Arnold diffusion in a model of dissipative system *
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Abstract. For a mechanical system consisting of a rotator and a pendulum coupled via a small, time-periodic
Hamiltonian perturbation, the Arnold diffusion problem asserts the existence of ‘diffusing orbits’
along which the energy of the rotator grows by an amount independent of the size of the coupling
parameter, for all sufficiently small values of the coupling parameter. There is a vast literature on
establishing Arnold diffusion for such systems. In this work, we consider the case when an additional,
dissipative perturbation is added to the rotator-pendulum system with coupling. Therefore, the
system obtained is not symplectic but conformally symplectic. We provide explicit conditions on
the dissipation parameter, so that the resulting system still exhibits energy growth. The fact that
Arnold diffusion may play a role in systems with small dissipation was conjectured by Chirikov. In
this work, the coupling is carefully chosen, however the mechanism we present can be adapted to
general couplings and we will deal with the general case in future work.

1. Introduction. The Arnold diffusion problem [Arn64] broadly refers to a universal mech-
anism of instability for multi-dimensional Hamiltonian systems that are small perturbations of
integrable ones. Through this mechanism, chaotic transfers of energy take place between sub-
systems of a given Hamiltonian system, which, in particular, can lead to significant growth of
energy of one of the subsystems over time. Chirikov [Chi79] conjectured that Arnold diffusion
may play a role in systems with small dissipation as well.

Studying Hamiltonian systems with small dissipation is important for applications, as
many real-life physical systems experience some energy loss over time.

A significant class of examples is furnished by Celestial Mechanics, on the motion of celes-
tial bodies under mutual gravity. As the gravitational force is conservative, such systems are
usually modeled as Hamiltonian systems. Nevertheless dissipative forces are present in real-
world systems, including tidal forces, Stokes drag, Poynting-Robertson effect, Yarkowski/Y-
ORP effects, atmospheric drag, and their effect may accumulate in the long run. While some
of these effects may be negligible over relatively short time scales, others, for instance Earth’s
atmospheric drag on artificial satellites, can have significant effects over practical time scales.
See, e.g. [MNF87, Cel07, RR17].

Another class of examples is given by energy harvesting devices. Some of these devices
consist of systems of oscillating beams made of piezoelectric materials, where on the one
hand there is dissipation due to mechanical friction, and on the other hand there is external
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forcing, owed to the movement of the device, that triggers the beams to oscillate. See, e.g.
[MH79, EHI09, Gral7].

Of course, there are many other examples. In this paper we consider a simple model of a
mechanical system, consisting of a rotator and a pendulum with a small, periodic coupling,
subject to a small dissipative perturbation. Coupled rotator-pendulum systems are funda-
mental models in the study of Arnold diffusion in Hamiltonian systems. Adding a dissipative
perturbation results in a system that is non-Hamiltonian. The symplectic structure changes
into a conformally symplectic one [Ban02]. We show that such a system exhibits Arnold diffu-
sion, in the sense that there exist pseudo-orbits for which the energy of the rotator subsystem
grows by some quantity that is independent of the smallness parameter. (By a pseudo-orbit
here we mean a sequence of orbit segments of the flow such that the endpoint of each orbit
segment is ‘close’ to the starting point of the next orbit segment in the sequence.) We note
that for the unperturbed rotator-pendulum system, the energy of the rotator subsystem is
conserved. The small, periodic coupling added to the system makes the rotator undergo small
oscillations in energy, while the dissipative perturbation typically yields a loss in energy. The
physical significance of our result is that, despite the dissipation effects, it is possible to overall
gain a significant amount of energy over time.

Specifically, the unperturbed rotator-pendulum system is given by a Hamiltonian of the
form

HO(pa Q717 9) = hO(I) + hl(p7 q)>

with z = (p,q,1,0) € R x T' x R x T!, where hq(I) represents the Hamiltonian of the rotator,
and hy represents the Hamiltonian of the pendulum, and T! = R/27Z. The perturbed system
is of the form

(1.1) 2= JV,Hy(z) +eJV Hi(z,t) + X»(2),

where Hj(z,t) is a Hamiltonian that is 27-periodic in time ¢, ¢ > 0 is the size of the coupling,
X)\(z) is a dissipative vector field depending on some dissipation parameter A = \(¢) > 0, and

JZ({)2 t%) Wherngz((l) _01>

Technical conditions on hg, hi, H, X\ will be given in Section 3. Under those conditions,
the phase space of the perturbed system has a 3-dimensional Normally Hyperbolic Invariant
Manifold (NHIM from now on), which contains a 2-dimensional invariant torus that is an
attractor for the dynamics in the NHIM. This torus creates a ‘barrier’ for the existence of
diffusing orbits by using only the ‘inner dynamics’ (i.e., the dynamics restricted to the NHIM).
The main question is whether there are diffusing orbits crossing this ‘barrier’ by combining
the ‘inner dynamics’ with the ‘outer dynamics’ (i.e., the dynamics along homoclinic orbits to
the NHIM).

We show that there exist C' > 0 and ¢ > 0 such that, for all 0 < |¢| < €, there exists a
pseudo-orbit z(t), t € [0,T], of (1.1), such that

I(T) — I(0) > C for some T > 0.
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More technical details will be given in Theorem 4.1. In order for the above result to be
of practical interest, the above solution z(¢) should be chosen such that at the beginning
(1(0),6(0)) is below (relative to I) the aforementioned attractor, and at the end (I(T"),0(T))
is above the aforementioned attractor. Indeed, it is possible to increase I by starting below the
attractor and moving towards the attractor under the effect of the dissipation alone; obviously,
such a solution is not of practical interest.

2. Conservative vs. dissipative systems. Arnold’s conjecture on Hamiltonian instability
originated with an example of a rotator-pendulum system with a small, time-periodic Hamil-
tonian coupling of special type [Arn64]. In his example, in the absence of the coupling, the
phase space of the rotator forms a normally hyperbolic invariant manifold (NHIM) foliated
by ‘whiskered’, rotational tori, which have stable and unstable invariant manifolds that co-
incide. The coupling in Arnold’s example was specially chosen so that it vanishes on the
family of invariant tori, and so the tori are preserved. These tori constitute ‘barriers’ for
the existence of diffusing orbits, since orbits in the NHIM always move along these tori and
thus cannot increase their action variable. At the same time the coupling splits the stable
and unstable manifolds, so that the unstable manifold of each torus intersects transversally
the stable manifolds of nearby tori. Thus, one can form ‘transition chains’ of tori, and show
that, by interspersing the ‘outer dynamics’ along the homoclinic orbits to the NHIM with the
‘inner dynamics’ along the tori, one can obtain ‘diffusing’ orbits along which the energy of
the rotator exhibits a significant growth. Arnold conjectured that this mechanism of diffusion
occurs in close to integrable general systems.

However, in the case of a general coupling not all of the invariant tori in the NHIM are
preserved. The KAM theorem yields a Cantor set of tori that survive from the unperturbed
case, with gaps in between. The splitting of the stable and unstable manifold makes the
unstable manifold of each torus intersect transversally the stable manifolds of sufficiently
close tori, however the size of the splitting is in general smaller than the size of the gaps
between tori. This is known as the ‘large gap problem’. It was overcome, for instance, by
forming transition chains that, besides rotational tori, also include ‘secondary’ tori created
by the perturbation [DdILS00, DLS06]. Other geometric mechanisms use transition chains
that include, besides rotational tori, Aubry-Mather sets [GR13]. Subsequently, [GdILMS20]
described a general mechanism of diffusion that relies mostly on the outer dynamics, and
uses only the Poincaré recurrence of the inner dynamics (which is automatically satisfied in
Hamiltonian systems over regions of bounded measure).

The references mentioned above encompass geometric ideas that we can adapt to the
dissipative case. However, there are many other geometric mechanisms that have been used
in the Arnold diffusion problem, such as those in [CG94, BT99, DAILS00, Tre02, Tre04,
DdILS06a, DAILS06b, Pif06, GT08, DH09, Trel2, GdIL17, GT17a, GM22]. A variational
program for the Arnold diffusion was formulated in [Mat04, Mat12] for systems close to
integrable. Global variational methods for diffusion have been used in this setting for convex
Hamiltonians [CY09, KZ15, BKZ16, CX19, KZ20]. A hybrid program combining geometric
and variational methods was started in [BB02, BBB03].

The case of a rotator-pendulum system subject to a non-Hamiltonian perturbation (con-
sisting of time-periodic Hamiltonian coupling and a dissipative force) which we consider in this
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paper, has very different geometric features from the conservative case. The dissipation added
to the Hamiltonian system is a singular perturbation — the system with positive dissipation
leads to attractors inside the NHIM, which can contain at most one invariant torus. Poincaré
recurrence does not hold for dissipative systems. The stable and unstable manifolds of the
NHIM do not necessarily intersect. Therefore, the mechanism used for proving diffusion in
the Hamiltonian case does not carry over to the non-Hamiltonian case.

To provide some intuition, we illustrate on a couple of basic examples some possible effects
of dissipation on the geometry of Hamiltonian systems.

Example 2.1. The first example is the standard map.
The (conservative) standard map, which can be viewed as the time-one map of a non-
autonomous Hamiltonian system representing a ‘kicked rotator’, is given by

I' =I + esin(9),

(2.1) - .
0" =0 + I + esin(6),

where ¢ is the perturbative parameter, and I, are defined (mod 2x). This is a symplectic
twist map; the symplecticity condition being dI’ A df’ = dI A df and the twist condition being
%—911 # 0. When ¢ = 0 the resulting map is the time-one map of a rotator, and is given by

I' =1,

2.2
(22) 0" =0+ 1.

It is an integrable twist map, with all level sets of I being rotational invariant circles on which
the motion is a rigid rotation of frequency w(I) = I. For 0 < ¢ « 1, the KAM theorem asserts
that there is a positive measure set of invariant circles, of Diophantine frequencies, which
survive the perturbation. The measure of the set of the KAM circles tends to 1 as ¢ — 0. On
the other hand, when ¢ > 0 increases, fewer and fewer invariant circles survive, and eventually
only one invariant circle is left. The last rotational invariant circle for the standard map has
frequency w = #, which is the golden mean [Gre79]. See Fig. la.
The dissipative standard map is defined as

I' =(1 = M1 + p + esin(6),

2.3
(2:3) 0 =0+ (1 — NI + pu + esin(d),

where A is the dissipative parameter, 0 < A < 1, and p is the drift parameter; A\ = 0
corresponds to no dissipation. The map is no longer symplectic, but conformally symplectic,
that is dI' A d8' = (1 — \)dI A df, and still satisfies a twist condition.

When ¢ = 0, the resulting map

I'=1-MI+p,

2.4
(24) 0 =0+ (1 — NI+ pu,

has a single rotational invariant circle I = % of frequency w, := §. The KAM theorem

for conformally symplectic systems asserts that for each 0 < & « 1 there is one rotational
invariant circle, of Diophantine frequency, that survives the perturbation, and that circle is a
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local attractor for the system (see, e.g. [CC09, CCdIL13b, CCDIL13a, CCdIL20]). In order
for the surviving circle to be of Diophantine frequency w,, we need to properly adjust the
drift parameter pu. See Fig. 1b and Fig. 1lc.

We can rewrite the dissipative standard map in terms of a frequency parameter w, rather
than in terms of the drift parameter g = Aw, obtaining:

I' =1 — \(I — wy) +¢esin(8),

(2.5) 0 =0 + I — (I —ws) + esin(0).

In this case, by the persistence of normal hyperbolicity of the torus given by I = w,, as
0 < e « 1 is varied, there exists an invariant torus of frequency w = w(e) close to wy; not all
frequencies w yield KAM circles but only those w(e) which are Diophantine.

Ezample 2.2. The second example is the pendulum, given by the Hamiltonian

2

m(p,a) = 5 + (cos(a) ~ 1).

As it is well known, the pendulum has a hyperbolic fixed point whose stable and unstable
manifolds coincide (see Fig. 2a).
When dissipation is added to the pendulum

p=—Ap +sin(q),

q =p;

the origin is again a hyperbolic fix point with eigenvalues +4/1 + (%)2 — % Nevertheless, its

stable and unstable manifolds cease to intersect, for dissipative coefficient A\ > 0 (see Fig. 2b).
However, when both dissipation and periodic forcing are added to the pendulum,

p = — Ap +sin(q) + esin(t),

q. =D,
for certain parameter values A > 0 and € > 0, the time-27 map exhibits chaotic attractors in
the Poincaré section (see Fig. 2c).

These simple examples illustrate that adding dissipation to a Hamiltonian system typically
destroys — sometimes dramatically — some of the geometric structures — KAM tori, homoclinic
connections — that are relevant in Arnold’s mechanism of diffusion, and creates new geometric
structures — attractors — that act as barriers for diffusion. On the other hand, the addition of
forcing can compensate the effects of dissipation.

3. Model. The model that we consider is described by an integrable Hamiltonian system
subject to a time-dependent, Hamiltonian perturbation (or coupling), and to a second, non-
Hamiltonian, perturbation that is dissipative.

The unperturbed Hamiltonian corresponds to an uncoupled rotator-pendulum system and
is given by

1'2 p2
(31) HO(pvqalve) = ?4‘54‘(008(]—1),
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(a) Conservative standard map (b) Dissipative standard map with un-
adjusted drift
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Figure 1. The conservative and dissipative standard map

where (p,q,1,0) € R x T' x R x T!, which is endowed with the standard symplectic structure

w=dp Andqg+dl A db. ,
I

For the rotator part of the Hamiltonian, given by ho(I) = %, each level set I = constant is
invariant under the flow of hg, and the corresponding dynamics is a rigid rotation of frequency
ohg
3.2 I):=—=1.
(32) D) 1= O

The pendulum part of the Hamiltonian, is given by

(33) hl(p7 q) = p?2 + (COS(] - 1)7
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"

(a) Phase space of the conservative pen-(b) Phase space of the dissipative pendu-(c) Poincaré section for the pendu-
dulum lum lum subject to dissipation and periodic
forcing

Figure 2. The pendulum

it has a hyperbolic fixed point at (p,q) = (0,0) and an elliptic fixed point at (p,q) = (0, 7).
The stable and unstable manifolds of the hyperbolic fixed point (0,0) coincide, and can be
parametrized as

(3.4) (po(t),qo(t)) = <icos2ht,4arctan eit) :

Since the system Hq is uncoupled, I is a conserved quantity and so each hypersurface
{I = const.} constitutes a barrier for the dynamics of Hy: there are no trajectories along
which the variable I can change.

When we add the time-dependent, Hamiltonian perturbation, we have

(35) H&(p7q7[707t) = HO(pv q, I; 0) + EHl(pa quveat)a

where t € T!, meaning that the perturbation H; is 2m-periodic in time.
We will assume that Hj is of the form

(36) Hl(p7Q7I79at) = f(Q) -g(e,t).

The dissipative perturbation is given by a vector field X that is added to the Hamiltonian
vector field JVH. of H., where

(3.7) X\(p;q,1,0) = (=Ap, 0, =A(I — ws),0),

where A is the dissipation coefficient, and wy is a fixed Diophantine frequency. For the moment,
we will treat A as an independent parameter, but for most of the paper we will consider A\ of
the form A = ep, with p being a sufficiently small independent parameter. In our main result
Theorem 4.1 we will use A = ep(e) where 0 < p(e) = 2

p
log %
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The system of interest is
(3.8) z=JV,Ho(z) +eJV,Hi(z,t) + Xx(2), z=(p,q1,0).

We obtain the following equations:

p =sin(q) —ef'(q) - 9(0,t) — Ap,

q=np,
(3.9) f= M —w)—ef(a)-%(0,0),
6=1.

As we shall see, the dissipative perturbation yields the existence of attractors for the
dynamics restricted to the NHIM, that is, the dynamics in the (I, §)-variables. In particular,
we can have attractors that act as barriers on the NHIM, in the sense that they separate
the NHIM into topologically non-trivial connected components. As all trajectories within
the basin of attractors move towards the attractors, the action I will increase along some
trajectories and will decrease along some other trajectories, however there are no trajectories
within the NHIM that start on one side of the attractor and end on the other side.

Below, we will consider two concrete examples of Hamiltonian perturbations:

Vanishing perturbation: H; vanishes at (p,q) = (0,0)

f(q) = cos(q) — 1,

(3.10)
9(0,t) = ago + a1pcos b + ap; cost.

Non-vanishing perturbation: H; does not vanish at (p,q) = (0,0)

f(g) = cos(q),

(3.11)
9(0,t) = ago + a1pcos B + apy cost.

Above, agg, a1g, and agy are real numbers with ajgag; # 0.

Remark 3.1. The choice of the coupling of the form Hi(p,q,1,0,t) = f(q)g(f,t) has been
made in order to deal with a simple model. The fact that the function f satisfies f/(0) = 0
implies that the normally hyperbolic invariant manifold, which is exhibited by the unper-
turbed system, is not affected by the perturbation; see Section 5.4. We do not need to invoke
the theory of persistence of normally hyperbolic invariant manifolds under perturbation. The
function g(#,t) can be viewed as a truncation to the first two harmonics of the Fourier ex-
pansion of an analytic function. We will deal with the general case with infinitely many
harmonics, as well as with perturbations that do not preserve the NHIM, in future work.

Remark 3.2. We note that instead of (3.7) we can consider more general perturbations of
the form
(P ¢, 1,0) = (=A1p, 0, = Ao (I — wy),0),

for Ay = ep1; and Ao = 51022l with p1,p2 > 0. One will be able to see that the arguments

below also apply to this case and therefore, the main result, stated below, remains valid.
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4. Main result.

Theorem 4.1. Consider the Hamiltonian system (3.1) subject to the time-periodic Hamil-
tonian perturbation (3.10) or (3.11), and to the dissipative perturbation (3.7), with dissipation
coefficient A = ep(e) = 810;1) with p > 0 suitably small.

Then there exist 0 < I1 < .872 and €9 > 0 such that, for every w, Diophantine number with
0 <1 <ws < Iz, and every 0 < € < g, there exist pseudo-orbits z(t), t € [0, T], such that

I(z(0)) < I and I(2(T)) > Is.

Here by a pseudo-orbit z(t) we mean a finite collection of trajectories z(t), t € [t;,t;1] of
(3.8), for some times 0 =ty <t; < ... <ty =T, where m > 0, such that

I(2°(0)) < I and I(z™(T)) > I,
d(Z(tiz1), 2 (tis1)) < 6(e), fori=0,...,m—1,

for some §(e) = O(e) > 0.
The diffusion time along the pseudo-orbit z(t), t € [0,T], is T = O (% log(%)).

Above, we used the notation f = O(g) = Ogx(g) for a pair of functions f, g satisfying
Iflex < M|glcr for some M > 0, where || - |« is the C*-norm for some suitable k > 0.

We illustrate the phenomenon described by Theorem 4.1 in Fig. 3a, Fig. 3b, Fig. 3c,
Fig. 3d. In Fig. 3a, using the inner dynamics alone, orbits with I(0) < w, cannot pass beyond
the attractor shown in Fig. 3b. However, using both the inner and outer dynamics, there are
orbits with 7(0) < w, that end up with I(T") > ws, as shown in Fig. 3d. These orbits move
close to the separatix of the pendulum hi(q, p) = 0, as shown in Fig. 3c.

Theorem 4.1 gives us diffusing pseudo-orbits. Applying a Shadowing Lemma type of
results similar to those in [Zgl09, GT17b, GdILMS20, CG], we will be able to show that there
exist true orbits z(¢) of (1.1) such that I(z(0)) < I1 and I(2(T')) > I5. We leave the technical
details for a future work.

The above pseudo-orbits are such that the end-point of one is d(g)-close to the starting-
point of the next one, where §(¢) = O(g). We remark here that we can also obtain pseudo-
orbits with d(g) = O(eP), for any p > 1, with the same diffusion time order T = O (21log(2)).

In practical applications one can pass from pseudo-orbits to true orbits by applying small
controls; for example, in the case of artificial satellites perturbed by atmospheric drag, the
small controls can be satellite maneuvers.

Remark 4.2. In Theorem 4.1, the action levels I; and I> can be chosen explicitly, depend-
ing on the Hamiltonian perturbation (3.10) or (3.11) that is considered. See Section 7.7.

The condition on choosing w, a Diophantine number between I; and Is is not necessary
for the proof of the theorem; see Section 8.2. The reason for requiring this condition is to be
able to apply the KAM theorem for conformally symplectic systems [CCdIL20], which implies
the existence of a KAM torus that is an attractor for the inner dynamics, and hence represents
a barrier for the inner dynamics. In other words, we want to show that diffusing pseudo-orbits
exist even if there is a barrier inside the NHIM.

The choice of the dissipation coefficient A = 5@ is related to the time T, = O(log(2))
required for a point starting in an e-neighborhood of the NHIM to travel along a homoclinic
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(c) Outer dynamics (d) Combined inner and outer dynamics

Figure 3. Orbits of the rotator-pendulum system

orbit and arrive in an e-neighborhood of the NHIM. This choice of A implies that A-T}, = O(pe),
while the order of the change in action by the scattering map is O(g). By choosing a suitable
small enough constant p, we can ensure that, when the growth in I by the scattering map
competes with the decay in I by the dissipation, which is of order O(AT}) = O(pe), we will
make the former to win against the latter.

If we do not impose that the homoclinic orbits get e-close to the NHIM, then we can
choose a shorter time 7T}, along the homoclinic orbits and implicitly a larger A, as long as A-T},
is O(e); for example, we can choose T}, = O(1) and A = pe for some p > 0 suitably small.

5. Preliminaries.

5.1. Extended system. Since the perturbation H; is time-dependent, it is convenient to
consider time as an independent variable ¢ and to work in the extended phase space zZ =
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(p,q,1,0,8) e R x T x R x T! x T', adding the equation § = 1 to system (3.9) to obtain:

JV.Hy(z) +eJV Hi(z,s) + X\(2), z=(p,gql,0)

(5.1) X

We denote by @6 the unperturbed extended flow, and by &DE the perturbed extended flow.

5.2. Normally hyperbolic invariant manifolds. We briefly recall the notion of a normally
hyperbolic invariant manifold (NHIM) [Fen74, HPS77].

Let M be a ¢"-smooth manifold, ®* a ¢"-flow on M. A submanifold (with or without
boundary) A of M is a normally hyperbolic invariant manifold (NHIM) for ®? if it is invariant
under ®!, and there exists a splitting of the tangent bundle of TM into sub-bundles over A

(5.2) T.M =FE;®E.®T,\A, VzeA
that are invariant under D®! for all t € R, and there exist rates
A< AL <A <0< pe < pp— < iy

and a constant C' > 0, such that for all z € A we have

Ce || < |D®(2)(v)| < Ce™ |v| for all ¢ > 0, if and only if v € ES,
(5.3) Ce't+ ||| < |[DP(2)(v)]| < Ce™||v] for all ¢ < 0, if and only if v € EY,
Celt e o] < [ DD (2)(v)| < CellHe||v|| for all t € R, if and only if v € T,A.

It is known that A is @‘-differentiable, with ¢ < r — 1, provided that

E/-‘LC—}_)\J,* < 0,

(5.4)
e +p— > 0.

The manifold A has associated unstable and stable manifolds, denoted W*"(A) and W*(A),
which are tangent to E{ and E} respectively, and ¢~ differentiable. They are foliated by
1-dimensional unstable and stable manifolds (fibers) of points, W"(z), W*(z), z € A, respec-
tively, which are as smooth as the flow, i.e., €"-differentiable. These fibers are equivariant in
the sense that

(W (2))
o'(W*(2))

WH(2'(2)),
W(@'(2))-

5.3. The NHIM of the unperturbed system. We now describe the geometric structures
for the unperturbed system corresponding to e =0 and A = 0. Fix 0 < I} < Is.
The unperturbed system Hjy has a NHIM:

Ao = {(0,0,1,0)|I€[I,I5], e T}.

The flow restricted to Ag corresponds to the equations of the rotator subsystem:

(5.5) {g : ?
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Hence every level set I = const. is invariant under the flow. The stable and unstable manifolds
of the NHIM Ay coincide, that is

W5(Ag) = W' (Ao) = {(p, ¢, 1,0) | ha(p,q) = 0, [ € [I1, I2], 6 € T'}.

where h; is the Hamiltonian of the pendulum in (3.3). The contraction/expansion rates along
E® and E™ are F1, respectively. For the time-27 map, the corresponding contraction/expan-
sion rates are e™27.

In the extended phase space, we have that Ag=AgxTlisaN HIM, and

WS(Ao) = W(Ag) x TH = W¥(Ag) x T! = W' (Ag)

for system (5.1). .
Note that Ag is also the NHIM for the time-27 map fy of the extended flow ®f, which
represents the first-return map to the Poincaré section

2: {(p7Q7I7978)|S:0}'

5.4. The inner map of the unperturbed system. Now, let us consider the time-27 map
for the Hamiltonian flow of the rotator:
I=0,
0=1.

Solving, we have I(t) = Iy and 0(t) = 6y + Iot, which gives the time-27-map fo:
(5.6) fo(1,0) = (I',0') = (1,0 + 2x1I).
Note that fj satisfies the twist condition

00’
(5.7) o7 =2m>0.

5.5. The model with small dissipation. From now on we will work with small dissipation.
We will assume

(5.8) A =ep,

where p is a free parameter. Consequently, the vector field (3.8) can be written as
(5.9) 5= X%2) +eX(z,t;p)

with X9(2) = JVHy(z) is the unpertubed system (3.1), and

(5.10) Xz, t;p) = JVH1(2,1) + X,

with H; given in (3.6) and X, given in (3.7). Even when we use A in the notation, we always
assume that A\ = ep.
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5.6. The NHIM in the case of vanishing perturbation. In the case when the perturbation
Hj is of the form

Hl(p7q7I7973) = (COSQ— 1) '9(073)7

then Hj vanishes at (p,q) = (0,0). When eH; is added to Hp, the NHIM Ao persists as
A. = Ay for the perturbed system for € > 0, and the flow restricted to the NHIM is given by
(5.5). Consequently, each level set {I = constant} in the NHIM persists.

When we add the dissipation X, where A = £p, since the (p, q)- components of Xy vanish
at (p,q) = (0,0), then the NHIM survives for the perturbed system (3.8) as A, = Ao (if we
consider A as an independent parameter, then the perturbed NHIM in general depends on
both € and A). The induced dynamics on A. = Ay is given by

I=-\I—w,)
(5.11) =1
§=1

Note that [ =0 < [ = wy. It follows that
(5.12) A, = {(1,0,s), I =w,, (0,s)eT? c A,

is a 2-dimensional torus invariant under the flow restricted to A.. This is the only invariant
torus for the flow on A.. On A, we have § = I = w, and § = 1, so the flow along this level
set is a linear flow with frequency vector (wy, 1).

By integration of (5.11), we obtain the general solution with initial condition (o, 6o, so)
as:

I(t) = (1o — W*)eiAt + Wa,s

1

(5.13) 0(t) = 0o + 1 (T —wa)(1 - e + wt,
s(t) = sp + t.

Using these explicit formulas, one can see that given (wx, 6o, so) € A, if we consider (1,0, s) €
A, where s = sq, 0 = 6y — ,([ wy ), then

1

1/2
)\2> I —wy|e M- 0ast— o,

(5.14) H(I) (I 0, 80) P! (w*,eo,SO)H < (1 +

showing that A, is a global attractor for the flow on A.. (Above we also denoted by ®! the
flow restricted to Ac.)

5.7. The inner map in the case of vanishing perturbation. From the explicit solutions
of I(t) and 6(t) in (5.13) with ¢ = 27, we have that

(5.15) f-(1,6) = ((I —wa)e T w0+ %(I —we)(1— e 2™ 4 27rw*),
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which is the first-return map to the section A, = A, N {s = 0 (mod 2m)}.
In particular, for I = w, we have f.(I,0) = (w«, 0 + 27w,) = (I,0 + 27w,). That is,
A. = A. n {5 = 0(mod 27)} is an invariant circle for f. of irrational rotation number 27w,
From (5.14) we have that, for (I,6) with 6 = 6y — 3 (I — w.),

1\ /2
(5.16) | FE(1,0) = f5(ws, 60)]| < (1 + /\2> I —wy|e 2™ 5 0as k — .

This shows that A. is a global attractor for the map f. on A., and, moreover, the orbits of
(1,0) and (ws, 0y) become asymptotically close to one another as n — 0.
We have

—27TA
DfE(Ia 0) = (}\(16_ 67271’)\) (1)>

27X and 1 and with corresponding eigenvectors

—A 0
() = ()
respectively. The eigenvalue 1 is associated to the dynamics along the #-coordinate, and the

eigenvalue of e=2™ < 1 is associated to the dynamics along the I-coordinate.
We conclude that A. is a NHIM for (f:) s, for which there is only stable manifold W*(A.)

with eigenvalues e~

tangent to <_)\>, and no unstable manifold W"(A.). We note that for A = 0 (recall that

1
A = ep) the Lyapunov multipliers 1 and e 2™ < 1 for ( f<)|a.» are dominated by the contraction

rate of Df. on the stable bundle E® of A., which is e 279\ gee Section 5.3.
Since |det(Df.)| = e 2™ < 1 we have that f. is area-contracting on A., hence it is
conformally symplectic, i.e.

(5.17) (f)fa (wpa) = e w..

We now show that f. is a A-perturbation of fy, a time-27 map for the rotator part of the
unperturbed system given in (5.6). Since

e =1 — 27\ + O(\?),
we have
fo(I,0) = (I —27\(I — wy) + O(N?), 0 + 271 — 2m° AN — wy) + O(N?)) .
Therefore f. is a A-perturbation of fy in (5.6), i.e.

fE(Ia 9) :fO(Ia 0) + O()‘) = fO(I?e) + O(Ep)
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5.8. The case of non-vanishing perturbation. In this case the time-periodic perturbation
of the Hamiltonian in (3.5), is of the form

(518) Hl(p7q7[>978) :COSQ'Q(G,S).

The perturbation H; does not vanish at the hyperbolic fixed point of the pendulum (p,q) =
(0,0). The dissipative perturbation is given by the vector field eX,, where X, is given by
(3.7), as before (see (5.9) and (5.10)).

From (3.9), since f'(q) = —sin g vanishes at ¢ = 0, we obtain that the unperturbed NHIM
1~\0 survives the perturbation, that is /N\E = JNXO for all e.

When A # 0, the perturbed dynamics restricted to A. = Ag is given by the following
equations:

I=-X\I —wy) — 5%(9, s)
(5.19) =1

s=1.

Using the expression of g in (3.11), this system can be reduced to the second-order nonlinear
differential equation ) _
0+ M0 —cagsind — dw, = 0.

Ignoring the last term, the remaining terms represent the equation of the damped non-linear
pendulum, for which explicit solutions are unknown; an analytical approximation can be found
in [Joh14]. Hence, we do not have an explicit formula for the time-27 map f. in this case.

6. Existence of a Transverse Homoclinic Intersection. In the sequel, we will identify
vector fields with differential operators, which is a standard operation in differential geometry
(see, e.g., [BGO5]). That is, given a smooth vector field X and a smooth function f on the
manifold M, we denote:

of
(6.1) (XN)(z) = 2, (X)) 5~ (2),
j J
where z;, j € {1,...,dim(M)}, are local coordinates. Similarly, a smooth time-dependent and
parameter-dependent vector field acts as a differential operator by
of
(62) (Xf)(z 1) = YY) (ot 5 (2).
J

J

For the pendulum system, whose hamiltonian h; is given in (3.3), we denote by (po(t), go(t))

a parametrization of a separatrix of the pendulum, with (py(0), ¢o(0)) = (po, q0), where (po, qo)

is some initial point; this parametrization is explicitly given in (3.4). We define a new locally

defined system of symplectic coordinates (y,z) in a neighborhood of the separatrix — chosen

away from the hyperbolic equilibrium point — as follows. The coordinate y is chosen to be
equal to the energy of the pendulum, i.e.,

_v

(6.3) y=hi(p.q) = + (cos(q) = 1)
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and is defined in a whole neighborhood of one of its separatrices. The coordinate z is defined
by
dt

r=—0,
[Vyl|

where dt = (dp? + dqQ)% . It is immediate to see that x equals the time 7 it takes the solution
(p(t),q(t)) to go along the y-level set from one point to another (see [GAILM21]). This
coordinate system (y,x) constructed above is not defined in a neighborhood of the separatrix
that contains the hyperbolic equilibrium point, since this is a critical point of the energy
function. We define this coordinate system only in some neighborhood N of a segment of the
separatrix containing (po, go). On this neighborhood, we have dy A dz = dp A dgq. Relative to
this new coordinate system, the separatrix is given by y = 0.

An arbitrary point on the separatrix can be given in terms of the (p, ¢)-coordinates as
(po(7), qo(7)) for some 7 € R, and in terms of the (y, z)-coordinates as (0, z) for some x € R,
where z = 7.

Now let’s extend this coordinate system to a system of coordinates (y,z,I,6,s) on some
neighborhood N of {(po(7),q0(7),1,0,s)} in the extended phase space.

Relative to this coordinate system, in the unperturbed case, the stable/unstable manifolds
W3(Ag) = WY (Ag) are locally given by y = 0. A point Zg € W5(Ag) = W"(Ag) can be written
in terms of the original coordinates (p,q, 1,0, s) as

Zo = (po(7),qo0(7),1,0,s), for some 7 € R,
and in terms of the extended coordinates (y,z, 1,0, s) as
Z0=(0,2,1,0,s), forx =7€R.
When we apply the flow to the point Zy we obtain
®(20) = (po(T + 1), qo(T + 1), 1,0 + w(I)t,s + ).

Observe that if we denote by zf := (p,q,1,6,s) = (0,0,1,6,s), we have @6(2&”) =
(0,0,1,0 + w(I)t,s +t), therefore:

Dl (%) — ®L(37) - 0, as t— too.

In the perturbed case, for € # 0 small and A = pe, we can locally describe both the
stable and unstable manifolds of A. as graphs of C*~!-smooth functions y?, 3, over (z, 1,6, s),
recalling that x = 7, given by

y: =y (x,1,0,8,p) = y(7,1,0,s;p),
ye =y(x,1,0,s;p) = y2(r,1,0,s;p),

respectively, for (0,z,1,0,s) € N. We stress the dependence of p of these functions because
will be important in the sequel.
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Observe that, when € = 0 we have the equation of the separatrix of the pendulum

yo(7,1,60,s;p) = y5(1,1,0,s,p) =0.

Consequently y¥,y2 = O(e).
We recall the following Melnikov-type result for non-conservative perturbations:
Theorem 6.1 (Splitting of the Stable and Unstable Manifolds [GdILM21]).

Fiz pg > 0, then tl}ere exists €9 > 0 such that for any 0 < p < pp and 0 < |e| < g9 we have:
for (0,7,1,60,s) €N, the difference between y2(7,1,0,s;p) and y*(7,1,0,s;p) is given by

it == [ ) @)G0) — (R B )+ O

—0

where we recall that hi(p,q) = %2 + (cosq — 1) and X! is given in (5.10).

Corollary 6.2 (Sufficient Conditions for the Existence of a Transverse Homoclinic Intersection).
Fiz py > 0, then there exists £9 > 0 such that for any 0 < p < po and le| < eo we have: for
(0,7,1,0,s) € N, the difference between y(,1,0,s;p) and y*(7, 1,0, s;p) is given by

+o0
y; — ny =—c |:f {hl,Hl}(po(T + t),QQ(T + t),I,G +W(I)t,5 + t)dt
(6.4) -

[ se)t] + 0,

—Q0

where {-,-} denotes the Poisson bracket.
If * = 71%(1,6,s) is a non-degenerate zero of the mapping

+00

(6.5) reR — J (hey HO (po(r + ), a0(r + 1), 1,0 + (1), 5 + 1)dt
—00

then there exists 0 < p1 < po such that for all 0 < p < p1

TER > — U+oo{h1, Hi}(po(T +1t),q0(T +1),1,0 + w(l)t, s+ t)dt
(6.6) g
—pf p%(t)dt}

—0

has a non degenerate zero 7*(1,0, s; p). )
Moreover, there exists 0 < &1 < g9 such that for all 0 < p < p1 and 0 < |e] < &1, W¥(A;) and

W™ A:) have a transverse homoclinic intersection which can be parametrized as
(6.7) (%, y3(r*,1,0,s;p),1,0,8) = (1%, y2(7*,1,0,s;p),1,0,s),

where 7* = 7%(1,0,s;p,e) = 7(1,0,8;p) + O(e) = 7°(1,0,5) + O(p,¢), for (I,0,s) in some
open set in U € R x T! x Tt
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Proof. From Theorem 6.1, we have

Ye—ys = EJ+OO((?flhl)(‘i%(%o)) = (Xha)(@5(Z5)))dt + O(e?).

—Q0

As \ = ep, the vector field X! (see (5.10)) is the sum of the Hamiltonian vector field JV H;
and the dissipative vector field

Xp(p’Q7I’9) = (_ppvov _p(-[_w*)70)7

therefore

P Jm [(Jvm £ X (Bh(20)) — (JVH, + %)m@é(z&»}dt L0

—0Q0

. [ JM(JVHml)(éa(zo)) IV H @bt

w7 @ - <Xph1><<f>a<23>>dt} L0

—0

=—c(F1+ Fa) + 0(62).

In the above,
“+00 _ _
Fi :zf (JVH1hy)(®(20)) — (JVH b ) (®F(Z5))dt
— Q0

- +:{m,m}(ci%(zo)) (L@ ()t

= J+OO ({hl, Hi}(po(T +t),q0(T + 1), 1,0 + w(I)t,s + 1)

—0

- {hl,Hl}(0,0,I,9 +OJ(I),S +t)>dt

Foim [ () @40 — () @7 )t

—0

[ R @G0 — ()@ )l

—00

where we denote X,,, = (—p,0, —(/ —ws),0). Since X, h1 = —p%

) ! P
D (20) = (polT + 1), q0(7 + 1), 1,0 + w(I)t,s +t) and PH(ZF) = (0,0,1,0 + w(I)t,s +t), we
obtain

= —p?, and recalling that

+oo +00
Fa=—p J p3<¢6<zo>>dt=—pj P + t)dt

—0 —0
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Finally,

+00
ye -y = — EJ ({hl,Hl}(po(T +1t),qo(T + 1), 1,0 + w(I)t,s +t)

—Q0

— {hl,Hl}(0,0,I,Q +w(l),s +t)>dt

oo
+ EpJ Pa(T + t)dt + O(e?).
—0

Note that {h1, H1} = —sin ¢2 — p281 hence {hy, H1}(0,0,1,0 + w(I),s +t) = 0. Also note
op 0q

that by the change of variable formula S_ o (T + t)dt = S+£ p2(t)dt. Thus, we obtain the
first part of Corollary 6.2.

The second part of Corollary 6.2 is as follows. First, if 7% = 7*(1, 0, s) is a non-degenerate
zero of the mapping (6.5), there exists 0 < p; < pg such that the function:

+00 T
TeER - — U {h1, Hi}(po(T +t),qo(T + ), 1,0 + w(l)t, s + t)dt — pf
—o0

o]

also has a non-degenerate zero 7%(1,0,s;p) = 7*(1,0,s) + O(p) for any 0 < p < py.
Now, we apply the implicit function theorem to find the zeroes of the function:

T_’yg(TaIﬁ»S%P) _y;:l(7-7[>978;p)a

obtaining a value 0 < £1(p) < &g, such that, for any 0 < & < &1, this map has a non-degenerate
zero 7*(1,0,s;p,e) = 7(1,0,s;p) + O(e) = 7*(1,0,s) + O(p,e). An important observation is
that £1(0) # 0, therefore we set €1 = min[ovpl] £1(p) > 0. In this way, arguing as in [DLS06], the
stable and unstable manifolds W*(A.) and W"(A.) have a transverse homoclinic intersection
which can be parametrized as in (6.7). [ |

Provided that the unperturbed stable and unstable manifolds of the NHIM coincide,
adding a generic Hamiltonian perturbation makes the stable and unstable manifolds to inter-
sect transversally; see, e.g., [GdIL18]. However, non-conservative perturbations can in general
destroy the homoclinic intersection; this is for example the case of the dissipative pendulum
shown in Fig. 2b. In contrast, the Corollary 6.2 shows that for the system (3.8), where the
dissipation is of the same order as the forcing, that is A = €p, the perturbed stable and unsta-
ble manifolds intersect transversally for all sufficiently small perturbation parameter values p.
Later, in Section 8, we will be interested in taking p = p(e) = log’lz it but, clearly, for € small

enough, these values of p satisfy the hypotheses of Corollary 6.2. The result is summarized in
next corollary.

Corollary 6.3 (Existence of Transverse Intersection in the Model). Take any p > 0. Consider
the perturbation Hy given by (3.10) or (3.11) and the dissipative pertubation as in (3.7) with
A= 510g’zl). Then there ezists o sufficiently small such that for all 0 < || < g9, W*(A) and

W*(A.) have a transverse homoclinic intersection T which can be parametrized as in (6.7).

Proof. The proof follows by the fact that in this case p = satisfies the conditions of

log(i)
Corollary 6.2 if € is small enough. [ ]
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7. Computation of the scattering map for the perturbed system.

7.1. The scattering map. We give a brief description of the scattering map, following
[DAILS08]. Consider the general case of a normally hyperbolic invariant manifold A for a flow
®! on some smooth manifold M. Let W3(A), W"(A) be the stable and unstable manifolds of
A. First, let

QY WS(A) - A,
QWA - A,

be the canonical projections along fibers, assigning to each point z € W*(A) its stable foot
point zT = Q7 (z), uniquely defined by € W*(z™), and, similarly, assigning to = € W"(A)
its unstable footpoint x~ = Q~ (z) uniquely defined by z € W"(z ™).

Second, choose and fix a ‘homoclinic channel’, which is a homoclinic manifold I" in W*(A)n
W*5(A) that satisfies the following strong transversality conditions:

T, T =T, W3(A) A T,WU(A),
T, M =T,T @ T,W"(z") ® T,W3(z"),

for all z € I', and such that

Qi

= QF(T) is a diffeomorphism.

Then, the scattering map associated to the homoclinic channel I' is the mapping o :
Q (') - QT(T") defined by
c=0"o ()L,

The map o is a locally defined diffeomorphism on A. Moreover, o is symplectic provided
that M, A, ® are symplectic.

Remark 7.1. We have o(z~) = 2" if and only if
(7.1) d(@ T (2),® T (27)) — 0, and d(®™* (z), ™+ (zT)) - 0

as T_, T, — 4o0, respectively, for some uniquely defined x € I'. This means that for orbits in
A of the form 2/ = ®T+ oo 0 ®T-(2,,,), where 2,y = ®71-(27) and 2/, = ®T+ (2 ), one
can find homoclinic orbit segments in M of the form xeng = @7+ 7= (2gtart ), such that Tgpar

is arbitrarily close to @/, and Zenq is arbitrarily close to x/_;. See Fig. 4.

7.2. The scattering map of the perturbed system. Assuming that the conditions in
Corollary 6.2 are satisfied, then W3(A.) and W"(A,) intersect transversally in the homoclinic
channel T, which can be parametrized as in Corollary 6.2, for all 0 < le] < e1. Let Z2:. € I.
be a homoclinic point for the perturbed extended flow Ci)f: In terms of the coordinates from

Section 6, we have
Ze = (T*(I,H,S;p, 5)7y:(T*(L075;p75)717075;p)71’975)

where 7%(1,6,5p,2) = 7*(1,6,5p) + O() and 7*(1,6,5p) = 7*(I,6,5) + O(e) is a non-
degenerate zero of the mapping (6.6) near 7*(1,0,s), a chosen non-degenerate zero of the
mapping (6.5).
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=0—=
xstan:q) _(X_)

Figure 4. Homoclinic orbit segment approrimating an orbit obtained by applying the scattering map and
the inner map.

Because of the smooth dependence of the NHIM and of its stable and unstable manifolds
on the perturbation parameter, to the homoclinic point Z. = (z,s) for perturbed flow i)é it
corresponds a homoclinic point 2y = (2o, s) for the unperturbed flow @}, which is O(e)-close
to Z.. In fact, going back to the original coordinates, the point Z. becomes:

(7.2)

Note that in the above the O(g)-error only affects the p, ¢ components.
We denote the stable- and unstable-footpoints of Z. and of Zy by ZF and éa—r, respectively.
Recall that we already know that E(')i =(0,0,1,60,s). Summarizing the notation:
o Z.eT. c WS (A)AWY(A,);
o 2X = OF(z) e,
° 50 € fo C WS(Ao)fi\Wu([\o);
] Zoi = Qi(Zo) € Ao;

Under the above assumptions, we have 6.(27) = zI, and 6¢(Z; ) = Z;. We recall that,
in our model, for the unperturbed system, z; = 26’ = Za—r and therefore the scattering map is
the identity: o9 =Id.

The perturbed scattering map 7. can be expanded in terms of powers of €, with the zero-th
order term being the unperturbed scattering map g, as follows

5:(1,0,5) =60(1,0,5) +eS(I,0, s) + O(?)
=(I,0,s) +eS(I,0,s) + O(e?),

where S = (ST,8%,1d%).
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In the sequel, we evaluate the components S’ and S? in order to compute the change
in action I and the change in angle 6 by the scattering map. We follow the approach in
[GdILM21, GdILM22].

7.3. Change in Action by the Scattering Map. We use the following result:

Theorem 7.2 (Change in Action by the Scattering Map [GdILM21]).  For a general non-
conservative perturbation X' of (3.1) like in (5.9), the change in action I by the scattering
map G is given by:

+00

SHY 7 (57 — L&t (s t(st
) TE) =16 = | (A 1@ho) - X 1@ d
+0 (52) ,
where Z. and % are given in (7.2), and we denote Iy = I(%y) = I(3T).

Denote I () = IZ. Applying Theorem 7.2 in the case of (5.10):

Xt =JVH; + (—pp,0, —p(I — ws),0)
=JVH + X,

we obtain

. f’; ( a
+ EJZ <X,,I(<i>g(zo)) X,1(®4(3 > dt + O(g?)

=e(S{ + 83) + O(e?)

IF — I =¢ Jw ((JVH1 + X)) [(Dh (%)) — (JVH, + Xp)l(ég(zg)))dt + 0(e?)
( (

TVHI) (@Y (0)) — (JVHLI) (35 >>>d

where
st [ ()@ - i1 my @) Ja
o

= J+ {I,H1}(po(T* +t),qo(7* +1),1,0 + w(I)t,s + 1) ,
(L, H1}(0,0, 1,6 + w(D)t, s + 1)) dt
st= [ (Fr@sta - @) )

where 7% = 7%(1, 0, s; p) is a non-degenerate zero of the function (6.6). )
Since X,I = —p(I —wy), ®4(20) = (po(7* +1),qo(7* +1), 1,0 +w(I)t, s +1t) and &} (27 =
(0,0,1,0 + w(I)t,s +t), we have

sp= [ (= ooy + (@7 ) Jat =

—Q0

Thus, we have proved the following result:
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Corollary 7.3. For the perturbation X' = JVH; + X,

(7.4) If—1I7 =¢ Jj: ({I, Hi}(po(T* + t),q0(7* + 1), 1,0 + w(I)t,s + t)

—{I,H.}(0,0,1,0 + w(I)t,s +1t))dt + O(?)
where T = 17*(1, 0, s; p) is a non-degenerate zero of the function (6.6).

In the case when Hy is as in (3.10) or (3.11), {I,Hi} = —aa% = a10f(q)sinf, where
f(q) =cosq—1 or f(q) = cosq, so

0

(7.5) IF—1- =5a10J (cos(qo(T* + 1)) — 1) sin(f + w(I)t)dt + O(£?).
—0

7.4. Change in Angle by the Scattering Map. We use the following result:

Theorem 7.4 (Change in Angle by the Scattering Map [GdILM21]).  For a general non-
conservative perturbation X' of (3.1) like in (5.9), the change in angle 6 by the scattering
map 0¢ is given by:

+00

0 00z =< [ 0@l z0) - 0@ (25 )
+oo 3 3 2
(70 —e [ @ - 2@ (S

where Z. and %y are given in (7.2), and we denote Iy = 1(%) = I1(Z}).

Denote 0 (¢5) = 6F. Applying Theorem 7.4 in the case of (5.10), i.e., X! = JVH; + X,
we obtain

07 — 07 =¢ JOO ((JVH1 + X,)0(D)(%0)) — (JVH; + xp)a(ég(zg)))dt

—00

- _e LD ((JVH1 + 2,) (B (20))

~ 2
—(JVH, + Xp)f@g(sg))) tdt - (%}?(I))
+ 0(e?)

We simplify the first integral above by splitting into two integrals:

%Jw<uvmm@M%»—uvmm@a%»)ﬁ

—0

+ ro (Xpe(‘i’é(io)) — Xpﬁ(@g(ioi))>dt]

—Q0

= (8! + 89),
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where

sti= [ (10,1 (@) ~ (0. 1)@ 7 ) )t

—Q0

= JOO <{9,H1}(po(7* +1),q0(7* +1),1,0 + w(I)t,s +t)

—0

—{0,H:}(0,0,1,0 +w(l)t,s+ t))dt,

st = [ (@i - xoi) )

—Q0

where 7* = 7%(I, 60, s; p) is a non-degenerate zero of the function (6.6).

Since X,0 = 0 we obtain Sg = 0.

The second integral in (7.7) can be simplified as we did in Section 7.3 to analyze the
change in actions, and thus, combining both parts of (7.7) proves the following result:

Corollary 7.5. For the perturbation X' = JVH; + X, given in (5.9),

o= ({9,H1}<<i>z<zo>) - {9,H1}<<i>a<23>>)dt

—0

—e |7 (vt - @ Jue- (SRm)

—0

+ 0(e?)

- gr" ({9,H1}(P0(T* + 1), qo(7* + ), 1,0 +w(I)t, s +t)
(7.8) —00
{6, H1}(0,0,1,0 + w(I)t, s + t)) it

— EJOO <{I, Hi}(po(T* +t),qo(T* + ), 1,0 + w(I)t,s + 1)

L H(0,0,1,0 + w(D)t, s + t))tdt - (a;f;uo))
+0(e%),

where 7* = 7%(1,0, s; p) is a non-degenerate zero of the function (6.6).
In the case when ho(I) = % and Hjy is as in (3.10) or (3.11), we have a;% =1,{0,H} =
0, and {I,H,} = —% = a10f(q)sin @, where f(q) = cosq—1 or f(q) = cosq, so

(7.9) 07 —0- = —cayp JOO (cos(qg(T* +t) — 1)sin(0 + w(I)t))tdt + 0(£%).

—0

Remark 7.6. We remark that both components ST, S? of the vector field generating the
scattering map up to O(e?) only depends on the dissipation &) and, therefore, on the param-
eter p, through the value 7 = 7%(1,0, s; p). In fact, in the next section we will see that the
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vector field generating the scattering map is a Hamiltonian vector field in the variables (I, 6)
up to O(e?), even though the system (3.8) is not symplectic but conformally symplectic. We
will show that the scattering map is symplectic in the variables (I,6) up to O(g?). Moreover,
in the case when H; is as in (3.10) or (3.11), we will provide an explicit formula for the
Hamiltonian vector field that generates the scattering map up to O(g?).

7.5. Symplecticity of the scattering map up to O(c?). In the case that the perturbation
is Hamiltonian (which in our case corresponds to p = 0), it was proven in [DdILS08] that the
scattering map is symplectic and is given by

(7.10) G.(1.0,5) = Go(1,0,5) + & (‘9;;(1, 0.5), —(ZLI(I, 0,5), s) +O(2)

for some function (Melnikov potential) L* which depends on the effect of the Hamiltonian
perturbation on the homoclinic orbits of the unperturbed system. More precisely, let

+00

L,0,5) = —f (Hy (0o (1), qo(8), 1,0 + w(D)t, 5 + 1)

—0

(7.11)
—H1(0,0,1,0 +w(I)t,s +t))dt

where w(I) = %(I). Let 7* = 7%(I, 6, s) be a non-degenerate critical point of the function
T L(I,0 —w()T,s—7T)
Then the function L* referred to in (7.10) is defined by

(7.12) L*(1,0,s) = L(I,0 —w([)T*, s —7%).

An auxiliary function that will be referred to later is the reduced Melnikov potential defined
by

(7.13) L*(1,0) = L*(1,0,0) for § = 0 — w(I)s.

In our case the perturbation is not Hamiltonian, but we will see that, nevertheless, the scat-
tering map is symplectic up to O(¢?), and is given by

N :%
(7.14) 0
St — %
ol ”’

for some function L7 that depends on the effect of the Hamiltonian perturbation on the
homoclinic orbits of the unperturbed system and also on the dissipation. Our computation is
similar to [DdILS08].
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Proposition 7.7. The vector field S generating the scattering map G- up to O(g?) is of the
form

(7.15) S(1,0,s) = (—JV(LQ)L;(I, 0,5),s)

for the function Ly 1V < Ao — R defined below. Let

(7.16) L(1,0,5) = - r: (Hi(po(t), qo(t), 1,0 + w(I)t,s + )
—H1(0,0,1,0 +w(I)t,s+1t))dt

where w(I) = %(1)

Let

(7.17) A= FOO pa(t)dt.

Let 7 = 7%(1,0, s; p) be a non-degenerate critical point of the function
T L(1,0 —w()T,s —T) + p(s — 7)A.

Let L* be defined by
L*(I1,0,s) = L(I,0 —w(I)T*, s —T%).

Then the function L7 is defined by
Ly(1,0,s) = L*(1,0,s) + p(s — 7) A.
Proof. We claim that

_5L;§ _ oL B or*

SI

=—7 = p
g0 0L _ oLt ot
ST ar T Tar TPar

The first observation is that the non-degenerate zeroes of the function (6.6) are the non-
degenerate critical points of the function

(7.19) TeER— L(I,0 —w(I)T,s —7) + p(s —7)A,
where L is given by (7.16) and A is given by (7.17). To see this, first note that by a change

of variables t — 7 — t, we can express L(I,0 —w(I)T,s — 7) as

(7.20) LU0 —w)rys = 7) = = J+: (H1(po(T + 1), qo(T +1), 1,0 + w(I)t,s + t)

—H1(0,0,1,0 +w(I)t,s +t))dt
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Differentiating (7.19) with respect to 7 we obtain

+o0
[ (e + 0,0 +0,1.0 + Dt +1
—0
—{h1,H1}(0,0,1,0 +w(I)t,s +t))dt — pA,
so the non-degenerate zeroes of this function are the non-degenerate critical points of (7.19).

If 7* = 7*(1, 6, s; p) is a non-degenerate critical point of the function (7.19), then by the chain
rule it follows that

0 :di [£(1,0 —w(I)rys — 7) + pls — ) Al
(7.21) T@ﬁ ) ) or ) )
z—E(I,G—w(I)T ,S—T )w(I)—g(I,G—w(I)T , 8 —T1%) — pA.

*
To compute % = a%(L*(I, 0,s) + p(s —7*)A) in (7.14) we use the chain rule and (7.21)
to obtain

aaL;’ =‘;§’(1, 0 —w(I)r*, s —7*) (1 — w(I) %;)
(7.22) + %(I, 0 — w()T*,s — %) (— a;;) - pa(;; A
z%(f, 0 —w()T*, s —1%).
Applying the latter formula to (7.16), using % = —{I, H;}, and making the change of

variable t — 7* — t we obtain

oL _ f: (UL H Y (po(0).40(0), 1,0 + (D)t — (D)5 + 1 — 7%)

—{I,H1}(0,0,1,0 + w([)t —w(I)T*, s+t —7%))dt

(7.23) .
_ f_ (L, Hi}(po(7 + 1), qo(7* + 1), 1,0 + w(D)t, s + 1)

—{I,H1}(0,0,1,0 +w(l)t,s +1t))dt.

This integral is the same as the integral (7.4) that appears in the formula for the change of
action by the scattering map up to O(¢?). Therefore, we conclude that:

[ Eaalé(],@,s) +O0(e)

*

To compute —aaL]” = —%(L*(I, 0,s) + p(s —7*)A) in (7.14), we use the chain rule and
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(7.21) to obtain

oL oL
_ 14 - _ = _ * e
a7 aI(I,H w()t* s —17%)
oL . . ow or*
—%(I,G—W(I)T L8 —T )(—aIT —w(I) é’I)
_ 10— w(D)r s — ) (—67 )
(7.24) 0s oI
or*
A
NPT
oL . .
— a1_(1',9—(.u([)7 ,8—T%)
oL « o 0w
+ ae(I,G_W(I)T ,8§—T )aIT .
We express the two terms in (7.24) as integrals
(7.25)
oL oo
- S0 —wrts =) = [ (0 (0, 0(0). 1.0 + (D)t — D)7+ 0~ 7
—

—{0,H1}(0,0,1,0 + w(I)t —w(I)T*, s+t —7%))dt

[ Y a0, a00, 1.0 + w1t~ 5 417

ee}

—{I,H1}(0,0,I,0 + w(I)t —w(I)T*, s+t —7%)) (?})(I)t> dt

(7.26)

%(1,9 —W(I)T*’s — 7'*) :J+OO ({I, Hl}(po(t),qO(t),[’H +W(I)t —W(I)T*,S +t _7_*)

—0

—{I,H1}(0,0,1,0 + w(I)t —w(I)T*, s+t —7%))dt

Above we used that % = —{I, H,} and aa% = {0, H,}.
Combining (7.25) and (7.26) in (7.24) we obtain

(7.27)

é’L:Ie B + o o ; o .
_61(’ 73)—J ({0, H1}(po(t), qo(t), 1,0 + w()t —w(I)T*, s +1 —T1%)

—00

—{0,H1}(0,0,1,0 + w(l)t —w(I)T*, s+t —7%))dt

- J+OO ({I7 Hl}(p()(t)vqo<t)7[>9 +W(I)t —W(I)T*,S +1— ’7'*)

—0

—{I,H1}(0,0,1,0 + w(I)t —w()T*, s+t —7%)) (?})(I)(t — T*)) dt
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Making the change of variable t — 7* — ¢ and writing %‘}’(I) = 562[]30 (I) we obtain

—aaL;(L&s) = FOO ({0, Hi Y (po(m* + 1), qo(7* + 1), 1,0 + w(I)t, s + t)
—{0, H1}(0,0,1,0 + w(I)t,s +t))dt
(7.28) —FOO

—Q0

({I, Hi}(po(T* +t),qo(7* + 1), 1,0 + w(I)t,s + 1)

{1 HH0,0, 1,0 + w(I)t, 5 + ) (a;;;o(l)t) dt

Since the integrals in (7.28) are computed in terms of the effect of the perturbation on orbits
of the unperturbed system, we have that I in is constant and equal to I = I(Z) = I(,%Oi), and

therefore (a; IhQO (I )) can be taken outside of the second integral obtaining:

~7 (1,0,s) :J—oo ({60, Hi}(po(7* + 1), qo(7* + 1), 1,0 + w(I)t,s + 1)
—{0,H,}(0,0,1,0 +w(l)t,s +1t))dt
(7.29) +0
[ et 0l + 0,10+ oDt +1)

—{I, H1}(0,0,1,0 + w(I)t,s + 1)) tdt - (fﬁ([))

This integral is the same as the integral (7.8) that appears in the formula for the change of
angle by the scattering map.
Therefore, we conclude that:

*

oL
— 0. = —e—L(1,0,s) + O(?)

+
f c oI

£

Consider the mapping
Ly(1,0,8) = L(1,0 —w(I)T*,s —7%) + p(s — T%) A.
for 7 = 7%(1,0, s; p). Since T* is a critical point for
T L(I,0 —w()T,s —T) + p(s — T)A,
then for every ' € R, 7* — t’ is a critical point for
T L0 —w()(T+1),s—(t+1)) +p(s — (1 +1))A.
Then, denoting Z = (1,6, s;p) and Z' = (I,0 —w(I)t',s — t'; p), we have

™7 =7%2) -t



30 SAMUEL W. AKINGBADE, MARIAN GIDEA, AND TERE M-SEARA

Therefore
L;(I,H —w(Dt' s —t) =L(I,0 —w(I)(T*(Z") +t'),s — (7%(Z") + 1))
+p(s—(1°(2") +1)A
(7.30) =L(I1,0 —w()(7*(Z) =t + 1), s — (7%(Z) =t + 1))
+p(s = (t%(2) -t +t))A
=L,(1,0,s).

Making ¢ = s in (7.30) we obtain
L5(1,0,5) = Ly(1,0 —w(I)s,0).

This says that, while the function L7 nominally depends on three variables (1,0,s), in fact it
depends on the variable I and the linear combination § — w([l)s, and is therefore a function
of two independent variables I and § = § — w(I)s. Thus, we define the reduced Melnikov
potential by:

(7.31) LA(1,0) = L3(1,0,0) = L(I,0 —w(I)7*,—7") — pT*A, for 6 = 0 —w(I)s.

The reduced Melnikov potential allows to compute the scattering map associated to the
time-27 map associated to a surface of section {s = s*}; more precisely, the trajectories of
the scattering map are given by the e-time of the Hamiltonian —£7 up to order O(£?), as we
shall see below.

7.6. Growth of action by the scattering map. We reduce the dynamics of the flow (i)i
to the dynamics of the Poincaré first return map to the surface of section

X = {(p7Q>I79aS)|8: S*}

for some choice of s* € T!.

The NHIM A, for (ﬁ in the extend phase space yields the NHIM A, for f. in X. In
particular A, is invariant under f..

The scattering map &, which is defined on the domain U € A., yields a scattering map
0. defined on the following domain in A; = Ag:

U={(,0)|(I,0,s*) e U for § = 6 +w(I)s*},
The scattering map o, is given in the variables (I,6) by (see [DS18]):
(7.32) 0-(1,0) = oo(I,0) —eJVLE(I,0) + O(?),

where og = Id. In particular, the scattering map o, is symplectic up to O(g?).
By Theorem 3.11 in [GAILMS20], whenever JVL3(20) # 0 for some point 2z € Ao, there
exists a O(1)-family of solutions 7, (¢) of the differential equation

z=—JVL(z)
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for z in a O(1)-neighborhood of zyp € U < Ag, and ¢ in some interval [T1(z),T2(z)] < R
depending on z, such that for each path ~,, there is an orbit of the scattering map o. that
follows closely that path.

If, in addition, we have that S?(z) = a{f—;(zo) > 0, then the family of paths v, can be
chosen so that the corresponding orbits of the scattering map o. along ., have the property
that [ increases by O(e) for each application of o.

Consequently, letting zg = ([, 0y) there exist 61 < by < 03, I} < Iy < I, and a ‘strip’ of

the form
(7.33) S ={7(t)]z=(o,0)]0€[01,02], te [T1(2),Ta(2)]} € U

with v, (T1(z)) = I and ~,(T%(z)) = I3, such that the following properties hold: There exist
¢ > 0, such that for every 6 = O(e) > 0 and every path v,(¢) contained in S, there exists an
orbit (2n)n=0,. N of 0. and 0 =ty < t; < ... <ty =T with ¢; = ei for all i, such that

zi+1 = 0e(2),
(7.34) I(zi11) — I(z) > ce, fori=0,...,N —1,
d(zi,v.(ti)) <0, fori =0,..., N.

7.7. Scattering map in the case of vanishing and non-vanishing perturbation. For both
the vanishing and non-vanishing perturbations:

Hl (p7 q, I? 07 S) :(COS(q) - 1)(&00 + alo COS(Q) + ap1 COS(S))
Hi(p,q,1,6,s) =cos(q)(ago + a0 cos(f) + a1 cos(s))

we have the same expression for the Melnikov potential

a0
L(I1,0,s) =— J (cos(qo(t)) — 1)(ago + aig cos(f + It) + a1 cos(s +t))dt
(7.35) o
=— J (cos(arctan ) — 1)(agy + a1o cos( + It) + agy cos(s + t))dt.

—0

2
Above we have used the parametrization (3.4) of the separatrix. Since % + (cos go(t) —1) = 0,

2
in the above integral we can alternatively write cos(go(t)) —1 = —22 =

2
2 = ¥ It turns out
that (see [DG00, DS17])

L(I,60,s) =Ago + A19(I) cos(8) + Ap1(I) cos(s), where

7.36 2nla 2ma,
(7:36) Ago =4ago, Ao = %, 01 = o
sinh(%")

In [DS17] the reduced Melnikov function £* defined by (7.13), which corresponds to the
Hamiltonian perturbation only, is computed explicitly. The level curves of L* are shown in
Fig. 5. One can find explicitly regions of size O(1) in A; where %(I, 0) > ¢; > 0, for some
c1 > 0.
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0 /2 T 3r/2 2m
0

Figure 5. Level sets of L*. (Credit A. Delshams and R. Schaefer)

In our case, when the system is also subject to the dissipative perturbation X, the reduced
Melnikov potential £}, given by (7.31), is O(p)-close to the reduced Melnikov potential £*
corresponding to the Hamiltonian perturbation. This implies that, for p sufficiently small,
there exists a region of O(1) in A, where %(I, ) > co > 0, for some 0 < c3 < ;. In the case

when p = ﬁ, it follows that there exists €5 > 0 such that, for all 0 < € < g9, we have that
oL* = . . . . .

%(I ,0) > co > 0 on the aforementioned region. This region can be used to define a strip S
as in (7.33), where the scattering map increases the action I by ce at each step, as in (7.34),

for some 0 < ¢ < c3.
8. Proof of Theorem 4.1.

8.1. The case of vanishing perturbation. Choose w, such that Iy < w, < Is, where I,
I, are as in Section 7.6. There is an invariant circle A = {I = w,} in A, as defined in Section
5.7, which is a global attractor for f. on A.. The circle A, is a NHIM for f. restricted to A,
and has only stable manifold W3 _(Ac) which is the whole manifold A.. W3 _(A) is foliated
by stable leaves

Wi (A2) = | WR_(y) with y = (ws,6) € A..
YEAe

From (5.16) we have that each stable leaf is a slanted line

W3 (e 0) = {(1,9(1)) e A 6(I) = 0y — %(1 - w*)}

Since % » 1, the slope of these lines (as a function of ) is —\, so the stable leaves are nearly
horizontal lines. See Fig. 6.

For z € W} (y), by the equivariance property of the stable fibers we have fE(z) e
WX, (fE(y)), for all k > 0. Given some initial point (Io,6p), let fX(Io,00) = (Ix,0%). From



ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 33

WAy

Figure 6. The attractor Ac inside the NHIM A.

(5.15), we deduce

1
O =6y + X([O — w1+ . e ZEDN G 2™ 4 ok,

_ 1 —27wkA
Ty — wy)(1 —
(8.1) =00+ Yo —ws)(1 — ¢ ) + 21k,

=00 + (Io — wy )27k + 2mkw, + O(K2\)
=0 + 27kIo(1 + O(kN)).

Recall that A = ep(e) = E@, hence the relative error term in (8.1) is O(klogﬁ(i)), so k
iterations of the inner map chsamge the angle coordinate by approximately 2wkl (smod 2m)

provided that klog(i y < 1.

Consider the st;ip S defined in (7.33), where the scattering map is increasing I by O(e)
at each step. Provided that |I; — I3| is suitably small (but independent of ¢), there exists
kmax > 0 such that, whenever z € S we have ff(z) € S for some k < kmax. That is, each point
z in the strip returns to the strip in a maximum of k. iterates. This implies that for a time
T = Tplog(1/e), with € > 0 small, each point z in the strip returns to the strip for at least

Tolog(1/e) | 4
lmj times.

One easily obtains from (5.15):

I, = (Ip — w*)e_%k)‘ + Wy.

Consequently, if z = (lo,09) € W} _(y), y = (w«,0) € A¢, is a point at a d;-distance dp < dmax
from gy, where dpay = max{|[; — wy|, |[I2 — w«|}, then fF(2) € WX, (fE(y)) is at a d;-distance
at most

do-e 2 — g . e 2" iog(i/e) Pk
from A, after k-iterates. For points with initial Iy above w, the I-coordinate decreases at
each iterate, and for points with initial I below w, the I-coordinate increases at each iterate.
Therefore the loss in I after k-iterates, for points with initial Iy > wy, is

Iy — I =do-(1— eiZTr)‘k) =dy-(1— e727r10g(51/s)ﬁk),

Hence the maximum loss in the action coordinate I of a point z after k iterates, where
21k < Tplog(1/e), is )
dinax - (1 — e =PT0),
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On the other hand, for each z € S we can apply a scattering map o. to z. The effect of
the scattering map is an increase in the action coordinate I by O(e). We recall that there
exists ¢ > 0 such that

I{(o.(z)) — I(2) > ce, for all z€ S.

Thus, starting with a point z € S, applying the scattering map o. to z, and then applying
the inner map (f:) s, for k iterates with 27k < Tplog(1/¢), until (f-)*(0-(2)) € S, we obtain
a net growth in [ that is at least

e — dmay - (1 — e P10,

We want that the net growth is at least ce/2, that is

_ ce
ce — dpmax - (1 — e_apTO) > —.

This is equivalent to
ce

2dmax .

e~PTo > 1 —

Taking the logarithm of both sides we obtain

log <1 T )
_6[7 ’

Ty <

By L’Hopital rule

log (1 — 5= ) c
lim — 7 = —.
-0 —Ep 2dmaxp

This means that, in order to be able to achieve a growth in I of at least c£/2 per step, for all
¢ sufficiently small, we need to choose p small enough so that

C
8.2 0 < ———.
( ) P 2dmaxT0

With these choices, we obtain orbits of the iterated function system (IFS) generated by
{fe,0:} of the form z,,1 = ff(") o 0:(2z,) with k(n) = O(log(1/¢)), such that I increases by
ce/2 from z, to z,11. In O(log (1)) steps, such orbits increase I by O(1). In Section 8.3 we
use these orbits of the IFS to produce diffusing pseudo-orbits as claimed as in Theorem 4.1.

Remark 8.1. When a point z € A. is of action coordinate Iy < w, below that of the
attractor A, applying the inner dynamics (f:)a, to z moves the point towards the attractor,
and hence increases I. Thus, the effect of the inner dynamics and the effect of the scattering
map concur towards increasing I. The situation reverses when the action coordinate of z is
above that of the attractor, in which case the effect of the scattering map is opposed to the
effect of the inner dynamics.
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Figure 7. The inner dynamics without dissipation.

8.2. The case of non-vanishing perturbation. The evolution of the /- and f§-variables
under the inner dynamics on A, is given by:

(8.3) jA(t) = —ANI\(t) — wy) + €aq sin O, (t)
' NOEINO!

Denote the general solution of the system (8.3) by zx(t) = (I\(¢), 0x(t)).
Setting A = 0 yields:

(8.4) {fo(t) — caosin fo(t)

0o(t) = Io(t),

with general solution denoted zo(t) = (Io(t), 0o(t)); see Fig. 7. Note that (8.4) is a Hamiltonian
system with Hamiltonian (energy function)

I2
(8.5) K(1,0) = 5 T eajo(cosf —1).

The solutions (Iy(t), 0y (t)) of the system (8.4) satisfy
K(Io(t), 00(t)) = K(1(0),00(0))

therefore, the application of the inner dynamics does not change the level sets { K = const.}
in the case A = 0. On the other hand, the variable I may change by up to O(¢'/2) by one
application of the inner dynamics (8.4). At the same time, the change in I by one application
of the scattering map is O(e) « O(e'/?). Therefore, instead of comparing the effects on the
action I by the scattering map and by the inner dynamics, as in Section 8.1, in this case we
want to compare the effects on the energy K by the scattering map and by the inner dynamics.
The next lemma gives the change in the energy K that we obtain after one application of the
scattering map:
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Lemma 8.2. Let 21 = 0.(27), where 21 = (11,01 ,s) and 27 = (I7,6;,s). Then:

K(z) - K() = b(IX = 17) + O(¢?)

= Iaﬁpw O(e?
(8.6) —EOW(, 7S)+ (5)

= eayoly Jw (cos(qo(T* + 1)) — 1) sin(0 + w(I)t)dt + O(e?),

—00
where Iy = 1(Z).

Proof. The proof of this lemma is a similar computation to the ones done to compute the
change in actions of the scattering map. In fact, using the formulas for the change in actions
and angles, Corollaries 7.3 and 7.5, particularly that I* — I- = O(e) and 61 — 67 = O(e), we
have:

I+ 2 I~ 2
K(ij)—K(ig)z(z) —(52) + eayg (cos b — cos b, )
It +1-
(8.7) = (E;—E)(Ij — 1) +cay (cos@a+ —0050;)

= (Io + O()(IF = I2) + O(¢?)
= Io(I7 = I17) + O(=?).
Applying Proposition 7.7 yields the desired result. |
The next lemma compares the actions and angles of solutions of systems (8.3) and (8.4).

Lemma 8.3. Let (Ix(t),0x(t)) a solution of system (8.3) with initial condition (Io,60) and
(Io(t), 6o(t)) the solution of system (8.4) with the same initial condition. Then, there exists
d' > dmar > 0 such that, for |e| small enough, and for 0 <t < Tylog (é) we have:

IL\(t) = Io()] < d'(1—e™)
(8.8) 2
[Ox(t) — b0 (t)] < d'A=;

Proof. Calling
u(t) = I\(t) — Io(t), aft) = Ox(t) — bo(t),

one can easily see that:

U= AIp(t) — wx —u) +caqp (sin(fo(t) + ) — sin Oy (t))

(8.9) 4=
Therefore:

u(t) = J e M) N (Io(s) — ws) + €a1o (sin(Bo(s) + a(s)) — sinby(s))] ds
(8.10) 0

For the first equation in (8.10) we have used the method of variation of constants.
We will bound w in four steps:
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. First we will use the first equation of (8.10) to obtain a weak bound for u;

. Second, we will use the obtained bound on w in the second equation of (8.10) to obtain a
bound for «;

. Third, we will use the obtained bound on « in the first equation of (8.10) to obtain a sharper
bound for wu;

. Finally, using the sharper bound on u in the second equation of (8.10) to obtain a new bound
for a.

We will use that the solution Iy(t) is a bounded function, in fact |Io(t) — w«| < dmax, Where
we recall dmax = max{|]1 — ws|, |[[2 — wx|}. From the first equation of (8.10) we obtain:

t
lu(t)| < f e M=) (Adpmax + 2ea10) ds
0

< (dmax + 2%’40) (1—e™).

(8.11)

Using this bound in the second equation of (8.10) and that 0 < 1 — e~ < At, we obtain:

t
|C¥(t)| < f (dmax + 2§CL10> Asds
(8.12) 0 ,

€ t
= max 2+ ) B
(d + /\alo A 5

Finally, we will use the obtained bound on «, and the fact that | sin(6y(t) +a) —sin6y(t)| < ||
in the first equation of (8.10) to obtain:
t

[u(t)] < dpax(1 — e ) + 5a10J e M%) |a(s)|ds
0

)\t2 t
(8'13) < dpax(l — €™ ) + €aio (dmax +2— a10> 5 J e~ At=5) g
0

g
A
[dmax + €aio <dmax + 2 alD :| 1 — eikt

Observe that, as 0 <t < T = Tplog ( ) and A = slog(l) we have that:

t? 1 T3 1 2
€aig (dmax + QEalo) — < 510g2 - a1odmax + alog a—fng
A 2 € 2 € p

which is arbitrarily small if ¢ is small (indeed, elog? (1) « &” for p > 0 and v € (0,1)).
Therefore there exist d’ > dpax such that:

(8.14) u(t)] < d'(1 — e

and consequently we have:
I\() = o) < d'(1—e ™)
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for 0 <t < Tplog (%) Note that d’ can be chosen arbitrarily close to dpyax provided that € is
small enough.
Using this new bound in the second equation of (8.10) and that 0 < 1— e M < At, we obtain:

(8.15) 105 (t) — 6o(t)| < d’/\t;. |

The next lemma estimates the change in the energy K by the inner dynamics over time
intervals of order O (log (%))

Lemma 8.4. There exists d” > 0, such that for |e| small enough, and for 0 <t < Tylog (%)
we have:

(8.16) K (22(1) = K (20(t))] < d"(1 = e™).
Proof. From (8.5) and Lemma 8.3 we obtain

(8.17)
K (er(0) = K (o(®)] = |53~ I3(0) + cano(cos(d(1)) — cos(6u())

< ‘%(IA(t) — To(t))(In(t) + Io(t))‘ +ea100x(t) — 0o (1)

< ‘%(h(t) — Io(1)) (210 (t) + (In(t) - Io(t)))‘ +ca10|0(t) — bo(1)]

1/ —At U =Xt /ﬁ
<2d(1—e ) 2(dmax + ws) + d' (1 —e™ ) ) + eagpd A

2
U —At (d,)2 —At\2 / t
< d'(dmax +ws)(1 — e )—i—T(l—e ) +5a10d)\5.

Taking into account that A = &, for |e| sufficiently small we have

oo

(—e P <—c), |
2 Y for 0<t<Tylog(-).
8)\5 < (]. — € ), €

Therefore, using (8.17) we conclude that there exists d” > d’, such that
K (o (1)) — K (20(0)] < d”(1 — ).

We note that d” can be chosen arbitrarily close to d'(dmax + w«) + 3(d')? provided that |e| is
sufficiently small. [ |

We now continue with the proof of Theorem 4.1. By Lemma 8.2, given that 0 < I} < Io,
the effect of the scattering map is an increase in the energy K by O(e). Let S be a strip as in
(7.33) and ¢ > 0 such that

K(o:(2)) — K(z) > ce, forall ze S.
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From Lemma 8.4, the maximum loss in K by the inner flow over a time 0 < ¢t < Ty log (%) is
d"(1 — e=<PT0),

Switching from the flow to the time-27 map, it follows that the maximum loss in K by the
inner map after k iterates of f., with 27k < Tylog(1/e), is also

d"(1 — 7o),

Note that the level sets of K are O(g'/?)-close to level sets of I. Therefore we can choose
0 < I < Iy such that the growth in K by repeated applications of the scattering map
corresponds to a change in I from below I; to above I3. Provided that |I; — I3| is suitably
small, there exists kmax such that whenever z € S we have f§(z) € S for some k < kpax. By
Lemma 8.8, for 0 < ¢t < Tplog(1/e),
2 ~2
10:(8) — Bo(8)] < INE < d'zlog (1) Ly
2 € 2
so, for € sufficiently small, 0)(t) is O(g”)-close to 6y(t), for some v € (0,1). This implies that
each point z in the strip returns to the strip in a maximum of k. iterates of f.. Thus,
starting with a point z € S, applying the scattering map o, to z, and then applying the inner
map (fe)a. for k times, where 2rk < Tplog(1/e), until (f-)¥(0:(2)) € S, we obtain a net

growth in K that is at least )
ce —d"(1 — e PT0),

We require that this net growth in K is at least ce/2, that is
ce —d"(1 — e P10y > %5.

Similarly to the proof in Section 8.1, in order to be able to achieve a growth in K of at least
ce/2 per step, for all e sufficiently small, we need to choose p small enough so that

<_°
2d"Ty’

p

We obtain orbits of the iterated function system (IFS) generated by {f.,o.}, of the form
Zptl = ff(n) 00¢(z,) with k(n) = O(log(1/¢)), such that K increases by ce/2 from z,, to zp41.
In O(% log (%)) steps, such orbits increase K, as well as I, by O(1). By our choice of I, I,
these orbits go from below I; to above I». In Section 8.3 we use these orbits of the IFS to
produce diffusing pseudo-orbits as claimed in Theorem 4.1.

8.3. Existence of diffusing pseudo-orbits. In Sections 8.1 and 8.2 we obtained diffusing
orbits of the iterated function system (IFS) generated by {f:, 0.} consisting of orbit segments
of the form z,41 = ff(n) 00:(zp) in Ay n = 1,...,m — 1, where k(n) = O(log(1/¢)) and
m = O(1/e), such that I(z0) < I1 and I(zy) > Io. We can rearrange these orbits into orbit
segments of the form x; 11 = f™ oo 0 f™(x;), with m;, n; = O(log(1/¢)), for i =0,...,m—1,
such that I(z¢) < I; and I(x,,) > I5. Each such orbit segment can be approximated up to
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O(g) by a true orbit of the Poincaré map of the form y! , = fFi(yi,.), ki = O(log(1/e)),
with d(yl, 4, yitk) < O(e); see Remark 7.1. The diffusion time is O(% log(1)). Finally, each
such orbit of f. gives rise to an orbit segment 2*(t), t € [t;,t;+1], of the flow, satisfying the
requirements of Theorem 4.1.
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