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a b s t r a c t 

Precision medicine that enables personalized treatment decision support has become an increasingly im- 

portant research topic in chronic disease care. The main challenges in designing a treatment algorithm 

include modeling individual disease progression dynamics and designing adaptive treatment selection 

strategy. This study aims to develop an adaptive treatment selection framework tailored to an individual 

patient’s disease progression pattern and treatment response. We propose a Partially Observable Collab- 

orative Model (POCM) to capture the individual variations in a heterogeneous population and optimize 

treatment outcomes in three stages. The POCM first infers the disease progression models by subgroup 

patterns using population data in stage one and then fine-tunes the models for individual patients with a 

small number of treatment trials in stage two. In stage three, we show how the treatment policies based 

on the Partially Observable Markov Decision Process (POMDP) can be tailored to individual patients by 

utilizing the disease models learned from the POCM. Using a simulated population of chronic depres- 

sion patients, we show that the POCM can more accurately estimate the personal disease progression 

than the traditional method of solving a hidden Markov model. We also compare the POMDP treatment 

policies with other heuristic policies and demonstrate that the POCM-based policies give the highest net 

monetary benefits in majority of parameter settings. To conclude, the POCM method is a promising ap- 

proach to model the chronic disease progression process and recommend a personalized treatment plan 

for individual patients in a heterogeneous population. 

© 2023 Elsevier B.V. All rights reserved. 

1. Introduction 1 

Personalized treatment of chronic disease is a sequence of 2 

treatments tailored to individual patient’s characteristics, disease 3 

history, and treatment response. Developing a personalized treat- 4 

ment plan is a difficult sequential decision-making problem due to 5 

uncertainty in observing the patient’s true health state, predicting 6 

disease progression, and estimating treatment response. Treatment 7 

selection for chronic diseases requiring long-term care aims at op- 8 

timizing the patient’s health outcome within resource limits. The 9 

main challenges include estimating personalized disease progres- 10 

sion dynamics and optimizing treatment selection in real-time. To 11 

address these challenges, we propose a mathematical framework 12 

for optimizing the personalized treatment of a chronic disease un- 13 

der partially observable health conditions and uncertain treatment 14 

outcomes. 15 

There are multiple treatment options for many chronic diseases 16 

that can be selected over a long time horizon. Treatment options 17 
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may include medications, medical devices, behavioral therapies, or 18 

no further treatment. Traditionally, clinicians make treatment de- 19 

cisions based on their experience and expertise during outpatient 20 

visits. These decisions broadly follow published treatment guide- 21 

lines and expert consensus documents established from clinical 22 

trial data at the population level ( Campbell et al., 20 0 0; Dickstein 23 

et al., 2008 ). In recent years, widely implemented electronic health 24 

record (EHR) systems, expanded use of clinical decision-support 25 

tools, and digital/mobile health technologies are moving clinical 26 

care into an era of precision medicine, which is defined as “treat- 27 

ments targeted to the needs of individual patients on the basis 28 

of genetic, biomarker, phenotypic, or psychosocial characteristics 29 

that distinguish a given patient from other patients with similar 30 

clinical presentations” ( Jameson & Longo, 2015 ). The confluence of 31 

data science, machine learning, artificial intelligence (AI) and pre- 32 

cision medicine generates a vibrant research area that anticipates 33 

the next revolution in healthcare. Foreseeable benefits of personal- 34 

ized medicine include faster, safer, cheaper, more convenient, and 35 

higher quality of care for patients. It has been used in a variety 36 

of medical field such as cancer, cardiovascular disease, metabolic 37 
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disease, psychiatry, and pharmacogenomics, etc. ( Jameson & Longo, 38 

2015 ). 39 

The first challenge is modeling the patient’s unique disease pro- 40 

gression dynamics. The maximum likelihood estimation (MLE) of 41 

progression parameters from observational data is one common 42 

method. A naïve approach is to estimate a model separately for 43 

each patient, but this approach often performs poorly due to the 44 

lack of sufficient longitudinal data collected from a single patient. 45 

Therefore, cohort data is often used to identify subgroups of sim- 46 

ilar patients in which their disease progression dynamics can be 47 

represented by subgroup models, but any heterogeneity within the 48 

subgroup is ignored. Methods for discovering subgroup structures 49 

include K-means clustering, hierarchical linear modeling, growth 50 

mixture modeling, latent class analysis, latent class growth anal- 51 

ysis, and latent class growth mixture modeling ( Twisk & Hoekstra, 52 

2012 ). A more advanced approach is the collaborative model (CM) 53 

( Lin, Huang, Simon, & Liu, 2016; Lin et al., 2017; Lin, Liu, & Huang, 54 

2018; You, Liu, Byon, Huang, & Jin, 2018 ). The CM framework uses 55 

a set of basis models to represent patterns as subtypes of dis- 56 

ease progression. An individual patient’s progression is a weighted 57 

combination of these basis models, where the weight is called the 58 

membership. 59 

To build an individual disease progression model, a hidden 60 

Markov model (HMM) can account for unobservable health states 61 

that represent the true disease severity; and observations are 62 

test scores that are imperfect measurements of the health states. 63 

Model parameters include transition probabilities between health 64 

states and emission probabilities of the observations given the true 65 

health states. To utilize the subgroup structure in the population 66 

data, we propose a model that combines CM and HMM, named 67 

the Partially Observable Collaborative Model (POCM). In the POCM, 68 

the basis model is an HMM for each subtype of disease progres- 69 

sion, and the individual progression model is a weighted combi- 70 

nation of the basis HMMs. We develop an efficient algorithm for 71 

parameter estimation and prove that the proposed algorithm can 72 

guarantee convergence to a stationary solution similar to CM. We 73 

assume that the basis models learned from longitudinal observa- 74 

tions of existing patients can be used to estimate future patients’ 75 

individual models. Therefore, we only need to learn the member- 76 

ship from a small number of treatment trials to form the disease 77 

model for a new patient. 78 

The second challenge is designing an adaptive treatment se- 79 

lection strategy based on the patient’s past treatment response. 80 

Among research in algorithmic-based treatment planning, Markov 81 

decision process (MDP), partially-observable MDP (POMDP), rein- 82 

forcement learning, and multi-armed bandits are among the most 83 

widely-used tools. We propose a POMDP model for making a se- 84 

quence of adaptive treatment decisions based on the estimated in- 85 

dividual disease dynamics. POCM or an existing HMM algorithm, 86 

i.e., the Baum-Welch algorithm ( Baum, Petrie, Soules, & Weiss, 87 

1970 ), can be used to estimate individual transition and emission 88 

matrices, representing the patient’s response to treatment. The ob- 89 

jective is to maximize discounted total rewards measured using 90 

Net Monetary Benefit (NMB) (defined as total health benefits ×91 

willingness-to-pay - total cost). Health benefits can be measured 92 

by quality-adjusted life years (QALYs) gained. 93 

We are interested in the question of whether POCM is a bet- 94 

ter model than HMM alone in the sense that the parameters in- 95 

ferred from POCM can lead to a better treatment selection policy. 96 

The POCM-based treatment strategy is developed in three stages 97 

to provide a better understanding of the disease, its prognosis, and 98 

the most effective treatment similar to the scope laid out in preci- 99 

sion medicine ( Jameson & Longo, 2015 ). (1) In the learning stage, 100 

the basis models representing disease progression subgroups and 101 

patients’ memberships are learned from existing dataset of pa- 102 

tients under treatment. (2) In the fine-tuning stage, the person- 103 

alized disease model of a new patient is initialized using basis 104 

models estimated from the learning stage, and the membership is 105 

updated under different treatment by running separate trials. (3) 106 

In the decision stage, the optimal treatment strategy for each pa- 107 

tient is obtained by solving a POMDP using the disease model es- 108 

timated from the fine-tuning stage ( Fig. 1 ). We compare the out- 109 

comes of the POMDP model estimated from POCM with an POMDP 110 

model estimated from HMM and several heuristic treatment se- 111 

lection policies. The length of learning, fine-tuning, and decision 112 

stages can be empirically determined based on data availability, 113 

the disease application, and treatment options. The only require- 114 

ment is that the number of periods in each stage should be suf- 115 

ficient to achieve the goal (i.e., learning, experimentation, or opti- 116 

mization) set for that stage. 117 

Our modeling framework is motivated by chronic depression 118 

treatment. Depression is one of the most common mental disor- 119 

ders in the U.S., affecting more than 10% of the population ( Pratt 120 

& Brody, 2014 ). Depression is difficult to diagnose because symp- 121 

toms can manifest in various ways and a patient’s true health 122 

state is difficult to measure (e.g., no biomarker, blood test, nor 123 

brain scan can make a conclusive depression diagnosis). Screening, 124 

diagnosis and monitoring tools currently include physical exams 125 

and instruments such as the Patient Health Questionnaire (PHQ-9), 126 

Beck Depression Inventory (BDI), Center for Epidemiologic Studies- 127 

Depression Scale (CES-D), and Hamilton Rating Scale for Depres- 128 

sion (HRSD). We believe the importance of modeling the latent 129 

disease states as partially observable via an imperfect monitoring 130 

tool, e.g., the commonly used PHQ-9. Treatment for depression in- 131 

cludes psychotherapy, antidepressants, or a combination of the two 132 

with supportive care ( Guideline Development Panel for the Treat- 133 

ment of Depressive Disorder, 2019 ). There are no clear evidence- 134 

based guidelines on when/how to switch and augment treatment 135 

for depression. Furthermore, staying on inefficient treatments may 136 

induce more cost without any benefit for patients, and lead to 137 

treatment-resistance or addiction to medications. Therefore, there 138 

is a great need to tailor treatment to the clinical profile of each 139 

patient and classify them into subpopulations that differ in their 140 

treatment response, and select treatment to those who will bene- 141 

fit ( Phillips, 2018 ). Currently, machine learning and AI are increas- 142 

ingly developed for mental health diagnosis and treatment inter- 143 

ventions. Some examples include sensing and digital phenotyping, 144 

natural language processing of clinical notes and social media con- 145 

tent, and chatbots as therapeutic agent ( D’Alfonso, 2020 ). 146 

We demonstrate our framework using a simulated population 147 

of chronically depressed patients. The challenge for chronic de- 148 

pression is that the disease’s natural history is not well known 149 

and varies significantly from person to person. There is a large 150 

body of literature on discovering depression trajectories ( Musliner, 151 

Munk-Olsen, Eaton, & Zandi, 2016 ), including some of our own 152 

work ( Lin et al., 2016 ). One known fact is that there are three to 153 

five strong progression patterns in the population. A chronically 154 

depressed person can go through periods of response, remission, 155 

relapse, and non-response on a series of treatments ( Rush et al., 156 

2006 ). A landmark depression treatment trial (STAR ∗D) tested four 157 

steps of treatment ( Rush et al., 2006 ), which included various an- 158 

tidepressants alone or in a combination of cognitive therapy (a 159 

type of psychotherapy). One recent cost-effectiveness study sim- 160 

ulated two first-line depression treatments and several follow-up 161 

treatment options based on the STAR ∗D trial ( Ross, Vijan, Miller, 162 

Valenstein, & Zivin, 2019 ). One critical treatment question is when 163 

to combine the two types of therapies. Therefore, in our case study, 164 

we simulate a two-treatment selection problem; Treatment-I uses 165 

antidepressant medication only, and Treatment-II is an intensive 166 

outpatient program with additional psychotherapy and behavioral 167 

counseling (treatment augmentation). We assume treatment alters 168 

disease progression in a probabilistic way, defined by the treat- 169 
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Fig. 1. Overview of the three-stage POCM framework. 

ment transition matrix. We are agnostic about the types of drugs 170 

or talk therapy under Treatment-I or II. In the learning stage, the 171 

basis models are learned from a dataset of patient observations 172 

(i.e., PHQ-9 scores) on Treatment-I. The population average treat- 173 

ment effect of Treatment-II is assumed to be known from clinical 174 

trials or observational studies, and such knowledge is used to esti- 175 

mate the basis model parameters for Treatment-II. 176 

The main contributions are twofold. First, we propose a math- 177 

ematical framework, POCM, to characterize the individual varia- 178 

tions in chronic disease progression in which the health states are 179 

partially observable. We accomplish this task through the learn- 180 

ing stage and the fine-tuning stage. Second, we demonstrate the 181 

performance of POCM-based POMDP treatment policies compared 182 

with a set of heuristic policies in the decision stage. Through a 183 

simulated case study of chronic depression, we show that POCM 184 

can be a better model than individual HMM estimation under most 185 

parameter settings. The treatment policies’ outcomes are evaluated 186 

in sensitivity analyses, including uncertainties in the treatment ef- 187 

fect, utilities of the health states, and cost of treatments. 188 

The remainder of the paper is structured as follows: 189 

Section 2 provides the relevant literature on optimal treat- 190 

ment selection models. Section 3 introduces the POCM method in 191 

the three-stage personalized treatment selection framework. The 192 

numerical results of a simulated depression case study demon- 193 

strating the performance of the proposed method are given in 194 

Section 4 , followed by discussion and concluding remarks in 195 

Section 5 . 196 

2. Relevant l iterature 197 

Our work is related to the literature on optimal treatment se- 198 

lection. MDP and POMDP have been used to determine the optimal 199 

treatment plan for many diseases, assuming that the disease tran- 200 

sition is Markovian. Shechter, Bailey, Schaefer, & Roberts (2008) de- 201 

veloped an MDP model to find the optimal time to initiate HIV 202 

therapy for U.S. veterans. Mason et al. (2012) used an MDP model 203 

to optimize the treatment decision for patients with type 2 dia- 204 

betes. Maillart, Ivy, Ransom, & Diehl (2008) formulated a partially- 205 

observed Markov model to select effective breast cancer screening 206 

policies. Faissol, Griffin, & Swann (2007) used a POMDP to deter- 207 

mine the best timing of treatment decisions when the disease’s 208 

presence is not known in advance of hepatitis C screening. Saure, 209 

Patrick, Tyldesley, & Puterman (2012) formulated a discounted 210 

infinite-horizon MDP for scheduling cancer treatments in radia- 211 

tion therapy units. Otten, Timmer, & Witteveen (2020) developed 212 

a POMDP model to optimize and personalize breast cancer follow- 213 

up. Madadi, Zhang, & Henderson (2015) evaluated breast cancer 214 

mammography screening policies considering adherence behavior. 215 

Skandari & Shechter (2021) designed ongoing treatment plans for 216 

a heterogeneous population in disease progression and response to 217 

medical interventions using a POMDP model that learns the pa- 218 

tient type. Other methods include the Kalman filter ( Helm, Lavieri, 219 

Van Oyen, Stein, & Musch, 2015; Kazemian, Helm, Lavieri, Stein, & 220 

Van Oyen, 2019 ), multi-arm bandit ( Ayer, Zhang, Bonifonte, Spauld- 221 

ing, & Chhatwal, 2019; Negoescu, Bimpikis, Brandeau, & Iancu, 222 

2017 ), and mixed-integer programming ( Chen, Ayer, & Chhatwal, 223 

2018 ). A key distinction between these research and our settings 224 

is that this stream of work mainly focuses on finding the opti- 225 

mal treatment based on heterogeneous population characteristics, 226 

while our study focuses on online treatment selection optimized 227 

for individual patients. 228 

Our work also relates to the stream of research that focuses on 229 

the personalization of treatment selection. Wang, Sontag, & Wang 230 

(2014) proposed a personalized disease progression model by com- 231 

bining Markov jump process and Markov chains. Schulam & Saria 232 

(2015) proposed a hierarchical latent variable model that individ- 233 

ualizes disease trajectories predictions and provided the algorithm 234 

for learning population, subpopulation, and individual parameters. 235 

Ayer, Alagoz, & Stout (2012) designed a personalized mammog- 236 

raphy screening policy based on the prior screening history and 237 

personal risk characteristics of women. Lavieri, Puterman, Tyldes- 238 

ley, & Morris (2012) proposed an individual disease progression of 239 

prostate cancer patients using the dynamic Kalman filter model to 240 

estimate the individual parameters from the population character- 241 

istics. These papers focus on a target disease and require domain 242 

knowledge on the progression of the target disease. Our purpose 243 

is different: we propose an offline and online learning method 244 

to estimate a personalized chronic disease model based on lon- 245 

gitudinal observations. Our method extends the CM ( Lin et al., 246 

2016; Lin et al., 2017; Lin et al., 2018 ) method with the ability 247 

to model partially-observable disease conditions by adding latent 248 

variables to represent health states. MLE is the most common ap- 249 

proach of parameter inference from observational data in disease 250 

models. However, the inference of latent variables with MLE is 251 

usually difficult due to the nonconvexity of the likelihood func- 252 

tion. The Expectation-Maximization (EM) algorithm can overcome 253 

this difficulty by iteratively estimating the intermediate states and 254 

maximizing the approximate likelihood based on the intermediate 255 

states ( Dempster, Laird, & Rubin, 1977; Louis, 1982 ). We develop a 256 

variant of the EM algorithm for the inference of CM for diseases 257 

with latent health states. 258 

Finally, our work relates to the stream of research that applies 259 

AI methods to medical decision making (MDM) problems. A re- 260 

cent review of supervised and unsupervised learning applications 261 

in MDM is Jiang et al. (2017) . Reinforcement learning (RL), which 262 

formulates the process of an agent (e.g., the decision maker) inter- 263 

acting with an environment (e.g., the disease progression model), 264 

is widely used for sequential decision-making problems in health- 265 
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Table 1 

List of Notations. 

a, s, o Action, health state, observation 

A , S, � Action space, state space, observation space 

A k , B k , πk Basis transition matrix, emission matrix, initial state distribution of group k 

A g 
i , B 

g 
i , π

g 
i Ground truth transition matrix, emission matrix, initial state distribution for patient i 

ˆ A i , ̂  B i , ̂  πi Individual transition matrix, emission matrix, initial state distribution 

θ Set of basis parameters 

C Membership 

O Observations of all patients 

S Latent states of all patients 

S The set of all possible combinations of S 

K Number of basis models 

W Similarity matrix 

μ Tuning parameter in POCM objective 

γi,t (s ) The probability that patient i is at state s at time t

ξi,t (s, s 
′ ) The probability that patient i is at state s at time t , and at state s ′ at time t + 1 

π
(m ) , A (m ) , B (m ) , C (m ) Estimated parameters after m iterations 

b(s ) Belief of health state s 

T Total number of periods in each stage 

κ(s ) Utility for health state s 

r(s, a ) Reward of one period when the true health state is s and the action is a 

h (a ) Cost of treatment a 

λ Willingness-to-pay ($/QALY) 

ρ Treatment effect factor 

φ Discount factor in POMDP 

ζ 2 Control parameter for the significance of latent structure in the population 

care. Ayer (2015) proposed an inverse RL to identify the optimal 266 

screening strategies for breast cancer in the setting of a partially 267 

observable environment. In order to simultaneously utilize the 268 

biomedical dynamics across multiple patients, Lee, Lavieri, Volk, 269 

& Xu (2015) designed three classes of RL policies for the screen- 270 

ing of hepatocellular carcinoma. In addition, RL can be used to 271 

solve MDP and POMDP problems approximately, which is useful 272 

when the state space is large and computation resource is limited 273 

( Jaakkola, Singh, & Jordan, 1995; Zhu, Li, Poupart, & Miao, 2018 ). 274 

Otherwise, the exact solution via dynamic programming may be 275 

preferred. In addition, RL requires a large number of iterations of 276 

interactions (typically larger than 10,0 0 0) with the environment 277 

to ensure convergence of the optimal policy, while dynamic pro- 278 

gramming does not require interaction with the environment be- 279 

fore performing the policies. The high cost of treatment and the 280 

long interval between treatments of the MDM problems limit the 281 

application of RL. A related field of research is multi-task RL, where 282 

an agent has multiple learning tasks during one’s lifetime to max- 283 

imize the total reward ( Tanaka & Yamamura, 2003 ). The agent 284 

solves multiple MDPs or POMDPs under certain distributional as- 285 

sumptions ( Li, Liao, & Carin, 2009 ). The goal is to utilize the learn- 286 

ing experience gained among different RL tasks and their similar- 287 

ities to improve future learning performance for every single task 288 

( Calandriello, Lazaric, & Restelli, 2014 ). Our work does not make 289 

any distributional assumptions for different POMDPs in the model 290 

learning process. 291 

3. Model f ormulation 292 

We describe the disease model in Section 3.1 . The POCM for- 293 

mulation and the algorithm for parameter estimation are provided 294 

in Section 3.2 . In Section 3.3 , we present the POMDP model to op- 295 

timize treatment selection. 296 

3.1. Disease m odel 297 

We formulate the treatment decision process as a finite-state, 298 

finite horizon, discrete-time POMDP, where the underlying HMM 299 

represents the progression dynamics of a patient’s health state. 300 

Decision makers such as patients and clinicians aim to maximize 301 

the expected total discounted NMBs. We assume that the decision 302 

maker is risk-neutral. Please refer to Table 1 for a list of notations. 303 

Decision epoch . Treatment decisions are made at a finite and 304 

discrete set of time periods t = 1 , 2 , . . . , T , T < ∞ . We assume each 305 

period is long enough for the treatment to affect disease progres- 306 

sion probabilities. Thus, one time period is the minimum time that 307 

a treatment switch can take place. In the case of chronic depres- 308 

sion, the treatment decision can be made monthly ( Ross et al., 309 

2019 ). 310 

State and observation . Let s t denote the health state at time 311 

t . The state space S is the set of all possible health states. We 312 

omit death as a health state because the goal of the model is to 313 

learn treatment response parameters for patients who are alive in 314 

both stage 2 and 3. Furthermore, the probability of death can only 315 

be estimated using population-level data, not for an individual pa- 316 

tient (i.e., death is a binary outcome). We assume the true health 317 

state cannot be observed. Instead, at each time period, the patient’s 318 

health condition is measured by an imperfect test. The observa- 319 

tions can be either continuous variables or categorical variables de- 320 

pending on the disease application. In this paper, we focus on cat- 321 

egorical observations. Let o t denote the observation at time period 322 

t , and the observation space � is a finite set of all possible obser- 323 

vation values. Since the true health state s t is hidden, we can only 324 

maintain an estimation of the probability distribution of the state 325 

over the state space �(S) = 
{

b(s t ) ∈ [0 , 1] , s t ∈ S 
∣

∣

∑ 

s t ∈S 
b(s t ) = 1 

}

, 326 

which is usually called the belief of states. 327 

Action . Actions include the selection of treatment types. Let a t 328 

denote the action taken at time t . At the beginning of each time 329 

period, an action is selected with the current policy. We demon- 330 

strate the problem with two treatment types; Treatment-I is less 331 

expensive and less effective than Treatment-II. The action space 332 

A is the set of all possible actions, i.e. a t ∈ A = { I, II } . A policy 333 

π : �(S) → A is the probability of taking action a when the be- 334 

lief of states is �(S) . At the beginning of each decision epoch, 335 

the treatment type is selected by the policy. The treatment type 336 

and the corresponding observation can provide the clinician with 337 

valuable information about the patient’s true health state, which in 338 

turn helps the clinician select the next period treatment. 339 

System Dynamic . The state transition probabilities describe the 340 

disease progression under different treatment types. It is defined 341 
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as the probability that the patient will be in state s ′ ∈ S at time 342 

t + 1 , given that she is in state s and action a is taken, denote 343 

as A (s, a, s ′ ) = Pr (s t+1 = s ′ | s t = s, a t = a ) . The emission probability 344 

is the probability of making an observation o ∈ � at time t when 345 

the true health state is s ∈ S , denote as B (s, o) = Pr (o t = o| s t = 346 

s ) . We assume this probability is independent of the action. We 347 

name { A (s, a, s ′ ) } a ∈A ,s ∈S,s ′ ∈S ∈ R |A|×|S |×|S | as the transition proba- 348 

bility matrix, and { B (s, o) } s ∈S,o∈ � ∈ R |S|×| �| as the emission proba- 349 

bility matrix. 350 

Reward . The reward includes both health outcomes and eco- 351 

nomic costs associated with treatment. Health outcomes are mea- 352 

sured in QALYs. Costs may include medication and outpatient ser- 353 

vice expense. QALY is a common metric to quantify the quality-of- 354 

life gains from medical interventions. One QALY represents a pa- 355 

tient living in perfect health for one year. The immediate reward 356 

r ( s t , a t ) is the NMB of treatment in one period when the patient’s 357 

true health state is s t and the action selected is a t , 358 

r(s t , a t ) = λκ(s t ) − h (a t ) (1) 

where κ(s t ) is the utility of being in state s t measured in QALYs; 359 

h (a t ) is the cost of treatment a t ; λ is the willingness-to-pay (WTP) 360 

which assigns a monetary value to a QALY; $50,0 0 0 per QALY is 361 

commonly used for WTP in the literature ( Neumann, Cohen, & We- 362 

instein, 2014 ). 363 

3.2. Partially o bservable c ollaborative m odel (POCM) 364 

POCM is used in the learning and fine-tuning stages. We first 365 

discover subgroup structures in the disease progression with the 366 

CM idea ( Lin et al., 2016; Lin et al., 2017; Lin et al., 2018 ). In short, 367 

the CM assumes that a basis model represents a subtype of disease 368 

progression pattern in the population. Each individual model is a 369 

weighted combination of the basis models. The weights (member- 370 

ships) capture the interpersonal variations. We assume there are 371 

K basis models and N patients with N � K. In POCM, the underly- 372 

ing disease dynamic is an HMM, with the basis transition matrix 373 

A k , the basis emission matrix B k , and the basis initial distribution 374 

of state πk for group k ∈ { 1 , . . . , K} . We denote θ = { A k , B k , πk , k = 375 

1 , . . . , K} as the basis parameters of POCM. Each patient’s individ- 376 

ual progression model, which is also an HMM, is assumed to be 377 

a linear combination of the basis models. The weight of the lin- 378 

ear combination is called the membership vector C i ∈ R K for pa- 379 

tient i ; we denote C = [ C 1 , . . . , C N ] ∈ R N×K as the membership ma- 380 

trix. The individual parameters for patient i can be described as 381 

(1) initial distribution of state ˆ πi = 
∑ K 

k =1 c ik πk 
, (2) transition prob- 382 

ability matrix ˆ A 
i = 

∑ K 
k =1 c ik A 

k 
, and (3) emission probability ma- 383 

trix ˆ B 
i = 

∑ K 
k =1 c ik B k . We denote the observations of each patient 384 

O i = [ o i, 1 , o i, 2 , . . . , o i,T ] ∈ R T , and the observations of all patients as 385 

O = [ O 1 , O 2 , . . . , O N ] ∈ R N×T . We denote s i,t as the true health state 386 

for patient i at time period t , S i = { s i, 1 , s i, 2 , . . . , s i,T } ∈ R T as the se- 387 

ries of true health states for patient i , and S = { S 1 , S 2 , . . . , S N } ∈ 388 

R N×T is the set of true states for all patients. We denote S as the 389 

set of all possible combinations of S . The objective of the POCM 390 

is to optimize the maximum likelihood estimator of the observed 391 

sequence O with 392 

max 
θ , C 

. f ( θ , C ) = log Pr 
(

O 

∣

∣θ , C 
)

−
μ

2 

∑ 

i, j 

w i j 

∥

∥C i − C j 
∥

∥

2 
(2a) 

393 

s.t. 
∑ 

s ′ 

A k (s, s 
′ ) = 1 , s = 1 , . . . , S, k = 1 , . . . , K (2b) 

394 
∑ 

o 

B k (s, o) = 1 , s = 1 , . . . , S, k = 1 , . . . , K (2c) 

395 
∑ 

s 

πk (s ) = 1 , k = 1 , . . . , K (2d) 

396 

∑ 

k 

c i,k = 1 , i = 1 , . . . , N 

A k (s, s 
′ ) , B k (s, o) , πk (s ) , c i,k ≥ 0 , s, s ′ = 1 , . . . , S, 

k = 1 , . . . , K, i = 1 , . . . , N (2e) 

The first four constraints guarantee that the transition proba- 397 

bility, emission probability, initial state distribution, and member- 398 

ship vector sum up to one. Note the last term of the objective 399 

function is the regularization term that incorporates the similar- 400 

ity between patients. The regularization coefficient μ is a tuning 401 

parameter to control the importance of similarity in the objective 402 

function. The value of μ can be calibrated to achieve the maxi- 403 

mum log-likelihood. W ∈ R N×N is the similarity matrix. Details are 404 

in Appendix E.3. The similarity between two individuals can be 405 

quantified by comparing their profiles of the covariates, such as the 406 

demographics, social-economical, genetic and imaging information 407 

( Lin et al., 2016; Lin et al., 2017; Lin et al., 2018 ). We can simplify 408 

the regularization term as 409 

1 

2 

∑ 

i, j 

w i j 

∥

∥C i − C j 
∥

∥

2 
= 

∑ 

i 

( 

∑ 

j 

w i j 

) 

C i C 
	 
i −

∑ 

i, j 

w i j C j C 
	 
i 

= Tr 
(

C 	 LC 
)

, 

where L is the Laplacian matrix of w i j , L = D − W , and D is a diag- 410 

onal matrix with elements d ii = 
∑ 

j w i j . 411 

The EM algorithm is a standard approach for inference of latent 412 

variables. An example is the Baum-Welch algorithm for the HMM 413 

inference. In the EM algorithm, in each iteration m = 1 , 2 , . . . , we 414 

estimate the latent states and maximize the likelihood based on 415 

the latent states. Computing the likelihood of observed sequence 416 

with latent variables is computationally intractable. Instead, we 417 

can replace the likelihood with an equivalent function Q , defined 418 

as 419 

Q 
(

θ , C 
∣

∣θ (m ) , C (m ) 
)

:= 

∑ 

S ∈ S 

Pr 
(

O , S 
∣

∣θ (m ) , C (m ) 
)

log 
[

Pr 
(

O , S 
∣

∣θ , C 
)]

, 

(3) 

where θ (m ) , C (m ) is the estimation of the parameters θ , C after m 420 

iterations ( Bishop, 2006 , §9). We can solve the POCM by maximiz- 421 

ing Q(θ , C | θ (m ) , C (m ) ) through updating θ and C . 422 

Lemma 1. The following two objective functions are equivalent 423 

arg max 
θ , C 

Pr ( O | θ , C ) = arg max 
θ , C 

∑ 

S ∈ S 

Pr 
(

O , S 
∣

∣θ (m ) , C (m ) 
)

log 
[

Pr 
(

O , S 
∣

∣θ , C 
)]

. 

The proof of Lemma 1 is based on the proof of the equivalent 424 

objective in the general EM algorithm in ( Bishop, 2006 , §9). We 425 

defer the detailed proof to Appendix A. This optimization problem 426 

can be solved with the Lagrangian multiplier method. First, the La- 427 

grangian is 428 

L 
(

θ , C 
∣

∣θ (m ) , C (m ) 
)

= Q 
(

θ , C 
∣

∣θ (m ) , C (m ) 
)

− μTr 
(

C T LC 
)

−

K 
∑ 

k =1 

λ( π) 
k 

( 
|S| 
∑ 

s =1 

πk (s ) − 1 

) 

−

K 
∑ 

k =1 

|S| 
∑ 

s =1 

λ(A ) 
s,k 

( 
S 

∑ 

s ′ =1 

A k (s, s 
′ ) − 1 

) 

−

K 
∑ 

k =1 

|S| 
∑ 

s =1 

λ(B ) 
s,k 

( 
| �| 
∑ 

o=1 

B k (s, o) − 1 

) 
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−

N 
∑ 

i =1 

λ(C ) 
i 

( 
K 

∑ 

k =1 

c i,k − 1 

) 

, (4) 

where λ( π) 
k 

, λ(A ) 
s,k 

, λ(B ) 
s,k 

and λ(C ) 
i 

are dual variables. The optimization 429 

problem can be simplified as maximizing the Lagrangian L by re- 430 

peating the following steps for iteration m = 1 , 2 , . . . until conver- 431 

gence. 432 

1. Fix C (m ) , set θ (m +1) = arg max θ Q(θ , C | θ (m ) , C (m ) ) ; 433 

2. Fix θ (m +1) , set C (m +1) = arg max C Q(θ , C | θ (m +1) , C (m ) ) − μTr 434 

(C 	 LC ) . 435 

The inference of the POCM is an EM algorithm, where the E- 436 

step is to compute the intermediate states γ (m ) 
i,t 

(s ) and ξ (m ) 
i,t 

(s, s ′ ) 437 

using the forward-backward algorithm (Appendix B.3), and the M- 438 

step is to maximize Q 
(

θ , C 
∣

∣θ (m ) , C (m ) 
)

b y updating the basis model 439 

and the memberships separately. The POCM algorithm is summa- 440 

rized in Algorithm 1 . 

Algorithm 1: The POCM parameter inference algorithm. 

Data : observations on N individuals O 1 , . . . , O N ; initial 
valuesfor the parameters C 

( 0 ) , θ ( 0 ) ; similarity 
matrix W ;regularization coefficient μ; number 
of basis models, K;stopping criteria ε

Result : Estimator of basis model θ ∗ and membership 

C 
∗

1 Initialize C 
( 0 ) , θ ( 0 ) 

2 for m ← 1 , . . . until converge do 

3 E-step: Compute intermediate states γ (m ) 
i,t (s ) 

and ξ (m ) 
i,t (s, s ′ ) using the forward-backward 

algorithm; 

4 M-step: Fix C 
(m ) , 

set θ (m +1) = arg max θ Q 

(

θ , C | θ (m ) , C 
(m ) 

)

; 

5 M-step: Fix θ (m +1) , set C 
(m +1) = 

arg max C Q 

(

θ , C | θ (m +1) , C 
(m ) 

)

− μTr (C 
	 LC ) ; 

6 if all elements of 
∣

∣ν (m +1) − ν (m ) 
∣

∣is less than ε, 

where ν ∈ { π, A , B , C } then 

7 break; 
8 end 

9 end 

441 

Theorem 1. The basis parameters and the membership converge to 442 

an optimal solution under the iterative updating rule in Algorithm 1 . 443 

We present the detailed derivation of the updating rule in 4 4 4 

POCM and the proof of Theorem 1 in Appendix B and C, respec- 445 

tively. 446 

3.3. Adaptive d ecisions 447 

In the decision stage, the clinician selects treatment for each in- 448 

dividual patient based on the policy in each period. In the POMDP 449 

model, the policy is derived by maximizing the total expected re- 450 

ward 451 

R = 

T 
∑ 

t=1 

φt r(s t , a t ) , (5) 

where φ is the discount factor. When new observation o t+1 = o is 452 

obtained after taking action a t+1 = a , we can update the belief by 453 

the Bayes’ rule, 454 

b t+1 (s 
′ ) = 

B (s ′ , o) 
∑ 

s ∈S A (s, a, s ′ ) b t (s ) 
∑ 

s ′ ∈S B ( s ′ , o) 
∑ 

s ∈S A (s, a, s ′ ) b t (s ) 
, ∀ s ′ ∈ S. (6) 

Treatment is selected with respect to a policy π : �(S) → A , 455 

where �(S) denotes the continuous set of probability distributions 456 

over S , i.e., a t = π (b t ) . We define value function of a policy π 457 

as V π : �( S ) → R , which is the expected discounted total reward 458 

when following policy π starting from belief b 459 

V π (b) = E π

[ 
T 

∑ 

t=0 

φt r(b t , π (b t )) 
∣

∣b 0 = b 

] 

. (7) 

where r(b t , π (b t )) = 
∑ 

S ∈ S r(s, π (b t )) b t (s ) . The optimal value func- 460 

tion V ∗(b) = V π (b) is the best value function that can be achieved 461 

with an optimal policy π ∗. The Bellman equation describes the 462 

fundamental relation between V t and V t+1 : 463 

V t (b) = max 
a 

∑ 

s t ∈S 

b(s t ) 

(

r(s t , a ) + φ
∑ 

o t+1 ∈ �

A (s t , a, s t+1 ) 

∑ 

s t+1 ∈S 

B (s t+1 , o t+1 ) V t+1 (b t+1 (s t+1 )) 

)

. (8) 

The value functions in finite-horizon POMDP are piecewise-linear 464 

and convex with respect to the belief, and can be represented as 465 

V t (b) = 

∑ 

s ∈S 

r(s, a t ) b t (s ) = b 	 t α
a 
t (9) 

where αa 
t ∈ R | S | is a set of support vectors. At period t , when the 466 

belief is b t , the optimal action is a ∗t = arg max a ∈A b 
	 
t α

a 
t . We can 467 

construct the support vector set 
{

αa 
t 

}T 

t=1 
backward from t = T to 468 

1. In this paper, we use incremental pruning to accelerate the sup- 469 

port vector enumeration ( Cassandra, Littman, & Zhang, 1997 ). We 470 

include details of the algorithm in Appendix D. 471 

4. Simulation e xperiment 472 

Due to the lack of available dataset containing both longitudi- 473 

nal observations of depression severity and ground truth depres- 474 

sion states, we simulate a hypothetical patient population undergo- 475 

ing chronic depression treatment with latent subgroup disease pro- 476 

gression patterns. Under the three-stage framework, offline learn- 477 

ing is done in stage 1, and online learning is done in stage 2 and 478 

3. Therefore, we cannot use existing patient dataset due to active 479 

treatment assignment in the online stages. We describe the ground 480 

truth data generation process in Appendix E.1, the simulation pro- 481 

cess for stages 1 and 2 in Section 4.1 , and the 12 treatment policies 482 

under consideration during stage 3 in Section 4.2 . 483 

We assume three health states of chronic depression; healthy 484 

(H), mild depression (M), and severe depression (S), in ascending 485 

severity of depression, i.e., S = { H, M, S } . We also assume the dis- 486 

ease progression process is Markovian, which is commonly used 487 

to model chronic depression in the literature and tested using 488 

patient-level electronic record data ( Lin et al., 2018; Ross et al., 489 

2019 ). At each time period, patients take the PHQ-9 to evaluate 490 

their depression severity ( Kroenke & Spitzer, 2002 ). The PHQ-9 has 491 

a score ranging from 0 to 27, which can be categorized into three 492 

levels, where scores 0 ∼ 4 (P1) indicate healthy to mild depression, 493 

scores 5 ∼ 9 (P2) indicate mild to moderate, and scores 10 ∼ 27 in- 494 

dicate major depression, i.e., � = { P1,P2,P3 } ( Fig. 2 ). 495 

The utility of each health state is denoted κ( H ) ∈ (0 , 1) , κ( M ) ∈ 496 

(0 , 1) , κ( S ) ∈ (0 , 1) , and κ( H ) > κ( M ) > κ( S ) , by the assumption 497 

that more severe depression state will lead to lower health utility. 498 

The values of these utilities can be estimated using health utility 499 

elicitation methods and may vary between studies from different 500 

regions and different populations. We assume the monitoring de- 501 

cision epoch is 1 month ( Ross et al., 2019 ). 502 
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Fig. 2. Chronic depression state and observation transition diagram. 

4.1. Simulation of the l earning s tage and the f ine-tuning s tage 503 

We generate the membership vector for N = 10 0 0 patients in a 504 

population with subgroup structure following the approach in Lin 505 

et al. (2018) . The numerical experiment is set up to imitate real-life 506 

settings. In real-life implementation of POCM, we need a way to 507 

estimate similarity. Since patients’ profiles of covariates are observ- 508 

able in clinical settings and often predictive of disease progression, 509 

they are good estimators for similarity. In our numerical experi- 510 

ment, the covariates were generated using the memberships and 511 

thus indirectly relate to disease progression patterns. The member- 512 

ships are correlated with simulated patients’ age and gender since 513 

these factors correlate with depression severity (Appendix E.1 and 514 

E.2). The subgroup structure is controlled by the parameter ζ 2 such 515 

that a larger magnitude of ζ 2 corresponds to a more significant 516 

subgroup structure. We randomly split the cohort into training pa- 517 

tients ( N train = 800) and testing patients ( N train = 200 ). 518 

In stage 1, the purpose of POCM training is to estimate the K519 

basis models. The number K can be determined by expert domain 520 

knowledge or the Akaike information criterion (AIC) during model 521 

selection ( Lin et al., 2016; Lin et al., 2017; Lin et al., 2018 ). The 522 

AIC balances the number of estimated parameters in the model 523 

and the model fit. The preferred model with the best K is the one 524 

that minimizes AIC = 2 k − 2 ln (L ) , where small k is the number of 525 

estimated parameters in the model, and L is the maximum value 526 

of the likelihood function for the model. For the HMM compar- 527 

ison, we estimate a unique HMM for each of the K groups. The 528 

groups are assigned using K-means clustering ( Lloyd, 1982 ) over 529 

the patient profile of covariates (Appendix E.3). Both POCM and 530 

HMM estimations use the training patients’ PHQ-9 scores which 531 

are generated for 20 periods under Treatment-I from the ground 532 

truth. Since the estimation of POCM and HMM involves the EM al- 533 

gorithm, we need to train the model with different initial values to 534 

avoid local optimum. We can use a generic procedure that many 535 

sets of initial values are randomly and independently selected in 536 

order to explore the parameter space (we choose 100), and the es- 537 

timation algorithm is performed for a relatively small number of 538 

iterations under each set of initial values (we choose 10). We eval- 539 

uate changes in the log-likelihood and select the set of initial val- 540 

ues with the highest log-likelihood out of the 100 sets. For POCM, 541 

we learn the basis models using Algorithm 1. For HMM, we run 542 

the Baum-Welch algorithm for each group (Appendix B.4). 543 

At the end of stage 1, we use the population average treatment 544 

effect ρ factor (Appendix F) to obtain the Treatment-II basis mod- 545 

els for POCM, and subgroup HMMs under Treatment-II. Next, these 546 

models are used to initialize individual patient models for test- 547 

ing patients in stage 2. The treatment effect factor ρ can be es- 548 

timated from comparative effectiveness trials with two treatment 549 

arms ( Katzelnick et al., 20 0 0 ). Note that the ρ is a simple way to 550 

generate a treatment effect in the simulated case study and not a 551 

necessary assumption in the POCM framework. If training data is 552 

also available for Treatment-II, stage 1 analysis can be done sepa- 553 

rately with observational data for patients on Treatment-II. 554 

In stage 2, testing patients’ PHQ-9 scores are generated for 6 555 

periods under Treatment-I and 6 periods under Treatment-II from 556 

the ground truth (Appendix E.1). This process is similar to the 557 

STAR ∗D Study, in which 2876 patients with major depression un- 558 

derwent four levels of treatments involving adding and/or switch- 559 

ing various antidepressant medications, psychotherapy, and other 560 

mood stabilizers depending on their symptom-free and treatment 561 

resistant status ( Rush et al., 2006 ). Since the majority of patients 562 

in STAR ∗D only experienced two levels of treatment between 14 563 

weeks to 12 months, our simulation setting involving two treat- 564 

ments with 6 months trials is practical for patients with persistent 565 

depression. We then estimate the testing patients’ membership by 566 

performing Step 2 of the POCM algorithm (i.e., update the mem- 567 

bership with fixed stage 1 basis models). Combining the mem- 568 

bership and the basis models, we obtain their individual disease 569 

model ˆ πi , ̂
 A i , ̂  B i , i = 1 , . . . , N test . The initial value of the member- 570 

ship is defined to be proportional to the inverse of the distance 571 

of the testing patient’s profile to each cluster center of the training 572 

patients’ profiles found in stage 1. In the HMM estimation, for each 573 

testing patient, we pick the subgroup model with the center clos- 574 

est to the patient profile as the initial values and then perform the 575 

Baum-Welch algorithm on their observations to obtain the person- 576 

alized disease model. 577 

We evaluate the performance of POCM vs. HMM in estimating 578 

the individual disease model using the average population differ- 579 

ence between the true transition/emission matrices and the esti- 580 

mated matrices. The estimation error for a single patient is mea- 581 

sured by the Frobenius norm ( Horn & Johnson, 1990 ) defined as 582 

583 

δA 
i = 

√ 
|S| 
∑ 

s =1 

|S| 
∑ 

s ′ =1 

[

(A 
g 
i 
− ˆ A i ) s,s ′ 

]2 
, i = 1 , . . . , N. (10) 

where A 
g 
i 
is the ground-truth transition matrix for patient i , and 584 

ˆ A i is the estimated individual transition matrix. The maximum er- 585 

ror is 
√ 

2 |S| . We note in stage 1 of HMM, ˆ A i is the group model 586 

assigned to patient i . The population average estimation error for 587 

transition matrix is 588 

δ̄A = 
1 

n 

n 
∑ 

i =1 

δA 
i , (11) 

where n = N train or N test for the learning stage or the fine-tuning 589 

stage respectively. Particularly, δ̄A / |S| is the average estimation er- 590 

ror per element used to compare performance among models with 591 

different number of states. We define δ̄B for the emission matrix 592 

in the same way. 593 

4.2. Simulation of the d ecision s tage: 12 t reatment p olicies 594 

In the decision stage, we compare the outcomes of 12 treat- 595 

ment policies for 24 periods. At each period, a treatment type is 596 

selected for each testing patient using one of the 12 policies in 597 

Table 2 . We evaluate the performance gap between the POMDP 598 

based policies and other heuristic policies such as using Bayesian 599 

belief update only, PHQ-9 observations only, or fixed single treat- 600 

ment. These heuristics are included due to their ease of implemen- 601 

tation in clinical practice. 602 

Each policy is applied to the 200 testing patients, and each 603 

unique patient is simulated with 10 0 0 repetitions. During each 604 

repetition, a patient’s initial health state is drawn from the initial 605 

distribution estimated from stage 2. The outcome criterion is the 606 

average discounted total reward 1 N 
∑ T 

t=1 

∑ N 
i =1 φ

t r(s i,t , a i,t ) , where N 607 
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Table 2 

12 policies to be examined in the decision stage. 

Short name Type Description 

1 pomdp_true POMDP policy Use the ground-truth individual parameters 

2 pomdp_basis POMDP policy Use the group HMM model estimated in stage 1 that the patient is most likely belonging to. 

3 pomdp_pocm POMDP policy Use the individual POCM estimated in stage 2 

4 pomdp_hmm POMDP policy Use the individual HMM estimated in stage 2 

5 s_aggr Bayesian policy Update the belief state by the Bayesian rule in Eq. (6) , and select Treatment-II when b(S) ≥ 0 . 2 , more aggressive 

6 s_cons Bayesian policy Select Treatment-II when b(S) ≥ 0 . 5 , more conservative 

7 h_aggr Bayesian policy Select Treatment-II when b(H) ≤ 0 . 8 , more aggressive 

8 h_cons Bayesian policy Select Treatment-II when b(H) ≤ 0 . 5 , more conservative 

9 o_aggr Observation policy Select Treatment-II when the PHQ-9 is greater than 5, more aggressive 

10 o_cons Observation policy Select Treatment-II when the PHQ-9 is greater than 10, more conservative 

11 tx_i_only Single treatment policy Treatment-I for all periods 

12 tx_ii_only Single treatment policy Treatment-II for all periods 

Fig. 3. Sensitivity analysis on the converged estimation error (Eq. (11) ) between the POCM and the HMM. (a) Effect of latent structure significance, ζ 2 = 5 , 25 , 125 , 625 ; 

larger value of ζ 2 indicates strong latent structure. (b) Effect of number of health states, including 2, 3, 4, 5; Note that we divide the estimation error by the number of 

states to compare across models with different number of states. 

is the number of patients and T is the number of treatment peri- 608 

ods ( N= 200, T = 24). 609 

We test the policy performance on various parameter set- 610 

tings, including 3 levels of treatment effects ( ρ ∈ { 0 . 2 , 0 . 5 , 0 . 8 } ), 611 

10 health utility structure ( κ(H) ∈ { 0 . 8 , 1 } , κ(M) ∈ { 0 . 4 , 0 . 8 } , 612 

κ(S) ∈ { 0 . 1 , 0 . 4 } ), and 9 cost structures ( h (I) ∈ { 50 0 , 10 0 0 } , h ( II ) ∈ 613 

{ 120 0 , 280 0 } ), totalling 270 scenarios (Appendix G.3). We perform 614 

sensitivity analyses to illustrate policy rankings under parameters 615 

uncertainty. 616 

4.3. Numerical r esults 617 

4.3.1. Parameter l earning 618 

We compared the performance of the POCM parameter infer- 619 

ence and HMM inference using the population average estima- 620 

tion error defined in Eq. (11) in both the learning and the fine- 621 

tuning stages. The parameter μ was calibrated to a value of 0.1 622 

to achieve the maximum objective (Appendix G.1). Results were 623 

based on various levels of significance of latent structure and the 624 

number of health states ( Fig. 3 ). We can see that POCM performed 625 

better for both transition matrix and emission matrix estimation 626 

in the learning and the fine-tuning stages. This conclusion is not 627 

affected by the level of significance of latent structure or the num- 628 

ber of health states. POCM has a fundamentally different structure 629 

about the patients’ transition matrix that is composed of the previ- 630 

ously learned basis models at the population level in stage 1, which 631 

makes the personalization in stage 2 less prone to being affected 632 

by observation uncertainty, bias, and outliers, and thus could be 633 

more clinically relevant. 634 

In stages 1 and 2, there were NT observations under one treat- 635 

ment. In stage 1, a total of 2 K(|S| − 1) |S| + (K − 1) K + N train (K − 636 

1) = 2 × 3 × 2 × 3 + 2 × 3 + 800 × 2 = 1 , 624 free parameters were 637 

estimated in the POCM. 2 K(|S| − 1) |S| = 2 × 3 × 2 × 3 = 36 free 638 

parameters were estimated in the HMM. In stage 2, a total of 639 

N test (K − 1) = 200 × 2 = 400 free parameters were estimated in 640 

the POCM for each treatment. A total of 2 N test (|S| − 1) |S| = 2 × 641 

200 × 2 × 3 = 2400 free parameters were estimated in the HMM 642 

for each treatment. On a MacBook with 2.2 GHz Quad-Core Intel 643 

Core i7 CPU, the computation time for POCM was 15.5 seconds per 644 

iteration in stage 1 and 0.25 seconds per patient in stage 2. The 645 

computation time for HMM was 0.55 seconds per iteration in stage 646 

1 and 0.53 seconds per patient in stage 2. In summary, POCM took 647 

much longer in the learning stage (30 times of HMM considering 648 

an average of 10 0 –20 0 iterations to converge), but it was slightly 649 

faster in the fine-tuning stage compared to HMM. 650 

We tested several lengths of the fine-tuning stage, including 5, 651 

10, 20, 50, and 100 periods. We found that POCM had a lower 652 

estimation error on transition and emission matrices than HMM 653 

on all testing lengths. The estimation error for the transition ma- 654 

trix of POCM decreased when the testing length increased from 5 655 

to 20, and then stayed relatively flat when the testing length in- 656 

creased from 20 to 100. The estimation error for the emission ma- 657 

trix did not change significantly on different testing lengths (Ap- 658 

pendix G.2). 659 
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Fig. 4. Performance of the 12 treatment policies in 270 model settings. The numbers with rank 1–12 in all scenarios are displayed (including ties). Magnitude of the number 

is shown in greyscale. 

4.3.2. Treatment o utcomes and s ensitivity a nalysis 660 

We performed the policy comparison for 270 scenarios of pa- 661 

rameter settings. In each scenario, we ranked the policies by their 662 

NMBs. We considered a tie when two or more policies’ NMBs have 663 

less than a 1% difference (Appendix G.3). Fig. 4 lists the number 664 

of ranks each policy achieved among the 270 scenarios. We con- 665 

firmed that pomdp_true achieved the most top ranks (5 out of 666 

270 scenarios where it achieved rank 2 due to stochasticity in the 667 

simulation.) Policy pomdp_pocm had the second best performance 668 

with rank 1 to 3 in most scenarios. Policy pomdp_basis ’s over- 669 

all performance ranked the third among the POMDP policies, with 670 

fewer rank 1 than pomdp_pocm . Policy pomdp_hmm had the low- 671 

est performance among the POMDP policies. The average NMB dif- 672 

ference between pomdp_pocm and pomdp_basis per scenario 673 

across the 270 scenarios is $13k. Therefore, pomdp_pocm is a bet- 674 

ter model to describe disease progression in a heterogeneous pop- 675 

ulation. It outperformed pomdp_basis due to the fine-tuning of 676 

personalized treatment response model in stage 2, and outper- 677 

formed pomdp_hmm because the HMM may overfit a model to an 678 

individual patient’s limited observations at stage 2 (possibly with 679 

outliers), and it may also start with a worse initialization than 680 

POCM. 681 

Furthermore, the heuristic policies performed worse than the 682 

POMDP policies; within each pair of the same type of heuristic 683 

policies (s, h, o), the aggressive policy performed better. In addi- 684 

tion, we conducted an ordinal regression analysis examining what 685 

factors drive the performance difference between the POMDP poli- 686 

cies (Appendix G.4). We examined factors including treatment ef- 687 

fect, utility gap between health states, and treatment cost ratio 688 

(Appendix Table G.2). For pomdp_pocm , better ranks were asso- 689 

ciated with a smaller utility gap between depression states. 690 

We also investigated the policy performance difference by sub- 691 

group of the testing patients (Appendix G.5). We divided 200 692 

testing patients into four groups by their ground truth member- 693 

ships. The first three groups were those with a membership close 694 

to 1 on one of the basis models: high-risk (51 patients), low- 695 

risk (53 patients), and stable (35 patients). The fourth group con- 696 

tained patients with no extreme membership on any basis model 697 

(62 patients). Appendix Figure G.4 shows the performance out- 698 

comes by subgroup under one parameter setting, including the 699 

group-averaged number of treatment switches, the proportion of 700 

Treatment-II assigned during stage 3, and the total reward in 701 

NMBs. We observed that the stable group had fewer treatment 702 

switches, fewer Treatment-II assignments, and higher rewards un- 703 

der most of the policies. On the contrary, the high-risk group 704 

had more frequent treatment switches, higher Treatment-II assign- 705 

ments, and lower rewards. 706 

Lastly, we assumed that all patients shared the same 707 

Treatment-II effect ρ in all previous analyses; we relaxed this as- 708 

sumption by assigning different ρ ’s to the subgroups to reflect pa- 709 

tients’ diverse response to Treatment-II by their progression pat- 710 

terns. In this sensitivity analysis (Appendix G.6), we assigned the 711 

ground-truth ρ = 0 . 2 (very effective) to the high-risk subgroup, 712 

ρ = 0 . 5 (less effective) to the low-risk subgroup, and ρ = 0 . 8 (not 713 

effective) to the stable subgroup. In stage 2, we estimated the sub- 714 

group label of each testing patient using clustering. In stage 3, 715 

we collected the reward rankings of 12 treatment policies under 716 

90 parameter settings. Results showed that pomdp_pocm is the 717 

best policy among all subgroups (except for pomdp_true ), and 718 

it performed better for patients matched with the correct ground- 719 

truth ρ in stage 2 than those that were mismatched (Appendix Fig- 720 

ure G.5). This result confirmed that POCM could be a better model 721 

than HMM for a heterogeneous population with diverse treatment 722 

response. 723 

5. Conclusions and future work 724 

In this paper, we proposed a three-stage POCM framework to 725 

estimate patient-specific chronic disease progression models for 726 

optimal treatment selection in a heterogeneous population. The 727 

POCM method makes the following assumptions: (1) The patient’s 728 

health state is not fully observable; (2) The disease progression 729 

is a Markovian process; (3) There is a set of basis models, each 730 

representing a unique pattern of disease progression, and each pa- 731 

tient’s disease progression is a combination of these patterns; (4) 732 

Treatment can be tailored to individual patient online by learning 733 

his/her personal disease progression model using imperfect obser- 734 

vations. We developed an efficient computational algorithm to es- 735 

timate parameters of the POCM. 736 
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We designed a simulation case study of chronic depression 737 

treatment to demonstrate that the proposed POCM method can 738 

perform better than the standard estimation method, the HMM, in 739 

estimating individual disease models. In addition, we evaluated the 740 

performance of several adaptive treatment policies (POMDP poli- 741 

cies and Bayesian policies) and simple heuristic policies based on 742 

past observations or fixed treatments. After applying all 12 poli- 743 

cies to the 200 testing patients in the decision stage, we assessed 744 

their performance in NMBs and reached three main conclusions: 745 

(1) The POCM achieved lower error than HMM in estimating a per- 746 

sonalized disease model; (2) The POCM-based POMDP policy gave 747 

the highest reward under most settings of treatment effect, utility 748 

structure, and cost structure. In particular, among the POMDP poli- 749 

cies, POCM-based policy had better performance than the HMM- 750 

based policies; (3) In most cases, treatment policies performed 751 

similarly across subgroups. The high-risk group had more treat- 752 

ment switches, more Treatment-II selection, and lower rewards un- 753 

der most policies. 754 

The proposed POCM is one method to estimate a unique per- 755 

sonalized model in the broader context of precision medicine, in 756 

which we hope such a model can assist clinicians’ own exper- 757 

tise and judgment in selecting treatment. Current debate on us- 758 

ing computer algorithms to automatically make clinical decisions 759 

centers on the continuum between “fully human-guided vs fully 760 

machine-guided data analysis” ( Beam & Kohane, 2018 ), and there 761 

are some fears in the psychiatry community that “reliance on big 762 

data to inform treatment decisions might lead to ignoring expe- 763 

riences and values ... Computer generated recommendations may 764 

carry a false authority that would override expert human judg- 765 

ment” ( Simon & Yarborough, 2020 ). However, even advanced AI 766 

models require human inputs that use domain knowledge to clean 767 

the dataset, define features and/or parameters, and set the objec- 768 

tive of the optimization. To validate the proposed method in prac- 769 

tice, we should first evaluate the estimated population basis ma- 770 

trices against known medical knowledge on the disease’s natural 771 

history. In the long term, the best way to validate the proposed 772 

method is to conduct a human-subject study. In the case of chronic 773 

depression, all patients are monitored with a gold-standard test 774 

and the PHQ-9 to assess their depression severity in each period 775 

(this effort can be aided with personal sensing technology). Using 776 

these data, we can compare the estimated true progression model 777 

from the gold-standard test with the estimated progression mod- 778 

eled by POCM using PHQ-9 scores as observations. In addition, we 779 

can conduct a comparative effectiveness trial, where the control 780 

arm is the usual care, and the treatment arm is the POCM frame- 781 

work. Outcomes can include NMBs and depression-free days (re- 782 

mission periods). In fact, our simulation experiment is similar to 783 

conducting a hypothetical 12-armed trial. 784 

This study has several limitations in both methodology and 785 

practice. First, we excluded death in the POMDP. The effect of de- 786 

pression treatment on suicide rate is controversial; some studies 787 

showed an increase in the suicide rate among teens, while other 788 

studies showed no effects. Overall, the suicide rate is very low 789 

among chronically depressed patients ( Simon et al., 2016 ). If the 790 

death rate differs significantly by treatment in another applica- 791 

tion, the transition matrix estimation can be adjusted to include 792 

a death state in the learning stage. Second, accurate estimation 793 

of a person-level emission matrix is challenging. The PHQ-9 is a 794 

validated test with a sensitivity and specificity of 88% ( Kroenke & 795 

Spitzer, 2002 ) which can be used to initialize the emission matrix. 796 

There are multiple reasons to estimate an individualized emission 797 

matrix. Similar to screening for risk factors (e.g., risky sexual be- 798 

havior, drug use) of some sexually transmitted diseases that are 799 

stigmatized in society, patients may be less willing to reveal the 800 

truth about mental illness. This willingness to be truthful may vary 801 

among persons. One way to address this estimation problem is to 802 

conduct an observational study that collects depression progres- 803 

sion information using a gold-standard test, the PHQ-9, and demo- 804 

graphic and clinical profiles. Using these data, a regression model 805 

can be built to initialize a personal emission matrix. Third, we only 806 

demonstrated the performance of POCM by simulating two treat- 807 

ments in the depression case study. The three-stage framework 808 

can be extended to applications with more than two treatments. 809 

In stage 1, we can either estimate ρ1 to ρm from clinical trials 810 

(where m is the treatment index), or use separate EHR dataset un- 811 

der each treatment to directly estimate the basis models. In stage 812 

2, testing patients go through m separate trials to estimate a per- 813 

sonal disease model under each treatment. Then in stage 3, the 814 

actions include selecting treatment 1 to treatment m . Higher num- 815 

ber of treatment increases data requirement in stage 1 and longer 816 

duration in stage 2, which brings additional practical challenges. 817 

Fourth, the three-stage framework can be seen as too rigid or im- 818 

practical. It is possible to combine or repeat stage 2 and stage 3 819 

with continuous online learning during treatment selection or skip 820 

stage 2 all together if individual variations within a subgroup are 821 

small. For example, the combined stages can be similar to an adap- 822 

tive sequential trial where treatment modification is done at pre- 823 

defined time points ( Bothwell, Avorn, Khan, & Kesselheim, 2018; 824 

Chow, 2014 ). 825 

The POCM modeling framework does not apply broadly in the 826 

following cases. The model assumes the underlying health state 827 

transition process is an HMM, but not all longitudinal clinical data 828 

meet this assumption. For example, some longitudinal disease tra- 829 

jectories are transient processes and never reach steady state. If 830 

the decision problem has high-dimensional state space and action 831 

space, fine-tuning may not be an efficient estimation procedure for 832 

both HMM and POCM. Furthermore, the basis models should rep- 833 

resent canonical patterns in the target population. If data from ex- 834 

isting population do not represent broad patterns in future individ- 835 

uals, then POCM is not suited to model these conditions. 836 

There are several directions to expand this research. First, al- 837 

though we only presented one disease application in chronic de- 838 

pression, POCM can be applied to a broader range of chronic dis- 839 

eases that meet similar assumptions on partial-observable health 840 

state, the disease process is Markovian, and long treatment du- 841 

ration with treatment switching options. In addition, POCM is 842 

not limited to the medical decision-making problem. Take ma- 843 

chine maintenance as an example, the state of the machine can 844 

change over time, and the probability of state transition is differ- 845 

ent for each individual machine. Therefore, the health progression 846 

of an individual machine can be modeled with POCM, and machine 847 

maintenance policies can be tailored to an individual machine by 848 

using the basis models and membership learned by POCM. An- 849 

other example is personalized health management from daily be- 850 

havioral data ( Xiao, 2017 , chap. 5). The fast-growing development 851 

of sensing devices enable the continuous monitoring of human be- 852 

havior (such as physical activity and food intake), and health state 853 

measurements such as the body mass index (BMI). A personalized 854 

health management program such as obesity prevention can be 855 

achieved by learning the basis behavior models with POCM, which 856 

lead to individual behavior model, and then we can find an opti- 857 

mal plan of health activity via POMDP. 858 

In summary, we developed a three-stage POCM framework to 859 

estimate a personal model of chronic disease progression using 860 

both population data and treatment experimentation to optimally 861 

select treatment. We designed a simulation case study on chronic 862 

depression. Results showed that the POCM framework can lead to 863 

better performance on individual parameter estimation over the 864 

traditional HMM method. This framework is promising for model- 865 

ing the chronic disease progression process and developing a per- 866 

sonalized adaptive treatment plan for individual patients in a het- 867 

erogeneous population. 868 
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