
ditions necessary for the realization of isolated end MZMs,
namely, that the wire length is much longer than the coherence
length (∼1–3 microns), which in turn is much less than the
mean-free path (∼1 micron), may not be decisively satisfied
because of the relatively small gap to disorder ratios in the
system. These problems are solvable by using longer wires
and larger gap to disorder ratios in the future experiments.
This approximate one-micron estimate for the mean-free path
is also consistent with the interface random charged impurity
density of ∼3 × 1012/cm2, as estimated for the samples used
in the Microsoft experiment [7]. We note that this experiment
is already a huge improvement over all earlier nanowire exper-
iments in this context, since the earlier experiments used much
shorter wires (of lengths ∼1 micron) having larger disorder.

We note that in the pristine case, long (short) wires are
defined simply as having the wire length being much longer
(shorter) than the SC coherence length, which is also the
Majorana localization length. In the presence of disorder, the
coherence length (being roughly proportional to the inverse-
induced SC gap) increases, and thus a wire of a given physical
length may become short in the presence of disorder even if it
is long in the pristine case. In addition, the carrier mean-free
path, which is long in the pristine case, becomes relevant in the
presence of disorder, and for strong disorder, when the mean-

free path is much shorter than the wire length, the system is
inherently nontopological. Thus, the relative size of the wire
length compared with the coherence length and the mean-
free path defines the crucial dimensionless parameter defining
strong and weak disorder as well as the long- and short-wire
regimes. In the earlier experiments (2012–2022), the system
nanowires were often in the strong-disorder and/or short-wire
regimes whereas the Microsoft experiment appear to be in the
intermediate-disorder regime where all three length scales are
comparable. We mention that for a fixed disorder, increasing
the wire length takes the system smoothly from the nontopo-
logical short-wire regime to the long-wire topological regime.
Further materials improvement leading to cleaner systems
would lead to a situation where the disorder is low enough
so that topology manifests robustly for all parameter values
instead of the patchy fragile topology in small regimes of
parameters achieved (at best) presently. We emphasize that the
realistic disorder in the nanowire systems arise from random
charged impurities, but our qualitative conclusions described
here apply to all disorder situations, although the dependence
of the coherence length and the mean-free path on disorder
may depend on the disorder details. Our qualitative results
apply independent of the detailed nature of the disorder. Our
specific quantitative calculations are for the InAs nanowires
used in the Microsoft experiment whose disorder content is
estimated by a bulk mobility of ∼50 000 − 60 000 cm2/Vs as
reported in the experiment (corresponding to a mean-free path
1 micron). The quality of the system can be further improved
by increasing the sample mobility.

A key finding of ours, which was not realized in earlier
works on Majorana zero modes (including our own study),
is that it is insufficient to observe simultaneous unquantized
ZBCPs from both ends in the local tunneling conductance
along with weak-gap closing/opening features in the nonlocal
conductance over small variations of the system parameters
(most particularly, the Zeeman field) in order for a decisive
claim of topology. To have stable Majorana zero modes,
the “topological phase” should persist over a reasonably
large parameter region, instead of consisting of small patches
surrounded by trivial regions, with repeated field-tuned tran-
sitions between topological and trivial regimes indicating
the presence of considerable disorder-induced low-energy
“Griffiths” states in the bulk of the wire. The problem is
that such low-energy states throughout the bulk, if present,
completely suppress the end MZM properties, destroying the
bulk-boundary correspondence, and in such situations, having
a small bulk gap may not necessarily imply the existence
of anything resembling a pair of isolated non-Abelian end
MZMs, since the bulk of the wire is filled with “effective”
Majorana modes created by the random disorder. Our theory
explicitly shows that such a disturbing situation is generic in
the intermediate-disorder regime, and experimental observa-
tions of fragile gap closing/opening along with weak ZBCPs
is insufficient for the manifestation of any topology with
non-Abelian properties. A pair of Majorana modes (strongly)
overlapping with disorder-induced low-energy states may
exhibit some stability within a small patch in the control
parameter space, but this does not imply that it possesses non-
Abelian properties and does not guarantee that its stability will
be enhanced by increasing the system size. Of course, it is pos-
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sible, by sheer luck, that some of these fragile “topological”
patches inferred on the basis of nonlocal gap closing/opening
are in fact truly topological, with non-Abelian end MZMs, but
this is unlikely if the stability of the effective “topology” per-
sists only over small magnetic field regions. In any case, local
and nonlocal transport is incapable of decisively settling this
point in finite disordered wires, unless the effective topology
(as obtained by the existence of gap closing/opening along
with ZBCPs) is stable over a large parameter space. Disorder-
induced low-energy bulk states may very well lead to artificial
ZBCPs at finite temperatures, mimicking MZMs, but these
ZBCPs are neither quantized nor conclusive signatures for
isolated end MZMs. In the same vein, some of these bulk
localized states may have localization lengths comparable to
or larger than the wire length, thus leading to artificial gap
opening features, which are not the topological bulk gaps.
Such disorder-induced gap opening features in the nonlocal
conductance are misleading and would disappear in longer
wires. Since the current experiments cannot directly measure
any topological invariants, there are limited options in decid-
ing about the topological nature of the system from tunneling
transport spectroscopy, including (1) efforts to measure the
thermal conductance, which should be quantized at the TQPT;
(2) trying to find quantized ZBCPs stable to large variations
in system parameters, including tunnel barrier conductance
[45]; (3) observing stable topological features in transport
over large regimes of the Zeeman field and the gate voltage;
(4) trying experiments to look for non-Abelian properties
(e.g., braiding). We point out that although the measurement
of nonlocal conductance is necessary to establish the closing
and the opening of the bulk gap at the TQPT, such nonlocal
measurements will be unsuccessful in long wires if the dis-
order is not sufficiently reduced so that the mean-free path is
longer than the wire length, and therefore, both longer wires
and lower disorder are necessary to demonstrate the expo-
nential protection characterizing Majorana zero modes, which
underlie topological quantum computation. We believe, and
our current paper establishes that the gap to disorder ratio in
the SM-SC hybrid systems must increase considerably before
one can be certain that decisive topology has been estab-
lished. In this context, it may be worthwhile to consider some
additional diagnostic measurements for Majorana signatures
such as the fractional Josephson effect [46], noise correlation
spectroscopies [9,47], finite-frequency spectroscopy around
the TQPT [48], and ZBCP fidelity studies [45], which could
meaningfully complement the local and nonlocal transport
spectroscopies of Ref. [7]. It may also be worthwhile to carry
out noninvasive local tunneling measurements along the wire
to ensure that the bulk is free of abundant low-energy bound

states suppressing Majorana physics. The breakthrough Mi-
crosoft experiment provides clear guidance for future efforts
and tells us precisely how the experiments should improve
in our search for Majorana. Although some of the current
Microsoft samples are likely to have manifested topologi-
cal patches with small gaps, longer wires and more robust
stability to parameter variations as well as larger values of
gap to disorder ratios seem to be necessary for developing
Majorana-based topological qubits in future experiments. The
current paper indicates that a factor of 2–4 increase both in
the gap to disorder ratio and the wire length compared with
the current Microsoft samples in Ref. [7] may be adequate to
reach the decisively topological regime with stable Majorana
zero modes at the wire ends. An encouraging recent materials
development in this context is the just-appeared report of the
fabrication of InAs-Al hybrid SM-SC structures with mobili-
ties exceeding 105 cm2/V s [49].

We believe that the Microsoft experiment is an essential
breakthrough in the search for topological superconducting
phase, but unless the topological gap regime is stable over a
large parameter regime, it is unclear that the system would
manifest non-Abelian topological properties. Our best guess
based on our paper is that the current systems, although much
improved from the earlier nanowires used in the older exper-
iments, may still be in the intermediate-disorder regime with
considerable low-energy subgap Andreev bound states, which
may produce some signatures (e.g., gap opening/closing over
small patches of parameter values) of topological gap. How-
ever, these signatures may disappear if longer wires are used,
as shown in our concrete examples. We cannot rule out that
some of the studied nanowires are indeed topological with
small gaps and weak stability, but any definitive conclusion
would necessitate wires with much reduced disorder to gap
ratios, which can be achieved either by reducing the disor-
der or by increasing the induced gap (or both). We remain
optimistic that future experiments on cleaner samples would
provide definitive evidence for a topological superconducting
phase with localized non-Abelian Majorana zero modes. A
complimentary study of the transport properties of the Mi-
crosoft regime has recently been presented [50].

ACKNOWLEDGMENTS

We are grateful to Roman Lutchyn, Chetan Nayak, Hain-
ing Pan, and Anton Akhmerov for valuable discussions and
advice. J.S. acknowledges using KWANT code from Bas Ni-
joholt’s gitbuh [51] for Sec. V. This work is supported by
the Laboratory for Physical Sciences and by NSF Grant No.
NSF-2014156.

[1] S. Das Sarma, In search of Majorana, Nat. Phys. 19, 165 (2023).
[2] H. Pan, W. S. Cole, J. D. Sau, and S. Das Sarma, Generic

quantized zero-bias conductance peaks in superconductor-
semiconductor hybrid structures, Phys. Rev. B 101, 024506
(2020).

[3] H. Pan and S. Das Sarma, Physical mechanisms for zero-bias
conductance peaks in Majorana nanowires, Phys. Rev. Res. 2,
013377 (2020).

[4] S. Ahn, H. Pan, B. Woods, T. D. Stanescu, and S. Das Sarma,
Estimating disorder and its adverse effects in semiconductor
Majorana nanowires, Phys. Rev. Mater. 5, 124602 (2021).

[5] B. D. Woods, S. Das Sarma, and T. D. Stanescu, Charge-
Impurity Effects in Hybrid Majorana Nanowires, Phys. Rev.
Appl. 16, 054053 (2021).

[6] S. Das Sarma and H. Pan, Disorder-induced zero-bias peaks in
Majorana nanowires, Phys. Rev. B 103, 195158 (2021).

085416-30



SPECTRAL PROPERTIES, TOPOLOGICAL PATCHES, … PHYSICAL REVIEW B 108, 085416 (2023)

[7] M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. A. Ramirez, M.
Andrzejczuk, A. E. Antipov, M. Astafev, B. Bauer, J. Becker
et al., InAs-Al hybrid devices passing the topological gap pro-
tocol, Phys. Rev. B 107, 245423 (2023).

[8] T. Ö. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov,
Andreev rectifier: A nonlocal conductance signature of
topological phase transitions, Phys. Rev. B 97, 045421
(2018).

[9] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and
C. W. J. Beenakker, Quantized Conductance at the Majorana
Phase Transition in a Disordered Superconducting Wire, Phys.
Rev. Lett. 106, 057001 (2011).

[10] O. Motrunich, K. Damle, and D. A. Huse, Griffiths effects and
quantum critical points in dirty superconductors without spin-
rotation invariance: One-dimensional examples, Phys. Rev. B
63, 224204 (2001).

[11] A. M. Lobos, R. M. Lutchyn, and S. Das Sarma, Interplay of
Disorder and Interaction in Majorana Quantum Wires, Phys.
Rev. Lett. 109, 146403 (2012).

[12] I. Adagideli, M. Wimmer, and A. Teker, Effects of electron
scattering on the topological properties of nanowires: Majorana
fermions from disorder and superlattices, Phys. Rev. B 89,
144506 (2014).

[13] J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-Bias Peaks
in the Tunneling Conductance of Spin-Orbit-Coupled Super-
conducting Wires with and without Majorana End-States, Phys.
Rev. Lett. 109, 267002 (2012).

[14] S. Takei, B. M. Fregoso, H.-Y. Hui, A. M. Lobos, and S. Das
Sarma, Soft Superconducting Gap in Semiconductor Majorana
Nanowires, Phys. Rev. Lett. 110, 186803 (2013).

[15] P. W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen,
Topological superconducting phases in disordered quantum
wires with strong spin-orbit coupling, Phys. Rev. B 84, 144526
(2011).

[16] M.-T. Rieder, P. W. Brouwer, and İ. Adagideli, Reentrant
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