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A Partially Observable Collaborative Model optimizes treatment selection. e The model estimates a personalized chronic disease progres-
sion model. e The model has superior performance in simulated chronic depression treatment. « The model recommends personalized
adaptive treatment in precision medicine.
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Precision medicine that enables personalized treatment decision support has become an increasingly im-
portant research topic in chronic disease care. The main challenges in designing a treatment algorithm
include modeling individual disease progression dynamics and designing adaptive treatment selection
strategy. This study aims to develop an adaptive treatment selection framework tailored to an individual
patient’s disease progression pattern and treatment response. We propose a Partially Observable Collab-
orative Model (POCM) to capture the individual variations in a heterogeneous population and optimize
treatment outcomes in three stages. The POCM first infers the disease progression models by subgroup
patterns using population data in stage one and then fine-tunes the models for individual patients with a
small number of treatment trials in stage two. In stage three, we show how the treatment policies based
on the Partially Observable Markov Decision Process (POMDP) can be tailored to individual patients by
utilizing the disease models learned from the POCM. Using a simulated population of chronic depres-
sion patients, we show that the POCM can more accurately estimate the personal disease progression
than the traditional method of solving a hidden Markov model. We also compare the POMDP treatment
policies with other heuristic policies and demonstrate that the POCM-based policies give the highest net
monetary benefits in majority of parameter settings. To conclude, the POCM method is a promising ap-
proach to model the chronic disease progression process and recommend a personalized treatment plan
for individual patients in a heterogeneous population.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Personalized treatment of chronic disease is a sequence of
treatments tailored to individual patient’s characteristics, disease
history, and treatment response. Developing a personalized treat-
ment plan is a difficult sequential decision-making problem due to
uncertainty in observing the patient’s true health state, predicting
disease progression, and estimating treatment response. Treatment
selection for chronic diseases requiring long-term care aims at op-
timizing the patient’s health outcome within resource limits. The
main challenges include estimating personalized disease progres-
sion dynamics and optimizing treatment selection in real-time. To
address these challenges, we propose a mathematical framework
for optimizing the personalized treatment of a chronic disease un-
der partially observable health conditions and uncertain treatment
outcomes.

There are multiple treatment options for many chronic diseases
that can be selected over a long time horizon. Treatment options
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may include medications, medical devices, behavioral therapies, or
no further treatment. Traditionally, clinicians make treatment de-
cisions based on their experience and expertise during outpatient
visits. These decisions broadly follow published treatment guide-
lines and expert consensus documents established from clinical
trial data at the population level (Campbell et al., 2000; Dickstein
et al., 2008). In recent years, widely implemented electronic health
record (EHR) systems, expanded use of clinical decision-support
tools, and digital/mobile health technologies are moving clinical
care into an era of precision medicine, which is defined as “treat-
ments targeted to the needs of individual patients on the basis
of genetic, biomarker, phenotypic, or psychosocial characteristics
that distinguish a given patient from other patients with similar
clinical presentations” (Jameson & Longo, 2015). The confluence of
data science, machine learning, artificial intelligence (Al) and pre-
cision medicine generates a vibrant research area that anticipates
the next revolution in healthcare. Foreseeable benefits of personal-
ized medicine include faster, safer, cheaper, more convenient, and
higher quality of care for patients. It has been used in a variety
of medical field such as cancer, cardiovascular disease, metabolic
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disease, psychiatry, and pharmacogenomics, etc. (Jameson & Longo,
2015).

The first challenge is modeling the patient’s unique disease pro-
gression dynamics. The maximum likelihood estimation (MLE) of
progression parameters from observational data is one common
method. A naive approach is to estimate a model separately for
each patient, but this approach often performs poorly due to the
lack of sufficient longitudinal data collected from a single patient.
Therefore, cohort data is often used to identify subgroups of sim-
ilar patients in which their disease progression dynamics can be
represented by subgroup models, but any heterogeneity within the
subgroup is ignored. Methods for discovering subgroup structures
include K-means clustering, hierarchical linear modeling, growth
mixture modeling, latent class analysis, latent class growth anal-
ysis, and latent class growth mixture modeling (Twisk & Hoekstra,
2012). A more advanced approach is the collaborative model (CM)
(Lin, Huang, Simon, & Liu, 2016; Lin et al., 2017; Lin, Liu, & Huang,
2018; You, Liu, Byon, Huang, & Jin, 2018). The CM framework uses
a set of basis models to represent patterns as subtypes of dis-
ease progression. An individual patient’s progression is a weighted
combination of these basis models, where the weight is called the
membership.

To build an individual disease progression model, a hidden
Markov model (HMM) can account for unobservable health states
that represent the true disease severity; and observations are
test scores that are imperfect measurements of the health states.
Model parameters include transition probabilities between health
states and emission probabilities of the observations given the true
health states. To utilize the subgroup structure in the population
data, we propose a model that combines CM and HMM, named
the Partially Observable Collaborative Model (POCM). In the POCM,
the basis model is an HMM for each subtype of disease progres-
sion, and the individual progression model is a weighted combi-
nation of the basis HMMs. We develop an efficient algorithm for
parameter estimation and prove that the proposed algorithm can
guarantee convergence to a stationary solution similar to CM. We
assume that the basis models learned from longitudinal observa-
tions of existing patients can be used to estimate future patients’
individual models. Therefore, we only need to learn the member-
ship from a small number of treatment trials to form the disease
model for a new patient.

The second challenge is designing an adaptive treatment se-
lection strategy based on the patient’s past treatment response.
Among research in algorithmic-based treatment planning, Markov
decision process (MDP), partially-observable MDP (POMDP), rein-
forcement learning, and multi-armed bandits are among the most
widely-used tools. We propose a POMDP model for making a se-
quence of adaptive treatment decisions based on the estimated in-
dividual disease dynamics. POCM or an existing HMM algorithm,
i.e, the Baum-Welch algorithm (Baum, Petrie, Soules, & Weiss,
1970), can be used to estimate individual transition and emission
matrices, representing the patient’s response to treatment. The ob-
jective is to maximize discounted total rewards measured using
Net Monetary Benefit (NMB) (defined as total health benefits x
willingness-to-pay - total cost). Health benefits can be measured
by quality-adjusted life years (QALYs) gained.

We are interested in the question of whether POCM is a bet-
ter model than HMM alone in the sense that the parameters in-
ferred from POCM can lead to a better treatment selection policy.
The POCM-based treatment strategy is developed in three stages
to provide a better understanding of the disease, its prognosis, and
the most effective treatment similar to the scope laid out in preci-
sion medicine (Jameson & Longo, 2015). (1) In the learning stage,
the basis models representing disease progression subgroups and
patients’ memberships are learned from existing dataset of pa-
tients under treatment. (2) In the fine-tuning stage, the person-
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alized disease model of a new patient is initialized using basis
models estimated from the learning stage, and the membership is
updated under different treatment by running separate trials. (3)
In the decision stage, the optimal treatment strategy for each pa-
tient is obtained by solving a POMDP using the disease model es-
timated from the fine-tuning stage (Fig. 1). We compare the out-
comes of the POMDP model estimated from POCM with an POMDP
model estimated from HMM and several heuristic treatment se-
lection policies. The length of learning, fine-tuning, and decision
stages can be empirically determined based on data availability,
the disease application, and treatment options. The only require-
ment is that the number of periods in each stage should be suf-
ficient to achieve the goal (i.e., learning, experimentation, or opti-
mization) set for that stage.

Our modeling framework is motivated by chronic depression
treatment. Depression is one of the most common mental disor-
ders in the U.S,, affecting more than 10% of the population (Pratt
& Brody, 2014). Depression is difficult to diagnose because symp-
toms can manifest in various ways and a patient’s true health
state is difficult to measure (e.g., no biomarker, blood test, nor
brain scan can make a conclusive depression diagnosis). Screening,
diagnosis and monitoring tools currently include physical exams
and instruments such as the Patient Health Questionnaire (PHQ-9),
Beck Depression Inventory (BDI), Center for Epidemiologic Studies-
Depression Scale (CES-D), and Hamilton Rating Scale for Depres-
sion (HRSD). We believe the importance of modeling the latent
disease states as partially observable via an imperfect monitoring
tool, e.g., the commonly used PHQ-9. Treatment for depression in-
cludes psychotherapy, antidepressants, or a combination of the two
with supportive care (Guideline Development Panel for the Treat-
ment of Depressive Disorder, 2019). There are no clear evidence-
based guidelines on when/how to switch and augment treatment
for depression. Furthermore, staying on inefficient treatments may
induce more cost without any benefit for patients, and lead to
treatment-resistance or addiction to medications. Therefore, there
is a great need to tailor treatment to the clinical profile of each
patient and classify them into subpopulations that differ in their
treatment response, and select treatment to those who will bene-
fit (Phillips, 2018). Currently, machine learning and Al are increas-
ingly developed for mental health diagnosis and treatment inter-
ventions. Some examples include sensing and digital phenotyping,
natural language processing of clinical notes and social media con-
tent, and chatbots as therapeutic agent (D’Alfonso, 2020).

We demonstrate our framework using a simulated population
of chronically depressed patients. The challenge for chronic de-
pression is that the disease’s natural history is not well known
and varies significantly from person to person. There is a large
body of literature on discovering depression trajectories (Musliner,
Munk-Olsen, Eaton, & Zandi, 2016), including some of our own
work (Lin et al.,, 2016). One known fact is that there are three to
five strong progression patterns in the population. A chronically
depressed person can go through periods of response, remission,
relapse, and non-response on a series of treatments (Rush et al.,
2006). A landmark depression treatment trial (STAR*D) tested four
steps of treatment (Rush et al., 2006), which included various an-
tidepressants alone or in a combination of cognitive therapy (a
type of psychotherapy). One recent cost-effectiveness study sim-
ulated two first-line depression treatments and several follow-up
treatment options based on the STAR*D trial (Ross, Vijan, Miller,
Valenstein, & Zivin, 2019). One critical treatment question is when
to combine the two types of therapies. Therefore, in our case study,
we simulate a two-treatment selection problem; Treatment-I uses
antidepressant medication only, and Treatment-II is an intensive
outpatient program with additional psychotherapy and behavioral
counseling (treatment augmentation). We assume treatment alters
disease progression in a probabilistic way, defined by the treat-
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Fig. 1. Overview of the three-stage POCM framework.

ment transition matrix. We are agnostic about the types of drugs
or talk therapy under Treatment-I or II. In the learning stage, the
basis models are learned from a dataset of patient observations
(i.e., PHQ-9 scores) on Treatment-I. The population average treat-
ment effect of Treatment-II is assumed to be known from clinical
trials or observational studies, and such knowledge is used to esti-
mate the basis model parameters for Treatment-IIL

The main contributions are twofold. First, we propose a math-
ematical framework, POCM, to characterize the individual varia-
tions in chronic disease progression in which the health states are
partially observable. We accomplish this task through the learn-
ing stage and the fine-tuning stage. Second, we demonstrate the
performance of POCM-based POMDP treatment policies compared
with a set of heuristic policies in the decision stage. Through a
simulated case study of chronic depression, we show that POCM
can be a better model than individual HMM estimation under most
parameter settings. The treatment policies’ outcomes are evaluated
in sensitivity analyses, including uncertainties in the treatment ef-
fect, utilities of the health states, and cost of treatments.

The remainder of the paper is structured as follows:
Section 2 provides the relevant literature on optimal treat-
ment selection models. Section 3 introduces the POCM method in
the three-stage personalized treatment selection framework. The
numerical results of a simulated depression case study demon-
strating the performance of the proposed method are given in
Section 4, followed by discussion and concluding remarks in
Section 5.

2. Relevant literature

Our work is related to the literature on optimal treatment se-
lection. MDP and POMDP have been used to determine the optimal
treatment plan for many diseases, assuming that the disease tran-
sition is Markovian. Shechter, Bailey, Schaefer, & Roberts (2008) de-
veloped an MDP model to find the optimal time to initiate HIV
therapy for U.S. veterans. Mason et al. (2012) used an MDP model
to optimize the treatment decision for patients with type 2 dia-
betes. Maillart, Ivy, Ransom, & Diehl (2008) formulated a partially-
observed Markov model to select effective breast cancer screening
policies. Faissol, Griffin, & Swann (2007) used a POMDP to deter-
mine the best timing of treatment decisions when the disease’s
presence is not known in advance of hepatitis C screening. Saure,
Patrick, Tyldesley, & Puterman (2012) formulated a discounted
infinite-horizon MDP for scheduling cancer treatments in radia-
tion therapy units. Otten, Timmer, & Witteveen (2020) developed
a POMDP model to optimize and personalize breast cancer follow-
up. Madadi, Zhang, & Henderson (2015) evaluated breast cancer
mammography screening policies considering adherence behavior.
Skandari & Shechter (2021) designed ongoing treatment plans for

a heterogeneous population in disease progression and response to
medical interventions using a POMDP model that learns the pa-
tient type. Other methods include the Kalman filter (Helm, Lavieri,
Van Oyen, Stein, & Musch, 2015; Kazemian, Helm, Lavieri, Stein, &
Van Oyen, 2019), multi-arm bandit (Ayer, Zhang, Bonifonte, Spauld-
ing, & Chhatwal, 2019; Negoescu, Bimpikis, Brandeau, & Ilancu,
2017), and mixed-integer programming (Chen, Ayer, & Chhatwal,
2018). A key distinction between these research and our settings
is that this stream of work mainly focuses on finding the opti-
mal treatment based on heterogeneous population characteristics,
while our study focuses on online treatment selection optimized
for individual patients.

Our work also relates to the stream of research that focuses on
the personalization of treatment selection. Wang, Sontag, & Wang
(2014) proposed a personalized disease progression model by com-
bining Markov jump process and Markov chains. Schulam & Saria
(2015) proposed a hierarchical latent variable model that individ-
ualizes disease trajectories predictions and provided the algorithm
for learning population, subpopulation, and individual parameters.
Ayer, Alagoz, & Stout (2012) designed a personalized mammog-
raphy screening policy based on the prior screening history and
personal risk characteristics of women. Lavieri, Puterman, Tyldes-
ley, & Morris (2012) proposed an individual disease progression of
prostate cancer patients using the dynamic Kalman filter model to
estimate the individual parameters from the population character-
istics. These papers focus on a target disease and require domain
knowledge on the progression of the target disease. Our purpose
is different: we propose an offline and online learning method
to estimate a personalized chronic disease model based on lon-
gitudinal observations. Our method extends the CM (Lin et al,
2016; Lin et al, 2017; Lin et al, 2018) method with the ability
to model partially-observable disease conditions by adding latent
variables to represent health states. MLE is the most common ap-
proach of parameter inference from observational data in disease
models. However, the inference of latent variables with MLE is
usually difficult due to the nonconvexity of the likelihood func-
tion. The Expectation-Maximization (EM) algorithm can overcome
this difficulty by iteratively estimating the intermediate states and
maximizing the approximate likelihood based on the intermediate
states (Dempster, Laird, & Rubin, 1977; Louis, 1982). We develop a
variant of the EM algorithm for the inference of CM for diseases
with latent health states.

Finally, our work relates to the stream of research that applies
Al methods to medical decision making (MDM) problems. A re-
cent review of supervised and unsupervised learning applications
in MDM is Jiang et al. (2017). Reinforcement learning (RL), which
formulates the process of an agent (e.g., the decision maker) inter-
acting with an environment (e.g., the disease progression model),
is widely used for sequential decision-making problems in health-
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Table 1
List of Notations.

[m5G;March 20, 2023;12:44]

European Journal of Operational Research xxx (XXXx) Xxx

a,s,o Action, health state, observation

A S, Q Action space, state space, observation space

Ay, By, Basis transition matrix, emission matrix, initial state distribution of group k
A? B ¥ Ground truth transition matrix, emission matrix, initial state distribution for patient i
A, B, #; Individual transition matrix, emission matrix, initial state distribution

0 Set of basis parameters

C Membership

o Observations of all patients

S Latent states of all patients

S The set of all possible combinations of S

K Number of basis models

w Similarity matrix

n Tuning parameter in POCM objective

Vit (S) The probability that patient i is at state s at time ¢

&(s.8) The probability that patient i is at state s at time t, and at state s" at time ¢ + 1
M A Bm Cm  Estimated parameters after m iterations

b(s) Belief of health state s

T Total number of periods in each stage

K (S) Utility for health state s

r(s,a) Reward of one period when the true health state is s and the action is a
h(a) Cost of treatment a

A Willingness-to-pay ($/QALY)

P Treatment effect factor

¢ Discount factor in POMDP

I Control parameter for the significance of latent structure in the population

care. Ayer (2015) proposed an inverse RL to identify the optimal
screening strategies for breast cancer in the setting of a partially
observable environment. In order to simultaneously utilize the
biomedical dynamics across multiple patients, Lee, Lavieri, Volk,
& Xu (2015) designed three classes of RL policies for the screen-
ing of hepatocellular carcinoma. In addition, RL can be used to
solve MDP and POMDP problems approximately, which is useful
when the state space is large and computation resource is limited
(Jaakkola, Singh, & Jordan, 1995; Zhu, Li, Poupart, & Miao, 2018).
Otherwise, the exact solution via dynamic programming may be
preferred. In addition, RL requires a large number of iterations of
interactions (typically larger than 10,000) with the environment
to ensure convergence of the optimal policy, while dynamic pro-
gramming does not require interaction with the environment be-
fore performing the policies. The high cost of treatment and the
long interval between treatments of the MDM problems limit the
application of RL. A related field of research is multi-task RL, where
an agent has multiple learning tasks during one’s lifetime to max-
imize the total reward (Tanaka & Yamamura, 2003). The agent
solves multiple MDPs or POMDPs under certain distributional as-
sumptions (Li, Liao, & Carin, 2009). The goal is to utilize the learn-
ing experience gained among different RL tasks and their similar-
ities to improve future learning performance for every single task
(Calandriello, Lazaric, & Restelli, 2014). Our work does not make
any distributional assumptions for different POMDPs in the model
learning process.

3. Model formulation

We describe the disease model in Section 3.1. The POCM for-
mulation and the algorithm for parameter estimation are provided
in Section 3.2. In Section 3.3, we present the POMDP model to op-
timize treatment selection.

3.1. Disease.nodel

We formulate the treatment decision process as a finite-state,
finite horizon, discrete-time POMDP, where the underlying HMM
represents the progression dynamics of a patient’s health state.
Decision makers such as patients and clinicians aim to maximize

the expected total discounted NMBs. We assume that the decision
maker is risk-neutral. Please refer to Table 1 for a list of notations.

Decision epoch. Treatment decisions are made at a finite and
discrete set of time periods t =1,2,..., T, T < oo. We assume each
period is long enough for the treatment to affect disease progres-
sion probabilities. Thus, one time period is the minimum time that
a treatment switch can take place. In the case of chronic depres-
sion, the treatment decision can be made monthly (Ross et al.,
2019).

State and observation. Let s; denote the health state at time
t. The state space S is the set of all possible health states. We
omit death as a health state because the goal of the model is to
learn treatment response parameters for patients who are alive in
both stage 2 and 3. Furthermore, the probability of death can only
be estimated using population-level data, not for an individual pa-
tient (i.e., death is a binary outcome). We assume the true health
state cannot be observed. Instead, at each time period, the patient’s
health condition is measured by an imperfect test. The observa-
tions can be either continuous variables or categorical variables de-
pending on the disease application. In this paper, we focus on cat-
egorical observations. Let o; denote the observation at time period
t, and the observation space €2 is a finite set of all possible obser-
vation values. Since the true health state s; is hidden, we can only
maintain an estimation of the probability distribution of the state
over the state space A(S) = {b(s;) €[0.1].5r € 8| Y55 b(st) = 1},
which is usually called the belief of states.

Action. Actions include the selection of treatment types. Let a;
denote the action taken at time t. At the beginning of each time
period, an action is selected with the current policy. We demon-
strate the problem with two treatment types; Treatment-I is less
expensive and less effective than Treatment-Il. The action space
A is the set of all possible actions, i.e. ar € A= {l, II}. A policy
7 : A(S) — A is the probability of taking action a when the be-
lief of states is A(S). At the beginning of each decision epoch,
the treatment type is selected by the policy. The treatment type
and the corresponding observation can provide the clinician with
valuable information about the patient’s true health state, which in
turn helps the clinician select the next period treatment.

System Dynamic. The state transition probabilities describe the
disease progression under different treatment types. It is defined

302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341



342
343
344
345
346
347
348
349
350
351

353
354
355
356
357
358

359
360
361
362
363

364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

383
384

385
386

388
389
390

391
392

393

394

395

JID: EOR
J. Gong and S. Liu

as the probability that the patient will be in state s’ € S at time
t +1, given that she is in state s and action a is taken, denote
as A(s,a,s") = Pr(s;y1 =$5'|st =, ar = a). The emission probability
is the probability of making an observation o € Q at time ¢t when
the true health state is s e S, denote as B(s,0) = Pr(o; = o|s; =
s). We assume this probability is independent of the action. We
name {A(s. a.5)}gc g ses.ses € RAXISIXISE as the transition proba-
bility matrix, and {B(s, 0)}scs.0cx € RI¥I*I as the emission proba-
bility matrix.

Reward. The reward includes both health outcomes and eco-
nomic costs associated with treatment. Health outcomes are mea-
sured in QALYs. Costs may include medication and outpatient ser-
vice expense. QALY is a common metric to quantify the quality-of-
life gains from medical interventions. One QALY represents a pa-
tient living in perfect health for one year. The immediate reward
r(St, ar) is the NMB of treatment in one period when the patient’s
true health state is s; and the action selected is a,

r(st. ar) = Ak (sc) — h(ar) (1)

where k (s¢) is the utility of being in state s; measured in QALYs;
h(ay) is the cost of treatment a;; A is the willingness-to-pay (WTP)
which assigns a monetary value to a QALY; $50,000 per QALY is
commonly used for WTP in the literature (Neumann, Cohen, & We-
instein, 2014).

3.2. Partially observable collaborative amodel (POCM)

POCM is used in the learning and fine-tuning stages. We first
discover subgroup structures in the disease progression with the
CM idea (Lin et al., 2016; Lin et al., 2017; Lin et al., 2018). In short,
the CM assumes that a basis model represents a subtype of disease
progression pattern in the population. Each individual model is a
weighted combination of the basis models. The weights (member-
ships) capture the interpersonal variations. We assume there are
K basis models and N patients with N > K. In POCM, the underly-
ing disease dynamic is an HMM, with the basis transition matrix
A;, the basis emission matrix By, and the basis initial distribution
of state m; for group k € {1,...,K}. We denote 6 = {A;, By, m, k =
1,...,K} as the basis parameters of POCM. Each patient’s individ-
ual progression model, which is also an HMM, is assumed to be
a linear combination of the basis models. The weight of the lin-
ear combination is called the membership vector C; € RX for pa-
tient i; we denote C = [Cy, ..., Cy] € RN*K as the membership ma-
trix. The individual parameters for patient i can be described as
(1) initial distribution of state #; = Y"j_; ¢, 7,. (2) transition prob-
ability matrix A, = Y ; ¢, A,, and (3) emission probability ma-
trix B, = X ; ¢, B,. We denote the observations of each patient
0; =[0;1,0;,...,0;7] € RT, and the observations of all patients as
0=[0;,0,,...,0y] e RN*T, We denote s;; as the true health state
for patient i at time period t, S; = {s; 1,Si2,...,Sir} € RT as the se-
ries of true health states for patient i, and S ={S{,S,,..., Sn} e
RN*T is the set of true states for all patients. We denote S as the
set of all possible combinations of S. The objective of the POCM
is to optimize the maximum likelihood estimator of the observed
sequence O with

m 2
max. f(6.€) =1logPr (0[6.C) — jIZJ:W,-j”C,- —G (2a)
s.t. DA s)=1,s=1,....Sk=1,...K (2b)
>
ZBk(s,o)zl,s:l,...,S,k:l,...,K (20)
[0}
(2d)

dom(s)=1,k=1,....K
N
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ZC“(:], lZl,,N
k

Ai(s,s), B(s,0), m(s), ciy >0, 5,8 =1,...,5,

k=1,....,K, i=1,....N (2e)

The first four constraints guarantee that the transition proba-
bility, emission probability, initial state distribution, and member-
ship vector sum up to one. Note the last term of the objective
function is the regularization term that incorporates the similar-
ity between patients. The regularization coefficient © is a tuning
parameter to control the importance of similarity in the objective
function. The value of w can be calibrated to achieve the maxi-
mum log-likelihood. W € RN*N js the similarity matrix. Details are
in Appendix E.3. The similarity between two individuals can be
quantified by comparing their profiles of the covariates, such as the
demographics, social-economical, genetic and imaging information
(Lin et al., 2016; Lin et al., 2017; Lin et al., 2018). We can simplify
the regularization term as

% ZWU‘ ”Cl N Cj “2 = Z Zwij CIC'T - ZWUC]'C,T
ij j ij

i
= Tr(cTLc),

where L is the Laplacian matrix of w;;, L=D —W, and D is a diag-
onal matrix with elements d;; = 3 ; w;;.

The EM algorithm is a standard approach for inference of latent
variables. An example is the Baum-Welch algorithm for the HMM
inference. In the EM algorithm, in each iteration m=1,2,..., we
estimate the latent states and maximize the likelihood based on
the latent states. Computing the likelihood of observed sequence
with latent variables is computationally intractable. Instead, we
can replace the likelihood with an equivalent function Q, defined
as

Q(6.€le™,c™) :=>"Pr (0,86, C™)log[Pr(0,5|6.C)].
Ses
(3)
where () €M js the estimation of the parameters 6, C after m

iterations (Bishop, 2006, §9). We can solve the POCM by maximiz-
ing Q(@, €| €M) through updating  and C.

Lemma 1. The following two objective functions are equivalent
argmax Pr(0]6, C) = argmax »_Pr(0,S]6™, c™)
6,c 6.c

Ses
log [Pr (0.8]6.C)].

The proof of Lemma 1 is based on the proof of the equivalent
objective in the general EM algorithm in (Bishop, 2006, §9). We
defer the detailed proof to Appendix A. This optimization problem
can be solved with the Lagrangian multiplier method. First, the La-
grangian is

L(6.c|e™. c™) = Q(h.€|o™,c™) — uTr(CTLC)

- ()
— AT
2

IS

an(s) -1
s=1

K S| S

- ZZAE? > A(s.s) -1
k=1 s=1 s'=1
K 18] 2]

- ZZA;‘;) > B(s.0) 1
k=1 s=1 o=1
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N
-3
1

i=1

K
> ck—1}. (4)
k=1

where )Ll(f), AS(?, )L??() and ki(c) are dual variables. The optimization
problem can be simplified as maximizing the Lagrangian L by re-
peating the following steps for iteration m =1, 2, ... until conver-
gence.

1. Fix €M, set 9(m+1) = argmax,y Q (A, C|6™, C(mM));
2. Fix 6+ get COm+1) — argmaxc Q (@, C|OM™+D M)y — yTr
(CTLC).

The inference of the POCM is an EM algorithm, where the E-
step is to compute the intermediate states yift'">(s) and Siﬂ“)(s, s")
using the forward-backward algorithm (Appendix B.3), and the M-
step is to maximize Q (6, C|¢™, ™) by updating the basis model
and the memberships separately. The POCM algorithm is summa-
rized in Algorithm 1.

Algorithm 1: The POCM parameter inference algorithm.
Data: observations on N individualsQy, ..., Oy; initial
valuesfor the parameters C,0©; similarity
matrix W;regularization coefficient ©; number
of basis models, K;stopping criteria €
Result: Estimator of basis model 6* and membership
C*
1 Initialize C® 9 ©
2 for m < 1, ... until converge do
3 | E-step: Compute intermediate statesy,™ (s)
and§" (s. ') using the forward-backward
algorithm,;
4 | M-step: Fix Ct™,
setd ™+ = arg max, Q(Q, clgm, C(m));
5 | M-step: Fix (M1 setCm+) —
argmaxc Q (6, €0+, C™) — yTr(CTLC);
6 | if all elements of!v“”“) —pm |is less than €,
wherev € {x, A, B, C} then

7 | break;
s | end
9 end

Theorem 1. The basis parameters and the membership converge to
an optimal solution under the iterative updating rule in Algorithm 1.

We present the detailed derivation of the updating rule in
POCM and the proof of Theorem 1 in Appendix B and C, respec-
tively.

3.3. Adaptive decisions

In the decision stage, the clinician selects treatment for each in-
dividual patient based on the policy in each period. In the POMDP
model, the policy is derived by maximizing the total expected re-
ward

T

R:Zd}tr(st,at), (5)
t=1

where ¢ is the discount factor. When new observation o;,1 =0 is

obtained after taking action a;.; = a, we can update the belief by

the Bayes’ rule,

N B(s’,0) Y, sA(s. a,s")b:(s) ,
bea(s) = > s B, 0) Y sAG. a, s/)b[(s)’vS €s. (6)
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Treatment is selected with respect to a policy 7 : A(S) — A,
where A(S) denotes the continuous set of probability distributions
over S, i.e. a; =m(b;). We define value function of a policy m
as V™ : A(S)— R, which is the expected discounted total reward
when following policy 7 starting from belief b

T
VT (b) = Bx | 3 ¢r(be, (b)) |bo = b |. (7)
t=0

where r(be, w(be)) = > g5 T(S, 7w (bt ))be (s). The optimal value func-
tion V*(b) = V™ (b) is the best value function that can be achieved
with an optimal policy 7r*. The Bellman equation describes the
fundamental relation between V; and V;_1:

Vi(b) = maaxzb(s[)<r(sf,a)+¢ > A, a,5041)

steS 0p41€92
Z B(St11. 0641 Ver1 (beiq (St ))>~ (8)
St4+1€S

The value functions in finite-horizon POMDP are piecewise-linear
and convex with respect to the belief, and can be represented as

Vi(b) =Y (s, ar)be(s) = b of 9)

seS

where aof € RIS| is a set of support vectors. At period t, when the
belief is b, the optimal action is a} = argmaxge4 thoc;’. We can

construct the support vector set {af}tll backward from t =T to
1. In this paper, we use incremental pruning to accelerate the sup-
port vector enumeration (Cassandra, Littman, & Zhang, 1997). We
include details of the algorithm in Appendix D.

4. Simulation experiment

Due to the lack of available dataset containing both longitudi-
nal observations of depression severity and ground truth depres-
sion states, we simulate a hypothetical patient population undergo-
ing chronic depression treatment with latent subgroup disease pro-
gression patterns. Under the three-stage framework, offline learn-
ing is done in stage 1, and online learning is done in stage 2 and
3. Therefore, we cannot use existing patient dataset due to active
treatment assignment in the online stages. We describe the ground
truth data generation process in Appendix E.1, the simulation pro-
cess for stages 1 and 2 in Section 4.1, and the 12 treatment policies
under consideration during stage 3 in Section 4.2.

We assume three health states of chronic depression; healthy
(H), mild depression (M), and severe depression (S), in ascending
severity of depression, i.e., S = {H, M, S}. We also assume the dis-
ease progression process is Markovian, which is commonly used
to model chronic depression in the literature and tested using
patient-level electronic record data (Lin et al., 2018; Ross et al.,
2019). At each time period, patients take the PHQ-9 to evaluate
their depression severity (Kroenke & Spitzer, 2002). The PHQ-9 has
a score ranging from 0 to 27, which can be categorized into three
levels, where scores 0 ~ 4 (P1) indicate healthy to mild depression,
scores 5 ~ 9 (P2) indicate mild to moderate, and scores 10 ~ 27 in-
dicate major depression, i.e., Q2 = {P1,P2,P3} (Fig. 2).

The utility of each health state is denoted « (H) € (0,1), k(M) €
(0,1),4(S) € (0,1), and «(H) > k(M) > «(S), by the assumption
that more severe depression state will lead to lower health utility.
The values of these utilities can be estimated using health utility
elicitation methods and may vary between studies from different
regions and different populations. We assume the monitoring de-
cision epoch is 1 month (Ross et al., 2019).
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| Severe depression

Healthy (H)

Mild depression (M)

~- PHQ-9 score (0~27) -
.« P1:0-4
e P2:5~9
. P3:10~27

Fig. 2. Chronic depression state and observation transition diagram.

4.1. Simulation of the dearning stage and the fine-tuning stage

We generate the membership vector for N = 1000 patients in a
population with subgroup structure following the approach in Lin
et al. (2018). The numerical experiment is set up to imitate real-life
settings. In real-life implementation of POCM, we need a way to
estimate similarity. Since patients’ profiles of covariates are observ-
able in clinical settings and often predictive of disease progression,
they are good estimators for similarity. In our numerical experi-
ment, the covariates were generated using the memberships and
thus indirectly relate to disease progression patterns. The member-
ships are correlated with simulated patients’ age and gender since
these factors correlate with depression severity (Appendix E.1 and
E.2). The subgroup structure is controlled by the parameter ¢ such
that a larger magnitude of {2 corresponds to a more significant
subgroup structure. We randomly split the cohort into training pa-
tients (Ntin = 800) and testing patients (N'2i" = 200).

In stage 1, the purpose of POCM training is to estimate the K
basis models. The number K can be determined by expert domain
knowledge or the Akaike information criterion (AIC) during model
selection (Lin et al., 2016; Lin et al., 2017; Lin et al.,, 2018). The
AIC balances the number of estimated parameters in the model
and the model fit. The preferred model with the best K is the one
that minimizes AIC = 2k — 2In(L), where small k is the number of
estimated parameters in the model, and L is the maximum value
of the likelihood function for the model. For the HMM compar-
ison, we estimate a unique HMM for each of the K groups. The
groups are assigned using K-means clustering (Lloyd, 1982) over
the patient profile of covariates (Appendix E.3). Both POCM and
HMM estimations use the training patients’ PHQ-9 scores which
are generated for 20 periods under Treatment-I from the ground
truth. Since the estimation of POCM and HMM involves the EM al-
gorithm, we need to train the model with different initial values to
avoid local optimum. We can use a generic procedure that many
sets of initial values are randomly and independently selected in
order to explore the parameter space (we choose 100), and the es-
timation algorithm is performed for a relatively small number of
iterations under each set of initial values (we choose 10). We eval-
uate changes in the log-likelihood and select the set of initial val-
ues with the highest log-likelihood out of the 100 sets. For POCM,
we learn the basis models using Algorithm 1. For HMM, we run
the Baum-Welch algorithm for each group (Appendix B.4).

At the end of stage 1, we use the population average treatment
effect p factor (Appendix F) to obtain the Treatment-II basis mod-
els for POCM, and subgroup HMMs under Treatment-II. Next, these
models are used to initialize individual patient models for test-
ing patients in stage 2. The treatment effect factor p can be es-
timated from comparative effectiveness trials with two treatment
arms (Katzelnick et al.,, 2000). Note that the p is a simple way to
generate a treatment effect in the simulated case study and not a
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necessary assumption in the POCM framework. If training data is
also available for Treatment-II, stage 1 analysis can be done sepa-
rately with observational data for patients on Treatment-II.

In stage 2, testing patients’ PHQ-9 scores are generated for 6
periods under Treatment-I and 6 periods under Treatment-II from
the ground truth (Appendix E.1). This process is similar to the
STAR*D Study, in which 2876 patients with major depression un-
derwent four levels of treatments involving adding and/or switch-
ing various antidepressant medications, psychotherapy, and other
mood stabilizers depending on their symptom-free and treatment
resistant status (Rush et al., 2006). Since the majority of patients
in STAR*D only experienced two levels of treatment between 14
weeks to 12 months, our simulation setting involving two treat-
ments with 6 months trials is practical for patients with persistent
depression. We then estimate the testing patients’ membership by
performing Step 2 of the POCM algorithm (i.e., update the mem-
bership with fixed stage 1 basis models). Combining the mem-
bership and the basis models, we obtain their individual disease
model #;,A;, B;, i=1,..., Nt The initial value of the member-
ship is defined to be proportional to the inverse of the distance
of the testing patient’s profile to each cluster center of the training
patients’ profiles found in stage 1. In the HMM estimation, for each
testing patient, we pick the subgroup model with the center clos-
est to the patient profile as the initial values and then perform the
Baum-Welch algorithm on their observations to obtain the person-
alized disease model.

We evaluate the performance of POCM vs. HMM in estimating
the individual disease model using the average population differ-
ence between the true transition/emission matrices and the esti-
mated matrices. The estimation error for a single patient is mea-
sured by the Frobenius norm (Horn & Johnson, 1990) defined as

S| 18]

= IS (A -RA)ss ] i=1... N,

s=1s'=1

(10)

where Af is the ground-truth transition matrix for patient i, and
A; is the estimated individual transition matrix. The maximum er-
ror is +/2|S|. We note in stage 1 of HMM, A; is the group model
assigned to patient i. The population average estimation error for
transition matrix is

SA 1 . A
i=1

where n = NtTain o NteSt for the learning stage or the fine-tuning
stage respectively. Particularly, §4/|S] is the average estimation er-
ror per element used to compare performance among models with
different number of states. We define 58 for the emission matrix
in the same way.

(11)

4.2. Simulation of the «ecision.stage: 12 .treatment policies

In the decision stage, we compare the outcomes of 12 treat-
ment policies for 24 periods. At each period, a treatment type is
selected for each testing patient using one of the 12 policies in
Table 2. We evaluate the performance gap between the POMDP
based policies and other heuristic policies such as using Bayesian
belief update only, PHQ-9 observations only, or fixed single treat-
ment. These heuristics are included due to their ease of implemen-
tation in clinical practice.

Each policy is applied to the 200 testing patients, and each
unique patient is simulated with 1000 repetitions. During each
repetition, a patient’s initial health state is drawn from the initial
distribution estimated from stage 2. The outcome criterion is the
average discounted total reward } Y/ >N | ¢'r(s;;. a;;), where N
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Table 2
12 policies to be examined in the decision stage.
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Short name Type Description
1 pomdp_true POMDP policy Use the ground-truth individual parameters
2 pomdp_basis POMDP policy Use the group HMM model estimated in stage 1 that the patient is most likely belonging to.
3 pomdp_pocm POMDP policy Use the individual POCM estimated in stage 2
4 pomdp_hmm POMDP policy Use the individual HMM estimated in stage 2
5 s_aggr Bayesian policy Update the belief state by the Bayesian rule in Eq. (6), and select Treatment-II when b(S) > 0.2, more aggressive
6 s_cons Bayesian policy Select Treatment-II when b(S) > 0.5, more conservative
7 h_aggr Bayesian policy Select Treatment-Il when b(H) < 0.8, more aggressive
8 h_cons Bayesian policy Select Treatment-Il when b(H) < 0.5, more conservative
9 o_aggr Observation policy Select Treatment-Il when the PHQ-9 is greater than 5, more aggressive
10 o_cons Observation policy Select Treatment-Il when the PHQ-9 is greater than 10, more conservative
11 tx_i_only Single treatment policy = Treatment-I for all periods
12 tx_ii_only Single treatment policy  Treatment-II for all periods
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Fig. 3. Sensitivity analysis on the converged estimation error (Eq. (11)) between the POCM and the HMM. (a) Effect of latent structure significance, {2 = 5, 25, 125, 625;
larger value of ¢2 indicates strong latent structure. (b) Effect of number of health states, including 2, 3, 4, 5; Note that we divide the estimation error by the number of

states to compare across models with different number of states.

is the number of patients and T is the number of treatment peri-
ods (N=200, T=24).

We test the policy performance on various parameter set-
tings, including 3 levels of treatment effects (p < {0.2,0.5,0.8}),
10 health utility structure (x(H) € {0.8,1}, x(M) € {0.4,0.8},
k(S) € {0.1,0.4}), and 9 cost structures (h(I) € {500, 1000}, h(II) €
{1200, 2800}), totalling 270 scenarios (Appendix G.3). We perform
sensitivity analyses to illustrate policy rankings under parameters
uncertainty.

4.3. Numerical results

4.3.1. Parameterdearning

We compared the performance of the POCM parameter infer-
ence and HMM inference using the population average estima-
tion error defined in Eq. (11) in both the learning and the fine-
tuning stages. The parameter u was calibrated to a value of 0.1
to achieve the maximum objective (Appendix G.1). Results were
based on various levels of significance of latent structure and the
number of health states (Fig. 3). We can see that POCM performed
better for both transition matrix and emission matrix estimation
in the learning and the fine-tuning stages. This conclusion is not
affected by the level of significance of latent structure or the num-
ber of health states. POCM has a fundamentally different structure
about the patients’ transition matrix that is composed of the previ-
ously learned basis models at the population level in stage 1, which
makes the personalization in stage 2 less prone to being affected

by observation uncertainty, bias, and outliers, and thus could be
more clinically relevant.

In stages 1 and 2, there were NT observations under one treat-
ment. In stage 1, a total of 2K(|S| — 1)|S| + (K — 1)K + Ntrain(K —
1)=2x3x2x3+2x3+800x2=1,624 free parameters were
estimated in the POCM. 2K(|S| —1)|S|=2x3x2 x3 =36 free
parameters were estimated in the HMM. In stage 2, a total of
N'©sY(K — 1) =200 x 2 =400 free parameters were estimated in
the POCM for each treatment. A total of 2N®st(|S| —1)|S| =2 x
200 x 2 x 3 = 2400 free parameters were estimated in the HMM
for each treatment. On a MacBook with 2.2 GHz Quad-Core Intel
Core i7 CPU, the computation time for POCM was 15.5 seconds per
iteration in stage 1 and 0.25 seconds per patient in stage 2. The
computation time for HMM was 0.55 seconds per iteration in stage
1 and 0.53 seconds per patient in stage 2. In summary, POCM took
much longer in the learning stage (30 times of HMM considering
an average of 100-200 iterations to converge), but it was slightly
faster in the fine-tuning stage compared to HMM.

We tested several lengths of the fine-tuning stage, including 5,
10, 20, 50, and 100 periods. We found that POCM had a lower
estimation error on transition and emission matrices than HMM
on all testing lengths. The estimation error for the transition ma-
trix of POCM decreased when the testing length increased from 5
to 20, and then stayed relatively flat when the testing length in-
creased from 20 to 100. The estimation error for the emission ma-
trix did not change significantly on different testing lengths (Ap-
pendix G.2).
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pomdp_true 5 0 0 0 0 O O

pomdp_basis |81 47 54 27 20
pomdp_pocm [i”%] 60 66 13 5
pomdp_hmm 42 0 16 26 57
s_aggr 38 9 9 49 20
scons 40 6 6 8 36
h_aggr 5 4 88 7 35
hcons 1 0 0 2 6
o,aggr 31 8 2 4 1
ocons 29 7 2 4 2
tx_i_only 8 2 4 2
tx_ii_only [l 14 0 15 7

2 3 4 5
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Fig. 4. Performance of the 12 treatment policies in 270 model settings. The numbers with rank 1-12 in all scenarios are displayed (including ties). Magnitude of the number

is shown in greyscale.

4.3.2. Treatment.outcomes and sensitivity .analysis

We performed the policy comparison for 270 scenarios of pa-
rameter settings. In each scenario, we ranked the policies by their
NMBs. We considered a tie when two or more policies’ NMBs have
less than a 1% difference (Appendix G.3). Fig. 4 lists the number
of ranks each policy achieved among the 270 scenarios. We con-
firmed that pomdp_true achieved the most top ranks (5 out of
270 scenarios where it achieved rank 2 due to stochasticity in the
simulation.) Policy pomdp_pocm had the second best performance
with rank 1 to 3 in most scenarios. Policy pomdp_basis’s over-
all performance ranked the third among the POMDP policies, with
fewer rank 1 than pomdp_pocm. Policy pomdp_hmm had the low-
est performance among the POMDP policies. The average NMB dif-
ference between pomdp_pocm and pomdp_basis per scenario
across the 270 scenarios is $13k. Therefore, pomdp_pocm is a bet-
ter model to describe disease progression in a heterogeneous pop-
ulation. It outperformed pomdp_basis due to the fine-tuning of
personalized treatment response model in stage 2, and outper-
formed pomdp_hmm because the HMM may overfit a model to an
individual patient’s limited observations at stage 2 (possibly with
outliers), and it may also start with a worse initialization than
POCM.

Furthermore, the heuristic policies performed worse than the
POMDP policies; within each pair of the same type of heuristic
policies (s, h, o), the aggressive policy performed better. In addi-
tion, we conducted an ordinal regression analysis examining what
factors drive the performance difference between the POMDP poli-
cies (Appendix G.4). We examined factors including treatment ef-
fect, utility gap between health states, and treatment cost ratio
(Appendix Table G.2). For pomdp_pocm, better ranks were asso-
ciated with a smaller utility gap between depression states.

We also investigated the policy performance difference by sub-
group of the testing patients (Appendix G.5). We divided 200
testing patients into four groups by their ground truth member-
ships. The first three groups were those with a membership close
to 1 on one of the basis models: high-risk (51 patients), low-
risk (53 patients), and stable (35 patients). The fourth group con-
tained patients with no extreme membership on any basis model
(62 patients). Appendix Figure G.4 shows the performance out-
comes by subgroup under one parameter setting, including the

group-averaged number of treatment switches, the proportion of
Treatment-II assigned during stage 3, and the total reward in
NMBs. We observed that the stable group had fewer treatment
switches, fewer Treatment-II assignments, and higher rewards un-
der most of the policies. On the contrary, the high-risk group
had more frequent treatment switches, higher Treatment-II assign-
ments, and lower rewards.

Lastly, we assumed that all patients shared the same
Treatment-II effect p in all previous analyses; we relaxed this as-
sumption by assigning different p’s to the subgroups to reflect pa-
tients’ diverse response to Treatment-Il by their progression pat-
terns. In this sensitivity analysis (Appendix G.6), we assigned the
ground-truth p = 0.2 (very effective) to the high-risk subgroup,
p = 0.5 (less effective) to the low-risk subgroup, and p = 0.8 (not
effective) to the stable subgroup. In stage 2, we estimated the sub-
group label of each testing patient using clustering. In stage 3,
we collected the reward rankings of 12 treatment policies under
90 parameter settings. Results showed that pomdp_pocm is the
best policy among all subgroups (except for pomdp_true), and
it performed better for patients matched with the correct ground-
truth p in stage 2 than those that were mismatched (Appendix Fig-
ure G.5). This result confirmed that POCM could be a better model
than HMM for a heterogeneous population with diverse treatment
response.

5. Conclusions and future work

In this paper, we proposed a three-stage POCM framework to
estimate patient-specific chronic disease progression models for
optimal treatment selection in a heterogeneous population. The
POCM method makes the following assumptions: (1) The patient’s
health state is not fully observable; (2) The disease progression
is a Markovian process; (3) There is a set of basis models, each
representing a unique pattern of disease progression, and each pa-
tient’s disease progression is a combination of these patterns; (4)
Treatment can be tailored to individual patient online by learning
his/her personal disease progression model using imperfect obser-
vations. We developed an efficient computational algorithm to es-
timate parameters of the POCM.
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We designed a simulation case study of chronic depression
treatment to demonstrate that the proposed POCM method can
perform better than the standard estimation method, the HMM, in
estimating individual disease models. In addition, we evaluated the
performance of several adaptive treatment policies (POMDP poli-
cies and Bayesian policies) and simple heuristic policies based on
past observations or fixed treatments. After applying all 12 poli-
cies to the 200 testing patients in the decision stage, we assessed
their performance in NMBs and reached three main conclusions:
(1) The POCM achieved lower error than HMM in estimating a per-
sonalized disease model; (2) The POCM-based POMDP policy gave
the highest reward under most settings of treatment effect, utility
structure, and cost structure. In particular, among the POMDP poli-
cies, POCM-based policy had better performance than the HMM-
based policies; (3) In most cases, treatment policies performed
similarly across subgroups. The high-risk group had more treat-
ment switches, more Treatment-II selection, and lower rewards un-
der most policies.

The proposed POCM is one method to estimate a unique per-
sonalized model in the broader context of precision medicine, in
which we hope such a model can assist clinicians’ own exper-
tise and judgment in selecting treatment. Current debate on us-
ing computer algorithms to automatically make clinical decisions
centers on the continuum between “fully human-guided vs fully
machine-guided data analysis” (Beam & Kohane, 2018), and there
are some fears in the psychiatry community that “reliance on big
data to inform treatment decisions might lead to ignoring expe-
riences and values.. Computer generated recommendations may
carry a false authority that would override expert human judg-
ment” (Simon & Yarborough, 2020). However, even advanced Al
models require human inputs that use domain knowledge to clean
the dataset, define features and/or parameters, and set the objec-
tive of the optimization. To validate the proposed method in prac-
tice, we should first evaluate the estimated population basis ma-
trices against known medical knowledge on the disease’s natural
history. In the long term, the best way to validate the proposed
method is to conduct a human-subject study. In the case of chronic
depression, all patients are monitored with a gold-standard test
and the PHQ-9 to assess their depression severity in each period
(this effort can be aided with personal sensing technology). Using
these data, we can compare the estimated true progression model
from the gold-standard test with the estimated progression mod-
eled by POCM using PHQ-9 scores as observations. In addition, we
can conduct a comparative effectiveness trial, where the control
arm is the usual care, and the treatment arm is the POCM frame-
work. Outcomes can include NMBs and depression-free days (re-
mission periods). In fact, our simulation experiment is similar to
conducting a hypothetical 12-armed trial.

This study has several limitations in both methodology and
practice. First, we excluded death in the POMDP. The effect of de-
pression treatment on suicide rate is controversial; some studies
showed an increase in the suicide rate among teens, while other
studies showed no effects. Overall, the suicide rate is very low
among chronically depressed patients (Simon et al., 2016). If the
death rate differs significantly by treatment in another applica-
tion, the transition matrix estimation can be adjusted to include
a death state in the learning stage. Second, accurate estimation
of a person-level emission matrix is challenging. The PHQ-9 is a
validated test with a sensitivity and specificity of 88% (Kroenke &
Spitzer, 2002) which can be used to initialize the emission matrix.
There are multiple reasons to estimate an individualized emission
matrix. Similar to screening for risk factors (e.g., risky sexual be-
havior, drug use) of some sexually transmitted diseases that are
stigmatized in society, patients may be less willing to reveal the
truth about mental illness. This willingness to be truthful may vary
among persons. One way to address this estimation problem is to
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conduct an observational study that collects depression progres-
sion information using a gold-standard test, the PHQ-9, and demo-
graphic and clinical profiles. Using these data, a regression model
can be built to initialize a personal emission matrix. Third, we only
demonstrated the performance of POCM by simulating two treat-
ments in the depression case study. The three-stage framework
can be extended to applications with more than two treatments.
In stage 1, we can either estimate p; to pm, from clinical trials
(where m is the treatment index), or use separate EHR dataset un-
der each treatment to directly estimate the basis models. In stage
2, testing patients go through m separate trials to estimate a per-
sonal disease model under each treatment. Then in stage 3, the
actions include selecting treatment 1 to treatment m. Higher num-
ber of treatment increases data requirement in stage 1 and longer
duration in stage 2, which brings additional practical challenges.
Fourth, the three-stage framework can be seen as too rigid or im-
practical. It is possible to combine or repeat stage 2 and stage 3
with continuous online learning during treatment selection or skip
stage 2 all together if individual variations within a subgroup are
small. For example, the combined stages can be similar to an adap-
tive sequential trial where treatment modification is done at pre-
defined time points (Bothwell, Avorn, Khan, & Kesselheim, 2018;
Chow, 2014).

The POCM modeling framework does not apply broadly in the
following cases. The model assumes the underlying health state
transition process is an HMM, but not all longitudinal clinical data
meet this assumption. For example, some longitudinal disease tra-
jectories are transient processes and never reach steady state. If
the decision problem has high-dimensional state space and action
space, fine-tuning may not be an efficient estimation procedure for
both HMM and POCM. Furthermore, the basis models should rep-
resent canonical patterns in the target population. If data from ex-
isting population do not represent broad patterns in future individ-
uals, then POCM is not suited to model these conditions.

There are several directions to expand this research. First, al-
though we only presented one disease application in chronic de-
pression, POCM can be applied to a broader range of chronic dis-
eases that meet similar assumptions on partial-observable health
state, the disease process is Markovian, and long treatment du-
ration with treatment switching options. In addition, POCM is
not limited to the medical decision-making problem. Take ma-
chine maintenance as an example, the state of the machine can
change over time, and the probability of state transition is differ-
ent for each individual machine. Therefore, the health progression
of an individual machine can be modeled with POCM, and machine
maintenance policies can be tailored to an individual machine by
using the basis models and membership learned by POCM. An-
other example is personalized health management from daily be-
havioral data (Xiao, 2017, chap. 5). The fast-growing development
of sensing devices enable the continuous monitoring of human be-
havior (such as physical activity and food intake), and health state
measurements such as the body mass index (BMI). A personalized
health management program such as obesity prevention can be
achieved by learning the basis behavior models with POCM, which
lead to individual behavior model, and then we can find an opti-
mal plan of health activity via POMDP.

In summary, we developed a three-stage POCM framework to
estimate a personal model of chronic disease progression using
both population data and treatment experimentation to optimally
select treatment. We designed a simulation case study on chronic
depression. Results showed that the POCM framework can lead to
better performance on individual parameter estimation over the
traditional HMM method. This framework is promising for model-
ing the chronic disease progression process and developing a per-
sonalized adaptive treatment plan for individual patients in a het-
erogeneous population.
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Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2023.03.014.
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