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Abstract: We compare the full model and phase-matched model for the transverse mode instability.
The phase-matched model, which requires less longitudinal discretization with less computational
time, predicts the same refractive index gratings as the full model.

High-energy fiber amplifiers have generated great interest due to their rapid increase in output powers with improved
beam quality [1]. To achieve even higher output powers, it is necessary to suppress nonlinear effects. The transverse
mode instability (TMI) is one of the lowest order nonlinear effects that limits output powers in fiber amplifiers [2–4].
This effect appears when a higher-order mode (HOM) in an optical fiber couples to the fundamental mode via thermal
stimulated Rayleigh scattering that is driven by defect heating. Efficiently suppressing TMI requires understanding
TMI with a computationally efficient model. However, modeling TMI has been computationally intensive, because the
temperature, refractive index, and mode coupling are proportional to exp(iΔβz) that oscillate over the beat length ᵃ�ᵃ� =

2ᵰ�/Δᵯ�, where Δᵯ� is the difference in propagation constants between the fundamental and the HOM. The beat length
is typically on the order of a centimeter and is far less than the length scale over which the mode amplitudes and other
quantities change, which is typically on the order of meters. Resolution of these rapid beat length oscillations implies the
requirement that the longitudinal discretization in the model be substantially smaller than the beat length. This
requirement, along with the need to resolve the transverse temperature along the entire fiber has limited most prior
studies of TMI to only short length fibers, which are less than the typical length of fiber amplifiers on a scale of 10s of
meters. On the other hand, the power residing in the optical modes along the fiber varies slowly compared to the beat
length ᵃ�ᵃ�. The exp(iΔβz) dependent oscillation residing in the temperature and refractive index distributions does not
significantly contribute to the overall gain for the optical modes in the fiber. In this paper, we use the phase-matched
model [5], which neglects the higher frequency oscillating terms in the coupled mode equations, allowing a much
coarser longitudinal discretization with no loss of accuracy. We compare the refractive index in the fiber using the full
model [4] and the phase-matched model when modeling TMI, which has not been done previously.

The usual coupled mode equations are given by [4]
ᵅ�ᵃ�0 = 

ᵅ�ᵱ�
2 ∫ ᵅ�2ᵂ�⊥ᵅ�0Δᵅ�[|ℰ0|2ᵃ�0 + ℰ∗ ⋅ ℰ1Δ exp(−ᵅ�Δᵯ�ᵆ�) ᵃ�1],

(1)
ᵅ�ᵃ�1 = 

ᵅ�ᵱ�
2 ∫ ᵅ�2ᵂ�⊥ᵅ�0Δᵅ�[|ℰ1|2ᵃ�1 + ℰ0 ⋅ ℰ

∗ exp(ᵅ�Δᵯ�ᵆ�) ᵃ�0],

where ℰ0 and ℰ1 are the transverse mode profiles for the fundamental mode and the HOM, while ᵃ�0 and ᵃ�1 are the
corresponding amplitudes. The phase-matched model for TMI decomposes the changes in refractive index using [5]

Δᵅ� = Δᵅ�0 + [Δᵅ�+ exp(ᵅ�Δᵯ�ᵆ�) + Δᵅ�− exp(−ᵅ�Δᵯ�ᵆ�)]/2, (2)
where Δᵅ�0 is the 0th order term, and Δᵅ�+,− are the positive and negative harmonic beating tones between fundamental
mode and the first HOM. Substituting Δᵅ� into Eq. (1) and keeping only the phase-matched terms, we obtain [5]

ᵅ�ᵆ� 
= 

ᵯ�ᵅ�

2 

∫ ᵅ�2ᵂ�⊥ᵅ�0 [|ℰ0|2Δᵅ�0ᵃ�0 + 
2 
ℰ∗ ⋅ ℰ1Δᵅ�+ᵃ�1],

(3)
ᵅ�ᵃ�1 = 

ᵅ�ᵱ�
2 ∫ ᵅ�2ᵂ�⊥ᵅ�0 [|ℰ1|2Δᵅ�0ᵃ�1 + 

1 
ℰ0 ⋅ ℰ

∗Δᵅ�−ᵃ�0].

To compare the full model [4] for TMI with the phase-matched model [5], we consider a 10-m-long fiber with a core
diameter of 50 µm, an input pump power of 450 W, and a simulation time of 0.5 ms. For both models, we use a
longitudinal discretization such that there are 90 discretized points per beat length with 1% of relative error in the full
model. Further comparison [5] shows that only two discretization points per beat length are required to achieve a
relative error of 1% using the phase-matched model, which shows the significant advantage in computational speed.
Here, the same number of discretized points per beat length are used so that we can directly compare the Fourier
transform of the refractive index grating along the longitudinal direction for both models.

Figure 1(a) shows Δn at 10 μm away from the fiber center as a function of z with t = 0.5 ms. The changes in the
refractive index are due to the temperature changes, which in turn are due to the quantum defect. The solid blue and
dotted red curves in Fig. 1(a) represent the results from the phase-matched model and full model, respectively. The
inset in Fig. 1(a) shows a magnified plot of Δn along the fiber between 1.2 and 1.3 m, so that the agreement between
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the two models in the refractive index grating may be clearly seen. Figure 1(b) shows the absolute value of the Fourier
transform of Δn that appeared in Fig. 1(a) as a function of k. The inset in Fig. 1(b) shows a magnified plot at the first
positive harmonic tone. The phase-matched model and full model capture the same content in the first harmonic tone.
Figure 1(b) shows that the refractive index calculated using the phase-matched model only contains the first positive
and negative harmonic tones at ±Δᵯ� = ±528 m−1 in spatial frequency, while the full model contains all the harmonic
tones. Figures 1(a) and 1(b) show that the refractive index distribution can be predicted by ignoring the higher
harmonic tones in spatial frequency, so that we can use Eq. (2) to represent the changes in refractive index and remove the
non-phase-matched terms that are proportional to exp(iΔβz) in the coupled mode equations, which leads to Eq. (3).
The absence of the factor exp(iΔβz) in Eq. (3) in contrast to Eq. (1) for the standard coupled mode equations enables a
significant reduction in the number of longitudinal points.

Next, we use the phase-matched model to study the refractive index of the fiber amplifier. Figure 1(c) shows the real
value of the first positive harmonic term in the changes of the refractive index, Real[Δn+exp(iΔβz)], as a function of the
transverse x position and the longitudinal z position. The inset in Fig. 1(c) shows a magnified plot between 1.2 and 1.3 m
so that the refractive index grating may be easily seen. Figure 1(d) shows the 0th order changes of the index term, Δn0, in
which the refractive index grating is visible. Figure 1(e) shows the changes in refractive index from the full model. The
inset in Fig. 1(e) shows a magnified plot between 1.2 and 1.3 m so that the grating in the refractive index may be clearly
seen. The oscillations in the refractive index that are present in the full model may be captured by only considering the
sum of 0th order Δn0 and first order harmonic tones Δn+,–, according to Eq. (2). It has also been shown that both the phase-
matched model and full model yield the same power threshold when modeling TMI [5].

Fig. 1. (a) Δn as a function of z. (b) Fourier transform of Δn as a function of k. (c) Real[Δn+ exp(iΔβz)], (d) Δn0, from the phase-matched
model, and (e) Δn from the full model, as a function of the transverse x position and the longitudinal z position .

In conclusion, we compared the refractive index predicted by the full model and phase-matched model with only the
phase-matched terms. Both models predicted almost the same refractive index. The phase-matched model leads to a
large computational speedup since the number of longitudinal points can be greatly reduced.
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