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Abstract. For a mechanical system consisting of a rotator and a pendulum coupled via a small, time-periodic
Hamiltonian perturbation, the Arnold diffusion problem asserts the existence of ‘diffusing orbits’
along which the energy of the rotator grows by an amount independent of the size of the coupling
parameter, for all sufficiently small values of the coupling parameter. There is a vast literature on
establishing Arnold diffusion for such systems. In this work, we consider the case when an additional,
dissipative perturbation is added to the rotator-pendulum system with coupling. Therefore, the
system obtained is not symplectic but conformally symplectic. We provide explicit conditions on
the dissipation parameter, so that the resulting system still exhibits energy growth. The fact that
Arnold diffusion may play a role in systems with small dissipation was conjectured by Chirikov. In
this work, the coupling is carefully chosen, however the mechanism we present can be adapted to
general couplings and we will deal with the general case in future work.

1. Introduction. The Arnold diffusion problem [Arn64] broadly refers to a universal mech-
anism of instability for multi-dimensional Hamiltonian systems that are small perturbations of
integrable ones. Through this mechanism, chaotic transfers of energy take place between sub-
systems of a given Hamiltonian system, which, in particular, can lead to significant growth of
energy of one of the subsystems over time. Chirikov [Chi79] conjectured that Arnold diffusion
may play a role in systems with small dissipation as well.

Studying Hamiltonian systems with small dissipation is important for applications, as
many real-life physical systems experience some energy loss over time.

A significant class of examples is furnished by Celestial Mechanics, on the motion of celes-
tial bodies under mutual gravity. As the gravitational force is conservative, such systems are
usually modeled as Hamiltonian systems. Nevertheless dissipative forces are present in real-
world systems, including tidal forces, Stokes drag, Poynting-Robertson effect, Yarkowski/Y-
ORP effects, atmospheric drag, and their effect may accumulate in the long run. While some
of these effects may be negligible over relatively short time scales, others, for instance Earth’s
atmospheric drag on artificial satellites, can have significant effects over practical time scales.
See, e.g. [MNF87, Cel07, RR17].

Another class of examples is given by energy harvesting devices. Some of these devices
consist of systems of oscillating beams made of piezoelectric materials, where on the one
hand there is dissipation due to mechanical friction, and on the other hand there is external
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forcing, owed to the movement of the device, that triggers the beams to oscillate. See, e.g.
[MH79, EHI09, Gra17].

Of course, there are many other examples. In this paper we consider a simple model of a
mechanical system, consisting of a rotator and a pendulum with a small, periodic coupling,
subject to a small dissipative perturbation. Coupled rotator-pendulum systems are funda-
mental models in the study of Arnold diffusion in Hamiltonian systems. Adding a dissipative
perturbation results in a system that is non-Hamiltonian. The symplectic structure changes
into a conformally symplectic one [Ban02]. We show that such a system exhibits Arnold diffu-
sion, in the sense that there exist pseudo-orbits for which the energy of the rotator subsystem
grows by some quantity that is independent of the smallness parameter. (By a pseudo-orbit
here we mean a sequence of orbit segments of the flow such that the endpoint of each orbit
segment is ‘close’ to the starting point of the next orbit segment in the sequence.) We note
that for the unperturbed rotator-pendulum system, the energy of the rotator subsystem is
conserved. The small, periodic coupling added to the system makes the rotator undergo small
oscillations in energy, while the dissipative perturbation typically yields a loss in energy. The
physical significance of our result is that, despite the dissipation effects, it is possible to overall
gain a significant amount of energy over time.

Specifically, the unperturbed rotator-pendulum system is given by a Hamiltonian of the
form

H0pp, q, I, θq � h0pIq � h1pp, qq,

with z � pp, q, I, θq P R�T1�R�T1, where h0pIq represents the Hamiltonian of the rotator,
and h1 represents the Hamiltonian of the pendulum, and T1 � R{2πZ. The perturbed system
is of the form

(1.1) 9z � J∇zH0pzq � εJ∇zH1pz, tq � Xλpzq,

where H1pz, tq is a Hamiltonian that is 2π-periodic in time t, ε ¥ 0 is the size of the coupling,
Xλpzq is a dissipative vector field depending on some dissipation parameter λ � λpεq ¡ 0, and

J �

�
J2 0
0 J2



where J2 �

�
0 �1
1 0



.

Technical conditions on h0, h1, H1,Xλ will be given in Section 3. Under those conditions,
the phase space of the perturbed system has a 3-dimensional Normally Hyperbolic Invariant
Manifold (NHIM from now on), which contains a 2-dimensional invariant torus that is an
attractor for the dynamics in the NHIM. This torus creates a ‘barrier’ for the existence of
diffusing orbits by using only the ‘inner dynamics’ (i.e., the dynamics restricted to the NHIM).
The main question is whether there are diffusing orbits crossing this ‘barrier’ by combining
the ‘inner dynamics’ with the ‘outer dynamics’ (i.e., the dynamics along homoclinic orbits to
the NHIM).

We show that there exist C ¡ 0 and ε0 ¡ 0 such that, for all 0   |ε|   ε0, there exists a
pseudo-orbit zptq, t P r0, T s, of (1.1), such that

IpT q � Ip0q ¡ C for some T ¡ 0.
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More technical details will be given in Theorem 4.1. In order for the above result to be
of practical interest, the above solution zptq should be chosen such that at the beginning
pIp0q, θp0qq is below (relative to I) the aforementioned attractor, and at the end pIpT q, θpT qq
is above the aforementioned attractor. Indeed, it is possible to increase I by starting below the
attractor and moving towards the attractor under the effect of the dissipation alone; obviously,
such a solution is not of practical interest.

2. Conservative vs. dissipative systems. Arnold’s conjecture on Hamiltonian instability
originated with an example of a rotator-pendulum system with a small, time-periodic Hamil-
tonian coupling of special type [Arn64]. In his example, in the absence of the coupling, the
phase space of the rotator forms a normally hyperbolic invariant manifold (NHIM) foliated
by ‘whiskered’, rotational tori, which have stable and unstable invariant manifolds that co-
incide. The coupling in Arnold’s example was specially chosen so that it vanishes on the
family of invariant tori, and so the tori are preserved. These tori constitute ‘barriers’ for
the existence of diffusing orbits, since orbits in the NHIM always move along these tori and
thus cannot increase their action variable. At the same time the coupling splits the stable
and unstable manifolds, so that the unstable manifold of each torus intersects transversally
the stable manifolds of nearby tori. Thus, one can form ‘transition chains’ of tori, and show
that, by interspersing the ‘outer dynamics’ along the homoclinic orbits to the NHIM with the
‘inner dynamics’ along the tori, one can obtain ‘diffusing’ orbits along which the energy of
the rotator exhibits a significant growth. Arnold conjectured that this mechanism of diffusion
occurs in close to integrable general systems.

However, in the case of a general coupling not all of the invariant tori in the NHIM are
preserved. The KAM theorem yields a Cantor set of tori that survive from the unperturbed
case, with gaps in between. The splitting of the stable and unstable manifold makes the
unstable manifold of each torus intersect transversally the stable manifolds of sufficiently
close tori, however the size of the splitting is in general smaller than the size of the gaps
between tori. This is known as the ‘large gap problem’. It was overcome, for instance, by
forming transition chains that, besides rotational tori, also include ‘secondary’ tori created
by the perturbation [DdlLS00, DLS06]. Other geometric mechanisms use transition chains
that include, besides rotational tori, Aubry-Mather sets [GR13]. Subsequently, [GdlLMS20]
described a general mechanism of diffusion that relies mostly on the outer dynamics, and
uses only the Poincaré recurrence of the inner dynamics (which is automatically satisfied in
Hamiltonian systems over regions of bounded measure).

The references mentioned above encompass geometric ideas that we can adapt to the
dissipative case. However, there are many other geometric mechanisms that have been used
in the Arnold diffusion problem, such as those in [CG94, BT99, DdlLS00, Tre02, Tre04,
DdlLS06a, DdlLS06b, Pif06, GT08, DH09, Tre12, GdlL17, GT17a, GM22]. A variational
program for the Arnold diffusion was formulated in [Mat04, Mat12] for systems close to
integrable. Global variational methods for diffusion have been used in this setting for convex
Hamiltonians [CY09, KZ15, BKZ16, CX19, KZ20]. A hybrid program combining geometric
and variational methods was started in [BB02, BBB03].

The case of a rotator-pendulum system subject to a non-Hamiltonian perturbation (con-
sisting of time-periodic Hamiltonian coupling and a dissipative force) which we consider in this
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paper, has very different geometric features from the conservative case. The dissipation added
to the Hamiltonian system is a singular perturbation – the system with positive dissipation
leads to attractors inside the NHIM, which can contain at most one invariant torus. Poincaré
recurrence does not hold for dissipative systems. The stable and unstable manifolds of the
NHIM do not necessarily intersect. Therefore, the mechanism used for proving diffusion in
the Hamiltonian case does not carry over to the non-Hamiltonian case.

To provide some intuition, we illustrate on a couple of basic examples some possible effects
of dissipation on the geometry of Hamiltonian systems.

Example 2.1. The first example is the standard map.
The (conservative) standard map, which can be viewed as the time-one map of a non-

autonomous Hamiltonian system representing a ‘kicked rotator’, is given by

I 1 �I � ε sinpθq,

θ1 �θ � I � ε sinpθq,
(2.1)

where ε is the perturbative parameter, and I, θ are defined pmod2πq. This is a symplectic
twist map; the symplecticity condition being dI 1^dθ1 � dI^dθ and the twist condition being
Bθ1
BI � 0. When ε � 0 the resulting map is the time-one map of a rotator, and is given by

I 1 �I,
θ1 �θ � I.

(2.2)

It is an integrable twist map, with all level sets of I being rotational invariant circles on which
the motion is a rigid rotation of frequency ωpIq � I. For 0   ε ! 1, the KAM theorem asserts
that there is a positive measure set of invariant circles, of Diophantine frequencies, which
survive the perturbation. The measure of the set of the KAM circles tends to 1 as εÑ 0. On
the other hand, when ε ¡ 0 increases, fewer and fewer invariant circles survive, and eventually
only one invariant circle is left. The last rotational invariant circle for the standard map has

frequency ω � 1�?5
2 , which is the golden mean [Gre79]. See Fig. 1a.

The dissipative standard map is defined as

I 1 �p1� λqI � µ� ε sinpθq,

θ1 �θ � p1� λqI � µ� ε sinpθq,
(2.3)

where λ is the dissipative parameter, 0 ¤ λ   1, and µ is the drift parameter; λ � 0
corresponds to no dissipation. The map is no longer symplectic, but conformally symplectic,
that is dI 1 ^ dθ1 � p1� λqdI ^ dθ, and still satisfies a twist condition.

When ε � 0, the resulting map

I 1 �p1� λqI � µ,

θ1 �θ � p1� λqI � µ,
(2.4)

has a single rotational invariant circle I � µ
λ of frequency ω� :� µ

λ . The KAM theorem
for conformally symplectic systems asserts that for each 0   ε ! 1 there is one rotational
invariant circle, of Diophantine frequency, that survives the perturbation, and that circle is a
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local attractor for the system (see, e.g. [CC09, CCdlL13b, CCDlL13a, CCdlL20]). In order
for the surviving circle to be of Diophantine frequency ω�, we need to properly adjust the
drift parameter µ. See Fig. 1b and Fig. 1c.

We can rewrite the dissipative standard map in terms of a frequency parameter ω� rather
than in terms of the drift parameter µ � λω� obtaining:

I 1 �I � λpI � ω�q � ε sinpθq,

θ1 �θ � I � λpI � ω�q � ε sinpθq.
(2.5)

In this case, by the persistence of normal hyperbolicity of the torus given by I � ω�, as
0   ε ! 1 is varied, there exists an invariant torus of frequency ω � ωpεq close to ω�; not all
frequencies ω yield KAM circles but only those ωpεq which are Diophantine.

Example 2.2. The second example is the pendulum, given by the Hamiltonian

h1pp, qq �
p2

2
� pcospqq � 1q.

As it is well known, the pendulum has a hyperbolic fixed point whose stable and unstable
manifolds coincide (see Fig. 2a).

When dissipation is added to the pendulum

9p �� λp� sinpqq,

9q �p,

the origin is again a hyperbolic fix point with eigenvalues �
b
1� pλ2 q

2 � λ
2 . Nevertheless, its

stable and unstable manifolds cease to intersect, for dissipative coefficient λ ¡ 0 (see Fig. 2b).
However, when both dissipation and periodic forcing are added to the pendulum,

9p �� λp� sinpqq � ε sinptq,

9q �p,

for certain parameter values λ ¡ 0 and ε ¡ 0, the time-2π map exhibits chaotic attractors in
the Poincaré section (see Fig. 2c).

These simple examples illustrate that adding dissipation to a Hamiltonian system typically
destroys – sometimes dramatically – some of the geometric structures – KAM tori, homoclinic
connections – that are relevant in Arnold’s mechanism of diffusion, and creates new geometric
structures – attractors – that act as barriers for diffusion. On the other hand, the addition of
forcing can compensate the effects of dissipation.

3. Model. The model that we consider is described by an integrable Hamiltonian system
subject to a time-dependent, Hamiltonian perturbation (or coupling), and to a second, non-
Hamiltonian, perturbation that is dissipative.

The unperturbed Hamiltonian corresponds to an uncoupled rotator-pendulum system and
is given by

(3.1) H0pp, q, I, θq �
I2

2
�

p2

2
� pcos q � 1q,
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(a) Conservative standard map (b) Dissipative standard map with un-
adjusted drift

(c) Dissipative standard map with adjusted
drift

(d) The basins of attraction of the attractors
appearing in (c), using a colour scale based
on rotation numbers (Credit Matteo Manzi)

Figure 1. The conservative and dissipative standard map

where pp, q, I, θq P R�T1�R�T1, which is endowed with the standard symplectic structure
ω � dp^ dq � dI ^ dθ.

For the rotator part of the Hamiltonian, given by h0pIq �
I2

2 , each level set I � constant is
invariant under the flow of h0, and the corresponding dynamics is a rigid rotation of frequency

(3.2) ωpIq :�
Bh0
BI

� I.

The pendulum part of the Hamiltonian, is given by

(3.3) h1pp, qq �
p2

2
� pcos q � 1q,
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(a) Phase space of the conservative pen-
dulum

(b) Phase space of the dissipative pendu-
lum

(c) Poincaré section for the pendu-
lum subject to dissipation and periodic
forcing

Figure 2. The pendulum

it has a hyperbolic fixed point at pp, qq � p0, 0q and an elliptic fixed point at pp, qq � p0, πq.
The stable and unstable manifolds of the hyperbolic fixed point p0, 0q coincide, and can be
parametrized as

(3.4) pp0ptq, q0ptqq �

�
�

2

cosh t
, 4 arctan e�t



.

Since the system H0 is uncoupled, I is a conserved quantity and so each hypersurface
tI � const.u constitutes a barrier for the dynamics of H0: there are no trajectories along
which the variable I can change.

When we add the time-dependent, Hamiltonian perturbation, we have

(3.5) Hεpp, q, I, θ, tq � H0pp, q, I, θq � εH1pp, q, I, θ, tq,

where t P T1, meaning that the perturbation H1 is 2π-periodic in time.
We will assume that H1 is of the form

(3.6) H1pp, q, I, θ, tq � fpqq � gpθ, tq.

The dissipative perturbation is given by a vector field Xλ that is added to the Hamiltonian
vector field J∇Hε of Hε, where

(3.7) Xλpp, q, I, θq � p�λp, 0,�λpI � ω�q, 0q,

where λ is the dissipation coefficient, and ω� is a fixed Diophantine frequency. For the moment,
we will treat λ as an independent parameter, but for most of the paper we will consider λ of
the form λ � ερ, with ρ being a sufficiently small independent parameter. In our main result
Theorem 4.1 we will use λ � ερpεq where 0   ρpεq � ρ̄

log 1
ε

! 1, where ρ̄ is a positive constant.
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The system of interest is

(3.8) 9z � J∇zH0pzq � εJ∇zH1pz, tq � Xλpzq, z � pp, q, I, θq.

We obtain the following equations:

(3.9)

$''''&
''''%

9p � sinpqq � εf 1pqq � gpθ, tq � λp,

9q � p,
9I � �λpI � ω�q � εfpqq � BgBθ pθ, tq,
9θ � I.

As we shall see, the dissipative perturbation yields the existence of attractors for the
dynamics restricted to the NHIM, that is, the dynamics in the pI, θq-variables. In particular,
we can have attractors that act as barriers on the NHIM, in the sense that they separate
the NHIM into topologically non-trivial connected components. As all trajectories within
the basin of attractors move towards the attractors, the action I will increase along some
trajectories and will decrease along some other trajectories, however there are no trajectories
within the NHIM that start on one side of the attractor and end on the other side.

Below, we will consider two concrete examples of Hamiltonian perturbations:
Vanishing perturbation: H1 vanishes at pp, qq � p0, 0q

fpqq � cospqq � 1,

gpθ, tq � a00 � a10 cos θ � a01 cos t.
(3.10)

Non-vanishing perturbation: H1 does not vanish at pp, qq � p0, 0q

fpqq � cospqq,

gpθ, tq � a00 � a10 cos θ � a01 cos t.
(3.11)

Above, a00, a10, and a01 are real numbers with a10a01 � 0.

Remark 3.1. The choice of the coupling of the form H1pp, q, I, θ, tq � fpqqgpθ, tq has been
made in order to deal with a simple model. The fact that the function f satisfies f 1p0q � 0
implies that the normally hyperbolic invariant manifold, which is exhibited by the unper-
turbed system, is not affected by the perturbation; see Section 5.4. We do not need to invoke
the theory of persistence of normally hyperbolic invariant manifolds under perturbation. The
function gpθ, tq can be viewed as a truncation to the first two harmonics of the Fourier ex-
pansion of an analytic function. We will deal with the general case with infinitely many
harmonics, as well as with perturbations that do not preserve the NHIM, in future work.

Remark 3.2. We note that instead of (3.7) we can consider more general perturbations of
the form

Xλpp, q, I, θq � p�λ1p, 0,�λ2pI � ω�q, 0q,

for λ1 � ερ̄1 and λ2 � ε ρ̄2
log 1

ε

with ρ̄1, ρ̄2 ¡ 0. One will be able to see that the arguments

below also apply to this case and therefore, the main result, stated below, remains valid.
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4. Main result.

Theorem 4.1. Consider the Hamiltonian system (3.1) subject to the time-periodic Hamil-
tonian perturbation (3.10) or (3.11), and to the dissipative perturbation (3.7), with dissipation
coefficient λ � ερpεq � ε ρ̄

logp 1
ε
q with ρ̄ ¡ 0 suitably small.

Then there exist 0   I1   I2 and ε0 ¡ 0 such that, for every ω� Diophantine number with
0   I1   ω�   I2, and every 0   ε   ε0, there exist pseudo-orbits zptq, t P r0, T s, such that

Ipzp0qq   I1 and IpzpT qq ¡ I2.

Here by a pseudo-orbit zptq we mean a finite collection of trajectories ziptq, t P rti, ti�1s of
(3.8), for some times 0 � t0   t1   . . .   tm � T , where m ¡ 0, such that

Ipz0p0qq   I1 and IpzmpT qq ¡ I2,

dpzipti�1q, z
i�1pti�1qq   δpεq, for i � 0, . . . ,m� 1,

for some δpεq � Opεq ¡ 0.
The diffusion time along the pseudo-orbit zptq, t P r0, T s, is T � O

�
1
ε logp

1
ε q
�
.

Above, we used the notation f � Opgq � OCkpgq for a pair of functions f , g satisfying
}f}Ck ¤M}g}Ck for some M ¡ 0, where } � }Ck is the Ck-norm for some suitable k ¥ 0.

We illustrate the phenomenon described by Theorem 4.1 in Fig. 3a, Fig. 3b, Fig. 3c,
Fig. 3d. In Fig. 3a, using the inner dynamics alone, orbits with Ip0q   ω� cannot pass beyond
the attractor shown in Fig. 3b. However, using both the inner and outer dynamics, there are
orbits with Ip0q   ω� that end up with IpT q ¡ ω�, as shown in Fig. 3d. These orbits move
close to the separatix of the pendulum h1pq, pq � 0, as shown in Fig. 3c.

Theorem 4.1 gives us diffusing pseudo-orbits. Applying a Shadowing Lemma type of
results similar to those in [Zgl09, GT17b, GdlLMS20, CG], we will be able to show that there
exist true orbits zptq of (1.1) such that Ipzp0qq   I1 and IpzpT qq ¡ I2. We leave the technical
details for a future work.

The above pseudo-orbits are such that the end-point of one is δpεq-close to the starting-
point of the next one, where δpεq � Opεq. We remark here that we can also obtain pseudo-
orbits with δpεq � Opεpq, for any p ¥ 1, with the same diffusion time order T � O

�
1
ε logp

1
ε q
�
.

In practical applications one can pass from pseudo-orbits to true orbits by applying small
controls; for example, in the case of artificial satellites perturbed by atmospheric drag, the
small controls can be satellite maneuvers.

Remark 4.2. In Theorem 4.1, the action levels I1 and I2 can be chosen explicitly, depend-
ing on the Hamiltonian perturbation (3.10) or (3.11) that is considered. See Section 7.7.

The condition on choosing ω� a Diophantine number between I1 and I2 is not necessary
for the proof of the theorem; see Section 8.2. The reason for requiring this condition is to be
able to apply the KAM theorem for conformally symplectic systems [CCdlL20], which implies
the existence of a KAM torus that is an attractor for the inner dynamics, and hence represents
a barrier for the inner dynamics. In other words, we want to show that diffusing pseudo-orbits
exist even if there is a barrier inside the NHIM.

The choice of the dissipation coefficient λ � ε ρ̄

logp 1
ε
q is related to the time Th � Oplogp1ε qq

required for a point starting in an ε-neighborhood of the NHIM to travel along a homoclinic
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(a) Inner dynamics (b) Attractor for the inner dynamics

(c) Outer dynamics (d) Combined inner and outer dynamics

Figure 3. Orbits of the rotator-pendulum system

orbit and arrive in an ε-neighborhood of the NHIM. This choice of λ implies that λ�Th � Opρ̄εq,
while the order of the change in action by the scattering map is Opεq. By choosing a suitable
small enough constant ρ̄, we can ensure that, when the growth in I by the scattering map
competes with the decay in I by the dissipation, which is of order OpλThq � Opρ̄εq, we will
make the former to win against the latter.

If we do not impose that the homoclinic orbits get ε-close to the NHIM, then we can
choose a shorter time Th along the homoclinic orbits and implicitly a larger λ, as long as λ �Th

is Opεq; for example, we can choose Th � Op1q and λ � ρ̄ε for some ρ̄ ¡ 0 suitably small.

5. Preliminaries.

5.1. Extended system. Since the perturbation H1 is time-dependent, it is convenient to
consider time as an independent variable t and to work in the extended phase space z̃ �
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pp, q, I, θ, sq P R� T1 � R� T1 � T1, adding the equation 9s � 1 to system (3.9) to obtain:

(5.1)
9z � J∇zH0pzq � εJ∇zH1pz, sq � Xλpzq, z � pp, q, I, θq
9s � 1

We denote by Φ̃t
0 the unperturbed extended flow, and by Φ̃t

ε the perturbed extended flow.

5.2. Normally hyperbolic invariant manifolds. We briefly recall the notion of a normally
hyperbolic invariant manifold (NHIM) [Fen74, HPS77].

Let M be a C r-smooth manifold, Φt a C r-flow on M . A submanifold (with or without
boundary) Λ of M is a normally hyperbolic invariant manifold (NHIM) for Φt if it is invariant
under Φt, and there exists a splitting of the tangent bundle of TM into sub-bundles over Λ

(5.2) TzM � Eu
z ` Es

z ` TzΛ, @z P Λ

that are invariant under DΦt for all t P R, and there exist rates

λ� ¤ λ�   λc   0   µc   µ� ¤ µ�

and a constant C ¡ 0, such that for all x P Λ we have

Cetλ�}v} ¤ }DΦtpzqpvq} ¤ Cetλ�}v} for all t ¥ 0, if and only if v P Es
z,

Cetµ�}v} ¤ }DΦtpzqpvq} ¤ Cetµ�}v} for all t ¤ 0, if and only if v P Eu
z ,

Ce|t|λc}v} ¤ }DΦtpzqpvq} ¤ Ce|t|µc}v} for all t P R, if and only if v P TzΛ.

(5.3)

It is known that Λ is C ℓ-differentiable, with ℓ ¤ r � 1, provided that

ℓµc � λ�   0,

ℓλc � µ� ¡ 0.
(5.4)

The manifold Λ has associated unstable and stable manifolds, denoted W upΛq and W spΛq,
which are tangent to Eu

Λ and Es
Λ respectively, and C ℓ�1-differentiable. They are foliated by

1-dimensional unstable and stable manifolds (fibers) of points, W upzq, W spzq, z P Λ, respec-
tively, which are as smooth as the flow, i.e., C r-differentiable. These fibers are equivariant in
the sense that

ΦtpW upzqq �W upΦtpzqq,

ΦtpW spzqq �W spΦtpzqq.

5.3. The NHIM of the unperturbed system. We now describe the geometric structures
for the unperturbed system corresponding to ε � 0 and λ � 0. Fix 0   I1   I2.

The unperturbed system H0 has a NHIM:

Λ0 � tp0, 0, I, θq | I P rI1, I2s, θ P T1u.

The flow restricted to Λ0 corresponds to the equations of the rotator subsystem:

(5.5)

#
9I � 0
9θ � I
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Hence every level set I � const. is invariant under the flow. The stable and unstable manifolds
of the NHIM Λ0 coincide, that is

W spΛ0q �W upΛ0q � tpp, q, I, θq |h1pp, qq � 0, I P rI1, I2s, θ P T1u.

where h1 is the Hamiltonian of the pendulum in (3.3). The contraction/expansion rates along
Es and Eu are 	1, respectively. For the time-2π map, the corresponding contraction/expan-
sion rates are e	2π.

In the extended phase space, we have that Λ̃0 � Λ0 � T1 is a NHIM, and

W spΛ̃0q �W spΛ0q � T1 �W upΛ0q � T1 �W upΛ̃0q

for system (5.1).
Note that Λ0 is also the NHIM for the time-2π map f0 of the extended flow Φ̃t

0, which
represents the first-return map to the Poincaré section

Σ � tpp, q, I, θ, sq | s � 0u.

5.4. The inner map of the unperturbed system. Now, let us consider the time-2π map
for the Hamiltonian flow of the rotator: #

9I � 0,
9θ � I.

Solving, we have Iptq � I0 and θptq � θ0 � I0t, which gives the time-2π-map f0:

(5.6) f0pI, θq � pI 1, θ1q � pI, θ � 2πIq.

Note that f0 satisfies the twist condition

(5.7)
Bθ1

BI
� 2π ¡ 0.

5.5. The model with small dissipation. From now on we will work with small dissipation.
We will assume

(5.8) λ � ερ,

where ρ is a free parameter. Consequently, the vector field (3.8) can be written as

(5.9) 9z � X 0pzq � εX 1pz, t; ρq

with X 0pzq � J∇H0pzq is the unpertubed system (3.1), and

(5.10) X 1pz, t; ρq � J∇H1pz, tq � Xρ,

with H1 given in (3.6) and Xρ given in (3.7). Even when we use λ in the notation, we always
assume that λ � ερ.
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5.6. The NHIM in the case of vanishing perturbation. In the case when the perturbation
H1 is of the form

H1pp, q, I, θ, sq � pcos q � 1q � gpθ, sq,

then H1 vanishes at pp, qq � p0, 0q. When εH1 is added to H0, the NHIM Λ̃0 persists as
Λ̃ε � Λ̃0 for the perturbed system for ε ¡ 0, and the flow restricted to the NHIM is given by
(5.5). Consequently, each level set tI � constantu in the NHIM persists.

When we add the dissipation Xλ, where λ � ερ, since the pp, qq-components of Xλ vanish
at pp, qq � p0, 0q, then the NHIM survives for the perturbed system (3.8) as Λ̃ε � Λ̃0 (if we
consider λ as an independent parameter, then the perturbed NHIM in general depends on
both ε and λ). The induced dynamics on Λ̃ε � Λ̃0 is given by

(5.11)

$'&
'%

9I � �λpI � ω�q
9θ � I

9s � 1

Note that 9I � 0ô I � ω�. It follows that

(5.12) Ãε � tpI, θ, sq, I � ω�, pθ, sq P T2u � Λ̃ε

is a 2-dimensional torus invariant under the flow restricted to Λ̃ε. This is the only invariant
torus for the flow on Λ̃ε. On Ãε we have 9θ � I � ω� and 9s � 1, so the flow along this level
set is a linear flow with frequency vector pω�, 1q.

By integration of (5.11), we obtain the general solution with initial condition pI0, θ0, s0q
as:

Iptq � pI0 � ω�qe�λt � ω�,

θptq � θ0 �
1

λ
pI0 � ω�qp1� e�λtq � ω�t,

sptq � s0 � t.

(5.13)

Using these explicit formulas, one can see that given pω�, θ0, s0q P Ãε, if we consider pI, θ, sq P
Λ̃ε, where s � s0, θ � θ0 �

1
λpI � ω�q, then

(5.14) }Φ̃t
εpI, θ, s0q � Φ̃t

εpω�, θ0, s0q} ¤
�
1�

1

λ2


1{2
|I � ω�| e�λt Ñ 0 as tÑ8,

showing that Ãε is a global attractor for the flow on Λ̃ε. (Above we also denoted by Φ̃t
ε the

flow restricted to Λ̃ε.)

5.7. The inner map in the case of vanishing perturbation. From the explicit solutions
of Iptq and θptq in (5.13) with t � 2π, we have that

(5.15) fεpI, θq �

�
pI � ω�qe�2πλ � ω�, θ �

1

λ
pI � ω�qp1� e�2πλq � 2πω�



,
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which is the first-return map to the section Λε � Λ̃ε X ts � 0 pmod2πqu.
In particular, for I � ω� we have fεpI, θq � pω�, θ � 2πω�q � pI, θ � 2πω�q. That is,

Aε � Ãε X ts � 0 pmod2πqu is an invariant circle for fε of irrational rotation number 2πω�.
From (5.14) we have that, for pI, θq with θ � θ0 �

1
λpI � ω�q,

(5.16) }fk
ε pI, θq � fk

ε pω�, θ0q} ¤
�
1�

1

λ2


1{2
|I � ω�| e�2πλk Ñ 0 as k Ñ8.

This shows that Aε is a global attractor for the map fε on Λε, and, moreover, the orbits of
pI, θq and pω�, θ0q become asymptotically close to one another as nÑ8.

We have

DfεpI, θq �

�
e�2πλ 0

1
λp1� e�2πλq 1




with eigenvalues e�2πλ and 1 and with corresponding eigenvectors�
�λ
1



and

�
0
1




respectively. The eigenvalue 1 is associated to the dynamics along the θ-coordinate, and the
eigenvalue of e�2πλ   1 is associated to the dynamics along the I-coordinate.

We conclude that Aε is a NHIM for pfεq|Λε
, for which there is only stable manifold W spAεq

tangent to

�
�λ
1



, and no unstable manifold W upAεq. We note that for λ Á 0 (recall that

λ � ερ) the Lyapunov multipliers 1 and e�2πλ À 1 for pfεq|Λε
, are dominated by the contraction

rate of Dfε on the stable bundle Es of Λε, which is e�2π�Opλq; see Section 5.3.
Since |detpDfεq| � e�2πλ   1 we have that fε is area-contracting on Λε, hence it is

conformally symplectic, i.e.

(5.17) pfεq
�
|Λε
pω|Λε

q � e�2πλω|Λε
.

We now show that fε is a λ-perturbation of f0, a time-2π map for the rotator part of the
unperturbed system given in (5.6). Since

e�2πλ �1� 2πλ�Opλ2q,

we have

fεpI, θq �
�
I � 2πλpI � ω�q �Opλ2q, θ � 2πI � 2π2λpI � ω�q �Opλ2q

�
.

Therefore fε is a λ-perturbation of f0 in (5.6), i.e.

fεpI, θq �f0pI, θq �Opλq � f0pI, θq �Opερq.
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5.8. The case of non-vanishing perturbation. In this case the time-periodic perturbation
of the Hamiltonian in (3.5), is of the form

(5.18) H1pp, q, I, θ, sq � cos q � gpθ, sq.

The perturbation H1 does not vanish at the hyperbolic fixed point of the pendulum pp, qq �
p0, 0q. The dissipative perturbation is given by the vector field εXρ, where Xρ is given by
(3.7), as before (see (5.9) and (5.10)).

From (3.9), since f 1pqq � � sin q vanishes at q � 0, we obtain that the unperturbed NHIM
Λ̃0 survives the perturbation, that is Λ̃ε � Λ̃0 for all ε.

When λ � 0, the perturbed dynamics restricted to Λ̃ε � Λ̃0 is given by the following
equations:

(5.19)

$'&
'%

9I � �λpI � ω�q � εBgBθ pθ, sq
9θ � I

9s � 1.

Using the expression of g in (3.11), this system can be reduced to the second-order nonlinear
differential equation

:θ � λ 9θ � εa10 sin θ � λω� � 0.

Ignoring the last term, the remaining terms represent the equation of the damped non-linear
pendulum, for which explicit solutions are unknown; an analytical approximation can be found
in [Joh14]. Hence, we do not have an explicit formula for the time-2π map fε in this case.

6. Existence of a Transverse Homoclinic Intersection. In the sequel, we will identify
vector fields with differential operators, which is a standard operation in differential geometry
(see, e.g., [BG05]). That is, given a smooth vector field X and a smooth function f on the
manifold M , we denote:

(6.1) pXfqpzq �
¸
j

pX qjpzq
Bf

Bzj
pzq,

where zj , j P t1, . . . ,dimpMqu, are local coordinates. Similarly, a smooth time-dependent and
parameter-dependent vector field acts as a differential operator by

(6.2) pXfqpz, t; εq �
¸
j

pX qjpz, t; εq
Bf

Bzj
pzq.

For the pendulum system, whose hamiltonian h1 is given in (3.3), we denote by pp0ptq, q0ptqq
a parametrization of a separatrix of the pendulum, with pp0p0q, q0p0qq � pp0, q0q, where pp0, q0q
is some initial point; this parametrization is explicitly given in (3.4). We define a new locally
defined system of symplectic coordinates py, xq in a neighborhood of the separatrix – chosen
away from the hyperbolic equilibrium point – as follows. The coordinate y is chosen to be
equal to the energy of the pendulum, i.e.,

(6.3) y � h1pp, qq �
p2

2
� pcospqq � 1q
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and is defined in a whole neighborhood of one of its separatrices. The coordinate x is defined
by

dx �
dt

||∇y||
,

where dt � pdp2� dq2q
1
2 . It is immediate to see that x equals the time τ it takes the solution

ppptq, qptqq to go along the y-level set from one point to another (see [GdlLM21]). This
coordinate system py, xq constructed above is not defined in a neighborhood of the separatrix
that contains the hyperbolic equilibrium point, since this is a critical point of the energy
function. We define this coordinate system only in some neighborhood N of a segment of the
separatrix containing pp0, q0q. On this neighborhood, we have dy ^ dx � dp^ dq. Relative to
this new coordinate system, the separatrix is given by y � 0.

An arbitrary point on the separatrix can be given in terms of the pp, qq-coordinates as
pp0pτq, q0pτqq for some τ P R, and in terms of the py, xq-coordinates as p0, xq for some x P R,
where x � τ .

Now let’s extend this coordinate system to a system of coordinates py, x, I, θ, sq on some
neighborhood Ñ of tpp0pτq, q0pτq, I, θ, squ in the extended phase space.

Relative to this coordinate system, in the unperturbed case, the stable/unstable manifolds
W spΛ̃0q �W upΛ̃0q are locally given by y � 0. A point z̃0 PW spΛ̃0q �W upΛ̃0q can be written
in terms of the original coordinates pp, q, I, θ, sq as

z̃0 � pp0pτq, q0pτq, I, θ, sq, for some τ P R,

and in terms of the extended coordinates py, x, I, θ, sq as

z̃0 � p0, x, I, θ, sq, for x � τ P R.

When we apply the flow to the point z̃0 we obtain

Φ̃t
0pz̃0q � pp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq.

Observe that if we denote by z̃�0 :� pp, q, I, θ, sq � p0, 0, I, θ, sq, we have Φ̃t
0pz̃

�
0 q �

p0, 0, I, θ � ωpIqt, s� tq, therefore:

Φ̃t
0pz̃0q � Φ̃t

0pz̃
�
0 q Ñ 0, as tÑ �8.

In the perturbed case, for ε � 0 small and λ � ρε, we can locally describe both the
stable and unstable manifolds of Λ̃ε as graphs of C

ℓ�1-smooth functions ysε, y
u
ε , over px, I, θ, sq,

recalling that x � τ , given by

ysε �y
s
εpx, I, θ, s; ρq � ysεpτ, I, θ, s; ρq,

yuε �y
u
ε px, I, θ, s; ρq � yuε pτ, I, θ, s; ρq,

respectively, for p0, x, I, θ, sq P Ñ . We stress the dependence of ρ of these functions because
will be important in the sequel.
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Observe that, when ε � 0 we have the equation of the separatrix of the pendulum

ys0pτ, I, θ, s; ρq � yu0 pτ, I, θ, s; ρq � 0.

Consequently yuε , y
s
ε � Opεq.

We recall the following Melnikov-type result for non-conservative perturbations:

Theorem 6.1 (Splitting of the Stable and Unstable Manifolds [GdlLM21]).
Fix ρ0 ¡ 0, then there exists ε0 ¡ 0 such that for any 0 ¤ ρ ¤ ρ0 and 0 ¤ |ε| ¤ ε0 we have:
for p0, τ, I, θ, sq P Ñ , the difference between ysεpτ, I, θ, s; ρq and yuε pτ, I, θ, s; ρq is given by

ysε � yuε �� ε

» �8

�8
ppX 1h1qpΦ̃

t
0pz̃0qq � pX 1h1qpΦ̃

t
0pz̃

�
0 qqqdt�Opε2q,

where we recall that h1pp, qq �
p2

2 � pcos q � 1q and X 1 is given in (5.10).

Corollary 6.2 (Sufficient Conditions for the Existence of a Transverse Homoclinic Intersection).
Fix ρ0 ¡ 0, then there exists ε0 ¡ 0 such that for any 0 ¤ ρ ¤ ρ0 and |ε| ¤ ε0 we have: for
p0, τ, I, θ, sq P Ñ , the difference between ysεpτ, I, θ, s; ρq and yuε pτ, I, θ, s; ρq is given by

ysε � yuε �� ε

�» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt

�ρ

» �8

�8
p20ptqdt

�
�Opε2q,

(6.4)

where t�, �u denotes the Poisson bracket.
If τ� � τ�pI, θ, sq is a non-degenerate zero of the mapping

τ P R ÞÑ �

» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt(6.5)

then there exists 0   ρ1 ¤ ρ0 such that for all 0 ¤ ρ ¤ ρ1

τ P R ÞÑ �

�» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt

�ρ

» �8

�8
p20ptqdt

�(6.6)

has a non degenerate zero τ�pI, θ, s; ρq.
Moreover, there exists 0   ε1 ¤ ε0 such that for all 0 ¤ ρ ¤ ρ1 and 0   |ε| ¤ ε1, W

spΛ̃εq and
W upΛ̃εq have a transverse homoclinic intersection which can be parametrized as

(6.7) pτ�, ysεpτ
�, I, θ, s; ρq, I, θ, sq � pτ�, yuε pτ

�, I, θ, s; ρq, I, θ, sq,

where τ� � τ�pI, θ, s; ρ, εq � τ�pI, θ, s; ρq � Opεq � τ�pI, θ, sq � Opρ, εq, for pI, θ, sq in some
open set in Ũ � R� T1 � T1.
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Proof. From Theorem 6.1, we have

ysε � yuε �� ε

» �8

�8
ppX 1h1qpΦ̃

t
0pz̃0qq � pX 1h1qpΦ̃

t
0pz̃

�
0 qqqdt�Opε2q.

As λ � ερ, the vector field X 1 (see (5.10)) is the sum of the Hamiltonian vector field J∇H1

and the dissipative vector field

Xρpp, q, I, θq � p�ρp, 0,�ρpI � ω�q, 0q,

therefore

ysε � yuε �� ε

» �8

�8

�
pJ∇H1 � Xρqh1pΦ̃

t
0pz̃0qq � pJ∇H1 � Xρqh1pΦ̃

t
0pz̃

�
0 qq

�
dt�Opε2q

� � ε

� » �8

�8
pJ∇H1h1qpΦ̃

t
0pz̃0qq � pJ∇H1h1qpΦ̃

t
0pz̃

�
0 qqdt

�

» �8

�8
pXρh1qpΦ̃

t
0pz̃0qq � pXρh1qpΦ̃

t
0pz̃

�
0 qqdt

�
�Opε2q

:�� εpF1 � F2q �Opε2q.

In the above,

F1 :�

» �8

�8
pJ∇H1h1qpΦ̃

t
0pz̃0qq � pJ∇H1h1qpΦ̃

t
0pz̃

�
0 qqdt

�

» �8

�8
th1, H1upΦ̃

t
0pz̃0qq � th1, H1upΦ̃

t
0pz̃

�
0 qqdt,

�

» �8

�8

�
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

� th1, H1up0, 0, I, θ � ωpIq, s� tq



dt

F2 :�

» �8

�8
pXρh1qpΦ̃

t
0pz̃0qq � pXρh1qpΦ̃

t
0pz̃

�
0 qqdt

�ρ

» �8

�8
pXω�h1qpΦ̃

t
0pz̃0qq � pXω�h1qpΦ̃

t
0pz̃

�
0 qqdt

where we denote Xω� � p�p, 0,�pI�ω�q, 0q. Since Xω�h1 � �pBh1
Bp � �p2, and recalling that

Φ̃t
0pz̃0q � pp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s � tq and Φ̃t

0pz̃
�
0 q � p0, 0, I, θ � ωpIqt, s � tq, we

obtain

F2 �� ρ

» �8

�8
p20pΦ̃

t
0pz̃0qqdt � �ρ

» �8

�8
p20pτ � tqdt
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Finally,

ysε � yuε �� ε

» �8

�8

�
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

� th1, H1up0, 0, I, θ � ωpIq, s� tq



dt

� ερ

» �8

�8
p20pτ � tqdt�Opε2q.

Note that th1, H1u � � sin q BH1
Bp � pBH1

Bq hence th1, H1up0, 0, I, θ � ωpIq, s� tq � 0. Also note

that by the change of variable formula
³�8
�8 p20pτ � tqdt �

³�8
�8 p20ptqdt. Thus, we obtain the

first part of Corollary 6.2.
The second part of Corollary 6.2 is as follows. First, if τ� � τ�pI, θ, sq is a non-degenerate

zero of the mapping (6.5), there exists 0   ρ1 ¤ ρ0 such that the function:

τ P R ÞÑ �

�» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt� ρ

» �8

�8
p20ptqdt

�

also has a non-degenerate zero τ�pI, θ, s; ρq � τ�pI, θ, sq �Opρq for any 0 ¤ ρ ¤ ρ1.
Now, we apply the implicit function theorem to find the zeroes of the function:

τ Ñ ysεpτ, I, θ, s; ρq � yuε pτ, I, θ, s; ρq,

obtaining a value 0   ε̃1pρq ¤ ε0, such that, for any 0   ε ¤ ε̃1, this map has a non-degenerate
zero τ�pI, θ, s; ρ, εq � τ�pI, θ, s; ρq �Opεq � τ�pI, θ, sq �Opρ, εq. An important observation is
that ε̃1p0q � 0, therefore we set ε1 � minr0,ρ1s ε̃1pρq ¡ 0. In this way, arguing as in [DLS06], the

stable and unstable manifolds W spΛ̃εq and W upΛ̃εq have a transverse homoclinic intersection
which can be parametrized as in (6.7).

Provided that the unperturbed stable and unstable manifolds of the NHIM coincide,
adding a generic Hamiltonian perturbation makes the stable and unstable manifolds to inter-
sect transversally; see, e.g., [GdlL18]. However, non-conservative perturbations can in general
destroy the homoclinic intersection; this is for example the case of the dissipative pendulum
shown in Fig. 2b. In contrast, the Corollary 6.2 shows that for the system (3.8), where the
dissipation is of the same order as the forcing, that is λ � ερ, the perturbed stable and unsta-
ble manifolds intersect transversally for all sufficiently small perturbation parameter values ρ.
Later, in Section 8, we will be interested in taking ρ � ρpεq � ρ̄

logp 1
ε
q , but, clearly, for ε small

enough, these values of ρ satisfy the hypotheses of Corollary 6.2. The result is summarized in
next corollary.

Corollary 6.3 (Existence of Transverse Intersection in the Model). Take any ρ̄ ¡ 0. Consider
the perturbation H1 given by (3.10) or (3.11) and the dissipative pertubation as in (3.7) with
λ � ε ρ̄

logp 1
ε
q . Then there exists ε0 sufficiently small such that for all 0   |ε|   ε0, W

spΛ̃εq and

W upΛ̃εq have a transverse homoclinic intersection Γ̃ε which can be parametrized as in (6.7).

Proof. The proof follows by the fact that in this case ρ � ρ̄

logp 1
ε
q satisfies the conditions of

Corollary 6.2 if ε is small enough.
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7. Computation of the scattering map for the perturbed system.

7.1. The scattering map. We give a brief description of the scattering map, following
[DdlLS08]. Consider the general case of a normally hyperbolic invariant manifold Λ for a flow
Φt on some smooth manifold M . Let W spΛq, W upΛq be the stable and unstable manifolds of
Λ. First, let

Ω� : W spΛq Ñ Λ,

Ω� : W upΛq Ñ Λ,

be the canonical projections along fibers, assigning to each point x P W spΛq its stable foot
point x� � Ω�pxq, uniquely defined by x P W spx�q, and, similarly, assigning to x P W upΛq
its unstable footpoint x� � Ω�pxq uniquely defined by x PW upx�q.

Second, choose and fix a ‘homoclinic channel’, which is a homoclinic manifold Γ inW upΛqX
W spΛq that satisfies the following strong transversality conditions:

TxΓ �TxW
spΛq X TxW

upΛq,

TxM �TxΓ` TxW
upx�q ` TxW

spx�q,

for all x P Γ, and such that

Ω�
|Γ : ΓÑ Ω�pΓq is a diffeomorphism.

Then, the scattering map associated to the homoclinic channel Γ is the mapping σ :
Ω�pΓq Ñ Ω�pΓq defined by

σ � Ω� � pΩ�q�1.

The map σ is a locally defined diffeomorphism on Λ. Moreover, σ is symplectic provided
that M , Λ, Φt are symplectic.

Remark 7.1. We have σpx�q � x� if and only if

(7.1) dpΦ�T�pxq,Φ�T�px�qq Ñ 0, and dpΦT�pxq,ΦT�px�qq Ñ 0

as T�, T� Ñ �8, respectively, for some uniquely defined x P Γ. This means that for orbits in
Λ of the form x1end � ΦT� �σ �ΦT�px1startq, where x1start � Φ�T�px�q and x1end � ΦT�px�q, one
can find homoclinic orbit segments in M of the form xend � ΦT��T�pxstartq, such that xstart
is arbitrarily close to x1start and xend is arbitrarily close to x1end. See Fig. 4.

7.2. The scattering map of the perturbed system. Assuming that the conditions in
Corollary 6.2 are satisfied, then W spΛ̃εq and W upΛ̃εq intersect transversally in the homoclinic
channel Γ̃ε, which can be parametrized as in Corollary 6.2, for all 0   |ε|   ε1. Let z̃ε P Γ̃ε

be a homoclinic point for the perturbed extended flow Φ̃t
ε. In terms of the coordinates from

Section 6, we have

z̃ε � pτ�pI, θ, s; ρ, εq, ysεpτ
�pI, θ, s; ρ, εq, I, θ, s; ρq, I, θ, sq

where τ�pI, θ, s; ρ, εq � τ�pI, θ, s; ρq � Opεq and τ�pI, θ, s; ρq � τ�pI, θ, sq � Opεq is a non-
degenerate zero of the mapping (6.6) near τ�pI, θ, sq, a chosen non-degenerate zero of the
mapping (6.5).
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x+

Wu(x-) Ws(x+)

Λε
x-

x

 φ-T(x-)

  x’start=φ-T-(x-) x’end=φT+(x+)

xend
xstart x-

Figure 4. Homoclinic orbit segment approximating an orbit obtained by applying the scattering map and
the inner map.

Because of the smooth dependence of the NHIM and of its stable and unstable manifolds
on the perturbation parameter, to the homoclinic point z̃ε � pzε, sq for perturbed flow Φ̃t

ε it
corresponds a homoclinic point z̃0 � pz0, sq for the unperturbed flow Φ̃t

0, which is Opεq-close
to z̃ε. In fact, going back to the original coordinates, the point z̃ε becomes:

z̃ε � pp0pτ
�pI, θ, s; ρ, εqq, q0pτ�pI, θ, s; ρ, εqq, I, θ, sq �Opεq

� pp0pτ
�pI, θ, s; ρqq, q0pτ�pI, θ, s; ρqq, I, θ, sq �Opεq

� z̃0 �Opεq, where

z̃0 � pp0pτ
�pI, θ, s; ρqq, q0pτ�pI, θ, s; ρqq, I, θ, sq

(7.2)

Note that in the above the Opεq-error only affects the p, q components.
We denote the stable- and unstable-footpoints of z̃ε and of z̃0 by z̃�ε and z̃�0 , respectively.

Recall that we already know that z̃�0 � p0, 0, I, θ, sq. Summarizing the notation:

 z̃ε P Γ̃ε �W spΛ̃εq&W upΛ̃εq;

 z̃�ε � Ω�pz̃εq P Λ̃ε;

 z̃0 P Γ̃0 �W spΛ̃0q&W upΛ̃0q;

 z̃�0 � Ω�pz̃0q P Λ̃0;

Under the above assumptions, we have σ̃εpz̃
�
ε q � z̃�ε , and σ̃0pz̃

�
0 q � z̃�0 . We recall that,

in our model, for the unperturbed system, z̃�0 � z̃�0 � z̃�0 and therefore the scattering map is
the identity: σ̃0 �Id.

The perturbed scattering map σ̃ε can be expanded in terms of powers of ε, with the zero-th
order term being the unperturbed scattering map σ̃0, as follows

σ̃εpI, θ, sq �σ̃0pI, θ, sq � εSpI, θ, sq �Opε2q

�pI, θ, sq � εSpI, θ, sq �Opε2q,

where S � pSI ,Sθ, Idsq.
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In the sequel, we evaluate the components SI and Sθ in order to compute the change
in action I and the change in angle θ by the scattering map. We follow the approach in
[GdlLM21, GdlLM22].

7.3. Change in Action by the Scattering Map. We use the following result:

Theorem 7.2 (Change in Action by the Scattering Map [GdlLM21]). For a general non-
conservative perturbation X 1 of (3.1) like in (5.9), the change in action I by the scattering
map σ̃ε is given by:

I
�
z̃�ε
�
� I

�
z̃�ε
�
�ε

» �8

�8

�
X 1IpΦ̃t

0pz̃0qq � X 1IpΦ̃t
0pz̃

�
0 qq

	
dt

�O
�
ε2
�
,

(7.3)

where z̃ε and z̃0 are given in (7.2), and we denote I0 � Ipz̃0q � Ipz̃�0 q.

Denote I pz̃�ε q � I�ε . Applying Theorem 7.2 in the case of (5.10):

X 1 �J∇H1 � p�ρp, 0,�ρpI � ω�q, 0q
�J∇H1 � Xρ

we obtain

I�ε � I�ε �ε

» 8

�8

�
pJ∇H1 � XρqIpΦ̃

t
0pz̃0qq � pJ∇H1 � XρqIpΦ̃

t
0pz̃

�
0 qq



dt�Opε2q

�ε

» 8

�8

�
pJ∇H1IqpΦ̃

t
0pz̃0qq � pJ∇H1IqpΦ̃

t
0pz̃

�
0 qq



dt

� ε

» 8

�8

�
XρIpΦ̃

t
0pz̃0qq � XρIpΦ̃

t
0pz̃

�
0 qq



dt�Opε2q

�εpSI
1 � SI

2 q �Opε2q

where

SI
1 :�

» 8

�8

�
tI,H1uppΦ̃

t
0pz̃0qq � tI,H1upΦ̃

t
0pz̃

�
0 qq



dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq ,

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq dt

SI
2 �

» 8

�8

�
XρIpΦ̃

t
0pz̃0qq � XρIpΦ̃

t
0pz̃

�
0 qq



dt,

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).
Since XρI � �ρpI �ω�q, Φ̃t

0pz̃0q � pp0pτ
�� tq, q0pτ

�� tq, I, θ�ωpIqt, s� tq and Φ̃t
0pz̃

�
0 q �

p0, 0, I, θ � ωpIqt, s� tq, we have

SI
2 :�

» 8

�8

�
� ρIpΦ̃t

0pz̃0qq � ρIpΦ̃t
0pz̃

�
0 qq



dt � 0.

Thus, we have proved the following result:
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Corollary 7.3. For the perturbation X 1 � J∇H1 � Xρ,

I�ε � I�ε �ε

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq dt�Opε2q

(7.4)

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).
In the case when H1 is as in (3.10) or (3.11), tI,H1u � �BH1

Bθ � a10fpqq sin θ, where
fpqq � cos q � 1 or fpqq � cos q, so

I�ε � I�ε �εa10

» 8

�8
pcospq0pτ

� � tqq � 1q sinpθ � ωpIqtqdt�Opε2q.(7.5)

7.4. Change in Angle by the Scattering Map. We use the following result:

Theorem 7.4 (Change in Angle by the Scattering Map [GdlLM21]). For a general non-
conservative perturbation X 1 of (3.1) like in (5.9), the change in angle θ by the scattering
map σ̃ε is given by:

θpz̃�ε q � θpz̃�ε q �ε
» �8

�8
X 1θpΦ̃t

0pz̃0qq � X 1θpΦ̃t
0pz̃

�
0 qqdt

� ε

» �8

�8
pX 1IpΦ̃t

0pz̃0qq � X 1IpΦ̃t
0pz̃

�
0 qqqtdt �

�
B2h0
BI2

pI0q



�Opε2q,

(7.6)

where z̃ε and z̃0 are given in (7.2), and we denote I0 � Ipz̃0q � Ipz̃�0 q.

Denote θ pz̃�ε q � θ�ε . Applying Theorem 7.4 in the case of (5.10), i.e., X 1 � J∇H1 � Xρ

we obtain

θ�ε � θ�ε �ε

» 8

�8

�
pJ∇H1 � XρqθpΦ̃

t
0pz̃0qq � pJ∇H1 � XρqθpΦ̃

t
0pz̃

�
0 qq



dt

� ε

» 8

�8

�
pJ∇H1 � XρqIpΦ̃

t
0pz̃0qq

�pJ∇H1 � XρqIpΦ̃
t
0pz̃

�
0 qq

	
tdt �

�
B2h0
BI2

pIq



�Opε2q

(7.7)

We simplify the first integral above by splitting into two integrals:

ε

� » 8

�8

�
pJ∇H1θqpΦ̃

t
0pz̃0qq � pJ∇H1θqpΦ̃

t
0pz̃

�
0 qq



dt

�

» 8

�8

�
XρθpΦ̃

t
0pz̃0qq � XρθpΦ̃

t
0pz̃

�
0 qq



dt

�
� εpSθ

1 � Sθ
2q,
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where

Sθ
1 :�

» 8

�8

�
tθ,H1upΦ̃

t
0pz̃0q � tθ,H1upΦ̃

t
0pz̃

�
0 qq



dt

�

» 8

�8

�
tθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

� tθ,H1up0, 0, I, θ � ωpIqt, s� tq



dt,

Sθ
2 �

» 8

�8

�
XρθpΦ̃

t
0pz̃0qq � XρθpΦ̃

t
0pz̃

�
0 qq



dt,

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).
Since Xρθ � 0 we obtain Sθ

2 � 0.
The second integral in (7.7) can be simplified as we did in Section 7.3 to analyze the

change in actions, and thus, combining both parts of (7.7) proves the following result:

Corollary 7.5. For the perturbation X 1 � J∇H1 � Xρ given in (5.9),

θ�ε � θ�ε �ε

» 8

�8

�
tθ,H1upΦ̃

t
0pz̃0qq � tθ,H1upΦ̃

t
0pz̃

�
0 qq



dt

� ε

» 8

�8

�
tI,H1upΦ̃

t
0pz̃0qq � tI,H1upΦ̃

t
0pz̃

�
0 qq



tdt �

�
B2h0
BI2

pIq



�Opε2q

� ε

» 8

�8

�
tθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

� tθ,H1up0, 0, I, θ � ωpIqt, s� tq



dt

� ε

» 8

�8

�
tI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

� tI,H1up0, 0, I, θ � ωpIqt, s� tq



t dt �

�
B2h0
BI2

pI0q



�Opε2q,

(7.8)

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).

In the case when h0pIq �
I2

2 and H1 is as in (3.10) or (3.11), we have B2h0
BI2 � 1, tθ,H1u �

0, and tI,H1u � �BH1
Bθ � a10fpqq sin θ, where fpqq � cos q � 1 or fpqq � cos q, so

θ�ε � θ�ε �� εa10

» 8

�8

�
cospq0pτ

� � tq � 1q sinpθ � ωpIqtq



t dt�Opε2q.(7.9)

Remark 7.6. We remark that both components SI , Sθ of the vector field generating the
scattering map up to Opε2q only depends on the dissipation Xλ and, therefore, on the param-
eter ρ, through the value τ� � τ�pI, θ, s; ρq. In fact, in the next section we will see that the
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vector field generating the scattering map is a Hamiltonian vector field in the variables pI, θq
up to Opε2q, even though the system (3.8) is not symplectic but conformally symplectic. We
will show that the scattering map is symplectic in the variables pI, θq up to Opε2q. Moreover,
in the case when H1 is as in (3.10) or (3.11), we will provide an explicit formula for the
Hamiltonian vector field that generates the scattering map up to Opε2q.

7.5. Symplecticity of the scattering map up to Opε2q. In the case that the perturbation
is Hamiltonian (which in our case corresponds to ρ � 0), it was proven in [DdlLS08] that the
scattering map is symplectic and is given by

(7.10) σ̃εpI, θ, sq � σ̃0pI, θ, sq � ε

�
BL�

Bθ
pI, θ, sq,�

BL�

BI
pI, θ, sq, s



�Opε2q

for some function (Melnikov potential) L� which depends on the effect of the Hamiltonian
perturbation on the homoclinic orbits of the unperturbed system. More precisely, let

LpI, θ, sq � �

» �8

�8
pH1pp0ptq, q0ptq, I, θ � ωpIqt, s� tq

�H1p0, 0, I, θ � ωpIqt, s� tqq dt

(7.11)

where ωpIq � Bh0
BI pIq. Let τ

� � τ�pI, θ, sq be a non-degenerate critical point of the function

τ ÞÑ LpI, θ � ωpIqτ, s� τq

Then the function L� referred to in (7.10) is defined by

(7.12) L�pI, θ, sq � LpI, θ � ωpIqτ�, s� τ�q.

An auxiliary function that will be referred to later is the reduced Melnikov potential defined
by

(7.13) L�pI, θ̄q � L�pI, θ̄, 0q for θ̄ � θ � ωpIqs.

In our case the perturbation is not Hamiltonian, but we will see that, nevertheless, the scat-
tering map is symplectic up to Opε2q, and is given by

SI �
BL�

ρ

Bθ

Sθ ��
BL�

ρ

BI
,

(7.14)

for some function L�
ρ that depends on the effect of the Hamiltonian perturbation on the

homoclinic orbits of the unperturbed system and also on the dissipation. Our computation is
similar to [DdlLS08].
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Proposition 7.7. The vector field S generating the scattering map σ̃ε up to Opε2q is of the
form

(7.15) SpI, θ, sq �
�
�J∇pI,θqL�

ρpI, θ, sq, s
�

for the function L�
ρ : V � Λ̃0 Ñ R defined below. Let

LpI, θ, sq � �

» �8

�8
pH1pp0ptq, q0ptq, I, θ � ωpIqt, s� tq

�H1p0, 0, I, θ � ωpIqt, s� tqq dt

(7.16)

where ωpIq � Bh0
BI pIq.

Let

(7.17) A �

» �8

�8
p20ptqdt.

Let τ� � τ�pI, θ, s; ρq be a non-degenerate critical point of the function

τ ÞÑ LpI, θ � ωpIqτ, s� τq � ρps� τqA.

Let L� be defined by

L�pI, θ, sq � LpI, θ � ωpIqτ�, s� τ�q.

Then the function L�
ρ is defined by

L�
ρpI, θ, sq � L�pI, θ, sq � ρps� τ�qA.

Proof. We claim that

SI �
BL�

ρ

Bθ
�
BL�

Bθ
� ρ

Bτ�

Bθ
A

Sθ ��
BL�

ρ

BI
� �

BL�

BI
� ρ

Bτ�

BI
A.

(7.18)

The first observation is that the non-degenerate zeroes of the function (6.6) are the non-
degenerate critical points of the function

(7.19) τ P R ÞÑ LpI, θ � ωpIqτ, s� τq � ρps� τqA,

where L is given by (7.16) and A is given by (7.17). To see this, first note that by a change
of variables t� τ ÞÑ t, we can express LpI, θ � ωpIqτ, s� τq as

LpI, θ � ωpIqτ, s� τq � �

» �8

�8
pH1pp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

�H1p0, 0, I, θ � ωpIqt, s� tqq dt

(7.20)
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Differentiating (7.19) with respect to τ we obtain

» �8

�8
pth1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

�th1, H1up0, 0, I, θ � ωpIqt, s� tqq dt� ρA,

so the non-degenerate zeroes of this function are the non-degenerate critical points of (7.19).
If τ� � τ�pI, θ, s; ρq is a non-degenerate critical point of the function (7.19), then by the chain
rule it follows that

0 �
d

dτ
rLpI, θ � ωpIqτ, s� τq � ρps� τqAs|τ�τ�

��
BL
Bθ
pI, θ � ωpIqτ�, s� τ�qωpIq �

BL
Bs
pI, θ � ωpIqτ�, s� τ�q � ρA.

(7.21)

To compute
BL�

ρ

Bθ � B
Bθ pL

�pI, θ, sq � ρps� τ�qAq in (7.14) we use the chain rule and (7.21)
to obtain

BL�
ρ

Bθ
�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q

�
1� ωpIq

Bτ�

Bθ




�
BL
Bs
pI, θ � ωpIqτ�, s� τ�q

�
�
Bτ�

Bθ



� ρ

Bτ�

Bθ
A

�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q.

(7.22)

Applying the latter formula to (7.16), using BH1
Bθ � �tI,H1u, and making the change of

variable t� τ� ÞÑ t we obtain

BL�
ρ

Bθ
�

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq dt.

(7.23)

This integral is the same as the integral (7.4) that appears in the formula for the change of
action by the scattering map up to Opε2q. Therefore, we conclude that:

I�ε � I�ε � ε
BL�

Bθ
pI, θ, sq �Opε2q

To compute �
BL�

ρ

BI � � B
BI pL

�pI, θ, sq � ρps � τ�qAq in (7.14), we use the chain rule and
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(7.21) to obtain

�
BL�

ρ

BI
��

BL
BI
pI, θ � ωpIqτ�, s� τ�q

�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q

�
�
Bω

BI
τ� � ωpIq

Bτ�

BI




�
BL
Bs
pI, θ � ωpIqτ�, s� τ�q

�
�
Bτ�

BI




� ρ
Bτ�

BI
A

��
BL
BI
pI, θ � ωpIqτ�, s� τ�q

�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q

Bω

BI
τ�.

(7.24)

We express the two terms in (7.24) as integrals

�
BL
BI
pI, θ � ωpIqτ�, s� τ�q �

» �8

�8
ptθ,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tθ,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

�

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq
�
Bω

BI
pIqt



dt

(7.25)

BL
Bθ
pI, θ � ωpIqτ�, s� τ�q �

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

(7.26)

Above we used that BH1
Bθ � �tI,H1u and

BH1
BI � tθ,H1u.

Combining (7.25) and (7.26) in (7.24) we obtain

�
BL�

ρ

BI
pI, θ, sq �

» �8

�8
ptθ,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tθ,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

�

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq
�
Bω

BI
pIqpt� τ�q



dt

(7.27)
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Making the change of variable t� τ� ÞÑ t and writing Bω
BI pIq �

B2h0
BI2 pIq we obtain

�
BL�

BI
pI, θ, sq �

» �8

�8
ptθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tθ,H1up0, 0, I, θ � ωpIqt, s� tqq dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq

�
B2h0
BI2

pIqt



dt

(7.28)

Since the integrals in (7.28) are computed in terms of the effect of the perturbation on orbits
of the unperturbed system, we have that I in is constant and equal to I � Ipz̃0q � Ipz̃�0 q, and
therefore

�
B2h0
BI2 pIq

	
can be taken outside of the second integral obtaining:

�
BL�

ρ

BI
pI, θ, sq �

» �8

�8
ptθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tθ,H1up0, 0, I, θ � ωpIqt, s� tqq dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq tdt �

�
B2h0
BI2

pIq



(7.29)

This integral is the same as the integral (7.8) that appears in the formula for the change of
angle by the scattering map.

Therefore, we conclude that:

θ�ε � θ�ε � �ε
BL�

ρ

BI
pI, θ, sq �Opε2q

Consider the mapping

L�
ρpI, θ, sq � LpI, θ � ωpIqτ�, s� τ�q � ρps� τ�qA.

for τ� � τ�pI, θ, s; ρq. Since τ� is a critical point for

τ ÞÑ LpI, θ � ωpIqτ, s� τq � ρps� τqA,

then for every t1 P R, τ� � t1 is a critical point for

τ ÞÑ LpI, θ � ωpIqpτ � t1q, s� pτ � t1qq � ρps� pτ � t1qqA.

Then, denoting Z � pI, θ, s; ρq and Z 1 � pI, θ � ωpIqt1, s� t1; ρq, we have

τ�pZ 1q � τ�pZq � t1.
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Therefore

L�
ρpI, θ � ωpIqt1, s� t1q �LpI, θ � ωpIqpτ�pZ 1q � t1q, s� pτ�pZ 1q � t1qq

� ρps� pτ�pZ 1q � t1qA
�LpI, θ � ωpIqpτ�pZq � t1 � t1q, s� pτ�pZq � t1 � t1qq
� ρps� pτ�pZq � t1 � t1qqA

�L�
ρpI, θ, sq.

(7.30)

Making t1 � s in (7.30) we obtain

L�
ρpI, θ, sq � L�

ρpI, θ � ωpIqs, 0q.

This says that, while the function L�
ρ nominally depends on three variables pI, θ, sq, in fact it

depends on the variable I and the linear combination θ � ωpIqs, and is therefore a function
of two independent variables I and θ̄ � θ � ωpIqs. Thus, we define the reduced Melnikov
potential by:

(7.31) L�
ρpI, θ̄q � L�

ρpI, θ̄, 0q � LpI, θ̄ � ωpIqτ�,�τ�q � ρτ�A, for θ̄ � θ � ωpIqs.

The reduced Melnikov potential allows to compute the scattering map associated to the
time-2π map associated to a surface of section ts � s�u; more precisely, the trajectories of
the scattering map are given by the ε-time of the Hamiltonian �L�

ρ up to order Opε2q, as we
shall see below.

7.6. Growth of action by the scattering map. We reduce the dynamics of the flow Φ̃t
ε

to the dynamics of the Poincaré first return map to the surface of section

Σ � tpp, q, I, θ, sq |s � s�u

for some choice of s� P T1.
The NHIM Λ̃ε for Φ̃t

ε in the extend phase space yields the NHIM Λε for fε in Σ. In
particular Λε is invariant under fε.

The scattering map σ̃ε, which is defined on the domain Ũ � Λ̃ε, yields a scattering map
σε defined on the following domain in Λε � Λ0:

U � tpI, θ̄q | pI, θ, s�q P Ũ for θ � θ̄ � ωpIqs�u,

The scattering map σε is given in the variables pI, θ̄q by (see [DS18]):

(7.32) σεpI, θ̄q � σ0pI, θ̄q � εJ∇L�
ρpI, θ̄q �Opε2q,

where σ0 � Id. In particular, the scattering map σε is symplectic up to Opε2q.
By Theorem 3.11 in [GdlLMS20], whenever J∇L�

ρpz0q � 0 for some point z0 P Λ0, there
exists a Op1q-family of solutions γzptq of the differential equation

9z � �J∇L�
ρpzq
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for z in a Op1q-neighborhood of z0 P U � Λ0, and t in some interval rT1pzq, T2pzqs � R
depending on z, such that for each path γz, there is an orbit of the scattering map σε that
follows closely that path.

If, in addition, we have that SIpz0q �
BL�

ρ

Bθ̄ pz0q ¡ 0, then the family of paths γz can be
chosen so that the corresponding orbits of the scattering map σε along γz have the property
that I increases by Opεq for each application of σε.

Consequently, letting z0 � pI0, θ0q there exist θ1   θ0   θ2, I1   I0   I2, and a ‘strip’ of
the form

(7.33) S � tγzptq | z � pI0, θq | θ P rθ1, θ2s, t P rT1pzq, T2pzqsu � U

with γzpT1pzqq � I1 and γzpT2pzqq � I2, such that the following properties hold: There exist
c ¡ 0, such that for every δ � Opεq ¡ 0 and every path γzptq contained in S, there exists an
orbit pznqn�0,...,N of σε and 0 � t0   t1   . . .   tN � T with ti � εi for all i, such that

zi�1 � σεpziq,

Ipzi�1q � Ipziq ¡ cε, for i � 0, . . . , N � 1,

dpzi, γzptiqq   δ, for i � 0, . . . , N.

(7.34)

7.7. Scattering map in the case of vanishing and non-vanishing perturbation. For both
the vanishing and non-vanishing perturbations:

H1pp, q, I, θ, sq �pcospqq � 1qpa00 � a10 cospθq � a01 cospsqq

H1pp, q, I, θ, sq � cospqqpa00 � a10 cospθq � a01 cospsqq

we have the same expression for the Melnikov potential

LpI, θ, sq � �

» �8

�8
pcospq0ptqq � 1qpa00 � a10 cospθ � Itq � a01 cosps� tqqdt

��

» �8

�8
pcosparctan e2tq � 1qpa00 � a10 cospθ � Itq � a01 cosps� tqqdt.

(7.35)

Above we have used the parametrization (3.4) of the separatrix. Since
p20
2 �pcos q0ptq�1q � 0,

in the above integral we can alternatively write cospq0ptqq � 1 � �
p20
2 � � 2

cosh2ptq . It turns out
that (see [DG00, DS17])

LpI, θ, sq �A00 �A10pIq cospθq �A01pIq cospsq, where

A00 �4a00, A10 �
2πIa10

sinhpπI2 q
, A01 �

2πa01
sinhpπ2 q

.
(7.36)

In [DS17] the reduced Melnikov function L� defined by (7.13), which corresponds to the
Hamiltonian perturbation only, is computed explicitly. The level curves of L� are shown in
Fig. 5. One can find explicitly regions of size Op1q in Λε where BL�

Bθ̄ pI, θ̄q ¡ c1 ¡ 0, for some
c1 ¡ 0.
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Figure 5. Level sets of L�. (Credit A. Delshams and R. Schaefer)

In our case, when the system is also subject to the dissipative perturbation Xλ, the reduced
Melnikov potential L�

ρ , given by (7.31), is Opρq-close to the reduced Melnikov potential L�

corresponding to the Hamiltonian perturbation. This implies that, for ρ sufficiently small,

there exists a region of Op1q in Λε where
BL�

ρ

Bθ̄ pI, θ̄q ¡ c2 ¡ 0, for some 0   c2   c1. In the case

when ρ � ρ̄
logp1{εq , it follows that there exists ε2 ¡ 0 such that, for all 0   ε   ε2, we have that

BL�
ρ

Bθ̄ pI, θ̄q ¡ c2 ¡ 0 on the aforementioned region. This region can be used to define a strip S
as in (7.33), where the scattering map increases the action I by cε at each step, as in (7.34),
for some 0   c   c2.

8. Proof of Theorem 4.1.

8.1. The case of vanishing perturbation. Choose ω� such that I1   ω�   I2, where I1,
I2 are as in Section 7.6. There is an invariant circle Aε � tI � ω�u in Λε, as defined in Section
5.7, which is a global attractor for fε on Λε. The circle Aε is a NHIM for fε restricted to Λε,
and has only stable manifold W s

Λε
pAεq which is the whole manifold Λε. W s

Λε
pAεq is foliated

by stable leaves

W s
Λε
pAεq �

¤
yPAε

W s
Λε
pyq with y � pω�, θq P Aε.

From (5.16) we have that each stable leaf is a slanted line

W s
Λε
pω�, θ0q �

"
pI, θpIqq P Λε | θpIq � θ0 �

1

λ
pI � ω�q

*

Since 1
λ " 1, the slope of these lines (as a function of θ) is �λ, so the stable leaves are nearly

horizontal lines. See Fig. 6.
For z P W s

Λε
pyq, by the equivariance property of the stable fibers we have fk

ε pzq P

W s
Λε
pfk

ε pyqq, for all k ¡ 0. Given some initial point pI0, θ0q, let fk
ε pI0, θ0q � pIk, θkq. From
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S

Ws(A )

A�

�

Figure 6. The attractor Aε inside the NHIM Λε

(5.15), we deduce

θk �θ0 �
1

λ
pI0 � ω�qp1� . . .� e�2πpk�1qλqp1� e�2πλq � 2πkω�

�θ0 �
1

λ
pI0 � ω�qp1� e�2πkλq � 2πkω�

�θ0 � pI0 � ω�q2πk � 2πkω� �Opk2λq

�θ0 � 2πkI0p1�Opkλqq.

(8.1)

Recall that λ � ερpεq � ε ρ̄

logp 1
ε
q , hence the relative error term in (8.1) is Opk ρ̄ε

logp 1
ε
qq, so k

iterations of the inner map change the angle coordinate by approximately 2πkI0 pmod2πq
provided that k ρ̄ε

logp 1
ε
q ! 1.

Consider the strip S defined in (7.33), where the scattering map is increasing I by Opεq
at each step. Provided that |I1 � I2| is suitably small (but independent of ε), there exists
kmax ¡ 0 such that, whenever z P S we have fk

ε pzq P S for some k ¤ kmax. That is, each point
z in the strip returns to the strip in a maximum of kmax iterates. This implies that for a time
T � T0 logp1{εq, with ε ¡ 0 small, each point z in the strip returns to the strip for at least

tT0 logp1{εq
kmax

u times.
One easily obtains from (5.15):

Ik � pI0 � ω�qe�2πkλ � ω�.

Consequently, if z � pI0, θ0q PW s
Λε
pyq, y � pω�, θq P Aε, is a point at a dI -distance d0 ¤ dmax

from y, where dmax � maxt|I1 � ω�|, |I2 � ω�|u, then fk
ε pzq P W s

Λε
pfk

ε pyqq is at a dI -distance
at most

d0 � e
�2πλk � d0 � e

�2π ε
logp1{εq

ρ̄k

from Aε after k-iterates. For points with initial I0 above ω� the I-coordinate decreases at
each iterate, and for points with initial I below ω� the I-coordinate increases at each iterate.
Therefore the loss in I after k-iterates, for points with initial I0 ¡ ω�, is

I0 � Ik � d0 � p1� e�2πλkq � d0 � p1� e
�2π ε

logp1{εq
ρ̄k
q.

Hence the maximum loss in the action coordinate I of a point z after k iterates, where
2πk ¤ T0 logp1{εq, is

dmax � p1� e�ερ̄T0q.
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On the other hand, for each z P S we can apply a scattering map σε to z. The effect of
the scattering map is an increase in the action coordinate I by Opεq. We recall that there
exists c ¡ 0 such that

Ipσεpzqq � Ipzq ¡ cε, for all z P S.

Thus, starting with a point z P S, applying the scattering map σε to z, and then applying
the inner map pfεq|Λε

for k iterates with 2πk ¤ T0 logp1{εq, until pfεq
kpσεpzqq P S, we obtain

a net growth in I that is at least

cε� dmax � p1� e�ερ̄T0q.

We want that the net growth is at least cε{2, that is

cε� dmax � p1� e�ερ̄T0q ¡
cε

2
.

This is equivalent to

e�ερ̄T0 ¡ 1�
cε

2dmax
.

Taking the logarithm of both sides we obtain

T0  
log

�
1� cε

2dmax

	
�ερ̄

.

By L’Hopital rule

lim
εÑ0

log
�
1� cε

2dmax

	
�ερ̄

�
c

2dmaxρ̄
.

This means that, in order to be able to achieve a growth in I of at least cε{2 per step, for all
ε sufficiently small, we need to choose ρ̄ small enough so that

(8.2) ρ̄  
c

2dmaxT0
.

With these choices, we obtain orbits of the iterated function system (IFS) generated by

tfε, σεu of the form zn�1 � f
kpnq
ε � σεpznq with kpnq � Oplogp1{εqq, such that I increases by

cε{2 from zn to zn�1. In Op1ε log
�
1
ε

�
q steps, such orbits increase I by Op1q. In Section 8.3 we

use these orbits of the IFS to produce diffusing pseudo-orbits as claimed as in Theorem 4.1.

Remark 8.1. When a point z P Λε is of action coordinate I0   ω� below that of the
attractor Aε, applying the inner dynamics pfεqΛε to z moves the point towards the attractor,
and hence increases I. Thus, the effect of the inner dynamics and the effect of the scattering
map concur towards increasing I. The situation reverses when the action coordinate of z is
above that of the attractor, in which case the effect of the scattering map is opposed to the
effect of the inner dynamics.
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Figure 7. The inner dynamics without dissipation.

8.2. The case of non-vanishing perturbation. The evolution of the I- and θ-variables
under the inner dynamics on Λ̃ε is given by:

(8.3)

#
9Iλptq � �λpIλptq � ω�q � εa10 sin θλptq
9θλptq � Iλptq.

Denote the general solution of the system (8.3) by zλptq � pIλptq, θλptqq.
Setting λ � 0 yields:

(8.4)

#
9I0ptq � εa10 sin θ0ptq
9θ0ptq � I0ptq,

with general solution denoted z0ptq � pI0ptq, θ0ptqq; see Fig. 7. Note that (8.4) is a Hamiltonian
system with Hamiltonian (energy function)

(8.5) KpI, θq �
I2

2
� εa10pcos θ � 1q.

The solutions pI0ptq, θ0ptqq of the system (8.4) satisfy

KpI0ptq, θ0ptqq � KpI0p0q, θ0p0qq

therefore, the application of the inner dynamics does not change the level sets tK � const.u
in the case λ � 0. On the other hand, the variable I may change by up to Opε1{2q by one
application of the inner dynamics (8.4). At the same time, the change in I by one application
of the scattering map is Opεq ! Opε1{2q. Therefore, instead of comparing the effects on the
action I by the scattering map and by the inner dynamics, as in Section 8.1, in this case we
want to compare the effects on the energy K by the scattering map and by the inner dynamics.
The next lemma gives the change in the energy K that we obtain after one application of the
scattering map:
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Lemma 8.2. Let z̃�ε � σεpz̃
�
ε q, where z̃�ε � pI�ε , θ�ε , sq and z̃�ε � pI�ε , θ�ε , sq. Then:

Kpz̃�ε q �Kpz̃�ε q � I0pI
�
ε � I�ε q �Opε2q

� εI0
BL�

ρ

Bθ
pI, θ, sq �Opε2q

� εa10I0

» 8

�8
pcospq0pτ

� � tqq � 1q sinpθ � ωpIqtqdt�Opε2q,

(8.6)

where I0 � Ipz̃0q.

Proof. The proof of this lemma is a similar computation to the ones done to compute the
change in actions of the scattering map. In fact, using the formulas for the change in actions
and angles, Corollaries 7.3 and 7.5, particularly that I�ε � I�ε � Opεq and θ�ε � θ�ε � Opεq, we
have:

Kpz̃�ε q �Kpz̃�ε q �
pI�ε q2

2
�
pI�ε q2

2
� εa10

�
cos θ�ε � cos θ�ε

�
�
pI�ε � I�ε q

2
pI�ε � I�ε q � εa10

�
cos θ�ε � cos θ�ε

�
� pI0 �OpεqqpI�ε � I�ε q �Opε2q

� I0pI
�
ε � I�ε q �Opε2q.

(8.7)

Applying Proposition 7.7 yields the desired result.

The next lemma compares the actions and angles of solutions of systems (8.3) and (8.4).

Lemma 8.3. Let pIλptq, θλptqq a solution of system (8.3) with initial condition pI0, θ0q and
pI0ptq, θ0ptqq the solution of system (8.4) with the same initial condition. Then, there exists
d1 ¡ dmax ¡ 0 such that, for |ε| small enough, and for 0 ¤ t ¤ T0 log

�
1
ε

�
we have:

|Iλptq � I0ptq| ¤ d1p1� e�λtq

|θλptq � θ0ptq| ¤ d1λ
t2

2
.

(8.8)

Proof. Calling
uptq � Iλptq � I0ptq, αptq � θλptq � θ0ptq,

one can easily see that:

9u � λpI0ptq � ω� � uq � εa10 psinpθ0ptq � αq � sin θ0ptqq

9α � u.
(8.9)

Therefore:

uptq �

» t

0
e�λpt�sq rλpI0psq � ω�q � εa10 psinpθ0psq � αpsqq � sin θ0psqqs ds

αptq �

» t

0
upsqds.

(8.10)

For the first equation in (8.10) we have used the method of variation of constants.
We will bound u in four steps:
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1. First we will use the first equation of (8.10) to obtain a weak bound for u;
2. Second, we will use the obtained bound on u in the second equation of (8.10) to obtain a

bound for α;
3. Third, we will use the obtained bound on α in the first equation of (8.10) to obtain a sharper

bound for u;
4. Finally, using the sharper bound on u in the second equation of (8.10) to obtain a new bound

for α.
We will use that the solution I0ptq is a bounded function, in fact |I0ptq � ω�| ¤ dmax, where
we recall dmax � maxt|I1 � ω�|, |I2 � ω�|u. From the first equation of (8.10) we obtain:

|uptq| ¤

» t

0
e�λpt�sq pλdmax � 2εa10q ds

¤
�
dmax � 2

ε

λ
a10

	
p1� e�λtq.

(8.11)

Using this bound in the second equation of (8.10) and that 0 ¤ 1� e�λt ¤ λt, we obtain:

|αptq| ¤

» t

0

�
dmax � 2

ε

λ
a10

	
λs ds

�
�
dmax � 2

ε

λ
a10

	
λ
t2

2
.

(8.12)

Finally, we will use the obtained bound on α, and the fact that | sinpθ0ptq�αq�sin θ0ptq| ¤ |α|
in the first equation of (8.10) to obtain:

|uptq| ¤ dmaxp1� e�λtq � εa10

» t

0
e�λpt�sq|αpsq|ds

¤ dmaxp1� e�λtq � εa10

�
dmax � 2

ε

λ
a10

	 λt2

2

» t

0
e�λpt�sqds

¤

�
dmax � εa10

�
dmax � 2

ε

λ
a10

	 t2

2

�
p1� e�λtq.

(8.13)

Observe that, as 0 ¤ t ¤ T � T0 log
�
1
ε

�
, and λ � ε ρ̄

logp 1εq
we have that:

εa10

�
dmax � 2

ε

λ
a10

	 t2

2
¤ ε log2

�
1

ε


�
a10dmax

T 2
0

2



� ε log3

�
1

ε


�
a210
ρ̄

T 2
0




which is arbitrarily small if ε is small (indeed, ε logp
�
1
ε

�
! εν for p ¡ 0 and ν P p0, 1q).

Therefore there exist d1 ¡ dmax such that:

(8.14) |uptq| ¤ d1p1� e�λtq

and consequently we have:

|Iλptq � I0ptq| ¤ d1p1� e�λtq
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for 0 ¤ t ¤ T0 log
�
1
ε

�
. Note that d1 can be chosen arbitrarily close to dmax provided that ε is

small enough.
Using this new bound in the second equation of (8.10) and that 0 ¤ 1� e�λt ¤ λt, we obtain:

|θλptq � θ0ptq| ¤ d1λ
t2

2
.(8.15)

The next lemma estimates the change in the energy K by the inner dynamics over time
intervals of order O

�
log

�
1
ε

��
.

Lemma 8.4. There exists d2 ¡ 0, such that for |ε| small enough, and for 0 ¤ t ¤ T0 log
�
1
ε

�
we have:

(8.16) |Kpzλptqq �Kpz0ptqq| ¤ d2p1� e�λtq.

Proof. From (8.5) and Lemma 8.3 we obtain

|Kpzλptqq �Kpz0ptqq| �
���1
2
pI2λptq � I20 ptqq � εa10pcospθλptqq � cospθ0ptqqq

���
¤
���1
2
pIλptq � I0ptqqpIλptq � I0ptqq

���� εa10|θλptq � θ0ptq|

¤
���1
2
pIλptq � I0ptqqp2I0ptq � pIλptq � I0ptqqq

���� εa10|θλptq � θ0ptq|

¤
1

2
d1p1� e�λtq

�
2pdmax � ω�q � d1p1� e�λtq

	
� εa10d

1λ
t2

2

¤ d1pdmax � ω�qp1� e�λtq �
pd1q2

2
p1� e�λtq2 � εa10d

1λ
t2

2
.

(8.17)

Taking into account that λ � ερ̄

logp ε
2q
, for |ε| sufficiently small we have

p1� e�λtq2 ¤ p1� e�λtq,

ελ
t2

2
¤ p1� e�λtq,

for 0 ¤ t ¤ T0 log p
1

ε
q.

Therefore, using (8.17) we conclude that there exists d2 ¡ d1, such that

|Kpzλptqq �Kpz0ptqq| ¤ d2p1� e�λtq.

We note that d2 can be chosen arbitrarily close to d1pdmax � ω�q � 1
2pd

1q2 provided that |ε| is
sufficiently small.

We now continue with the proof of Theorem 4.1. By Lemma 8.2, given that 0   I1   I2,
the effect of the scattering map is an increase in the energy K by Opεq. Let S be a strip as in
(7.33) and c ¡ 0 such that

Kpσεpzqq �Kpzq ¡ cε, for all z P S.
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From Lemma 8.4, the maximum loss in K by the inner flow over a time 0 ¤ t ¤ T0 log
�
1
ε

�
is

d2p1� e�ερ̄T0q.

Switching from the flow to the time-2π map, it follows that the maximum loss in K by the
inner map after k iterates of fε, with 2πk ¤ T0 logp1{εq, is also

d2p1� e�ερ̄T0q.

Note that the level sets of K are Opε1{2q-close to level sets of I. Therefore we can choose
0   I1   I2 such that the growth in K by repeated applications of the scattering map
corresponds to a change in I from below I1 to above I2. Provided that |I1 � I2| is suitably
small, there exists kmax such that whenever z P S we have fk

0 pzq P S for some k ¤ kmax. By
Lemma 8.8, for 0 ¤ t ¤ T0 logp1{εq,

|θλptq � θ0ptq|   d1λ
t2

2
¤ d1ε log

�
1

ε



ρ̄T 2

0

2
,

so, for ε sufficiently small, θλptq is Opε
νq-close to θ0ptq, for some ν P p0, 1q. This implies that

each point z in the strip returns to the strip in a maximum of kmax iterates of fε. Thus,
starting with a point z P S, applying the scattering map σε to z, and then applying the inner
map pfεq|Λε

for k times, where 2πk ¤ T0 logp1{εq, until pfεq
kpσεpzqq P S, we obtain a net

growth in K that is at least
cε� d2p1� e�ερ̄T0q.

We require that this net growth in K is at least cε{2, that is

cε� d2p1� e�ερ̄T0q ¡
c

2
ε.

Similarly to the proof in Section 8.1, in order to be able to achieve a growth in K of at least
cε{2 per step, for all ε sufficiently small, we need to choose ρ̄ small enough so that

ρ̄  
c

2d2T0
.

We obtain orbits of the iterated function system (IFS) generated by tfε, σεu, of the form

zn�1 � f
kpnq
ε �σεpznq with kpnq � Oplogp1{εqq, such that K increases by cε{2 from zn to zn�1.

In Op1ε log
�
1
ε

�
q steps, such orbits increase K, as well as I, by Op1q. By our choice of I1, I2,

these orbits go from below I1 to above I2. In Section 8.3 we use these orbits of the IFS to
produce diffusing pseudo-orbits as claimed in Theorem 4.1.

8.3. Existence of diffusing pseudo-orbits. In Sections 8.1 and 8.2 we obtained diffusing
orbits of the iterated function system (IFS) generated by tfε, σεu consisting of orbit segments

of the form zn�1 � f
kpnq
ε � σεpznq in Λε, n � 1, . . . ,m � 1, where kpnq � Oplogp1{εqq and

m � Op1{εq, such that Ipz0q   I1 and Ipzmq ¡ I2. We can rearrange these orbits into orbit
segments of the form xi�1 � fmi �σε �f

nipxiq, with mi, ni � Oplogp1{εqq, for i � 0, . . . ,m�1,
such that Ipx0q   I1 and Ipxmq ¡ I2. Each such orbit segment can be approximated up to
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Opεq by a true orbit of the Poincaré map of the form yiend � fkipyistartq, ki � Oplogp1{εqq,
with dpyiend, y

i�1
startq   Opεq; see Remark 7.1. The diffusion time is Op1ε logp

1
ε qq. Finally, each

such orbit of fε gives rise to an orbit segment ziptq, t P rti, ti�1s, of the flow, satisfying the
requirements of Theorem 4.1.
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