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Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating
events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global net-
work properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is
organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain
dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from crit-
icality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dys-
function during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo
whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that
single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity col-
lectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebra-
fish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality.
Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics,
impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study
bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.
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Significance Statement

Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons
collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish,
which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show
that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity
states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the
network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify
key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.

Introduction
Epilepsy is a collection of neurologic syndromes primarily
defined by the recurrence of seizures (Fisher et al., 2014).
Seizures can acutely impair awareness (Blumenfeld, 2012),
and patients with uncontrolled seizures (;1/3; Kwan and
Brodie, 2000) experience severely reduced quality of life
(Sperling, 2004). Seizures are characterized by abnormal brain
dynamics at multiple scales, engaging neurons and glia
(Khoshkhoo et al., 2017; Diaz Verdugo et al., 2019; Magloire et
al., 2019a), neuronal ensembles (Muldoon et al., 2013; J. Liu and
Baraban, 2019), and coarse brain areas (Gibbs et al., 1935), with
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nontrivial relationships between micro and macroscale dynam-
ics (Martinet et al., 2017).

One approach to linking microscale collective behaviors dur-
ing seizures with emergent properties at larger scales is statistical
physics, which estimates microscopic variables probabilistically
to study macroscopic properties. In particular, quantifying how
systems respond to perturbations with spreading bursts of activ-
ity, known as avalanches (Bak et al., 1987), can be informative
about the global organization of the network (Sethna et al.,
2001). For example, avalanche dynamics in the brain indicate
that healthy neuronal networks are organized at a phase transi-
tion, called criticality, which is computationally favorable (Beggs
and Plenz, 2003; Ponce-Alvarez et al., 2018). The avalanches
framework is also relevant to seizure dynamics, which consist of
slowly spreading wavefronts of bursting activity (Schevon et al.,
2012; Trevelyan et al., 2006), from which fast, depolarizing
potentials propagate outwards (Martinet et al., 2017; Smith et al.,
2016). Interestingly, macroscopic seizure recordings suggest that
coarse propagating events give rise to exponentially growing ava-
lanches (Harris, 1963; Meisel et al., 2012; Arviv et al., 2016), fuel-
ing speculation that neuronal activity drives the network away
from criticality. Although hypersynchronous burst firing in the
ictal core resembles such avalanche expansion (Weiss et al.,
2013), evidence for heterogeneous spatial recruitment (Muldoon
et al., 2013; Lau et al., 2022) and asynchronous neuronal activity
during seizures (Truccolo et al., 2011; Aeed et al., 2020), suggest
a more complicated picture at the microscale. Therefore, it
remains uncertain whether microscale avalanche behavior collec-
tively drives network dynamics away from a phase transition
during epileptic seizures.

Importantly, the proximity of networks to criticality can be
used to infer emergent computational properties relevant to
brain pathology (Hesse and Gross, 2014). In particular, sys-
tems at criticality can encode a diversity of inputs (Kinouchi
and Copelli, 2006), flexibly explore many brain states, and reside
between suboptimal regimes of chaos and order (Haldeman and
Beggs, 2005). Therefore, a departure from criticality could explain
emergent network dysfunction that occurs during seizures. For
example, such a “supercritical” regime, could explain the stereo-
typed population dynamics of the seizure-onset zone (S. Liu et al.,
2018), the reduced entropy of brain states (Ren et al., 2021) and
the chaotic behavior (Babloyantz and Destexhe, 1986) that arises
during seizures. In this way, a loss of criticality may provide a uni-
fying mechanism through which microscale propagating activity
drives emergent pathologic dynamics during seizures.

Here, we studied avalanche dynamics during seizures to
investigate criticality and emergent computational properties in
seizure networks. Importantly, micro and macroscale seizure
recordings often show disparate dynamics, because of low spatial
resolution of macroscale recordings (Meyer et al., 2018; Wenzel
et al., 2019a), and the impact of subsampling neuronal activity at
the microscale (Priesemann et al., 2009). To address these con-
cerns, we take advantage of the transparency of larval zebrafish
to perform in vivo functional imaging of the whole brain at sin-
gle-cell resolution during seizures (Ahrens et al., 2013; Burrows
et al., 2020; Hadjiabadi et al., 2021). We show that brain-wide,
single neuron activity collectively drives macroscale dynamics
away from criticality. We then use spiking network models to
demonstrate that only densely connected networks can drive the
network away from criticality during seizures. Importantly, such
dense networks also disrupt the optimal computational capacities
of critical networks, helping to explain functional impairments
during seizures. This study bridges the gap between microscale

neuronal activity and emergent macroscale dynamics and brain
dysfunction during seizures.

Materials and Methods
Experimental models
In order to capture brain-wide seizure activity at cellular resolution, we
took advantage of the optical transparency of the larval zebrafish.
Transgenic zebrafish larvae, Tg(elavl3:H2B-GCaMP6s), expressing a nu-
clear-localized, genetically-encoded calcium sensor pan-neuronally,
were used to capture neuronal dynamics (gift from Misha Ahrens,
Janelia Research Campus; Freeman et al., 2014). To maximize optical
transparency, Tg(elavl3:H2B-GCaMP6s) larvae were crossed with mela-
nophore-deficient (�/�) roy;nacre mitfa mutants (Lister et al., 1999).
Zebrafish larvae were raised at 28°C in Danieau solution on a day and
night cycle of 12:12 h. All imaging experiments were performed at
6 days post-fertilization (dpf), using fish of either sex. This work was
approved by the local Animal Care and Use Committee (Kings College
London) and was conducted in accordance with the Animals
(Experimental Procedures) Act, 1986, under license from the United
Kingdom Home Office.

Two-photon calcium imaging
In order to record brain activity we performed two-photon calcium
imaging of Tg(elavl3:H2B-GCaMP6s), (�/�) roy;nacre larval zebrafish.
Nonanesthetized larvae at 6 dpf were immobilized in 2% low-melting
point agarose (Sigma-Aldrich) and mounted dorsal side up on a raised
glass platform that was placed in a custom-made Danieau-filled cham-
ber. All imaging was performed on a custom built two-photon micro-
scope (Independent NeuroScience Services; INSS), which utilizes a Mai
Tai HP ultrafast Ti:Sapphire laser (Spectraphysics) tuned to 940 nm.
Objective laser power was at 15 mW for all experiments. Emitted light
was collected by a 16�, 0.8 NA water immersion objective (Nikon)
and detected via a gallium arsenide phosphide detector (ThorLabs).
Scanning was performed by a resonance scanner (x-axis) and galvo-
mirror (y-axis), with a piezo lens holder (Physik Intrumente) adjust-
ing the z-plane (Fig. 1A). Images were acquired at a resolution of
512� 512 pixels, with a pixel size of 1.05� 1.03mm. Single planes
were imaged at 30Hz, with a pixel dwell time of 88 ns. Volumetric
data were collected across 10 planes at 15-mm intervals, with a flyback
time of 17ms and actuator lag of 10ms, resulting in a frame rate of
2.73Hz per volume with 4914 volumes collected per imaging block
(Fig. 1B); 15-mm intervals were chosen to minimize the possibility for
double-identification of neurons across planes, as studies investigat-
ing cell body size in larval zebrafish suggest cell diameters smaller
than 15mm (J. C. Liao and Haehnel, 2012).

Seizure induction
To image seizure dynamics with the two-photon, we administered the
GABAA antagonist pentylenetetrazole (PTZ) to larval zebrafish. PTZ
elicits clonus-like convulsions and epileptiform discharges (Baraban et
al., 2005), which are removed with conventional anti-seizure medication
(Berghmans et al., 2007; Afrikanova et al., 2013). To capture baseline
and seizure dynamics we recorded 3� 30min consecutive imaging
blocks for each fish: (1) spontaneous activity representing normal dy-
namics (Movie 1), (2) 5 mM PTZ causing focal hyperexcitability (Movie 2),
and (3) 20 mM PTZ causing highly synchronous, brain-wide hyperex-
citability suggestive of generalized seizures (Movie 3; Fig. 1D). Here, we
refer to generalized network activity as generalized seizures, but it is
important to note that these dynamics are not necessarily clinically-
defined generalized seizures. PTZ was added into the imaging chamber
immediately after each session via a 1 ml dose of PTZ suspended in
Danieau, after which point imaging was restarted. Data were collected
and analyzed in 10 fish.

Two-photon image processing
In order to derive single neuron activity from two-photon images, we
performed quality control, registration, and segmentation steps.
Registration and segmentation processing steps were performed across
each plane separately. First, recordings were corrected for drift in x- and
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y-planes by using the rigid registration algorithm on suite2p (Pachitariu
et al., 2017). Next, we applied the segmentation algorithm on suite2p,
which identifies contiguous, correlated pixels enabling the identification
of nuclear-localized GCaMP signals (Fig. 1D). We selected the diameter
of nuclei for segmentation as 5 pixels, corresponding to ;5mm. Five
pixels was chosen as it best matched the size of single nuclei in our
observed imaging data. Importantly, 5mm lies within the reported di-
ameter of neuronal nuclei as reported in previous studies at similar
ages in larval zebrafish (;3–10 mm; Kim et al., 2014; Migault et al.,
2018; Bruzzone et al., 2021).

We found that the segmentation process identified some false posi-
tive cells because of noise. To remove these noncells, a false-positive
detection algorithm was designed which relies on the assumption that
true cells would show fluorescence spikes with a slower decay time than
shot noise events, because of the decay time of GCaMP6s. The false-posi-
tive detection algorithm works as follows: (1) split the trace for each cell
into nine-frame windows, (2) find the minimum fluorescence value
across each window, (3) find the single maximum value across all mini-
mum window values for each cell. This process creates a distribution of
max-of-min fluorescence window values (a measure of the fluorescence
decay speed), for all segmented cells across the brain. A threshold was

then chosen to remove noncells for each fish. This process enabled the
accurate segmentation of;10,000 neurons per fish.

Calcium transient estimation
In order to estimate calcium events we applied a hidden Markov model
(HMM) to single neuron fluorescence traces, using a method previously
developed by our group (Diana et al., 2019). This method enables the ro-
bust estimation of the onset of calcium transients, and labels each time
point for a given neuron as either on or off. The model requires the
selection of the parameter q, defining the probability of an event occur-
ring. This parameter’s value was chosen by visual inspection of which q
gave the most accurate representation of calcium traces in our data
(q= 0.59; Fig. 1E).

Identification of seizure state transitions
To examine neuronal dynamics just before and right after seizure onset,
we identified timepoints where seizure transitions occurred. To clearly
delineate before and after seizure periods, we took advantage of the char-
acteristic brain dynamics during 20 mM PTZ administration, where the
brain abruptly transitions into a generalized seizure state (Diaz Verdugo
et al., 2019). To define the transition time point for each fish, we moved

Figure 1. Study design. A, In vivo two-photon imaging setup with head-fixed larval zebrafish. B, Imaging was captured across 10 planes with 15-mm spacing at an imaging rate of 2.73 Hz
per volume. C, Max projection across two imaging planes of larval zebrafish volume taken with two-photon microscope, demonstrating coverage of major brain regions. D, Nuclear localized
GCaMP fluorescence enables the segmentation of single neurons, as shown over exemplar forebrain (left), midbrain (top right) and hindbrain areas (bottom right) for a representative fish. The
two images below the forebrain region show raw GCaMP signal (left) and segmented neurons (right) over a magnified area (scale bar is 10mm). E, Single-cell traces shown from representative
neurons for a single fish, showing normalized calcium fluorescence over time for spontaneous (black), 5 mM PTZ (orange), and 20 mM PTZ (red) conditions. A hidden Markov model (HMM) was
used to infer spike times (black bars). F, The spatiotemporal propagation of activity through the network was quantified as avalanches, as shown for three example avalanches (colored by ava-
lanche) for an example raster plot (top). Avalanche statistics were calculated to assess critical dynamics (bottom). G, A network model of the larval zebrafish brain was constructed, which was
used to test the role of specific network mechanisms in driving empirical avalanche dynamics.
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a 30 frame sliding window over the mean activity across all neurons. By
finding the window with the maximum difference between the starting time
point and the subsequent 29 frames, we could identify the time window in
which the greatest activity increase occurs (i.e., the generalized seizure tran-
sition). To compare dynamics across state transitions, we compared activity
from 400 frames just before the generalized seizure (pre-ictal), the first 400
frames of the generalized seizure (ictal-onset) and 400 frames from a ran-
domly selected segment of spontaneous recording (baseline).

Neuronal avalanche estimation
We were interested in describing the population dynamics of neuronal
activity at the microscale. A key form of collective behavior in certain

systems, is the propagation of activity through the network, often
described as avalanches (Bak et al., 1987; Fig. 1F). Evidence from brain
recordings suggest the presence of avalanches in brain activity, termed
neuronal avalanches (Beggs and Plenz, 2003). Here, we apply the ava-
lanches framework to study the propagation of brain activity under both
physiological and pathologic (seizure) conditions. In order to capture
avalanches we estimated the spatiotemporal propagation of activity
through the network, using the binarized activity traces across all neu-
rons. Given that the underlying synaptic connectivity in our network is
unknown, we infer the flow of activity from an n by m matrix, where n
represents each neuron and m is the on/off state at time point m. To do
this we adapt methods used in previous studies to estimate avalanche
size and duration (Tagliazucchi et al., 2012; Ponce-Alvarez et al., 2018).

First, we assume that neuron u can only activate other neurons in the
population P that lie within a neighborhood Nu,v where v is the set of the
closest k% of cells to u. This introduces a spatial constraint to avalanche
propagation such that activity can only flow between putatively con-
nected neurons, preventing disparate cascades combining into one large
avalanche (Fig. 2). An avalanche begins when at least n cells within a
neighborhood Nu,v are active at tx, that were not part of an avalanche in
the previous timestep. Here, we label the neurons currently active at tx
which belong to the avalanche as the set Ax = {a,b,c...z}. All active neu-
rons of P at tx connected to any of Ax via a neighborhood are included
into the set Ax.

At each subsequent step avalanche propagation iterates as follows
(Fig. 2):

1) If at least one neuron that was part of avalanche Ax is also active at
tx11 then the avalanche continues in time, forming the set Ax11 =
{a,b,c...z}.

2) Any neurons from P active at tx11 that are connected to any of
Ax11 via a neighborhood are included into the set Ax11.

Once step 1 is no longer satisfied the avalanche terminates. Avalanches
whose active neighborhoods converge are grouped into a single avalanche.
Avalanche size was calculated as the total number of calcium events during
the avalanche. Avalanche duration was the number of time steps for which
the avalanche was active.

Our avalanche approach requires the selection of parameter k, defin-
ing the percentage of neighbors a neuron can connect to. Although the
precise ratio of short to long range synaptic connections in the larval
zebrafish is unknown, the few studies of structural connectivity in entire

Movie 1. Spontaneous activity. GCaMP6s calcium imaging of a single plane from a repre-
sentative period of spontaneous activity. Acquisition speed = 2.73 frames/s. Movie is played
at 2� acquisition. [View online]

Movie 2. Brain activity following exposure to 5 mM PTZ. GCaMP6s calcium imaging of a
single plane from a representative period of brain activity following administration of 5mM
PTZ. Acquisition speed = 2.73 frames/s. Movie is played at 2� acquisition. [View online]

Movie 3. Brain activity following exposure to 20 mM PTZ. GCaMP6s calcium imaging of a
single plane from a representative period of brain activity following administration of 20 mM

PTZ. Acquisition speed = 2.73 frames/s. Movie is played at 2� acquisition. [View online]
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nervous systems have shown a strong preference for local connections
(Cherniak, 1994; Ahn et al., 2006; B. L. Chen et al., 2006). Importantly,
local connectivity preferences can give rise to the strong local correla-
tions (Betzel, 2020), and the shared tuning properties of local neuronal
ensembles (Romano et al., 2015), that are found in the larval zebrafish
around 5–8 dpf. While this does not preclude the known presence of
long range connections in the brain (Kunst et al., 2019), here we chose
to focus on local connections to provide the simplest model of propaga-
tion which could reasonably describe observed network dynamics while
relying on the most probable neuron-to-neuron connections. This
approach is the basis for the results demonstrated in Fig. 3. However, to
demonstrate the robustness of our avalanche dynamics to the presence
of short versus long-range connections, we studied the effect of varying
k on spontaneous avalanche dynamics. While changing k (0.04–3%;
;10–50 mm) altered avalanche dynamics (Fig. 4B,C), key markers of
criticality (power laws and relationships between avalanche size and du-
ration exponents) were partially conserved across k, power laws were
present across all k values (Fig. 4A), while critical exponent relations
were maintained for neighborhoods,30 mm (Fig. 4D). This suggests
that key critical statistics are partially robust to the specific parameteriza-
tion of k in our avalanche algorithm. That critical exponent relations are
lost for large neighborhoods indicates that network with dense, local
and medium-range connections fail to give rise to critical avalanche

dynamics, as reported in previous studies (Ponce-Alvarez et al., 2018).
For further analyses, k was selected (0.16%) so that the mean neighbor-
hood radius was predominantly local (20.46 0.98 mm), and lay within
ranges used in previous studies (,30mm).

Our avalanche approach also requires the selection of parameter n,
which defines the minimum number of active neurons required to initi-
ate an avalanche. We explored the effect of changing n on avalanche
statistics in spontaneous activity (n = 2, 3, 4). While changing n did
slightly alter avalanche dynamics (Fig. 4F,G), avalanche power law
relationships and critical exponent relationships were conserved
across all parameter values (Fig. 4E,H). This indicates that critical
statistics in spontaneous activity are not biased by the specific
parameterization of n in our avalanche algorithm. For all remaining
analyses we set the minimum avalanche initiation size to 3, as used
in previous studies.

We note that because of the relatively slow decay time of GCaMP6s
(550-ms decay half-life), our imaging rate (2.73Hz) is sufficient to cap-
ture action potential-induced calcium transients in sampled neurons
(T. W. Chen et al., 2013). However, our imaging rate is too slow to
resolve the exact number of spikes giving rise to a calcium transient in
each timestep. Instead, neuronal activity can be classified into on/off
periods. Furthermore, the typical synaptic delay times (;1 ms) are too
fast for our imaging setup to resolve the exact sequence of spiking events

Figure 2. Avalanche estimation. A, Neurons exhibit on (red circles) and off (white circles) dynamics giving rise to ensembles that grow in space and time. B, Hidden Markov model estima-
tion of calcium transients showing normalized traces (blue), and estimated calcium transients (red). C, Avalanche calculation legend. D, For avalanches to begin, at least three nodes within the
same neighborhood must be active at t0. To propagate in time, any avalanche node active at t0 must also be active at t1. Once this step is satisfied, any nodes active at t1 that are connected
via a neighborhood to avalanche nodes at t1 become avalanche members. Avalanches terminate when no more nodes are active. Avalanche size (s) is the total number of activations and dura-
tion (d) is the number of time steps of the avalanche.
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in the network (Barnes et al., 2015). Nonetheless, because of the slow
GCaMP6s decay times all events within a sequence should be detected,
but grouped into;360-ms bins. Therefore, our avalanche approach cap-
tures the propagation of activity through the network in a temporally
downsampled manner, based on the presence or absence of calcium
transients at a given time step.

Avalanche power law estimation
We were interested in using the avalanches framework to infer the prox-
imity of the network to a phase transition, known as criticality.
Specifically, criticality occurs when a system is poised at a second order
phase transition, between distinct macroscopic regimes of order and dis-
order (Cocchi et al., 2017). To test for the presence of criticality in ava-
lanche dynamics, we took advantage of the fact that avalanches at
criticality are scale-invariant. This means that only at criticality can ava-
lanches span all scales, from small to large, which gives rise to power law
distributions of avalanche size and duration (Hesse and Gross, 2014).
Specifically, critical systems should exhibit power laws for avalanche size
S and duration T with the following form:

P Sð Þ; S�t ; (1)

P Tð Þ;T�a: (2)

Therefore, we tested for the presence of power law distributions in
neuronal avalanches. To statistically evaluate the presence of power law
distributions, we used an importance sampling approach to compare the
likelihood of our data being generated by a power-law compared with a
log normal distribution, an alternative heavy tailed distribution conven-
tionally used as an alternative hypothesis (Alstott et al., 2014). For a
given power law exponent l , the likelihood is given by

1

½z lð Þ�M
YM
k¼1

s�l
k ; (3)

with observed avalanche sizes or durations defined from s1, s2, s3...sM.
z(l) is the normalization constant which is defined as

z lð Þ ¼
Xb

s¼a

s�l ; (4)

where a and b are the minimum and maximum avalanche values used as
the power law cutoffs (avalanche size: a= 3, b = maximum observed
value, duration: a= 2, b = maximum observed value). The log likelihood
(log L) is then defined as

logL ¼ �M log zð Þ � l
X
k

logðskÞ: (5)

Log likelihoods were calculated across a range of sampled l values,
which were weighted by the log probability of observing li from the
prior and proposal distributions. To be precise, the weight wi for expo-
nent li is given by

wi ¼ likelihood datajlið Þprior lið Þ
proposal lið Þ : (6)

Marginal likelihoods (ML) were then estimated as the empirical
means of all the weights

ML ¼ 1
N

X
k

wk: (7)

Figure 3. Whole-brain spontaneous neuronal activity exhibits critical statistics. A, Empirical distributions for avalanche size (S) with dotted line showing power law exponent t , and corre-
sponding log likelihood ratio tests for power law versus lognormal distributions (right). Data points are colored by fish. Avalanche schematic demonstrating the calculation of avalanche size s
(top) for a single avalanche event, where colored dots represent active neurons at tx. B, Same as in A, for avalanche duration (T) with exponent a. C, The scaling relationship between S and T
is shown by plotting mean S against T and fitting a linear regression line to estimate the exponent g (dotted line). The exponent relation (a� 1)/(t � 1) is calculated using avalanche expo-
nents for S and T. DCC is calculated as the absolute difference between g and (a � 1)/(t � 1). D, DCCs plotted for each fish against each null model (dotted line = critical threshold of
DCC, 0.2). E, Branching ratio s plotted for each fish against each null model (dotted line = critical value of s ; 1). Avalanche schematic demonstrating calculation of s (right). F, The
quantity r(d), which estimates pairwise neuronal correlation as a function of distance, follows an approximate power-law with exponent h (dotted-line). Schematic demonstrating estimation
of correlation (r) as a function of distance (d; right). Magenta neuron is the neuron of interest. Other neurons are colored by their correlation r to magenta neuron. *p, 0.01.
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Finally, the likelihood ratio (LR) was calculated as the ML of a power
law minus the ML of a lognormal distribution, with positive values indi-
cating more evidence for a power law distribution. Avalanche power law
exponents were estimated as the maximum likelihood of l given the data.

Avalanche exponent relations
It is important to note that the presence of power laws alone is insuffi-
cient evidence of criticality, as they can arise from noncritical and ran-
dom mechanisms (Miller, 1957; Stumpf and Porter, 2012; Touboul and
Destexhe, 2017). An alternative criterion which may more robustly
assess neuronal criticality is the relationship between avalanche expo-
nents a and t (Sethna et al., 2001; Friedman et al., 2012). At criticality, if
Equations 1 and 2 hold, there should be a scaling relation between ava-
lanche size S and duration T, as

S Tð Þ;Tg : (8)

This relationship exists because critical systems are self-similar, so a
single exponent g can predict the relationship between S and T across
all scales of space and time. At criticality the scaling exponent g is a
function of avalanche exponents a and t , defined as

g ¼ a� 1
t � 1

: (9)

Importantly, this exponent relationship can separate out critical from
noncritical systems which generate power law distributions (Touboul
and Destexhe, 2017; Fontenele et al., 2019). However, one should note
that even exponent relationships can emerge in random systems
(Destexhe and Touboul, 2021). Nonetheless, exponent relations offer an
adjunct test for criticality alongside the presence of power laws. To test
for critical exponent relationships in avalanche data, we use the previ-
ously developed deviation from criticality coefficient (DCC; Ma et al.,
2019). DCC is defined as the absolute difference between empirically
derived g , using the slope ofhSi(T), and the predicted g , calculated from
the equation (a � 1)/(t � 1). The slope ofhSi(T) was estimated by plot-
ting the mean size,S. against duration T and fitting exponents via lin-
ear regression.

Branching parameter
To further test for the presence of criticality in our empirical data, we
used a metric known as the branching parameter. A branching process
describes how an ancestor element can generate descendant elements
(Harris, 1963), e.g., an active neuron activating other neurons. The

Figure 4. Effect of avalanche parameters on critical statistics. A–D, Criticality statistics in spontaneous activity for increasing avalanche neighborhood size k, over smaller (left, k = 0.04–
0.23%; 10–19mm) and larger ranges (right, k = 0.5–3.0%; 23–50mm). E–H, Criticality statistics in spontaneous activity for different minimum avalanche initiation sizes, from 2 to 4.
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branching parameter s captures the expected number of offspring ele-
ments from a given ancestor (Corral and Font-Clos, 2012). Interestingly,
branching processes undergo a phase transition when s = 1, at which
point avalanches can span all scales. Evidence from brain recordings sug-
gest that s is close to 1 in critical networks (Beggs and Plenz, 2003).
s was estimated as the mean ratio of descendants to ancestors at each
time step over all avalanches defined as

s ¼ 1
t

Xt

n¼1

descendants
ancestors

; (10)

where t is the number of avalanche propagation timesteps over all
avalanches.

Correlation functions
Long range correlations are another key hallmark of critical systems. For
example, in lattice-like systems the correlation length is maximal at crit-
icality, although this is not necessarily the case in systems with long
range structural connections. The presence of long-range correlations
between distant brain areas can give rise to power law scaling of correla-
tion as a function of distance in resting-state activity (Expert et al., 2011;
Ponce-Alvarez et al., 2018; Lombardi et al., 2021). Therefore, to further
test for criticality we assessed correlation function power law relation-
ships. Specifically, we define the correlation function

r dð Þ; d�h ; (11)

which defines the relationship between the correlation between two time
series r and the distance between the sources of those time series d,
where h captures the slope of the power law relationship. r was assessed
as the Pearson’s correlation coefficient between neuron time series’,
while d was the Euclidean distance in space. To assess the function r(d),
neuron-neuron paired distances were placed in 200 bins, equally spaced
across the range of neuron-neuron distances of all neurons in the brain.
r(d) was estimated as the mean correlation within each bin. Given that
these relationships are not distributions, we cannot perform the likeli-
hood ratio tests described above. Therefore, to assess closeness of fit to
power laws we calculated the Euclidean distance between a power law
fitted by linear regression and the empirical function.

Null models for critical statistics
In order to confirm that the observed critical statistics emerge from the
spatial and temporal structure of empirical neuronal activity and would
not emerge from random signals, we applied a series of null models to
our data. The first null model is the spatial null, which tests the hypothe-
sis that critical avalanche dynamics emerge from local neighborhoods of
putatively connected neurons. It was generated by randomly shuffling
the locations of neurons such that a neurons’ neighborhood would consist
of neurons scattered across the brain rather than nearby neurons. The sec-
ond null model is the correlation null, which tests the hypothesis that critical
avalanche dynamics are generated by the correlation structure of neural ac-
tivity. It was generated by circularly permuting the time series independ-
ently for each neuron, such that the correlation across neurons was lost.
The third null model is the autocorrelation null, which tests the hypothesis
that avalanche dynamics are generated by the integration of activity over
time within neurons, rather than from shot noise events. It was generated
by randomly shuffling the binarized activity of all neurons in a dependent
fashion, such that autocorrelation was lost but the cell-cell correlation
retained. To compare critical statistics from empirical and null data, 50 nulls
were randomly generated for each fish and for each null type, with ava-
lanches and critical statistics calculated as above.

Network model dynamics and architecture
To probe the microscale changes driving whole-brain avalanche dynam-
ics in seizures, we modeled the brain as a network of spiking neurons
(Fig. 1G). We considered a network of leaky integrate-and-fire neurons
with N excitatory neurons (N=8990), and E external excitatory inputs

(E= 1000) onto each neuron. The membrane voltage for neuron i is
defined at subthreshold voltages by the differential equation

tm
dVi

dt
¼ �ðVi � VrÞ

Rm
1 Ii; (12)

where Vi is the membrane voltage, tm is the membrane time constant
(tm = 20), Vr is the resting membrane potential (Vr = 0), Rm is the resist-
ance, and Ii is the input current. For voltages beyond the voltage thresh-
old Vth the neuron fires a spike, at which point Vi is reset to Vr.

The input to neuron i at time t is defined by

Ii tð Þ ¼
X

Jijd ðt � t dÞ1
X

Uied ðPoisson; lÞ: (13)

The first term describes the input from other neurons in the network,
where Jij is the weighted, directed adjacency matrix, between the presyn-
aptic neuron i and postsynaptic neuron j. A spike from neuron j will
affect neuron i after a synaptic delay td = 1, through Dirac’s d function.
The second term describes the input from the external current, where U
is the weighted adjacency matrix between the presynaptic neuron i and
the external neuron e. External input spikes are modeled as a Poisson
point process with rate l = 10Hz. Uie for all connections were set to 0.1.

To accurately model the larval zebrafish brain structure, we embed-
ded our model network in a three-dimensional brain space that recapitu-
lated the structural boundaries, anatomically-defined neuron densities,
and the neuron-neuron distance distributions found in the larval zebrafish
brain. Specifically, we registered all neuron coordinates across all brains
(10 fish, three conditions) to a standard space (Tabor et al., 2019). Next,
we performed k-means clustering on the spatial locations of all neurons
(k=8990, the mean number of cells across all datasets), with resulting
cluster centroids used as network node locations. This enabled the con-
struction of an “average” larval zebrafish brain, which respected the struc-
tural boundaries and the spatial neuronal distributions of the brain, at the
scale of empirical recordings. To connect neurons in the network we chose
to model the connectivity in a scale-invariant network. Network connec-
tivity was defined by the growth and preferential-attachment algorithm
(Barabasi and Albert, 1999), that has been extended to brain networks
(Eguíluz et al., 2005).

Network model fitting
Having defined the network model, we wanted to probe the specific neu-
ronal parameter changes that drive seizure activity. We defined three
variable parameters in the neuronal network (Fig. 1G): (1) network con-
nectivity, the number of connections between neurons defined by pa-
rameter m; (2) synaptic weights, the strength of synapses between
neurons defined by parameter r; and (3) intrinsic excitability, the pro-
pensity of individual neurons to spike defined by parameter Vth.

Network connectivity was varied by altering m in the growth and
preferential-attachment algorithm, thus changing the number of binary
edges between neurons. Synaptic weights defines the distributions of
edge weights across the network. To define this, we took into account
the metabolic constraints imposed on the formation of synapses over
long distances (Ahn et al., 2006), we modeled synaptic weights through-
out the network as an exponentially decaying function showing reduced
weights as distance increases. To vary synaptic weights smoothly we cre-
ated a weight function w(d) which defines synaptic weights as a function
of distance, where w(d) is defined

w dð Þ ¼ i1e
�s
erð Þd; (14)

where i is the initial nonscaled synaptic weight (i=1.2), s is the softening
parameter that dictates the magnitude of exponential decay for the syn-
aptic weight over distance (s= 0.1), d is the neuron-neuron distance and
r defines the strength of the synaptic weights across the network (weak =
low r, strong = high r). This allowed the smooth variation of the weight-
distance relationship across all neurons, from a regime in which synaptic
weights were weak for most neuron pairs (except neighboring ones), to
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one in which synaptic weights were strong across all neuron pairs.
Finally, intrinsic excitability was varied by changing the spike threshold
for each neuron in the leaky-integrate-and-fire model. Using different
combinations of these three parameters, we could generate model net-
work dynamics for model fitting.

We simulated network dynamics for 4000 time steps. Spiking activity
was binned into 10 timestep windows for avalanche estimation. Model
avalanche distributions were fit to empirical data generated from con-
catenated avalanche size distributions from spontaneous, pre-ictal, and
ictal-onset datasets (n=9, 400 frames per dataset). Avalanche simula-
tions were run nine times, and concatenated together to generate fits to
empirical data.

In order to assess the closeness of fit between model and empirical
data, we designed a cost function which quantified the distance between
empirical and model avalanche distributions. We adapted the mean
squared error function with a regularization term, to account for short-
tailed distributions that match the candidate distribution over short-me-
dium avalanche sizes, but have empty bins over the longer tail of the dis-
tribution. This cost function was defined as

Cost ¼ MSER

MSE ¼
Xn

i¼1
yi � ŷ i
� �2
n� k

R ¼ aeb 10�5
;

(15)

where yi = P(S) for each avalanche bin, n is the number of avalanche dis-
tribution bins, k is the number of parameters, b is the difference in non-
empty bin numbers between model and empirical data, and a scales the
effect of the regularization (a = 0.09). This allowed us to identify the net-
work parameters that most faithfully produced empirically observed ava-
lanche distributions.
Network model response properties
Certain network response properties are optimal at criticality. In particu-
lar, in vitro and in silico studies have shown that (1) the network-medi-
ated separation (NMS), a network’s ability to discriminate between
inputs (Bertschinger and Natschläger, 2004); and (2) the dynamic range
(d ), a network’s ability to represent a wide range of inputs (Shew et al.,
2009), should be optimized at the critical point. In order to assess the
effect of seizure dynamics on critical network response properties, we
quantified NMS and d in network models.

To calculate NMS we provided pairs of inputs, a and b separated by
distance z onto different network models. For each input, x nodes were
randomly activated once the network had reached steady state at time t
(4000 time steps). Here, network activity was binned into 10 time step
windows to approximate network outputs. To distinguish between the
separation of network activity because of the input responses, as opposed
to the intrinsic variability in the network, we define the normalized
NMS property as

kna �mbk � kn�mk; (16)

where || || denotes the Euclidean distance. na and n are the binarized
state vectors at time t, for identical instantiations of a network that
received input a or received no input, respectively. mb and m are the
binarized state vectors at time t, for identical instantiations of a network
that received input b or received no input, respectively. This enabled the
normalization of the distance between two network states following sim-
ilar inputs a and b, to the exact distance between those two states as
expected in nonperturbed networks.

We estimated d by adapting previous measures (Shew et al., 2009).
Here, we provided input to the network by randomly activating x neu-
rons across a range of input sizes (x range = 5–500, stepsize= 10), once
the network had reached steady state (4000 time steps). As above, net-
work activity was binned into 10 time step windows to estimate the net-
work response. In order to separate out the network response to a given
input from the ongoing network activity, the corresponding output size
was calculated as

X
nai �

X
ni; (17)

where na and n are binarized state vectors for identical instantiations of
a network that received input a or did not receive input at time t, respec-
tively. This enabled the separation of active neurons because of the input
from active neurons because of the ongoing activity in the network. d is
then defined across the range of input sizes as

d ¼ 10 log10
Smax

Smin

� �
; (18)

where Smax and Smin are the input sizes leading to 90th and 10th percen-
tiles over the range of output sizes, respectively.

Stability of network dynamics
Another key property of some critical networks, is that the dynamics are
neutral, residing between stability and chaos (Haldeman and Beggs,
2005). This means that points in state space maintain their distance over
time, a property that is linked to minimal information loss. In order to
test whether epileptic seizures disrupt the neutral dynamics expected in
critical systems, we calculated the stability of brain dynamics in empirical
and model data.

To do this, we approximate the largest Lyapunov exponent (l ),
which estimates the divergence of nearby trajectories in phase space.
One way to do this is to reconstruct the full dynamical system, here,
we use Takens’ theorem which states that a reconstructed attractor
constructed from a variable Y0, given by {Y0(t), Y0(t � t ), ..., Y0(t �
(E � 1)t )}, is topologically equivalent to the original dynamical sys-
tem {Y0(t), Y1(t), ..., YE-1(t)}, where E is the dimension of the system
and t is the time lag (Takens, 1981). We use the first principal com-
ponent of the data matrix to reconstruct the attractor for each dataset.
The embedding dimension E was estimated using the false nearest
neighbors approach (Kennel et al., 1992). To estimate t , one usually
finds the t that minimizes the mutual information between time series.
However, given the slow sampling rate of our recordings relative to the
kinetics of GCaMP6s, we opted to use t = 1.

To estimate l from reconstructed attractors, we firstly locate the
nearest neighbor for each point expressed as

di 0ð Þ ¼ minkXi � Xjk; (19)

where di(0) is the initial distance between Xi and its nearest neighbor Xj.
From this we calculate the change in distance over time for all nearest
neighbors along the attractor which for each t is

l tð Þ ¼ 1
t

1
M� t

XM�t

t¼1

ln
di tð Þ
di 0ð Þ ; (20)

where di(t) is the distance between Xi and Xj at t, andM is the number of
points on the reconstructed manifold (Rosenstein et al., 1993; Sato et al.,
1987). The largest Lyapunov exponent is thus the mean separation rate
for nearest neighbor points over a given time period.

To estimate stability in our network model, we take advantage of the
fact that we have full control of the network. Therefore l can be calcu-
lated by perturbing the network and following trajectories over time. We
apply small perturbations to the network model once it has reached
steady state (4000 time steps), and follow the trajectories over time,
where l is

l tð Þ ¼ 1
t
ln

���� di tð Þdi 0ð Þ
����: (21)

Metastable state estimation
Another key property of critical networks is that the number of states
the system can enter into is maximal (Haldeman and Beggs, 2005). In
order to assess the effect of seizures on brain state number, we adapt
methods developed by Haldeman & Beggs to calculate metastable states.
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They define a metastable state as a set of state vectors that are more simi-
lar to one another than expected in a random system. To identify meta-
stable states in empirical data, we clustered all state vectors together for a
given fish using affinity propagation, which does not require cluster
number to be defined a priori (Frey and Dueck, 2007). Any clusters for
which the number of state vectors belonging to that cluster was equal to
1 were removed. To calculate the similarity between state vectors that
belong to a cluster, we define

Sim Vi;Vj
� �

¼ hVi;Vji
hVi;Vii1 hVj;Vji � hVi;Vji ; (22)

where V is a state vector and,,. denotes the dot product. For clusters
to be identified as metastable, they needed to show greater similarity
than expected by chance. We estimated the chance level similarity by
performing affinity propagation clustering and similarity calculation on
a null network using event-count matched shuffling. Any cluster with
higher average similarity than the null network was declared a metasta-
ble state.

Eigenspectrum analysis
In order to test the effect of epileptic seizures on correlations across
many neurons, we take advantage of the eigenspectrum function, which
captures the variance of the nth principal component. Eigenspectra were
calculated by performing principal components analysis (PCA) on co-
variance matrices generated from neuronal activity data. PCA was per-
formed on raw fluorescence traces – here, we reasoned that some of the
intrinsic variation in calcium signal might be missed using conventional
spike deconvolution methods, which can introduce artefacts (Theis et al.,
2016). Therefore, to minimize the risk of artefacts, we performed PCA
and eigenspectra analyses using raw fluorescence traces.

The eigenspectrum slope f dictates the degree of variance cap-
tured by early versus late components, with a high slope indicating
that the variance is dominated by early components. If one large,
highly correlated subnetwork dominates the dynamics then the
point cloud in state space would fall nearly onto a line – only a few
components would be needed to capture the variance of the data.
Therefore, high multidimensional correlation would cause a steep
eigenspectrum slope, as such we use the eigenspectrum slope as a
readout of multidimensional correlation.

In order to simulate eigenspectra we use a one-dimensional model
introduced by Stringer et al. (2019). We define a function f(x) which
describes the variance of n components across x samples as

f xð Þ2n�1 ¼
cos nxð Þ

n

f

2

f xð Þ2n ¼
sin nxð Þ

n

f

2

; (23)

which gives rise to covariance eigenvalues that follow n-f . The quantity
n was uniformly distributed between 0 and 2p . Changing f changes the
degree of variance captured by earlier versus later components, and thus
alters the slope of the eigenspectrum.

EEG avalanche estimation
In order to test whether avalanche dynamics during seizures are con-
served across spatial scales, we also calculated avalanche statistics using
EEG recordings from human patients. Anonymized intracranial EEG
recordings from stereotactically implanted EEG electrodes were selected
from the clinical database at Great Ormond Street Hospital. Patients
underwent EEG recording for presurgical evaluation of a pharmacore-
sistant focal epilepsy of presumed focal onset with or without visible
lesion on clinical MR imaging. Ethical approval for the use of anony-
mized data were granted by the United Kingdom Health Regulatory
Authority (IRAS 229772) and the Joint Research Office at the UCL-
Great Ormond Street Institute of Child Health (Project ID 17NP05). 30

patients were selected based on the availability of at least three seizures
during the EEG recording; as well as artifact-free baseline segments of
corresponding duration that were .60min away from ictal recordings.
For each patient, data of 3� 30-s windows of baseline awake EEG activ-
ity, and three clinically identified seizures were selected for analysis.
Clinical EEG data were recorded at a sampling frequency of 1024Hz.
Raw EEG data were re-referenced to an average reference, and filtered to
a 1- to 250-Hz broad frequency spectrum using a finite impulse response
filter using the window method with a Hamming filter window in the
MNE (MEG and EEG analysis and visualization) toolbox in Python
(Gramfort et al., 2013).

The signal from each EEG channel was z-scored against the baseline
recording of that channel, by subtracting the baseline mean and dividing
it by the baseline standard deviation. Data were then binarized by identi-
fying peaks that exceed a peak amplitude threshold parameter p (Arviv
et al., 2016). Individual peaks across channels were grouped into a single
avalanche if they occurred within a short time window Dt. Thus, neuro-
nal avalanches in EEG data were defined as sequences of spatially distrib-
uted peaks of oscillatory activity.

Statistical analysis and software
D’Agostino’s K2 test was used to test for normality in data distributions
(a = 0.05). Paired t tests or Wilcoxon signed-rank tests were used to
compare spontaneous, focal ictal, generalized ictal, state transition data,
and human EEG datasets in cases of normality, and non-normality,
respectively (a = 0.05). Independent t tests or Mann–Whitney U tests
were used to compare different network models in cases of normality,
and non-normality, respectively (a = 0.05). Bonferroni corrections were
used to control for false positives because of multiple comparisons.

To compare network response properties across different models we
generated 50 simulations for each parameterized model, comparing the
means of each simulation across model conditions. To calculate the
effect of changing the network topology parameter m on network
response properties, we parameterized the network to pre-ictal levels
before increasing m in steps to the levels of the network connectivity
model, while keeping other parameters fixed. We performed 50 simula-
tions for each m. We calculated the correlation between m and network
response properties using Pearson’s correlation coefficient.

Data were analyzed using custom code written in Python. Image regis-
tration and cell segmentation was performed using suite2p (Pachitariu et
al., 2017). Neural network simulations were run using Brian2 (Stimberg et
al., 2019). Statistical hypothesis tests were performed using scipy. Graphs
were generated using matplotlib and seaborn.

Resource accessibility
Details of key reagents and resources are included in Table 1. Datasets
may be downloaded from the Open Science Framework at https://osf.io/
em7f2/. Further information, requests for resources and datasets should
be directed to the corresponding author.

Code accessibility
Custom written python code can be accessed at: https://github.com/
dmnburrows/criticality; https://github.com/dmnburrows/avalanche_model;
https://github.com/dmnburrows/seizure_dynamics; https://github.com/
dmnburrows/img_process.

Table 1. Key resources table

Regent or resource Source Identifier

Tg(elavl3:H2B-GCaMP6s) Freeman et al. (2014) ZDB-TGCONSTRCT-141023–1
Scanimage Software, Vidrio
Technologies (image
acquisition)

This paper https://docs.scanimage.org/

Suite2p (image registration
and segmentation)

Pachitariu et al. (2017) https://github.com/MouseLand/
suite2p

Hidden Markov model (calcium
transient estimation)

Diana et al. (2019) https://github.com/giovannidiana

Brian2 (Python network model-
ing software)

Stimberg et al. (2019) https://github.com/brian-team/
brian2
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Results
In this study, we recorded single neuron activity brain-wide, to
measure critical dynamics during epileptic seizures. We per-
formed two-photon imaging of head-fixed larval zebrafish across
10 planes (Fig. 1A,B), using GCaMP6s expressed only in the nu-
cleus, which enables the segmentation of ;10,000 neurons per
animal (Fig. 1C). To image seizure dynamics we administered 5
mM PTZ causing focal hyperexcitability (Movie 2), followed by
20 mM PTZ causing generalized hyperexcitability (Movie 3;
Fig. 1E). The on/off states of each neuron were then estimated
using a hidden Markov model (HMM; Diana et al., 2019; Fig.
1E). From these data we were able to calculate the spatiotem-
poral propagation of activity through the network (see
Materials and Methods; Fig. 1F), known as neuronal ava-
lanches (Beggs and Plenz, 2003). Importantly, certain features
of avalanche dynamics are found in systems at criticality. We
use these features to ask whether neuronal avalanche dynam-
ics across the whole brain deviate from criticality during
seizures.

Spontaneous brain-wide neuronal activity exhibits critical
statistics
Several statistical features have been reported as indicators of
criticality, including (1) power law distributions of avalanche size
and duration, (2) relations between avalanche power law expo-
nents, (3) branching ratios close to unity, and (4) power law scal-
ing of neuron correlation and distance. We first evaluate each of
these features to validate the presence of critical dynamics in
brain-wide networks at single cell resolution during spontaneous
activity.

A key feature of criticality is the presence of scale-invariant
avalanche dynamics, these describe the spatiotemporal propaga-
tion of activity through the network (Fig. 2). At criticality ava-
lanches span all scales, from small to large, which gives rise to
scale-invariant power law distributions of avalanche size and du-
ration (Sethna et al., 2001; Hesse and Gross, 2014). To calculate
avalanche dynamics, we adapted an algorithm used in previous
studies to single neuron data (see Materials and Methods; Ponce-
Alvarez et al., 2018). We estimated empirical distributions for av-
alanche size and duration from spontaneous activity, which were
well fit by power laws (Fig. 3A,B). Using log likelihood ratio test-
ing, we found that all datasets were better explained by power
law than lognormal distributions, the most rigorous alterna-
tive heavy-tail distribution test (see Materials and Methods;
Fig. 3A,B). Importantly, we found that the presence of power
law relationships was robust to avalanche estimation parame-
ters. Specifically, we varied the neighborhood radius (from 10
to 50 mm), which defines the radius of neighbors that a given
neuron can send outputs to, and the number active neurons
required for avalanche initiation (from 2 to 4; see Materials
and Methods). Avalanche distributions were power laws
across all sampled parameter values (Fig. 4A,E), suggesting
that the presence of power laws in avalanche distributions is a
feature of the underlying data, rather than an artifact of the
avalanche estimation algorithm. This indicates that avalanche
dynamics in spontaneous activity are scale invariant, as
expected at criticality.

However, power laws can also emerge in noncritical systems.
An adjunct test for criticality is the relationship between the
power law exponents for avalanche size (t ) and duration (a;
Sethna et al., 2001; Friedman et al., 2012). At criticality, ava-
lanche size S should scale as a power of avalanche duration T,

this scaling exponent g should follow the form (a � 1)/(t � 1)
(see Materials and Methods). We use the deviation from critical-
ity coefficient (DCC; see Materials and Methods) to assess expo-
nent relation, which compares the exponent g of the function
hSi(T) with the exponent relation (a � 1)/(t � 1) (Fig. 3C; Ma
et al., 2019). Our data show close agreement between the slope g
and (a�1)/(t�1), suggesting the presence of near-critical dy-
namics (DCC=0.136 0.04; Fig. 3D). To understand whether
such relationships could have been generated by a random sys-
tem, we created three null models: spatial, correlation, and auto-
correlation nulls (see Materials and Methods). With these
models we were able to assess whether randomly generated neu-
ronal activity, resulting from shuffling spatial structure, cell-cell
correlation and autocorrelation, respectively, would also generate
critical DCCs. Importantly, exponent relation was significantly
less well preserved in spatial nulls (DCC=0.316 0.02, t = �4.80,
p, 0.001) compared with empirical data, but not correlation
(DCC=0.156 0.04, t = �0.48, p=0.64) and autocorrelation
(DCC=0.216 0.05, t = �1.60, p=0.15) nulls (see Fig. 3D). This
suggests that empirically observed critical exponent relations
emerge because of the spatial structure of neural dynamics,
rather than from random activity. This provides further evidence
for critical statistics in brain-wide cellular resolution network dy-
namics at rest.

Another hallmark of critical systems is a branching parameter
(s ) close to 1 (see Materials and Methods). The branching pa-
rameter describes the expected number of offsprings that an
ancestor produces, and when s ; 1, the system undergoes a
phase transition and avalanches can span all scales (Corral and
Font-Clos, 2012). We calculate s by estimating the mean ratio of
descendants to ancestors in spontaneous data (see Materials and
Methods), and find s slightly below 1 in spontaneous activity
(s = 0.936 0.03; Fig. 3E). Values of s slightly below 1 suggest
the presence of a slightly subcritical state (Priesemann et al., 2014);
however, s is likely to be underestimated in finite networks
because of the convergence of activity onto shared descendants
(Zierenberg et al., 2020). We complement our approach with an al-
ternative method which uses multiple-regression and is robust to
subsampling to confirm s values (Wilting and Priesemann, 2018;
Spitzner et al., 2021). Using this approach we find s even closer to
1 (s = 0.976 0.00), providing further evidence for near-critical
dynamics in spontaneous activity. Importantly, using our method,
we find that empirical s is significantly closer to unity than spatial
(s = 0.776 0.03, t=21.8, p , 0.0001), and correlation (s =
0.926 0.03, t=4.45, p , 0.01), but not autocorrelation nulls (s =
0.936 0.03, t = �0.28, p=0.79; Fig. 3E). This suggests that s near
to 1 in our data are a feature of the underlying spatial structure
and correlation in neural activity, suggesting near-critical dynamics
in our spontaneous activity data.

Long-range correlations between neuronal signals are another
hallmark of critical systems. Such long-range correlations can
give rise to a power law relationship between distance and corre-
lation in spontaneous activity at criticality (Expert et al., 2011;
Lombardi et al., 2021). To assess the presence of correlation-dis-
tance power laws, we calculated the correlation function r(d) as
the Pearson’s correlation between the activity of neuron pairs as
a function of their distance (see Materials and Methods; Fig. 3F).
Interestingly, we found that r(d) qualitatively follows a power
law which is well approximated by linear regression fit (Fig. 3F).
This suggests the presence of both short and long-range correlations
which can support avalanches spanning the full spatial scale of
the system.
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Taken together we find that spontaneous neuronal dynamics
exhibit (1) power law relationships of neuronal avalanches, (2)
exponent relations close to critical values, (3) branching ratios
close to 1, and (4) power law scaling of neuron correlation and
distance. These findings provide evidence that microscale col-
lective behavior is organized near to criticality in whole-brain
networks.

Brain-wide neuronal activity deviates from criticality during
seizures
In a next step, we investigated whether whole-brain networks at
the microscale deviate from criticality during epileptic seizures.
To this end, we compared critical statistics in spontaneous activ-
ity with focal (5 mM PTZ) and generalized seizure (20 mM PTZ)
dynamics.

We first compared avalanche exponents, estimated from the
full range of observed avalanche sizes and durations (see
Materials and Methods), to determine whether seizures alter ava-
lanche dynamics. Interestingly, avalanche exponents for both
size and duration significantly decreased, in the 5 mM (Size: t =
2.656 0.10, w= 0, p, 0.01; Duration: a = 3.346 0.12, w= 2.0,
p, 0.01) and 20 mM conditions (Size: t = 2.566 0.05, t= 4.59,
p, 0.01; Duration: a = 3.306 0.11, t= 4.06, p, 0.01) when
compared with spontaneous activity (Size: t = 2.986 0.13;
Duration: a = 3.586 0.14; Fig. 5A,B). This manifested as a
less steep slope during focal and generalized seizures, indi-
cating a higher probability of larger and longer avalanches.
Furthermore, the 20 mM PTZ condition caused a bump in
the heavy tail of the distribution (Fig. 5A,B), suggesting the
emergence of characteristic scale because of the occurrence
of unusually common, excessively large and long avalanches,
which is expected in “supercritical” systems driven away
from criticality (Beggs and Plenz, 2003).

Next, we investigated whether such alterations to avalanche
probabilities were conserved across brain scales. Specifically, var-
ious studies have assessed avalanche dynamics at coarse scales
using EEG andMEG (Meisel et al., 2012; Arviv et al., 2016); how-
ever, whether such macroscale avalanche dynamics capture the
underlying collective behavior of neuronal activity is unclear. To
this end, we calculated avalanche dynamics from sequences of
oscillatory peaks in human intracranial EEG recordings during
seizures (see Materials and Methods), to ascertain whether larger
and longer avalanches are also recorded at the macroscale. We
found that focal-onset seizures in epilepsy patients gave rise to
concordant decreases in avalanche exponents (Size: median t =
1.94, 1.38–3.92, U=3.71, p, 0.001; Duration: median a = 2.25,
1.47–3.77, U= 4.24, p, 0.001), when compared with interictal
periods (Size: median t = 2.52, 1.99–5.9; Duration: median a =
3.16, 2.26–11.64; Fig. 6). This suggests that the presence of longer
and larger avalanches at the microscale during seizures, is also
conserved in macroscale EEG data. However, we note that spe-
cific avalanche exponents are not conserved across scales, sug-
gesting intrinsic differences between power law behavior at each
scale.

Next, we assessed the effect of PTZ-induced seizures on criti-
cal exponent relations. Interestingly, on visual inspection, while
the relationship between S and T clearly follows a power law in
spontaneous datasets, this relationship appears to be lost during
seizures (Fig. 5C). Specifically, while small avalanches in PTZ
conditions appear to follow the scaling relationship g defined
from spontaneous activity, as avalanches get larger in size they
occur at a faster rate than expected from the scaling exponent g .

This suggests a loss of self-similarity in avalanche dynamics dur-
ing seizures, which is a defining feature of criticality (see
Materials and Methods). A loss of power law scaling between S
and T implies that the critical exponent relationship g = (a �
1)/(t � 1) would break down (Perkovi�c et al., 1995). To confirm
this, we assessed DCC values – as expected seizures caused a
divergence from critical exponent relations, with both 5 mM

PTZ (DCC = 0.526 0.10, t = �3.24, p = 0.01) and 20 mM PTZ
(DCC = 0.576 0.07, t = �5.70, p, 0.001) causing significant
increases in DCCs (Fig. 5E). Therefore, seizures disrupt the
collective behavior of neuronal activity at the microscale
such that self-similarity and critical exponent relations are
lost.

We also assessed the effect of seizures on the branching pa-
rameter s which is expected to be close to 1 at criticality. We
found a significant increase in both the 5 mM PTZ (s =
1.006 0.02, t = �3.79, p , 0.01) and 20 mM PTZ conditions
(s = 1.016 0.01, t = �3.11, p, 0.017), suggesting an increased
propensity for a neuron to activate descendants (Fig. 5F). To
confirm this change, we also calculated s under seizure condi-
tions using the multiple-regression approach, here, we also find a
significant increase in the branching parameter during seizures
(20 mM PTZ, s = 0.996 0.00, t = �5.22, p, 0.0001; Fig. 5F).
Interestingly, these changes indicate that brain dynamics may be
operating closer to criticality during seizures as s approaches 1.
However, identifying s . 1 is difficult in finite-size networks as
avalanches will always be bounded by the size of the system
(Zierenberg et al., 2020). One approach to identify s . 1 in fi-
nite systems, is to look at s over shorter periods, to capture the
extending phase of the avalanche before it is reaches the full size
of the system (Hagemann et al., 2021). To this end, we also com-
pared s during shorter 400 frame windows of spontaneous activ-
ity (baseline) and generalized seizure (ictal-onset; see Materials
and Methods). Using our method, we found that s shows a
greater magnitude increase beyond 1 during seizure onset (base-
line: s = 0.946 0.03, ictal-onset: s = 1.056 0.02, t = �3.41, p,
0.01; Fig. 5G). To confirm this finding, we also calculated the
branching parameter in short 10 frame bins throughout general-
ized seizure transitions. As expected, s drastically increased
beyond 1 over short periods across all tested datasets, indicating
transient departures from criticality (Fig. 7). Therefore, seiz-
ures transiently cause an increase in the branching parameter
above 1, as expected for a supercritical system pushed away
from criticality. Interestingly, s dynamics were highly diverse
across seizure periods, with mixtures of critical (s ; 1) and
supercritical (s . 1) branching values throughout seizure
evolution (Fig. 7).

However, we note that using the multiple regression approach
on 400 frame datasets led to a nonsignificant increase in s (base-
line: s = 0.966 0.00, ictal-onset: s = 0.986 0.01, w= 9.0, p =
0.13; Fig. 5G). Taken together, the direction of the branching pa-
rameter change relative to the phase transition is unclear from
our data.

Finally, we assessed the effect of seizures on correlation function
power laws. Interestingly, correlation functions were significantly
less well approximated by power laws in both the 5 mM (Euclidean
distance from power-law=0.076 0.01, w=1.0, p , 0.01) and 20
mM PTZ conditions (Euclidean distance=0.446 0.04, w = 0.0, p,
0.01) compared with spontaneous datasets (Euclidean distance=
0.046 0.00; see Materials and Methods; Fig. 5D). This indi-
cates that seizures saturate the system with excessive correla-
tions, thus disrupting power law relationships that are a
hallmark of criticality.
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Taken together, we find that seizures cause a loss of critical
statistics, with (1) the emergence of characteristic scale in ava-
lanche distributions, (2) a departure from critical exponent rela-
tions, (3) increases in near-critical s values, and (4) a loss of
correlation function power laws. That avalanches sampled at sin-
gle neuron resolution across the whole brain, exhibit a loss of
critical statistics during seizures, indicates that microscale neuro-
nal activity collectively drives network-wide dynamics away from
the phase transition during seizures. Next, we wanted to under-
stand what microscale network changes facilitate this loss of crit-
icality during seizures.

Densely connected networks drive avalanche dynamics away
from criticality
If seizures emerge as a loss of criticality, what network changes
drive the brain away from the phase transition into seizure
states? Interestingly, synaptic genes are risk factors in epilepsy
(Rosch et al., 2019) and synaptic plasticity is essential for organ-
izing critical dynamics in silico (Zeraati et al., 2021). As network
models have demonstrated a diversity of synaptic mechanisms
supporting self-organizing criticality, these approaches may pro-
vide clues into the synaptic pathways which, when dysregulated
in epilepsy, give rise to a loss of criticality and seizures. In

Figure 5. Seizures cause a loss of whole-brain critical statistics. A, Complementary cumulative distributions for avalanche size (S), showing mean distributions across conditions (shaded
regions represent the standard error), with power law exponents t compared (top right) across spontaneous (black), 5 mM PTZ (orange), and 20 mm PTZ (red) conditions. B, Same as in A, for
avalanche duration (T) with exponent a. C, The scaling relationship between S and T is shown by plotting mean S against T and fitting a linear regression line to estimate the exponent g
(dotted line), as shown for spontaneous (black), 5 mM PTZ (orange), and 20 mM PTZ (red) conditions. DCC is calculated as the absolute difference between g and (a � 1)/(t � 1). D, The cor-
relation function r(d) compared across conditions (left), with the Euclidean distance from fitted power laws plotted for each condition (right). E, DCC compared across conditions. F, The branch-
ing parameter s plotted for each dataset across 30 min recordings, using avalanche (left) and multiple-regression estimation approaches (right). G, Same as in F, for shorter 400 frame state
transition periods, where baseline (base.) is before seizure transition and ictal onset is immediately following transition. *p, 0.01.
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particular, modeling studies have implicated the number of con-
nections in the network (Tetzlaff et al., 2010), the strength of syn-
apses (de Arcangelis et al., 2006) and the intrinsic excitability of
neurons (Levina et al., 2007), in stabilizing brain dynamics to
criticality.

To probe the synaptic changes that drove avalanche dynamics
away from criticality into seizure states, we modeled the brain as
a spiking network of excitatory leaky-integrate-and-fire neurons
(see Materials and Methods). We were particularly interested in
the network mechanisms supporting the emergence of seizure
state transitions. Accordingly, we fit network models to three
avalanche datasets comprising normal activity (baseline), activ-
ity immediately preceding the generalized seizure (pre-ictal),
and the generalized seizure itself (ictal-onset; see Materials and
Methods). To distinguish between the differential involvement
of synaptic changes in driving seizure state transitions, we
investigated three parameters in our model: (1) network con-
nectivity, the number of connections between neurons defined
by parameter m; (2) synaptic weights, the strength of synapses
between neurons defined by parameter r; and (3) intrinsic
excitability, the propensity of individual neurons to spike
defined by parameter Vth (Fig. 8). While a diversity of other pa-
rameters can drive epileptic seizures, including neuronal sub-
type (Sessolo et al., 2015; Khoshkhoo et al., 2017; Magloire et
al., 2019a), nonsynaptic (Dudek et al., 1998; Bikson et al., 2018;
Magloire et al., 2023), and non-neuronal mechanisms (Coulter
and Steinhäuser, 2015; Diaz Verdugo et al., 2019; Wu et al.,
2020; Vezzani et al., 2022), we restricted our model to three sim-
plified plasticity parameters, to relate predictions from criticality
theory with observed seizure avalanche dynamics. Importantly,
such simplified plasticity models make few assumptions about
the underlying dynamics, and if they can explain observed data,
can demonstrate the sufficiency of general synaptic mechanisms
in driving seizure activity and critical dynamics.

We performed a grid-search of ;1400 parameter combina-
tions, finding the combinations which best captured baseline,
pre-ictal, and ictal-onset avalanche dynamics. Using all three pa-
rameters, we generated approximate model fits to baseline
(m= 7, r=5, Vth = 20, cost = 0.113), pre-ictal (m= 6, r=0, Vth =
16, cost = 0.176), and ictal-onset data (m=31, r= 1, Vth = 17,
cost = 0.120; Fig. 8A).

To compare the importance of each network parameter in the
emergence of the pre-ictal state, we explored a subset of parame-
ters that were free to vary, while keeping others fixed. Specifically,
we fixed parameters to the best baseline model fit while allowing

subsets of parameters to vary freely for model fitting. This was
done because the partially hyperexcitable dynamics of the pre-
ictal state were preceded by a baseline activity state before the
addition of PTZ. Allowing only single parameters to vary freely
for fitting demonstrated that the intrinsic excitability parameter
provided the best fit to pre-ictal data (Vth = 19, cost = 0.223; Fig.
8D), through increases in intrinsic excitability. Network connec-
tivity changes alone gave rise to avalanche distributions with ex-
cessive heavy tails (m=15, cost = 0.241; Fig. 8B), while synaptic
weights changes alone were unable to generate sufficiently heavy
tails (r=6, cost = 1.06; Fig. 8C). However, we found that the
model with all three parameters free to vary provided the best
pre-ictal fit (Fig. 8E), while models with any combination of two
free parameters provide better fits than intrinsic excitability alone.
Therefore, while increases in intrinsic excitability is the singular
parameter change that best explains the emergence of pre-ictal
dynamics, nonspecific combinations of all three parameters can
more accurately describe such dynamics. This indicates that the
pre-ictal state likely emerges from small, nonspecific changes to
network connectivity, synaptic weights, and intrinsic excitability.

Next, to model the emergence of the ictal-onset state, we fixed
parameters to the best pre-ictal model fit while allowing subsets
of parameters to vary freely for model fitting. Allowing only sin-
gle parameters to vary demonstrated that only the network con-
nectivity parameter provided a reasonable fit to ictal-onset data
(m= 30, cost = 0.190; Fig. 8B), emerging because of an increase
in the number of connections from the pre-ictal state. Changing
both synaptic weights (r= 7, cost = 0.465) and intrinsic excitabil-
ity (Vth = 15, cost = 0.744) parameters alone failed to generate
sufficiently heavy tails (Fig. 8C,D). This suggests that increases in
network connectivity are central to driving generalized seizure
dynamics and thus pushing the brain away from criticality. In
fact, while model fits with all three parameters provided the best
overall fit, the network connectivity model alone provided a bet-
ter fit than the model with both synaptic weights and intrinsic
excitability free to vary (Fig. 8E). Therefore, increasing the con-
nectivity of the network alone is sufficient to drive the heavy-
tailed avalanche dynamics of generalized seizures.

Taken together, we find that the emergence of the pre-
ictal state is driven by nonspecific changes to combinations
of neuronal connectivity, synapse strength and node excit-
ability. Conversely, generalized seizure dynamics can only
emerge in densely connected networks. This indicates that the
density of network connections is a key parameter for disrupt-
ing critical dynamics during seizures. Next, we investigated the

Figure 6. Human epileptic seizures at the macroscale alter avalanche dynamics. Complementary cumulative distribution functions for avalanche size (A) and duration (B), comparing mean
distributions across EEG datasets for interictal (black) and seizure periods (red). Avalanche exponents are compared for avalanche size (t ) and duration (a) in interictal (black bar = mean),
and seizure (red bar = mean) conditions.
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effects of such dense connectivity on the emergent computa-
tional properties of critical networks.

Dense connectivity drives the emergence of chaos in seizure
networks
Having identified key neuronal parameters driving generalized
seizure dynamics, we next investigated the functional implica-
tions of such changes. Interestingly, during generalized seizures
patients regularly exhibit a complete loss of awareness (Dudek et
al., 1998; Bikson et al., 2018; Shimoda et al., 2020; Magloire et al.,
2023). Given that generalized seizures emerge as a loss of

criticality, we theorized that co-occurring cognitive dysfunc-
tion would be caused by the suboptimal computational capaci-
ties of networks away from criticality. One key prediction for
critical networks is that the phase transition can separate out
stable and chaotic regimes, where the critical point exhibits
neutral dynamics (Haldeman and Beggs, 2005). Such neutral
dynamics give rise to long autocorrelation and minimal infor-
mation loss about inputs (Hesse and Gross, 2014). Therefore, if
critical brain dynamics exist at the boundary between stability
and chaos, then one would expect a loss of neutral dynamics
during generalized seizures.

Figure 7. Branching parameter assessed throughout seizure evolution. The branching parameter s was estimated using the avalanche approach across 1000 frames of generalized seizure
periods in 10 frame bins. Two datasets were excluded based on the absence of clear transitions from nongeneralized to generalized activity, or insufficient frames following the transition initia-
tion. s remains close to 1 in the leadup to the generalized seizure and drastically increases as dynamics become highly synchronous, for most datasets (2, 3, 4, 5, 7, 8). Interestingly, following
initial increases, s quickly returns to ;1 while high synchrony is ongoing. Note that for some datasets (1, 6) s remains close to 1 until after the onset of highly synchronous activity.
Oscillatory dynamics following the peak of synchronous activity are characterized by moderate increases in s above 1 (3, 7).
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To test this hypothesis, we approximated the largest Lyapunov
exponent (l ). l Captures the distance of nearby trajectories in
state space, where l . 0 implies that points grow further apart
over time (chaos), l , 0 implies that points get closer over time
(stable), and l ; 0 implies that points retain their distances over
time (neutral; Fig. 9B). l was estimated from spontaneous and
20 mM PTZ empirical datasets, by reconstructing the attractor of

the system using Takens’ embedding theorem (see Materials and
Methods; Fig. 9A). We found that generalized seizures were signifi-
cantly more chaotic (20 mM PTZ: l = 0.00346 0.0001, t = �10.7,
p , 0.0001), than spontaneous dynamics (l = 0.00246 0.0001;
Fig. 9B). To confirm this finding, we also calculated l in our
model network, by directly perturbing the system and following
the trajectories over time (see Materials and Methods). Using this

Figure 8. Neuronal network mechanisms driving generalized seizure dynamics. A, Avalanche distributions from baseline, pre-ictal, and ictal-onset periods, alongside best model fits using all
parameters. B, Network connectivity schematic for sparse and dense networks (left). Best model fits using network connectivity parameter only, to pre-ictal (middle) and ictal-onset data (right).
C, Synaptic weights schematic for strong and weak synaptic weights (edge thickness = synaptic strength; left). Best model fits using synaptic weights parameter only, to pre-ictal (middle) and
ictal-onset data (right). D, Intrinsic excitability schematic for high and low threshold to spike networks (red node = closer to spike; left). Best model fits using intrinsic excitability parameter
only to pre-ictal (middle) and ictal-onset data (right). E, Model comparison for three parameter models (black), two parameter models (gray), and single parameter models (colors as above),
for pre-ictal (middle) and ictal-onset data. The cost function used for model comparison was a regularized mean squared error term (left; see Materials and Methods).
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approach we find that ictal-onset models were also significantly
more chaotic than baseline models (baseline: l = 0.00026 0.0001,
ictal-onset: l = 0.00656 0.0001, t = �45.5, p, 0.0001), using
all-parameter models (Fig. 9C,D). This indicates that close-by
trajectories will grow further apart over time, suggesting a
heightened sensitivity to initial conditions in the seizure state
(Fig. 7B).

To confirm the validity of our embedding approach we also
compared model l as generated from the direct perturbation
and embedding approaches (see Materials and Methods).
Importantly, the embedding approach also shows a significant
increase in l in the ictal-onset period in the model (baseline:
l = 0.026 0.0003, ictal-onset: l = 0.036 0.0004, U = 0.0,
p, 0.0001; Fig. 9D). Therefore, this indicates that during

generalized seizures the brain enters a chaotic state, as expected
for a supercritical network away from criticality (Haldeman and
Beggs, 2005).

Next, to relate observed chaotic dynamics with underlying
neuronal parameter changes driving seizures, we tested the
link between l and network connectivity in the network
model. To do this we compared l across single parameter
models, with fixed parameters set to pre-ictal values and free
parameters fitted to ictal-onset data. Interestingly, only the
network connectivity m model produced l that matched the
full model (0.00676 0.0001, U = 1108.0, p = 0.16), while syn-
aptic weights r (0.00106 0.0001,U=0.0, p, 0.0001) and intrinsic
excitability Vth (�0.00106 0.0001, U=0.0, p, 0.0001) models
failed to produce more chaotic dynamics (Fig. 9D). This suggests

Figure 9. Increased connectivity drives the emergence of chaos in seizure networks. A, Using lagged coordinate embedding single variable (Y) can be used to reconstruct an attractor that is
topologically equivalent to the full system, by using a series of delayed variables (Y, Yt-t , Yt-2t ..., Yt-(m-1)t) of delay t and dimension m. Embedding each lagged variable into state space pro-
vides the reconstructed attractor, where tx is the position in state space at time x corresponding to the dotted red line (left). Isomap 3d embeddings of reconstructed attractors using lagged
coordinate embedding for spontaneous (middle) and 20 mM PTZ (right) data for a representative fish. B, Schematic outlining the meaning of different l values (top). Each color represents the
trajectory over time for a specific initial point along the attractor (high to low brightness represents movement in time). l is the ratio of the difference between two points at the start (d0)
and at t (dt). l . 1: chaotic (red), l , 1: stable (blue), l = 1: neutral (green), where l for each trajectory is calculated against the black trajectory. l over time is compared for sponta-
neous and 20 mM PTZ conditions (bottom), and mean l is compared across spontaneous (black bar = mean) and 20 mM PTZ conditions (red bar = mean; top right). C, l over time compared
for baseline and ictal-onset full parameter models (top), and l over time is shown as a function of edge density m (bottom), ranging from pre-ictal values to ictal-onset values. Each line rep-
resents the mean l over time for each model over 50 simulations. D, Mean l compared for baseline (base.) and ictal-onset full parameter models, and single parameter models (m = net-
work connectivity, Vth = intrinsic excitability, r = synaptic strength; top left). Correlation between m and mean l is shown, ranging from pre-ictal values to ictal-onset values (bottom). Mean
l calculated using lagged coordinate embedding (LCE) on full parameter models across baseline (gray bar = mean) and ictal-onset models (crimson bar = mean; top right).
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that only the network connectivity parameter can drive the
emergence of chaotic dynamics observed during generalized
seizures. We also found a significant positive correlation
between the number of connections m and l (r= 0.95,
p, 0.0001; Fig. 9D), with increasing m from pre-ictal to ictal-
onset values directly causing a loss of neutral dynamics and the
emergence of chaos (Fig. 9C). Therefore, the increased network
connectivity driving generalized seizures, also causes the emer-
gence of chaotic dynamics. This would impair the network’s
ability to maintain maximal memory about inputs, thus giving
rise to network dysfunction during seizures (Haldeman and
Beggs, 2005). Next, we investigated the effect of such chaotic dy-
namics on the response properties of the network.

Dense connectivity impairs the optimal network response
properties of critical networks
Another key property at criticality is that certain network
response properties are optimized. In particular, evidence from
in vitro and in silico studies have demonstrated that (1) the net-
work-mediated separation (NMS), a network’s ability to discrim-
inate between inputs (Bertschinger and Natschläger, 2004); and
(2) the dynamic range (d ), a network’s ability to represent a wide
range of inputs (Kinouchi and Copelli, 2006; Shew et al., 2009),
should be optimized at the critical point. Therefore, if general-
ized seizures emerge as a loss of criticality, one would expect
emergent brain dysfunction because of impaired network
response properties. Here, we assessed NMS and d using the net-
work model as we can disentangle the networks’ responses to
inputs from its ongoing activity, something which is not possible
in vivo.

NMS is the property of a network to encode distinct inputs
with distinct network states, enabling similar inputs to be separated
and discriminated by a readout function (see Materials and
Methods; Fig. 10A). As predicted, baseline networks assume higher
NMS values across the range of input sizes compared with ictal-
onset networks (baseline: mean NMS=0.916 0.01, ictal-onset:
0.186 0.00, U=556,991.0, p, 0.0001; Fig. 10B). This suggests an
impaired ability of the network to discriminate between inputs dur-
ing seizures. Furthermore, ictal-onset networks exhibit a signifi-
cantly more shallow NMS slope (baseline: slope=0.00346 0.0000,
ictal-onset: slope=0.00076 0.0000, t=109.5, p, 0.0001; Fig. 10B).
This indicates a reduced sensitivity of the NMS property to input
size differences, demonstrating an impaired ability to distinguish
between similar input pairs and highly different input pairs.
Therefore, generalized seizures impair the ability of the brain to
not only discriminate between inputs, but also represent input pairs
according to their similarity.

Furthermore, to relate NMS reductions with underlying neu-
ronal changes in seizures, we tested the link between NMS and
network connectivity. We found that only the network connec-
tivity m model produced NMS values matching the full model
(0.186 0.00, U= 3,081,443.4, p=0.20), while synaptic weights r
(0.496 0.01, U=1,104,945.0, p, 0.0001) and intrinsic excitabil-
ity Vth (0.516 0.01, U=1,546,742.0, p , 0.0001) models failed to
reduce NMS sufficiently to ictal-onset levels (Fig. 10B). Furthermore,
increasing the number of connections m resulted in a significantly
correlated reduction in NMS statistics (mean NMS: r = �0.99,
p, 0.0001, NMS slope: r = �0.99, p, 0.0001), indicating a direct
link between increased edge density and impaired NMS (Fig. 10C).

We also investigated the dynamic range (d ), a measure of the
range of input sizes that a system can represent (see Materials
and Methods; Fig. 10D). We found that ictal-onset networks ex-
hibit significantly lower d than baseline networks (baseline:

8.226 0.06, ictal-onset: 7.706 0.07, t=5.83, p, 0.0001). This
suggests that seizure networks exhibit a reduced capacity to rep-
resent a wide range of inputs, as expected in a network away
from criticality. Once again, only the network connectivity m
model matched the full ictal-onset model for d (m: 7.626 0.05,
t = �0.95, p=0.34; r = 8.186 0.07, U= 593.0, p, 0.0001; vth:
8.156 0.08, t= 4.28, p , 0.0001; Fig. 10E). The parameter net-
work connectivity m was also significantly negatively correlated
with d (r = �0.71, p, 0.0001), although we note a nonlinear
relationship (Fig. 10F). This suggests that increased network con-
nectivity during generalized seizures directly impairs the dynam-
ics range.

Taken together, our model demonstrates that increased net-
work connectivity impairs the optimal response properties of
critical networks, resulting in reductions in NMS and dynamic
range. Overall, this suggests that brain dysfunction emerging
during generalized seizures is caused by a disruption of the opti-
mal network response properties at criticality.

Generalized seizure networks are inflexible because of
the emergence of sticky states
Finally, we investigated the impact of generalized seizures on
state transition dynamics. A key property of systems at criticality
is the ability to flexibly transition across a diversity of brain states –
the number of states available to the system is maximal at the
critical point (Haldeman and Beggs, 2005). Therefore, we theor-
ized that generalized seizures should reduce the diversity of brain
states, thus limiting the dynamic repertoire of the brain to a limit
subset (Fig. 11A). To this end, we compared the number of avail-
able states during spontaneous and generalized seizure (20 mM

PTZ) periods in empirical recordings. To do this, we estimated
the number of metastable states, defined as a set of state vectors
that are more similar to one another than expected in a random
system (see Materials and Methods). Interestingly, generalized
seizure dynamics exhibit significantly fewer metastable states than
spontaneous dynamics (spontaneous: 20.96 3.30, PTZ 20 mM:
11.96 2.31, w= 1.9, p, 0.05; Fig. 11B). This indicates that gen-
eralized seizures limit the diversity of states the brain can enter
into, which likely impairs the flexible transitioning across the full
dynamic repertoire.

Next, we investigated the population mechanisms that might
disrupt flexible dynamics. Having identified increased network
connectivity as a driver of seizures, we reasoned that fewer brain
states might be a natural consequence of the correlational struc-
ture of densely connected networks. We hypothesized that high
multidimensional correlation in seizure networks would natu-
rally limit the diversity of brain states, by restricting the space of
possible neuronal activation patterns to a more limited sub-
set. To test this, we use the eigenspectrum function which
defines the amount of variance explained by the nth princi-
pal component, providing a measure of multidimensional
correlation (see Materials and Methods). We found that the
eigenspectrum slope f significantly increased during gen-
eralized seizures (spontaneous: f = 1.206 0.04; 20 mM

PTZ: f = 1.416 0.03, t = �6.05, p, 0.001), indicating
greater variance captured in the first few components and
increased multidimensional correlation (Fig. 11D).

Interestingly, we note a direct relationship between f and
the velocity of the underlying dynamics. Here, we define velocity
as the normalized Euclidean distance traveled per unit time
across the whole neuronal population. As multidimensional cor-
relation and therefore f increases, population dynamics exhibit
slower transitions in state space (Fig. 11E). To visualize this, we
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simulate eigenspectra power laws and randomly project them
into three-dimensional space using a previously developed
method (see Materials and Methods; Fig. 11E; Stringer et al.,
2019). In line with this prediction, we find significantly
slower dynamics during generalized seizures (in networks
with high f ), compared with spontaneous activity (sponta-
neous: velocity = 0.866 0.01, 20 mM PTZ: velocity = 0.706
0.03, w = 0.0, p, 0.01; Fig. 11D). Slower dynamics occur
because of earlier components dominating the variance, such
that the variance of reconstructed trajectories in state space
is driven by only a few key modes. Slower transitions in state
space suggest the emergence of sticky states which are diffi-
cult to leave. This could explain reductions in state diversity,

as sticky dynamics prevent the flexible transitioning into and
out of the full dynamic repertoire.

For such sticky states to arise, we would expect longer times
spent in each metastable state.

In line with this, we find significantly increased dwell times
during generalized seizures [spontaneous: dwell time (s) = 0.406
0.01, 20 mM PTZ: dwell time (s) = 0.436 0.01, w= 1.0, p, 0.01;
Fig. 11C]. However, longer dwell times could occur by chance in
systems with fewer states. Therefore, we calculated null models
for each system, by evaluating the dwell time expected by chance.
We find that the dynamics for spontaneous and generalized sei-
zure periods are nonrandom, with longer dwell times than
expected by chance (spontaneous: w = 0.0, p, 0.01, 20 mM PTZ:

Figure 10. Increased connectivity disrupts the optimal network response properties of critical networks. A, For two similar inputs (i1 and i2) onto the network, the network-mediated separa-
tion (NMS) is the Euclidean distance between the two corresponding network states (s1 and s2). B, NMS is shown as a function of input difference compared for baseline and ictal-onset full pa-
rameter models (top). NMS slope and mean NMS is compared for baseline and ictal-onset full models and single parameter models (m = network connectivity, Vth = intrinsic excitability, r =
synaptic strength; bottom). C, NMS as a function of input difference for increasing network connectivity m, ranging from pre-ictal to ictal-onset m values (top). Correlation between m and
mean NMS (bottom). D, For different inputs, the dynamic range d is the log ratio of the input sizes (i1 and i2) that give rise to the largest and smallest network responses (smax and smin). E,
Output size as a function of input size compared for baseline and ictal-onset full parameter models (top). d compared for baseline and ictal-onset full models and single parameter models
(bottom). F, Output size as a function of input size for increasing network connectivity m, ranging from pre-ictal to ictal-onset m values. Correlation between m and d (bottom). *p, 0.01.
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w=0.0, p, 0.01; Fig. 11C). Importantly, generalized seizures
show significantly longer dwell times even when accounting for
the fewer available states [spontaneous: d dwell time (s) = 0.026
0.01, 20 mM PTZ: d dwell time (s) = 0.036 0.01, w= 2.0, p,
0.05; Fig. 11C].

Taken together, we find that the flexible dynamics of critical
networks are impaired during generalized seizures, with a reduc-
tion in brain state diversity. Such inflexible dynamics may be
caused by higher multidimensional correlation in dense net-
works, which gives rise to slow, sticky dynamics. Sticky, homoge-
neous dynamics would prevent flexible responses to inputs and
impair the optimal exploration of semi-stable states required for
scale-invariant dynamics at criticality, giving rise to brain dys-
function during seizures.

Discussion
In this study, we estimated avalanche dynamics in whole-brain
networks at neuronal resolution, to understand the effect of epi-
leptic seizures on critical dynamics and emergent computation.
Microscale avalanche dynamics showed that global network

dynamics are driven away from a phase transition during seizures,
a shift that was driven by increased density of network connec-
tions. Importantly, network connection density also regulated key
computational properties that are optimized at criticality, giv-
ing rise to impaired network response properties and inflexible
state transitions in seizure networks. Therefore, this study illus-
trates that criticality offers a unifying framework for under-
standing emergent brain dynamics and impairment during
epileptic seizures.

Understanding epileptic seizures through the lens of
criticality
Criticality describes a system in which dynamics are organ-
ized near to a phase transition, giving rise to favorable com-
putational properties (Packard, 1988; Langton, 1990). A key
property of critical systems are scale-invariant avalanches,
propagating events that span the entire scale of the system
(Sethna et al., 2001). Interestingly, scale-invariant avalanches
have been reported in neuronal dynamics across multiple
scales (Beggs and Plenz, 2003; Tagliazucchi et al., 2012),
leading to the critical brain hypothesis. Studies of small

Figure 11. Generalized seizures cause sticky dynamics. A, A critical system can explore a greater subset of its possible brain states (left), while a noncritical system will explore a more limited
subset (right). B, The number of metastable states compared across spontaneous (black bar = mean) and 20 mM PTZ conditions (red bar = mean). C, Mean dwell time in each state compared
across conditions, plotting both empirical and null model datapoints (left). Empirical dwell time minus null model dwell time (d dwell time), as a measure of dwell time normalized to number
of available states, compared across datasets (right). D, Left, Mean eigenspectrum function plotted across conditions, with eigenspectrum slope f plotted for each dataset (top right). D,
Middle, 3d Isomap embedding of reconstructed attractor for an example fish. D, Right, State space velocity probability densities plotted for all fish, comparing spontaneous and 20 mM PTZ con-
ditions, with mean velocity compared across datasets (top right). E, Left, Simulated eigenspectrum function plotted for increasing f . E, Middle, Random projection of eigenspectra into state
space for different f . E, Right, State space velocity probability densities plotted as a function of f . *p, 0.01.
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neuronal populations first identified a link between seizures
and criticality, drug-induced hyperexcitability gives rise to a
loss of critical avalanche statistics (Beggs and Plenz, 2003;
Pasquale et al., 2008; Shew et al., 2009; Bellay et al., 2015).
These were later complemented by macroscale seizure record-
ings in epilepsy patients, which further suggested a deviation
from the phase transition in coarse avalanche dynamics (Meisel
et al., 2012; Arviv et al., 2016). However, bridging the gap
between neuronal avalanches and macroscale dynamics, where
seizures typically occur, has not previously been possible. We
build on previous work by investigating avalanche dynamics
across all spatial scales, from single neurons to entire brain
regions. This is vital, because macroscale recordings mask the
heterogeneity of single neuron activity (Keller et al., 2010;
Muldoon et al., 2013; Meyer et al., 2018), thus obscuring neuro-
nal avalanche dynamics. Conversely, inferring criticality in
small neuronal populations is also challenging, subsampling
larger networks can give rise to spurious critical statistics
(Priesemann et al., 2009), while different brain regions can be
differentially tuned to criticality (Suryadi et al., 2018). Given
that we record from vastly greater numbers of neurons across
all brain regions, avalanche dynamics will be more accurately
assessed by mitigating subsampling and region-specific effects.
The fact that whole-brain, neuronal-resolution critical statistics
deviate dramatically during seizures suggests that microscale
activity drives macroscale dynamics away from the phase
transition.

However, we note that critical statistics are correlative meas-
ures and can appear in noncritical systems (Touboul and
Destexhe, 2017; Destexhe and Touboul, 2021). Therefore, any
inferences about the critical state of an observed system should
be made with caution, as the network parameters defining the
system’s dynamics are unknown and must be inferred indirectly.

The seizure avalanche dynamics observed in this study indi-
cate the emergence of a supercritical regime, which predicts
exponentially growing avalanches that saturate the macroscopic
dynamics (Harris, 1963). This is corroborated by multiscale sei-
zure studies, that show propagating waves spreading throughout
all microscale recording sites, before emerging at the macroscale
(Martinet et al., 2017). However, these studies also suggest a
more complicated picture than theory predicts, while some prop-
agating events rapidly spread outwards from the ictal wavefront
(Trevelyan et al., 2007; Smith et al., 2016), others are restrained
by feedback inhibition, manifesting as postsynaptic potentials
that fail activate their targets (Trevelyan et al., 2006; Schevon et
al., 2012). This could explain the heterogeneous branching ratio
values observed in this study, with transient departures from crit-
icality emerging because of the push-and-pull between local exci-
tation and inhibition.

Importantly, such a supercritical regime can explain emergent
computational properties reported during epileptic seizures. In
particular, we demonstrate that seizures exhibit an increase in
chaotic dynamics, as predicted for a supercritical branching pro-
cess (Haldeman and Beggs, 2005). Therefore, supercritical dy-
namics can explain the chaotic behavior that has been reported
in seizure networks, at the microscale using local field potentials
(Hayashi and Ishizuka, 1995), and the macroscale via EEG
recordings (Babloyantz and Destexhe, 1986). Such chaotic dy-
namics would reduce the network’s memory about recent inputs,
because of high reverberating activity in the network.

Another key prediction from supercritical networks, is dis-
ruptions to flexible dynamics. Critical systems can engage in
metastable dynamics manifesting as the transient formation and

dissipation of diverse semi-stable states (Wildie and Shanahan,
2012), which supports flexible state transitions (Fingelkurts and
Fingelkurts, 2001). We have shown that seizure dynamics exhibit
reductions in brain state diversity, as predicted in supercritical
networks. This can explain the reduced entropy of theta oscilla-
tory rhythms recorded during hippocampal kindling in rats (Ren
et al., 2021), and the emergence of highly stereotyped oscilla-
tory dynamics from the seizure-onset zone in patients (S. Liu
et al., 2018), which point to the emergence of abnormally
attracting states that are frequently visited. Interestingly,
reduced diversity of brain states is a key finding in medically-
induced loss of consciousness studies in mice and human
brain dynamics (Schartner et al., 2015; Wenzel et al., 2019b).
Therefore, a loss of metastable dynamics in supercritical net-
works, could explain the loss of consciousness that occurs dur-
ing absence and tonic-clonic seizures (Blumenfeld, 2012).

Although we demonstrate a link between supercriticality and
acute seizure impairments, further work is needed to show that
chronic cognitive dysfunctions in epilepsy occur through similar
mechanisms (Meador, 2002), by studying avalanche dynamics in
epilepsy models of chronic cognitive impairment (Shuman et al.,
2020). One should also note that PTZ-induced GABA blockade
does not capture the full diversity of seizure driving mechanisms
in epilepsy (Rosch et al., 2019). Future work should therefore test
the generalizability of supercriticality as a network regime for sei-
zure dynamics using distinct genetic models of seizures (Baraban
et al., 2013; M. Liao et al., 2019).

Microscale neuronal network mechanisms driving
macroscale seizure dynamics
This study used whole-brain neuronal network modeling to infer
the microscale alterations driving generalized seizure dynamics.
Large scale models of epileptic networks have already demon-
strated key microscale properties underlying seizures, such as in-
hibition exhaustion (Liou et al., 2020), excessive inhibitory to
inhibitory coupling (Depannemaecker et al., 2022) and hub neu-
rons (Morgan and Soltesz, 2008; Hadjiabadi et al., 2021). Here,
we studied three key parameters, network connectivity, synaptic
weights and intrinsic excitability, drawing inspiration from theo-
retical models of criticality (Zeraati et al., 2021), to relate predic-
tions from criticality theory with observed seizure avalanche
dynamics. Interestingly, modeling studies have shown that
changing neuronal connections (Bornholdt and Rohlf, 2000;
Bornholdt and Röhl, 2003; Tetzlaff et al., 2010; van Ooyen and
Butz-Ostendorf, 2019), synaptic strengths (de Arcangelis et al.,
2006; Rubinov et al., 2011), and intrinsic neuronal excitability
(Levina et al., 2007), can stabilize brain dynamics to criticality.
Importantly, these changes have all been implicated in the emer-
gence of seizures, with changes in the number of axonal connec-
tions (Buckmaster et al., 2002; Buckmaster, 2014; Chu et al.,
2010), the strengths of synapses (Geinisman et al., 1988; Poulter
et al., 1999; Zhang et al., 2012), and the intrinsic excitability of
neurons (Upreti et al., 2012; Tokudome et al., 2016; Vannini et
al., 2020) linked to animal models of epilepsy.

We found that generalized seizure avalanches can be explained
by increased neuronal connectivity. This is supported by large
scale models of the rate dentate gyrus, which show that increased
connections between granule cells can drive network hyperexcit-
ability (Dyhrfjeld-Johnsen et al., 2007). However, we note that in
our data, the formation of structural synapses is likely limited dur-
ing the short timescales between pre-ictal and ictal periods follow-
ing PTZ administration (Le Bé and Markram, 2006; Ozcan, 2017).
Therefore, dense connectivity may instead be explained by the
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formation of new effective connections between neurons, these
could arise through a diversity of mechanisms, such as volume
transmitted GABA waves diffusing extracellularly (Magloire et al.,
2023), or glia-glia coupling via gap junctions which can synchron-
ize noncoupled neurons (Diaz Verdugo et al., 2019). However, a
diversity of other microscale parameters not explored here have
been shown to drive epileptic seizures, including intracellular Cl�
(Staley, 2006; Huberfeld et al., 2007; Magloire et al., 2019b; Shen et
al., 2021), extracellular K1 (Florence et al., 2009; Ying et al., 2015;
Uva et al., 2017), pro-ictal inhibition (Chang et al., 2018; Miri et
al., 2018), distinct neuronal cell type dynamics (Khoshkhoo et al.,
2017; Makinson et al., 2017), and cell death (Sloviter, 1987;
Dingledine et al., 2014). Future work should use more specific
parameterizations, to disentangle the differential role of each of
these microscale parameters in driving excessive network connec-
tivity during seizures.

In conclusion, we covered all spatial scales to investigate the
collective behavior of neuronal activity during seizures. In doing
so we found evidence that networks deviate from criticality dur-
ing seizures, and emerge as a chaotic state which impairs brain
function. This investigation links the microscale population ac-
tivity of neuronal networks with macroscale pathologic brain dy-
namics that are characteristic of epileptic seizures.
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