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Abstract—This paper introduces a novel preference learning framework that simultaneously considers both the intended and the
perceived labels while addressing the mismatches between them. Based on analyzing the discrepancies and agreements between the
intended and the perceived labels in different modalities of audio-only, visual-only, and audio-visual, as well as the consistency among
the perceptual ratings of all raters, we propose three sets of pair-wise ranking rules to generate multi-scale relevant scores for
preference learning, scaling from sketchy manner to detailed manner. Three ranking models with support vector machine, deep neural
networks, and gradient boosting decision trees are developed. Our results demonstrate that all three preference learning models
significantly outperform the conventional classifiers baselines, and the LambdaMART model with gradient boosting decision trees
achieves the best performance. The improvement from the preference learning models confirm the benefits of complementary
information provided by different types of labels. We also observe additional improvement from the detailed ‘complex ranking rules’,
particular with the best LambdaMART model, which suggests that we should treat intended and perceived labels in single-model &
multi-modal differently. We further discuss the complementary of different ranking models, and obtain the best overall accuracy of
85.06% on CREMA-D dataset when combining the two best ranking models–LambdaMART and RankNet–together, which is
significantly better than the 76.19% accuracy attained by the baseline models. Finally, we perform the cross-corpus emotion
recognition experiments by training emotion rankers on CREMA-D and tested the ranking-based emotion classifier on the SAVEE
dataset that do not have perceived labels annotated.

Index Terms—multimodal emotion recognition, preference learning, intended label, perceived label, RankSVM, RankNet,
LambdaMART.
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1 INTRODUCTION

EMOTIONS are essential to human life. They directly
influence human perception and behaviors, and have

big impacts on our daily tasks, such as learning, social in-
teraction, and rational decision-making. Automatic emotion
recognition has found applications in many domains, in-
cluding multimedia retrieval, social media analysis, human-
computer and human-robot interaction, health care, etc.
The emotional states of people vary over the course of
conversations and these changes are expressed externally
through a variety of channels, including facial expressions,
voice, spoken words, body gestures, etc.

The developed approaches for emotion recognition are
mostly unimodal, that is, the analysis is usually based on
one modality out of facial expression, voice, text, etc. Al-
though the recent advances in automatic emotion recog-
nition through cues in individual modalities have been
remarkable, emotion recognition is far from being a solved
problem. Firstly, human emotion expressions are subtle and
can be conveyed by a combination of several emotions.
Emotions are expressed differently through different verbal
and non-verbal channels, such as text, facial expression
and voice. There exists a large inter-subject variability in

• Yuanyuan Lei is with the Department of Computer Science, Texas A&M
University, TX 77840, USA. Email: yuanyuan@tamu.edu

• Houwei Cao is with the Department of Computer Science, New York
Institute of Technology, NY 10023, USA. Email: hcao02@nyit.edu

Manuscript received October 26, 2021

emotion expression and perception. In our preliminary per-
ception study on the CREMA-D database [1], we studied
how people perceive acted emotion differently across the
three modalities of audio-only, video-only, and audio-visual.
We demonstrated that the emotion expressions in different
channels are different, and the expressions in each channel
can be perceived as mixtures of emotions. Multi-modal emo-
tion recognition that simultaneously analyzes information
from all modalities have a great potential to further improve
the accuracy of unimodal analysis [2], [3].

Meanwhile, a major challenge for emotion recognition
is the inconsistency between emotion labels, especially for
multimodal emotion data. In supervised machine learning,
the learned models can be considerably affected by the train-
ing data and the labels assigned to them. For emotion recog-
nition tasks, due to the complex nature of emotions, obtain-
ing the ground-truth labels describing the emotional content
of a data sample is challenging. Many existing datasets only
provide labels of the intended emotion, which is the target
emotion during the emotion production/expression. Those
labels may not precisely reveal the underlying emotion of
a given recording. To address that, perceptual evaluations
are conducted to annotate the perceived emotion in many
studies, where each data sample is often annotated by
multiple raters, and the ground-truth label is the consensus
label obtained by some aggregation method, e.g., majority
vote. However, the perception of emotion is subjective and
different channels have different emotion expressiveness. As
a result, for the same recording, more than one emotion can
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be perceived by different raters on different channels. The
inter-rater and inter-channel agreement can be very low for
some cases and the corresponding perceptual labels can be
very inconsistent. How to learn with those inconsistent and
subjective labels is still an open research question.

One common approach is to discard data without con-
sensus label or with low inter-rater agreement. For example,
authors of [4] have shown that emotion recognition can be
improved considerably by taking into account annotator
agreement and training the model on smaller but reliable
dataset. In contrast to previous studies that relied on either
intended or perceived emotion labels, we argue that both
intended and perceived labels contain valuable information
about how humans express and perceive emotions, which
should be collectively mined to improve the accuracy of
emotion recognition.

In this paper, we develop novel preference learning models
for multimodal emotion recognition that address the mismatch
between the perceived labels on different modalities, as well as
the mismatch between the intended and perceived emotions in
each modality. Our preference learning models consider the
subjective nature of emotion and exploit the evaluations
from multiple raters to better assess the underlying ordinal,
mixture representation of emotion. They sort all data in a
given sample with respect to the degree with which they
convey a target emotion. Towards this goal, we make the
following contributions.

1) We propose to calculate the relevance of each utter-
ance to each target emotion based on the matchings
between the target emotion and the intended and
perceived emotion labels of the utterance. We de-
velop three sets of ranking rules: a simple ranking
rule that assigns the same weight to labels from all
modalities, an intermediate rule that assigns larger
weight to multi-modal labels than single-modal la-
bels, and a complex ranking rule that assigns differ-
ent weights to labels from different modalities.

2) For each target emotion, we train an emotion ranker
using three pairwise learning to rank models, namely
support vector machine, deep neural networks, and
gradient boosting decision trees, to minimize the
number of incorrectly ordered utterance pairs gen-
erated by the same speaker. The outputs of the
emotion ranker are used to sort all utterances based
on their relevances to the target emotion.

3) We further develop ranking-based multi-class emo-
tion classifiers based on the results obtained from
the six emotion rankers. The final emotion pre-
diction is generated using the highest rank rule,
second-level training, or model combination to take
advantage of the complementary information of
different labels, ranking rules and ranking models.

4) We conduct extensive evaluation of the proposed
multimodal ranking rules and preference learn-
ing models on the CREMA-D dataset. Our results
demonstrate that all three preference learning mod-
els significantly outperform the conventional clas-
sifiers baselines, and combining different ranking
models can further improve the accuracy. Our re-
sults confirm the benefits of complementary infor-

mation provided by different labels, and suggest
that we should treat different labels differently.

5) We perform the cross-corpus emotion recogni-
tion experiments by training emotion rankers on
CREMA-D and tested the ranking-based emotion
classifier on the SAVEE dataset that do not have per-
ceived labels annotated. Our results show that the
ranking-based classifiers outperform the conven-
tional supervised method by larger margin when
the training and testing set are from different cor-
pus, which further prove the effectiveness and gen-
eralization ability of the proposed ranking models.

The rest of the paper is organized as follows. We review
the related work in Section 2. The dataset and features are
introduced in Section 3. The preference learning framework
is developed in Section 4, in the order of ranking rules
for generating relevance scores, emotion rankers based on
pairwise learning to rank models, and the final generation of
multi-class prediction. The evaluation results and the cross-
corpus experiments are discussed in Section 5. The paper is
concluded in Section 6.

2 RELATED WORK

Most of the existing approaches to automatic human emo-
tion analysis are aimed at the recognition of a small number
of prototypical (basic) expressions of emotion, and have
been trained and tested on posed or acted affective ex-
pressions [5]. Research on emotion recognition from cues
expressed in facial expression has a long-standing tradition.
Numerous prior studies followed Ekman’s basic discrete
emotion theory [6] and concentrated on emotion perception
from facial cues. They have established that prototypical
basic emotions can be universally recognized by different
groups of people based on the activation of specific facial
expressions [7]. There are three widely adopted approaches
to the extraction of information related to facial expression:
detection and tracking of facial feature points [8], fitting
face models to characterize shape and/or appearance, such
as active appearance models (AAMs) [9], and image anal-
ysis by basic functions, such as Gabor wavelets [10], or
by texture descriptors, such as local binary patterns (LBP)
[11]. The traditional paradigm of emotion recognition in
speech is to extract acoustic features from the speech signal,
then train classifiers on these representations, which when
applied to a new utterance are able to determine its emotion
content. Many acoustic features, such as prosodic features
(e.g., pitch, energy, duration), spectral features (e.g., Mel-
frequency cepstral coefficients (MFCC), Linear Prediction
Cepstrum Coefficients (LPCC)), voice quality features (e.g.
jitter and shimmer), etc. contribute to the transmission
of emotional content in voice [12]. A variety of pattern
recognition methods have been explored for automatic emo-
tion recognition, such as Gaussian mixture models, hidden
Markov models, support vector machines, regression, and
neural networks [13]. In the recent years, the successes of
deep neural networks (DNN) have spanned many domains,
from speech recognition, machine translation, to computer
vision. Recently, DNNs have been successfully applied in
affective computing tasks, including end-to-end training,
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and learning of discriminative features for speech and facial
emotion recognition [14], [15].

Meanwhile, researchers have recently devoted more ef-
forts to multimodal emotion analysis and recognition, in the
hope that combining different information sources would
lead to more accurate recognition. It is well-known that
facial expressions convey more information about a subject’s
emotional state than changes in voice, which typically con-
vey arousal [16], [17], [18]. Many studies investigate how
different modalities is integrated, and the most common ap-
proaches are naive feature-level fusion (in which all features
are combined together to learn a classifier) and decision-
level fusion (in which a classifier for each modality is trained
separately and their predictions are combined by rules)
[19], [20]. However, learning from multiple modalities is not
trivial. Different modalities may have different degrees of
expressiveness for different emotions. Different expressions,
which can be redundant or independent, complementary
or contradictory, bring many challenges to the multimodal
emotion recognition task [21], [22]. Many existing multi-
modal emotion recognition systems that applied the state-
of-the-art feature-based and model-based fusion have only
shown little or no improvement over unimodal systems. The
improvements from multimodal fusion are much smaller
on datasets of spontaneous emotions than those with acted
emotions [23]. Savran et al. proposed an advanced multi-
modal emotion recognition system, which had shown great
promise in recognition performance by combining textual,
audio, and video modalities [21]. This was achieved by
using a powerful temporal prediction model as the prior
in Bayesian fusion as well as by incorporating uncertainties
about the unimodal predictions [22].

Although preference learning frameworks have been
widely used in many information retrieval applications
from different types of data, e.g. in text, image, video,
and music [24], [25], [26], [27], they have been applied to
speech emotion recognition only very recently, e.g. [28], [29],
[30], [31], [32], [33], [34], [35]. Cao et al. [33] first trained
rankers by establishing a binary preference score based on
the consensus labels. For example, for a ranker for Anger
emotion, a sample labeled as Anger was always preferred
over another sample labeled with other emotions. Lotfian et
al. [31] considered the perceptual ratings from all individual
evaluators to create a continuous relevance score for prefer-
ence learning. Parthasarathy et al. [32] first applied quali-
tative agreement (QA) methods to estimate reliable labels
from inconsistent annotations, and then used those labels
for preference-learning. Jin et al. [36] developed a preference
learning framework for speech emotion recognition within
audio modality only. Different from previous works, we
focused on developing the preference learning framework
to more challenging multimodal emotion recognition, where
we consider the discrepancies and consistencies between
the intended and perceived labels in different modalities of
audio-only, visual-only, and audio-visual. We assume that
samples that have the consistent target emotion during the
emotion expression and perception are more likely to con-
vey the target emotion. Based on analyzing the agreement
between the intended and perceived emotions, as well as the
consistency among all perceptual ratings, we proposed var-
ious pairwise ranking rules to generate multi-scale relevant

scores for preference learning. Our results demonstrated
that the ranking rule treating different labels differently can
outperform the ranking rule treating different labels equally.
Also, this work considers multimodal analysis, and the dis-
crepancy between labels obtained from different modalities
was additionally addressed. Moreover, we further explore
more advanced preference learning models including rank-
ing with deep neural networks, and ranking with boosted
decision trees. Finally, we combine the ranking scores of in-
dividual emotions for multi-class classification, and discuss
the potential for improving prediction by combining various
ranking and classification systems together.

3 DATASET AND FEATURES

3.1 CREMA-D
The dataset we use is Crowd-sourced Emotional Multimodal
Actors Dataset (CREMA-D) [1], which is an audiovisual
corpus collected to explore human emotion expression and
perception behaviors in different modalities. It consists of
facial and vocal emotional expressions in sentences spoken
in a range of basic emotional states (Anger, Disgust, Fear,
Happiness, Neutral, and Sadness). This corpus consists of
7, 442 clips (over 10 hours) of emotional sentences collected
from 91 actors with diverse ethnic backgrounds. The task
for the actors was to convey that they are experiencing
a target emotion while uttering a given sentence. The in-
tended emotion label is the target emotion given to the
actors during recording. The categorical emotion labels and
real-valued intensity values for the perceived emotion were
also collected through crowd-sourced perceptual evalua-
tions from 2, 443 raters in three modalities: audio, visual,
and audiovisual. More than 95 percent of the clips in the
database have 8 to 12 perceptual ratings. Thus for each
clip, we have four dimensional emotion labels, including the
three crowd-sourced perceived emotion labels which reflect
human perception behaviors in different modalities, and the
intended emotion label which is the target emotion the actor
originally wanted to express.

TABLE 1
Percentage of samples for which the perceived emotion matches the
intended emotion from each emotion category in CREMA-D dataset

Matching % ANG DIS FEA HAP NEU SAD ALL
Audio 60.6 30 32 26 95.7 16.4 41.6
Video 65.4 63.4 51.6 95.6 91.8 33.4 64.3
Multi 74.7 74.4 64.8 94.8 95.7 32.3 72.2

Table 1 shows the percentage of samples for which the
perceived emotion matches the intended emotion from each
emotion category. It can be seen that there is a consider-
able mismatch between them due to the complex nature
of emotions. The matching ratios between the intended
and perceived emotion labels vary from 16.4% to 95.7%
across different target emotions and different modalities.
Specifically, we can see that for Anger, Disgust, and Fear,
multi-modality perceived labels have more matches than
the video perceived labels, and these two types of perceived
labels both have more matches than the audio perceived
labels. For Happy and Sad emotions, the matching percent-
ages of video perceived labels and multi-modality perceived
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TABLE 2
The descriptions and the corresponding facial muscles of the 17 selected action units.

Action Unit Number Description Facial Muscle
Action Unit 1 Inner brow raiser Frontalis (Pars medialis)
Action Unit 2 Outer brow raiser Frontalis (Pars lateralis)
Action Unit 4 Brow lowerer Depressor glabellae, Depressor supercilli, Currugator supercilli
Action Unit 5 Upper lid raiser Levator palpebrae superioris, Superior tarsal muscle
Action Unit 6 Cheek raiser Orbicularis oculi (Pars orbitalis)
Action Unit 7 Lid tightener Orbicularis oculi (Pars palpebralis)
Action Unit 9 Nose wrinkler Levator labii superioris alaquae nasi
Action Unit 10 Upper lip raiser Levator labii superioris, Caput infraorbitalis
Action Unit 12 Lip corner puller Zygomatic major
Action Unit 14 Dimpler Buccinator
Action Unit 15 Lip corner depressor Depressor anguli oris (Triangularis)
Action Unit 17 Chin raiser Mentalis
Action Unit 20 Lip stretcher Risorius
Action Unit 23 Lip tightener Orbicularis oris
Action Unit 25 Lips part Depressor labii inferioris, Relaxation of mentalis, Orbicularis oris
Action Unit 26 Jaw drop Masetter, Relaxation of temporalis and internal pterygoid
Action Unit 45 Blink Relaxation of levator palpebrae, Contraction of orbicularis oculi (Pars palpebralis)

labels are similar, both higher than audio perceived labels.
For Neutral, however, the three types of perceived labels
have similar matching percentages. Overall, multi-modality
perceived labels are more reliable than single-modality per-
ceived label, and video perceived labels are more reliable
than audio perceived labels.

In this study, different from the previous studies that
relied on either the intended or the perceived emotion
labels, we consider both of them. With the agreement and
disagreement information of the intended label and three
modalities perceived labels, we can model the consistency
and inconsistency between human emotion expression and
perception in different modalities, and further develop com-
prehensive emotion ranking rules for preference learning.

3.2 Multi-Modality Features
For each audiovisual clip in the CREMA-D dataset, we
first extract the utterance-level acoustic features from audio
channel, and facial features from video channel respectively,
and then combine them together as our multi-modality fea-
tures for the development of multimodal emotion rankers
in preference learning.

3.2.1 Audio Acoustic Features

We used OpenSMILE toolkit [37] to extract emobase acoustic
feature set which are wildely used for emotion recogni-
tion. Emobase feature set contains 52 Low Level Descrip-
tors (LLDs) such as MFCCs, voice quality, fundamental
frequency (F0), F0 envelope, LSP and intensity features
along with their first and second order derivativesce. In
addition, 19 High Level Statistical Functionals (min, max,
range, argmin, argmax, mean, standard deviation, three
quartile values, three inter-quartile range values, skewness,
kurtosis, and intercept, slope, linear error, quadratic error in
linear regression) are applied to the LLDs at the utterance
level, resulting in a total number of 988 features.

3.2.2 Video Facial Features

Facial Action Units (AUs) are characterized by contractions
of specific facial muscles that correspond to a displayed
emotion. They have been widely used as features in facial

expression analysis and emotion recognition [7], [8], [10]. In
this study, we select 17 AUs that are commonly involved
in the coding of the six basic emotions. The descriptions
and the corresponding facial muscle of these 17 selected
action units are listed in Table 2. Similar as acoustic analysis,
we also extract the utterance-level AU features. Specifically,
for each video frame, we first estimate the intensity of the
selected 17 AUs by using the OpenFace facial behavior
analysis toolkit [38], [39]. Those are the LLDs for video
features. After that, we estimate 22 High Level Statistical
Functionals (the 19 statistical functions used in the above
acoustic analysis, and R-square, p-value, standard error of
estimated slope in linear regression) at the utterance level.
Thus, for each video clip, the utterance-level facial action
unit features lie in the space of 374 dimensions.

3.2.3 Multi-Modality Features

Finally, we combine the 988 audio acoustic features and
374 video facial action unit features together as our multi-
modality features. Z-score normalization has been applied
across the entire dataset: each feature minus its mean and
divided by its standard deviation. Particularly, if the stan-
dard deviation of a certain feature is zero, which means all
the 7442 clips have the same value in this feature, then we
just eliminate this useless feature. For example, the No. 1018
feature which represents the minimum value of AU20 (Lip
stretcher) in all the 7442 clips equal to the same value 0,
then this feature is supposed to be useless in differentiating
emotions and should be removed. After the z-score normal-
ization and feature elimination, the dimension of the multi-
modality features reduces from 1362 to 1347.

4 METHODOLOGY

In this study, we are interested in building rank-based clas-
sifiers for emotion recognition. The ranking problem is to
sort the utterances with respect to how much they convey a
particular emotion. To train a ranker for a target emotion, we
need to specify a set of pairs of instances so that, within each
pair, one instance conveys the target emotion better than the
other. The optimization problem of the ranker is to minimize
the number of incorrectly ranked pairs. In this section,
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Fig. 1. The diagram of our ranking-based emotion classifier, including modules for features extraction, three ranking rules based on intended and
multi-modal perceived labels, three ranking models, and the integrated ranking-based emotion classifier.

we first define various ranking rules by creating ranking
relevance score for each observation based on the consensus
among the intended emotion label and three perceived
labels. Then we introduce three advanced ranking models
that we use to build rankers for emotion analysis. Lastly,
we discuss multi-class emotion recognition by integrating
different ranking-based classifiers together. Figure 1 illus-
trates the diagram of our ranking-based emotion classifier,
including the modules for features extraction, three ranking
rules based on intended and multi-modal perceived labels,
three ranking models, and integrating emotion rankers into
ranking-based classifier.

4.1 Data Denotation
We first summarize the data denotation here: our data can
be denoted as

{xi, si, Ii, P
(a)
i , P

(v)
i , P

(m)
i }, i = 1 · · ·m,

where m = 7442 is the number of observations, xi 2 R
d

is d-dimensional multi-modality features, d = 1347 as
stated above, si 2 {1 · · · 91} is the speaker index, Ii is
the intended emotion label, P (a)

i is the perceived label in
audio single-modality, P (v)

i is the perceived label in video
single-modality, P (m)

i is the perceived label in audiovisual
multi-modality. Intended label Ii can be six values: Anger,
Disgust, Fear, Happy, Neutral and Sad. In addition
to the six basic emotion values, three perceived labels
P

(a)
i , P

(v)
i , P

(m)
i can also be Ambiguous because they are

crowd-sourced vote results from 2,443 raters.

4.2 Ranking Rules based on Multi-dimensional Labels
The key point in developing ranking rules is how to de-
termine whether an observation conveys the target emotion

more intensely than another. In this section, we define rank-
ing rules by creating ranking relevance score based on the
agreement and disagreement information of the intended
label and three-dimensional perceived labels. In each target
emotion ranker, the higher ranking relevance score means
the expression is more likely to convey the target emotion.
For example, in the Anger ranker, the ranking relevance
score of observation A is higher than observation B, means
the speaker conveys more clear anger in utterance A than
in utterance B. In mathematical representation, for a target
emotion t, ranking rule is actually a mapping from four-
dimensional labels (Ii, P

(a)
i , P

(v)
i , P

(m)
i ) to a ranking rele-

vance score ri,t 2 R, and after mapping, our data become
{xi, si, ri,t}, i = 1 · · ·m. The design of mapping function is
based on counting the influence factors of the four labels
into ranking relevance score. Here, we developed three
kinds of ranking rules by employing two different sets of
weights in counting.

4.2.1 Simple Ranking Rule

We first propose “simple ranking rule” with the idea that
the four emotion labels are of the same importance in iden-
tifying emotion class. The simple ranking rule considers the
four label of the same weight in mapping ranking relevance
score. To be detailed, in the target emotion ranker:

ri,t = w
(I)
i r

(I)
i,t + w

(a)
i r

(a)
i,t + w

(v)
i r

(v)
i,t + w

(m)
i r

(m)
i,t (1)

where r
(⇤)
i,t is the indexes showing whether the correspond-

ing label of sample i matches with the target emotion t. For
example, in the Anger ranker, if Ii = Anger then r

(I)
i,A = 1

otherwise r
(I)
i,A = 0, same for the other three labels and their

indexes values. Although the three perceived labels can
assume Ambiguous value other than the six basic emotions,
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Fig. 2. Histogram of ranking relevance scores of Simple Ranking Rule on the CREMA-D dataset

there are only 5.6% of the whole data with Ambiguous

perceived labels, and we just set their index value to zero
for any target emotion in simple ranking rule.

In this way, the influence factor of a certain label is
represented as its weight multiplied by its index value, and
ranking rule is the mapping based on adding the influence
factors of the four labels together into ranking relevance
score. What’s more, simple ranking rule uses the same set of
weights for all i:

wi = (w(I)
i , w

(a)
i , w

(v)
i , w

(m)
i ) = (1, 1, 1, 1) (2)

In other words, the simple ranking rule assumes the four
labels are equally important for counting influence factors.
Intuitively, the samples with four labels all consistently
matching with the target emotion are the most clear in
conveying the target emotion. The fewer the number of the
labels matching with the target emotion, the lower the value
of ranking relevance score, the less clear in conveying the
target emotion.

Figure 2 shows the histograms of the ranking relevance
scores generated by simple ranking rule for the six emotions.
The horizontal axis represents the ranking relevance score,
which is the number of labels agree with the target emotion
in simple ranking rule, and value 0 means none of the four
labels agree with this target emotion. We can see that for
Anger, Disgust, and Fear, they have similar distributions
and the non-zero ranking relevance scores distributed quite
evenly. For Happy emotion, samples with non-zero ranking
scores mainly fall in the level 3 & 4, meaning the majority of
them have high consensus with at least 3 labels matching
with the target emotion. For Neutral and Sad, however,
the distribution of samples with non-zero ranking score is
skewed towards level 1, meaning there is a high degree of

disagreement among the four labels. As a result, we can
expected that it is easier for the system to distinguish Happy
emotion than to recognize Neutral and Sad.

4.2.2 Intermediate Ranking Rule

We further extend the simple ranking rule into ”intermedi-

ate ranking rule” by considering different importance on
single-modal perceived labels and multi-modal perceived
label. As illustrated in Table 1, in the CREMA-D database,
the matching ratio between the intended and multi-modal
perceived labels is significantly higher than the matching
ratios with different single-modal perceived labels. Thus, we
consider to assign higher weight to multi-modal label than
single-modal labels. To be detailed, intermediate ranking
rule also uses (1) to add the four labels’ influence factors
together as ranking relevance score, but it utilizes a different
weight set for all i:

wi = (w(I)
i , w

(a)
i , w

(v)
i , w

(m)
i ) = (3, 1, 1, 3) (3)

where the audiovisual multi-modality perceived label has
larger weight than the two single-modality perceived labels,
and the intended label is of the same importance with
the multi-modality perceived label. Moreover, the relevance
values r

(⇤)
i,t take perceived Ambiguous labels into consider-

ation: in Anger ranker for example, if P (⇤)
i = Anger then

r
(⇤)
i,A = 2, if P (⇤)

i is Ambiguous, confusing Anger with other
emotions, then r

(⇤)
i,A = 1, if P (⇤)

i equals to an emotion other
than Anger, then r

(⇤)
i,A = 0, where P

(⇤)
i can be any one of the

three perceived labels P
(a)
i , P

(v)
i , P

(m)
i ; as for the intended

label, if Ii = Anger then r
(I)
i,A = 2 otherwise r

(I)
i,A = 0, the

same for other emotion rankers.
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Fig. 3. Histogram of ranking relevance scores of Intermediate Ranking Rule on the CREMA-D dataset

Compared to the simple ranking rule that only have five
different ranking relevance levels, intermediate ranking rule
calculates the ranking relevance scores in a more meticu-
lous way, with seventeen different levels. Figure 3 shows
the histograms of them for six emotions respectively. The
horizontal axis shows the ranking relevance score, and level
0 also means none of the four labels is as the same as this
target emotion. We can also see that for Disgust and Fear, the
distribution of non-zero ranking relevance scores is quite
even. For Anger and Happy, the non-zero ranking scores
tend to be higher level, representing more agreement among
the four labels. For Sad emotion, the ranking scores tend to
be lower level, showing more mismatches between the four
labels. Unlike the other five emotions that the majority of
samples fall in level 0, the distribution of ranking scores for
Neutral is more uneven, showing there are more disagree-
ment and mismatches among the intended and perceived
labels in understanding Neutral emotion.

4.2.3 Complex Ranking Rule

We further design the ”complex ranking rule” by con-
sidering different roles and importances for the four la-
bels retrieved during emotion production and perception.
Specifically, complex ranking rule views roles of the four
labels in a meticulous way: Firstly, the intended label reveals
human emotion expression behaviors, however the other
three perceived labels show human emotion perception
behaviors. These two kinds of behaviors should carry the
same weight in identifying emotion class; Secondly, among
the three perceived labels, the crowd-sourced vote results
from multi-modality should be more reliable than the vote
results from single-modality, thus audiovisual perceived la-
bel should have larger weight than audio or video perceived
label; Thirdly, the data with perceived label Ambiguous in

target emotion may be more intense than the data with the
perceived label totally disagrees with the target emotion.

Complex ranking rule still uses (1) to add the four labels’
influence factors together as ranking relevance score, but it
counts the influence factors in a different way. Based on the
assumptions stated in the previous paragraph, the complex
ranking rule employs the weight set for all i:

wi = (w(I)
i , w

(a)
i , w

(v)
i , w

(m)
i ) = (7, 2, 2, 3) (4)

where the weight of the intended label which corresponds
to the expression channel equals to the sum of the weights
of three perceived labels which correspond to the per-
ception channel, and audiovisual multi-modality perceived
label has larger weight than the two single-modality per-
ceived labels. Also, complex ranking rule takes perceived
Ambiguous labels into consideration as well: if the per-
ceived label equals to the target emotion, its corresponding
relevance value is assigned as 2, if the perceived label is
Ambiguous, its corresponding relevance value is assigned
as 1, and if the perceived label equals to an emotion other
than the target emotion, its corresponding relevance value is
0. As for the intended label, if the intended emotion equals
to the target emotion, then r

(I)
i,t = 2 otherwise r

(I)
i,t = 0.

Compared to simple ranking rule and intermediate rank-
ing rule, complex ranking rule differentiates emotion inten-
sity level in a very detailed manner, with twenty-nine levels.
Table 3 shows a comprehensive analysis for these twenty-
nine ranking relevance scores in complex ranking rule, and
Figure 4 shows the histograms of them for six emotions
respectively. Similar as what we observed with the previous
two ranking rules, we can see that for Anger, Disgust, and
Fear, the distribution of non-zero ranking relevance scores is
quite even. For Happy emotion, this distribution is skewed
to higher relevance scores, meaning more labels agree with
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Fig. 4. Histogram of ranking relevance scores of Complex Ranking Rule on the CREMA-D dataset

TABLE 3
A comprehensive analysis for the twenty-nine ranking relevance scores in complex ranking rule

Ranking relevance score value Which label matches with the target emotion
[0, 4) none of the four labels
[4, 6) one of single-modality perceived labels
[6, 8) multi-modality perceived label
[8, 10) both the audio perceived label and video perceived label
[10, 14) one of single-modality perceived labels and multi-modality perceived label

14 only intended label, or all three perceived labels
[14, 18) only intended label
[18, 20) intended label and one of single-modality perceived labels
[20, 22) intended label and multi-modality perceived label
[22, 24) intended label and two single-modality perceived labels
[24, 28) intended label, one of single-modality perceived labels, and multi-modality perceived label

28 all the four labels

the target emotion. For Neutral and Sad, however, this
distribution is skewed to lower relevance scores, meaning
more disagreement among the four labels. Thus, in complex
ranking rule, it is also easier for the system to distinguish
Happy, and harder to recognize Neutral and Sad. On the
other hand, different from what have been found in the
simple ranking rule that the distribution of samples with
non-zero ranking level is skewed towards one or two levels,
we can observe much wider distribution across the different
relevance scores with the complex ranking rule, suggesting
that the complex ranking rule can better capture the more
complex and ambiguous emotion expressions.

4.3 Emotion Rankers using Learning-to-Rank Models
Through the mapping function of ranking rules, our data
become {xi, si, ri,t}, i = 1 · · ·m, and now we are going to
build emotion ranking models to predict ranking relevance
score and sort the observations in the descending order of

the predicted ranking level. We build the following three
ranking models for analyzing the six basic emotions. Al-
though these three ranking models are of different struc-
tures, they are all pairwise learning to rank models in prefer-
ence learning.

• RankSVM (ranking with support vector machine)
• RankNet (ranking with deep neural networks)
• LambdaMART (ranking with gradient boosting deci-

sion trees)

These three pairwise ranking models are originally used
in information retrieval tasks to rank search results, of which
the task is to sort webpages returned by a search engine
by their relevances to the query. For our task, due to the
large inter-subject variability in emotion expressions, we
only conduct pairwise ranking between clips generated by
the same speaker. In other words, a query is defined by
a speaker in the dataset. When training a ranker for a
target emotion t, clips generated by the same speaker are
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sorted based on their relevance scores ri,t defined in (1).
We train pairwise ranking models to minimize the number
of incorrectly ordered pairs generated by the same speaker.
In testing, the outputs of the ranker for target emotion t are
used to sort all clips generated by a speaker in terms of their
relevances to the target emotion t.

4.3.1 RankSVM - Ranking with Support Vector Machine

RankSVM proposed by Joachims [40] is a classical ranking
model using Support Vector Machine (SVM) in preference
learning. The idea behind it is to transform the pairwise
ranking problem to a binary classification problem on pairs
with a partial ordering. For a given subject s, Ui is the i-th
sample and Uj is the j-th sample (with si = sj = s), and
their feature vectors are xi and xj , respectively. Let Ui � Uj

denote the event that Ui has a higher relevance score to
emotion t than Uj , i.e. ri,t > rj,t, and P denote the set of
pairs of indices (i, j) for which Ui � Uj . The RankSVM
optimization problem is formulated as:

min
!,⇠

1

2
k!k2 + C

X

{i,j}2P

⇠i,j

s.t. h!, (xi � xj)i � 1� ⇠i,j , ⇠i,j � 0 8{i, j} 2 P,

(5)

where ⇠ represents the slack variables and C is the parame-
ter to trade-off margin size against training error. RankSVM
learns the optimal weight vector !̂ to minimize the objective
function in equation (5) through training. In the testing
process, if h!̂, (xi � xj)i � 0, then Ui � Uj . In this way,
after subtracting feature vectors of a pair of samples, i.e.
xi � xj , RankSVM converts the ranking problem into a
binary classification problem on partially ordered pairs and
solves it with SVM classification.

4.3.2 RankNet - Ranking with Deep Neural Networks

RankNet proposed by Burges [41] is another pairwise rank-
ing model built on deep neural network. It deploys a prob-
abilistic ranking cost function and uses gradient descent to
update model parameters in neural networks. At a given
point during training, RankNet maps an input feature vector
x 2 R

d to a number f(x) 2 R. For each pair of samples
Ui and Uj in the set P , RankNet computes their outputs
si = f(xi), sj = f(xj), and maps the two outputs to a
learned probability that Ui is ranked higher than Uj via a
sigmoid function:

Pij = P (Ui � Uj) =
1

1 + e��(si�sj)
(6)

where � determines the shape of the sigmoid. RankNet uses
the classical cross-entropy cost function:

Cij = �P̄ij log(Pij)� (1� P̄ij) log(1� Pij)

=
1

2
(1� Sij)�(si � sj) + log(1 + e

��(si�sj)),
(7)

where Sij takes value of 1 if Ui � Uj or �1 if Ui � Uj ,
P̄ij =

1
2 (1 + Sij) is the known probability that Ui is ranked

higher than Uj . During training process, RankNet updates

the model parameters wk in neural network using gradient
descent:

wk ! wk � ⌘
@C

@wk
= wk � ⌘

X

(i,j)2P

✓
@Cij

@si

@si

@wk
+

@Cij

@sj

@sj

@wk

◆

= wk � ⌘

X

(i,j)2P

@Cij

@si

✓
@si

@wk
� @sj

@wk

◆

= wk � ⌘

X

(i,j)2P

�ij

✓
@si

@wk
� @sj

@wk

◆
,

(8)

where �ij = �( 1�Sij

2 � 1
1+e�(si�sj)

).

4.3.3 LambdaMART - Ranking with Boosted Decision Tree

LambdaMART proposed by Burges [42] as a pairwise rank-
ing model based on gradient boosted decision trees, is a
combination of MART and LambdaRank [43]. LambdaRank
is an updated version of RankNet whose key idea is com-
puting the desired gradients �i directly instead of deriving
them from a cost as in (8):

wk ! wk � ⌘

X

(i,j)2P

(�ij
@si

@wk
� �ij

@sj

@wk
)

= wk � ⌘

X

i

�i
@si

@wk

where �i =
X

j:(i,j)2P

�ij �
X

j:(j,i)2P

�ij

(9)

for simplicity, we denote the above sum operation as
X

(i,j)$P

�ij ⌘
X

j:(i,j)2P

�ij �
X

j:(j,i)2P

�ij

What’s more, different from RankNet only optimizing
for the number of pairwise errors, LambdaRank can also
optimize for other measures that are either discontinuous
or flat. For example, when optimizing for the Normalized
Discounted Cumulative Gain (NDCG), LambdaRank just
modifies the gradients by multiplying the size of the change
in NDCG (|�NDCG|) given by swapping the ranking posi-
tions of Ui and Uj while leaving the other samples’ ranking
positions unchanged:

�ij =
@C

@si
=

��

1 + e�(si�sj)
|�NDCG|

�i =
X

j:(i,j)2P

�ij �
X

j:(j,i)2P

�ij =
X

(i,j)$P

�ij
(10)

LambdaRank and MART can be well combined as Lamb-
daMART, since LambdaRank computes the gradients di-
rectly at any training point, while MART performs gradi-
ent descent using regression trees and each tree models
the gradient. Within LambdaMART, user-chosen parame-
ters are the number of trees N , the maximum number
of leaves L, and the learning rate ⌘. Each tree maps the
input feature vector xi to the tree output fk(xi), k = 1...N
and the final output is the weighted linear combination
of trees outputs

PN
k=1 ↵kfk(xi). During training process,

LambdaMART learns �lk, l = 1...L, k = 1...N for each
leaf modelling the gradients of the cost with respect to
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the tree output with Newton method shown as below,
and update the new tree output from the previous tree by
fk(xi) = fk�1(xi) + ⌘

P
l �lkI(xi 2 Rlk), where I(·) is the

indicator function and Rlk denotes the set of samples that
falls in the lth leaf node of the kth tree.

�lk =

P
xi2Rlk

@C
@siP

xi2Rlk

@2C
@s2i

=

P
xi2Rlk

�iP
xi2Rlk

@�i
@fk�1(xi)

=

P
xi2Rlk

P
(i,j)$P

��
1+e�(si�sj)

|�NDCG|
P

xi2Rlk

P
(i,j)$P �2 e�(si�sj)

1+e�(si�sj)
|�NDCG|

(11)

LambdaMART updates only a few parameters for the
current leaf nodes at a time using all the data, compared
to LambdaRank that updates all the parameters after each
query is screened. Thus, LambdaMART, as a boosted tree
version of LambdaRank, shows better results than Lamb-
daRank and the original RankNet.

4.4 Ranking-based Emotion Recognition
Six basic emotion rankers were constructed using differ-
ent types of ranking rules and preference-learning models
described above. After that, we further develop ranking-
based emotion classifiers based on the results obtained from
the six emotion rankers. Within each emotion ranker, all
the samples generated by a specific speaker s whose data
were not used in the training process were mapped to
predicted ranking scores in the testing process. The higher
the predicted ranking scores means the more intensity in
expressing the emotion. After sorting the predicted ranking
scores in decreasing order, each sample of the speaker s has
its predicted rank. Suppose this speaker s has ms samples,
for the k-th sample, the predicted ranks by the six emotion
rankers are:

{Ak, Dk, Fk, Hk, Nk, Sk, } (12)

where k = 1...ms and the six predicted ranks can take the
integer value between 1 and ms. We develop ranking-based
emotion classifiers with three ideas: highest rank rule, second
level training, and combining policy.

Our ranking-based emotion classifiers closely rely on the
performance of the six emotion rankers. Ideally, if a sample
is ranked high by a ranker for emotion t, and ranked low by
the other emotion rankers, one should pick t as the final clas-
sification decision with high confidence. However, if there is
no clear distinction between the ranks from all the rankers,
a tougher decision has to be made to achieve high accuracy
in the final classification. We divide the whole classification
task into six separated subtasks of recognizing the intensity
of each emotion and focus on learning only one emotion
feature at a time. This makes our ranking-based classifiers
have the potential to outperform the traditional classifiers
that just apply the classification algorithms directly.

4.4.1 Highest Rank Rule

The highest rank rule directly picks the emotion of which
the predicted rank is the highest as the final classification
decision. For example, if the predicted rank value by the
Anger ranker Ak is smaller1 than the other five predicted

1. Smaller rank value means higher rank

TABLE 4
Parameters used in LambdaMART models. A: Anger, D: Disgust, F:

Fear, H: Happy, N: Neutral, S: Sad; R1: Simple ranking rule, R2:

Intermediate ranking rule, R3: Complex ranking rule.

Number of trees Max number of leaves Learning rate
A-R1 140 21 0.08
A-R2 220 21 0.09
A-R3 280 17 0.09
D-R1 90 45 0.08
D-R2 180 55 0.1
D-R3 220 55 0.09
F-R1 140 35 0.07
F-R2 300 45 0.1
F-R3 600 60 0.1
H-R1 100 15 0.01
H-R2 100 15 0.01
H-R3 250 20 0.03
N-R1 100 50 0.09
N-R2 1000 60 0.09
N-R3 3000 55 0.1
S-R1 130 27 0.09
S-R2 500 35 0.09
S-R3 2000 29 0.09

ranks, we pick Anger as the final classification decision. If
there are more than one predicted ranks of the same smallest
value, we just randomly pick one of these emotions as the
final decision.

4.4.2 Second Level Training

Second level training builds a second-level learning model
by transforming the six predicted ranks as the second-level
features, and makes the classification decisions using the
second-level model outputs. The second-level feature vector

(AV
k , D

V
k , F

V
k , H

V
k , N

V
k , S

V
k ), k = 1...ms (13)

is transformed element-wise from the vector of the predicted
ranks in (12) using a linear function:

f(x) =
ms � x

ms � 1
, (14)

so that the highest rank (rank 1) is converted to feature
value of 1, and the lowest rank (rank ms) is converted
to feature value of 0. The second-level learning model we
use is Support Vector Machine (SVM) with radial kernel,
which maps the six original predicted ranks to the final
classification decision with a non-linear model.

4.4.3 Model Combination

Finally, we consider the combination of multiple models,
aiming to take advantage of the complementary information
of multiple ranking models to increase the classification
accuracy. Here, we combine predictions from the classifiers
by taking the average of the posterior probabilities for each
emotion class produced by all the classifiers. The emotion
class with the highest average posterior probability is pre-
dicted as the class for each sample in the test data.

5 EXPERIMENTAL RESULTS

In this section we evaluate the effectiveness of the proposed
multimodal ranking rules and preference learning models
for emotion recognition on the CREMA-D dataset. Through-
out this section, we use the following abbreviations: Target
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TABLE 5
R-precision for three ranking models with three ranking rules. M1:

RankSVM, M2: RankNet, M3: LambdaMART; R1: Simple ranking rule,
R2: Intermediate ranking rule, R3: Complex ranking rule.

% Anger Disgust Fear Happy Neutral Sad
M1-R1 78.03 72.87 60.72 85.99 63.58 56.51
M1-R2 78.98 72.39 61.27 85.21 63.68 57.31
M1-R3 78.74 72.56 61.59 85.62 64.15 57.63
M2-R1 86.30 81.06 68.21 94.42 75.81 65.43
M2-R2 86.86 81.05 68.13 94.26 75.08 62.73
M2-R3 86.77 81.69 69.64 94.35 76.99 65.09
M3-R1 85.45 82.94 67.11 91.83 75.76 64.33
M3-R2 85.85 84.43 68.14 90.96 80.26 64.57
M3-R3 85.92 84.82 68.52 93.87 80.52 66.76

Basic Emotions, A: Anger, D: Disgust, F: Fear, H: Happy,
N: Neutral, S: Sad; Ranking Rules, R1: Simple ranking
rule, R2: Intermediate ranking rule, R3: Complex ranking
rule; Ranking Models, M1: RankSVM, M2: RankNet, M3:

LambdaMART.
In order to confirm the stability and speaker indepen-

dence of the obtained classifiers, we performed all the
experiments using leave-one-subject-out (LOSO) paradigm.
In this form of cross-validation, all samples from a given
speaker are used as a test set for a model trained on the
data from all the other speakers, and the process is repeated
for all speakers. The overall performance of the classifier is
evaluated by combining the predictions from all test folds
and computing the overall accuracy for the entire dataset.
In our study, we used SVM rank toolkit [44] to implement
the RankSVM model and LightGBM [45] to implement
the LambdaMART model. The parameters used in Lamb-
daMART (number of trees N , maximum number of leaves
L, learning rate ⌘) are optimized for Spearman’s rank-order
correlation in five-fold subject-independent validation, and
are summarized in Table 4. Our RankNet structure is three-
layer with 256 & 64 units in each hidden layer, ReLU as
the activation functions, 256 batch size, 35 epochs for simple
ranking rule, 45 epochs for intermediate ranking rules and
50 epochs for complex ranking rule. For all the experiments,
similar to other studies used the CREMA-D dataset, we use
the intended label as the ground-truth.

First, we analyze the performance of individual emotion
rankers in Section 5.1. Six speaker-independent emotional
rankers were constructed, one for each basic emotion. Next,
we examine the accuracy of different approaches that in-
corporate the results from individual rankers to perform
multi-class prediction for each utterance in Sections 5.2.1
and 5.2.2. We further discuss the performance of model
combinations in Section 5.2.3. The key observations from the
experimental results are summarized in Section 5.3. Finally,
we also perform the cross-corpus experiments to evaluate
the generalization ability of our ranking-based emotion
classifier on other multi-modal emotion dataset.

5.1 Evaluation of Emotion Rankers
We first analyze the performance of the six emotion rankers
under different ranking rules and ranking models. Gen-
erally speaking, for a good ranker, samples of the target
emotion should be ranked higher than samples of any other
emotions. We first look at precision at k, which is widely

TABLE 6
Precision@K for which we retrieved all the target emotion samples for

three ranking models with three rules. M1: RankSVM, M2: RankNet,
M3: LambdaMART; R1: Simple ranking rule, R2: Intermediate ranking

rule, R3: Complex ranking rule.

% Anger Disgust Fear Happy Neutral Sad
M1-R1 51.73 46.05 35.24 63.09 46.37 35.95
M1-R2 53.45 47.30 35.17 65.97 46.99 36.74
M1-R3 53.85 47.82 35.68 66.02 46.55 36.78
M2-R1 67.44 58.50 39.67 86.91 56.76 41.24
M2-R2 68.04 58.63 39.76 85.29 56.39 41.10
M2-R3 65.18 57.51 38.81 87.46 57.74 42.18
M3-R1 66.93 64.32 38.24 78.25 58.49 44.68
M3-R2 67.56 65.97 41.47 75.75 65.22 45.75
M3-R3 68.02 65.94 40.33 86.24 67.28 47.99

TABLE 7
The classification accuracy of different baseline models. Multi: SVM

classifier with multi-modality features, Audio: SVM classifier with audio
acoustic feature, Video: SVM classifier with video facial features, NN:
baseline classifier with neural network, Tree: baseline classifier with

gradient boosted decision tree. Rand: random baseline

% Overall ANG DIS FEA HAP NEU SAD
Multi 75.72 86.01 75.73 60.10 89.39 79.46 64.15
Audio 58.83 77.06 50.16 44.48 55.25 63.71 63.01
Video 64.76 67.76 72.25 53.19 88.93 61.40 44.55
NN 76.19 83.88 76.00 63.04 87.81 78.38 68.34

Tree 72.96 83.09 75.81 51.82 89.40 74.75 63.10
Rand 16.94 17.47 18.08 17.47 17.46 14.81 16.05

used to evaluate the performance of ranking models. It is
defined as the percentage of utterances in the top k utterance
list ordered by the decreasing ranking scores that indeed
express the target emotion. Ideally, precision at k should
achieve 100% for k less than the total number of target
emotion samples of this speaker, and then decrease steadily.
Fig. 5 shows the precision at different k values for the three
ranking models with two ranking rules.

Meanwhile, in an idealized situation where we know the
number of utterances that convey the target emotion for
each speaker, we can measure the R-precision at different
R values for different speakers. For example, if we knew
that a speaker said 10 utterances in an angry manner, we
can look at the precision at R = 10 for that speaker and see
how many of the top ranked ten utterances were indeed
anger utterances. Besides, we also consider the precision
at the smallest k value that allows us to retrieve all the
samples whose ground-truth is the target emotion, i.e., the
smallest k achieving 100% recall, denoted as Precision@K .
The better the ranker model is, the larger these two metrics
will be. Table 5 and Table 6 shows the R-precision and
Precision@K results for the six emotion rankers under
three ranking models with two ranking rules.

We first compare the three preference learning models.
From Fig 5, Table 5, and Table 6, we can first see that
the advanced RankNet and LambdaMART models have
significantly better performance than the RankSVM model
on all the six emotions with all the three ranking rules. We
further compare the RankNet and LambdaMART models
and observe that the LambdaMART model has slightly
better performance than RankNet but there is no significant
improvement between them except on Disgust and Neutral.
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Fig. 5. Precision at k for the six emotion rankers on the CREMA-D dataset. Line type represents three ranking rules (Dashed line: Simple ranking
rule, Dotted line: Intermediate ranking rule, Solid line: Complex ranking rule). Color represents three ranking models (Black: RankSVM, Blue:
RankNet, Red: LambdaMART)

We then turn to study the impact of ranking rules. We notice
that the complex ranking rule performs slightly better than
simple ranking rule and intermediate ranking rule with
all the three ranking models. However, after performing
significance test with student t-test of 95% confidence, there
are no significant improvement of complex ranking rule
compared to the other two ranking rules, except for the
LambdaMART model on Happy, Neutral, Sad. We can inter-
pret this observation as LambdaMART model can learn out
small difference in emotion intensity for these three emo-
tions while the other two models cannot, thus producing
better results with complex ranking rule than with the other
two ranking rules.

5.2 Multi-class Emotion Classification
Next, we combine ranking scores from different prefer-
ence learning models to form the final multi-class emotion
classification. In order to investigate the effectiveness of
preference learning models in emotion recognition, we will
compare the developed ranking-based multi-class classifiers
to the conventional supervised methods.

We introduce three types of conventional classifiers as
our baselines: SVM, deep neural network (NN), and gradi-
ent boosted decision tree (Tree). The same multi-modality
features used in training the preference learning models
are used in the baselines. The SVM classifier was trained
with radial basis kernels. The neural network classifier (NN)
has the same structure as the RankNet: three layers with
256 & 64 units in each hidden layer. The gradient boosted
decision tree classifier (Tree) has the same structure as the
LambdaMART.

We report the emotion recognition accuracy of the three
baseline models in Table 7. For the sake of comparison,
we also trained the conventional uni-modal SVM classifiers
with acoustic features and video facial features respectively,
and report the results in Table 7 as well. As expected, using
multi-modality features can lead to higher accuracy on all
the six emotions than only using single modality features.
We also include a random baseline that randomly pick one
emotion and report its accuracy in the last row of Table 7.

5.2.1 Highest Rank Rule

The multi-class emotion classification accuracy of ranking-
based classifiers with the highest rank rule are summarized
in Table 8. We can first see that both RankNet (M2) and
LambdaMART (M3) model have significantly improvement
on all six emotions with both ranking rules compared to
RankSVM (M1) model. The LambdaMART model achieves
the best overall accuracy of 82.21%, which is slightly better
than the 80.57% overall accuracy obtained by RankNet
model, and it shows significant improvement on predicting
Disgust, Neutral, and Sad. Moreover, the proposed ranking-
based emotion classifiers has significantly higher accuracy
on all the six emotions compared to the best conventional
classifier baseline with 76.19% overall accuracy as shown
on the last three rows (copy from the Table 7 for easier
comparison).

On the other hand, we can also see that the complex
ranking rule (R3) performs only slightly better than the
simple ranking rule (R1) and the intermediate ranking rule
(R2) with RankSVM and RankNet models, and there is no
significant improvement. However, the benefit of complex
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TABLE 8
The classification accuracy of ranking-based emotion classifier with the
Highest Rank Rule. M1: RankSVM, M2: RankNet, M3: LambdaMART;

R1: Simple ranking rule, R2: Intermediate ranking rule, R3: Complex
ranking rule. The last three rows include the baselines with SVM,

neural network, and gradient boosted decision tree for comparison.

% Overall ANG DIS FEA HAP NEU SAD
M1-R1 73.58 80.16 73.65 63.79 89.38 79.70 55.66
M1-R2 74.01 80.39 73.74 63.87 90.17 79.81 56.92
M1-R3 74.29 80.87 74.53 63.96 90.65 79.54 56.91
M2-R1 80.04 84.36 82.30 69.70 93.25 85.80 65.69
M2-R2 80.04 86.15 80.32 70.48 93.56 86.09 64.48
M2-R3 80.57 87.02 82.70 69.79 93.63 85.53 65.43
M3-R1 80.16 87.03 83.64 66.56 93.32 86.96 64.36
M3-R2 80.85 86.87 84.36 67.44 92.38 88.35 66.79
M3-R3 82.21 87.34 85.31 69.56 93.32 88.96 69.71

SVM 75.72 86.01 75.73 60.10 89.39 79.46 64.15
NN 76.19 83.88 76.00 63.04 87.81 78.38 68.34
Tree 72.96 83.09 75.81 51.82 89.40 74.75 63.10

TABLE 9
The classification accuracy of ranking-based emotion classifier with

Second Level Training. M1: RankSVM, M2: RankNet, M3:

LambdaMART; R1: Simple ranking rule, R2: Intermediate ranking rule,
R3: Complex ranking rule.

% Overall ANG DIS FEA HAP NEU SAD
M1-R1 76.60 82.27 80.26 64.03 90.18 74.12 68.33
M1-R2 76.54 83.59 80.03 63.33 90.88 73.44 67.47
M1-R3 76.97 83.92 80.35 63.65 90.73 75.29 67.63
M2-R1 81.95 87.80 85.15 72.78 93.55 78.89 73.08
M2-R2 81.44 87.95 84.04 70.97 93.39 81.10 71.10
M2-R3 82.01 87.88 84.77 70.43 94.11 81.00 73.70
M3-R1 81.57 87.49 86.80 66.02 92.30 81.88 74.92
M3-R2 82.12 87.89 85.70 69.72 91.75 83.62 74.20
M3-R3 82.93 88.76 86.73 69.24 92.54 84.72 75.78

ranking rule is successfully shown with the LambdaMART
model, where the complex ranking rule performs signifi-
cantly better than the other two ranking rules, especially
on Disgust, Fear, Neutral, and Sad. This suggests that the
LambdaMART model is more sensitive and has stronger
ability to learn out small difference in emotion intensity.

5.2.2 Second-Level Training

The emotion classification accuracy of ranking-based clas-
sifiers with second-level model training are summarized in
Table 9. Similar to what we found in the classifiers with
the highest ranking rule, both RankNet and LambdaMART
have significantly higher accuracy than RankSVM on all the
six emotions for both ranking rules. However, there is no
significant difference between RankNet and LambdaMART.
LambdaMART performs better on Anger, Disgust, Neutral,
Sad, while RankNet performs better on Fear and Happy. We
also notice that the complex ranking rule performs slight
better than the simple ranking rule and the intermediate
ranking rule, but there is no significant difference except for
the LambdaMART model on Fear and Neutral.

As what we expect, the ranking-based emotion classifier
with second-level training has significantly higher accuracy
on all the six emotions than the baseline, and the best
overall accuracy attained is 82.93%. Compared with Table 8,
ranking-based emotion classifier with second-level training
significantly improved the overall accuracy and the accu-

TABLE 10
The classification accuracy of ranking-based emotion classifier with

Model Combination. R1: Simple ranking rule, R2: Intermediate ranking
rule, R3: Complex ranking rule.

% Overall ANG DIS FEA HAP NEU SAD
Combine RankNet and RankSVM

R1 81.65 87.71 84.52 70.72 94.27 81.29 71.34
R2 82.17 88.81 84.91 70.88 94.27 81.27 72.69
R3 82.18 88.88 85.23 70.98 94.58 80.91 72.28

Combine LambdaMART and RankSVM
R1 82.46 88.67 86.25 69.09 93.71 83.43 73.71
R2 83.21 89.69 87.44 70.20 93.64 84.27 74.12
R3 83.70 90.08 87.28 71.37 94.89 83.99 74.59

Combine LambdaMART and RankNet
R1 84.21 89.85 88.14 71.84 94.81 84.48 76.16
R2 84.04 90.08 86.49 73.02 93.79 86.02 75.05
R3 85.06 89.84 87.59 73.88 95.37 86.14 77.65

Combine RankSVM & RankNet & LambdaMART
R1 83.88 89.68 87.51 71.43 94.58 84.29 75.84
R2 84.41 90.62 87.59 72.38 95.13 84.77 76.00
R3 84.74 90.71 87.28 73.10 95.13 85.42 76.86

racy on Disgust & Sad compared to ranking-based emotion
classifier with the highest rank rule.

5.2.3 Model Combination

Finally, we consider the direct combination of different
ranking-based classifiers together into a single prediction.
The results of the overall accuracy and the accuracy on each
emotion from model combination are summarized in Table
10. We found that when we combine the conventional base-
line with various ranking-based models, the combined sys-
tems significantly outperform the conventional baseline, but
do not show substantial improvements over the ranking-
based systems. This may be because the conventional base-
line classifiers perform significantly worse than the ranking-
based systems for almost all the emotion classes, and so the
combination of predictions is not beneficial.

However, the performance clearly improves when two
or more ranking-based classifiers are combined by tak-
ing the advantage of complementary information pro-
vided by different ranking models. The best overall accu-
racy is attained at 85.06% when the two best classifiers–
LambdaMART and RankNet using Complex ranking rule–
are combined, which is significantly better than the conven-
tional baselines and all different types of single preference
learning models. The combined system of LambdaMART
and RankNet exhibits much higher recall rate on all the
emotion classes including Anger, Disgust, Fear, Happy, Sad,
and maintains a good recall rate on Neutral.

5.3 Discussion
From the experimental results in Section 5.1 and 5.2, we now
have the following observations:

Comparison of the three ranking rules: Complex ranking
rule performs better than the simple ranking rule and in-
termediate ranking rules, but there is no significant differ-
ence except for LambdaMART on non-positive emotions:
Disgust, Fear, Neutral, and Sad.

Comparison of three ranking models: Both RankNet and
LambdaMART models perform significantly better than
RankSVM model on all the six emotions for all ranking
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TABLE 11
The classification accuracy of ranking-based emotion classifier while
training on CREMA-D and testing on SAVEE dataset. M1: RankSVM,

M2: RankNet, M3: LambdaMART

% Overall ANG DIS FEA HAP NEU SAD
Cross Corpus Baseline

Rand 16.90 13.33 1.67 11.67 23.33 25.00 18.33
Multi 14.29 98.33 00.00 1.67 00.00 00.00 00.00

Highest Rank Rule
M1 29.52 31.67 26.67 28.33 23.33 37.50 21.67
M2 43.10 48.33 43.33 30.00 85.00 33.33 28.33
M3 59.05 70.00 71.67 36.67 100.00 50.83 33.33

Second Level Training
M1 29.29 38.33 35.00 35.00 23.33 30.83 11.67
M2 44.76 51.67 53.3 43.33 75.00 30.00 30.00
M3 58.33 66.67 75.00 40.00 100.00 40.00 46.67

Within Corpus Training & Testing
LOSO 64.29 75.00 43.33 58.33 80.00 80.00 33.33

rules. Between LambdaMART and RankNet, the Lamb-
daMART model performs slightly better than RankNet.
Moreover, the LambdaMART model has stronger ability to
learn out small differences in emotion intensity and is more
sensitive on non-positive emotions (Disgust, Fear, Neutral,
Sad), which is the reason why the Complex ranking rule is
significantly better than the Simple ranking rule when used
with LambdaMART on these emotions. Also, the Lamb-
daMART model is far quicker than RankNet (20X speedup).

Comparison of conventional SVM with ranking-based clas-
sifiers: All the three ranking-based emotion classifiers have
significant accuracy improvements on all the six basic emo-
tions over the baselines that applied SVM classifier directly.
Ranking-based emotion classifier with second-level training
improves the overall accuracy and achieves significant accu-
racy improvement on Disgust & Sad compared to ranking-
based classifiers with highest rank rule. Combination of
multiple ranking-based classifiers further improves the pre-
diction accuracy.

5.4 Cross-corpus Evaluation
We also perform the cross-corpus emotion recognition ex-
periments and discuss the effectiveness and generalization
ability of our ranking-based emotion classifier on other
multimodal emotion dataset.

The Surrey Audio-Visual Expressed Emotion (SAVEE)
dataset [46] is selected for the cross-corpus evaluation.
SAVEE contains audio-visual recordings from 4 male sub-
jects in 7 different emotions: Anger, Disgust, Fear, Happy,
Neutral, Sad, and Surprise. Here, we remove the Surprise
emotion which do not exist in CREMA-D, and use the rest of
420 recording clips (105 audio-visual clips for each subject)
of other six basic emotions. Different from the CREMA-D
dataset, the SAVEE dataset do not have perceived labels in
either single-modality or multi-modality annotated.

We first trained the six emotion rankers on CREMA-D,
and then evaluated the ranking-based classifier on the un-
seen SAVEE dataset. The audio and video feature extracted
for SAVEE is the same as the features used for CREMA-D in
all previous experiments. The complex ranking rule, which
is the rule of the best performance, is selected for the cross-
corpus evaluation. To test the generalization ability of our
developed approach, SAVEE dataset only serves as testing

set and none of clips in SAVEE participate in the training
phase. In this experimental setting, the six emotion rankers
are trained on CREMA-D with both intended and multi-
modal perceived labels considered, and the aggregated
ranking-based classifier is evaluated on SAVEE dataset.

Table 11 shows the overall accuracy and accuracy for
each emotion while training on CREMA-D and testing on
SAVEE. The first row represents the random baseline that
randomly pick one emotion as the predicted result. The
second row is the conventional SVM classifier baseline
with audiovisual features under the cross-corpus setting.
Results for RankSVM (M1), RankNet (M2), LambdaMART
(M3) ranking models with Highest Rank Rule, and Second
Level Training, are reported in the following rows. We also
provide the results of the standard leave-one-subject-out
(LOSO) within-corpus evaluation in the last row of the table,
which shows the in-domain performance where the training
and testing data are both from the SAVEE dataset.

Observing the results in Table 11, we can see that the
conventional supervised classifier performs extremely bad
when the training set and testing set are from different
corpus/domain. The svm classifier tends to recognize al-
most all the samples in SAVEE into Anger after learning on
CREMA-D. We can interpret this phenomenon as the data
distribution in the training and testing set is quite dissimilar,
resulting in the lack of good generalization ability of the
conventional supervised method. However, all the ranking-
based emotion classifier perform noticeably better than
the baselines. LambdaMART exhibits the best performance,
exceeding the baseline by 42.15% in the overall accuracy.
RankNet is the second best, significantly improving the
overall accuracy by 27.86%, and RankSVM can also bring
12.62% increase. Compared to the conventional supervised
method, our ranking-based emotion classifier has noticeably
better generalization ability on other dataset. Although un-
der the more strict cross-corpus setting where the ranker
wasn’t trained on any in-domain samples, our best ranking-
based model can still approach closely to the in-domain
within corpus performance.

6 CONCLUSION

This paper introduced a novel preference learning frame-
work that simultaneously considers both intended and per-
ceived labels while addressing the mismatches between
them. By analyzing the the discrepancies and agreements
between the intended and perceived labels in different
modalities of audio-only, visual-only, and audio-visual, as
well as the consistency among perceptual ratings of all
raters, we proposed three sets of pair-wise ranking rules to
generate multi-scale relevant scores for preference learning.
Emotion rankers using three learning-to-rank models of
support vector machine, deep neural networks, and gra-
dient boosting decision trees were developed. Our results
demonstrated that all three preference learning models sig-
nificantly outperform the conventional baseline classifiers.
The improvement from the preference learning models con-
firm the benefits of complementary information provided
by different types of labels. We also observed additional
improvement from the complex ranking rule, particular
with the best LambdaMART model, which suggests that we
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should treat different labels differently. We further discussed
the complementary of the different ranking models, and ob-
tained the best overall accuracy of 85.06% when combining
the two best ranking models–LambdaMART and RankNet–
together. This is significantly better than the 76.19% ac-
curacy attained by the best baseline model. Finally, we
perform the cross-corpus emotion recognition experiments
by training emotion rankers on CREMA-D and tested the
ranking-based emotion classifier on the SAVEE dataset. Our
results show that the ranking-based classifiers outperform
the conventional supervised method by larger margin when
the training and testing set are from different corpus, which
further prove the effectiveness and generalization ability of
the proposed ranking models.
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