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In this work we propose a deep adaptive sampling (DAS-PINNs) method for solving partial 

differential equations (PDEs), where deep neural networks are utilized to approximate the 

solutions of PDEs and deep generative models are employed to generate new collocation 

points to refine the training set. The overall procedure of DAS consists of two components: 

solving the PDEs by minimizing the residual loss on the collocation points in the training 

set and generating a new training set to further improve the accuracy of the current 

approximate solution. In particular, we treat the residual as a probability density function 

and approximate it with a deep generative model, called KRnet. The new samples from 

KRnet are consistent with the distribution induced by the residual, i.e., more samples are 

located in the region of large residual and less samples are located in the region of small 

residual. Analogous to classical adaptive methods such as the adaptive finite element, KRnet 

acts as an error indicator that guides the refinement of the training set. Compared to the 

neural network approximation obtained with uniformly distributed collocation points, the 

developed algorithms can significantly improve the accuracy, especially for low regularity 

and high-dimensional problems. We demonstrate the effectiveness of the proposed DAS-

PINNs method with numerical experiments.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, solving partial differential equations (PDEs) with deep learning methods has been receiving increasing 

attention [1–3]. Two major types of deep learning methods have been proposed for solving PDEs, including the variational 

form subject to deep learning techniques [4–7] and the physics-informed neural networks (PINNs) [8–10,3], both of which 

reformulate a PDE problem as an optimization problem and train a deep neural network (DNN) to approximate the solution 

of PDE through minimizing the corresponding loss functional. The variational form is based on the weak formulation of 

PDEs, while PINN is based on the residual loss of PDEs. Similar ideas of solving PDEs via minimizing the residual loss can 

be traced back to the works [11,12] in the 1990’s, where a shallow neural network is optimized on a priori fixed mesh 

as an approximation of the solution. Some efforts have been made to incorporate traditional computational techniques to 

enhance the performance of solving PDEs with deep neural networks. In [13–16,7], deep neural networks based on domain 
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decomposition are proposed to improve the efficiency. A penalty free neural network method [17] and Phygeonet [16]

are developed to deal with complex geometries and irregular domains. A weak formulation with primal and adversarial 

networks is proposed in [18], where the PDE problem is converted to an operator norm minimization problem induced by 

the weak formulation.

One critical step for all these methods is to approximate the loss functional, where the integral is usually approximated 

by the Monte Carlo method with collocation points randomly generated by a uniform distribution on the computational 

domain. Since the minimization of the discrete loss functional yields the approximate solution, the accuracy of the ap-

proximate solution is closely related to the accuracy of the discrete loss functional. In contrast to classical computational 

methods, where the main concern is the approximation error, one needs to balance the approximation error and the gener-

alization error for the neural network approximation, where the approximation error mainly originates from the modeling 

capability of the neural network and the generalization error is mainly related to the data points in the training set, i.e., the 

random samples for the discretization of the loss functional. However, for many PDE models, the uniform random sampling 

strategy is not efficient especially when the PDE solution has a low regularity, in other words, an integrand of low regularity 

may have a large variance in terms of a uniform distribution such that the Monte Carlo approximation of the loss functional 

has a large prefactor before the convergence rate O (N−1/2). This issue becomes worse for high-dimensional problems due 

to the curse of dimensionality. In high-dimensional spaces, most of the volume of the computational domain concentrates 

around its surface [19–21], which means that uniform samples may become less effective for training deep neural networks 

to approximate high-dimensional PDEs. For example, the collocation points from the uniform distribution are not suitable 

for solving high-dimensional Fokker-Planck equations, while an adaptive strategy through sampling the current approximate 

solution is effective [22]. In [23], a selection network is introduced to serve as a weight function to assign higher weights 

for samples with large point-wise residuals, which yields a more accurate approximate solution if the selection network is 

properly chosen. However, to obtain a valid selection network, one needs to impose additional constraints on the selection 

network, which is often a non-trivial task. For low-dimensional problems, it is well known that one can employ adaptive 

numerical schemes to deal with PDEs with low-regularity solutions [24–26], which also suggests that the uniform samples 

are not the best choice. Therefore, adaptive sampling strategies are crucial for developing more efficient and reliable deep 

learning techniques for the approximation of PDEs.

In this work, we develop a deep adaptive sampling method (DAS-PINNs) for the neural network approximation of PDEs 

based on residual minimization, where a deep generative model, called KRnet [27–29], is used to guide the sample gener-

ation for the training set. To this end, we need to construct two deep neural network models: one for approximating the 

solution and the other one for refining the training set. The neural network approximation is achieved by the standard pro-

cedure of residual minimization. KRnet defines a transport map [30] from the data distribution to a prior distribution (e.g. 

the standard Gaussian). KRnet retains two traits of flow-based generative models [31,32]: exact invertibility of the transport 

map and efficient computation of the Jacobian determinant, based on which one can obtain an explicit density model using 

the change of variables and an effective approach for generating samples through the invertible mapping. The key point in 

our proposed framework is that the residual is viewed as a probability density function (PDF) up to a constant and approx-

imating this PDF can be achieved by minimizing the Kullback-Leibler (KL) divergence between the KRnet-induced density 

model and the residual-induced distribution. We use the trained KRnet to generate new collocation points to replace or 

refine the training set, where more points are put in the region of large residual and less points are put in the region of 

small residual. The updated training set is then used to further improve the accuracy of the current approximate solution. 

Simply speaking, KRnet acts as an error indicator for the improvement of the training set, which shares similarities with 

the classical adaptive finite element method subject to a residual-based posteriori error estimator. In summary, the main 

contributions of this work are as follows.

• We utilize a deep generative model as a generic means to reflect the correspondence between the residual and the 

error of approximation through efficient PDF approximation and sample generation.

• We propose a deep adaptive sampling (DAS-PINNs) framework, including efficient sampling procedures and training 

algorithms, for the adaptive improvement of neural network approximation of PDEs.

The remainder of the paper is organized as follows. In the next section, we briefly describe the deep learning method 

used in this work for the approximation of PDEs. After that, the statistical error of the machine learning technique is 

illustrated from the perspective of function approximation. Our DAS approach is presented in section 4. We provide the 

theoretical analysis of DAS in section 5. In section 6, we demonstrate the efficiency of our adaptive sampling approach with 

numerical experiments. The paper is concluded in section 7.

2. Deep learning for PDEs

Let � ⊂ Rd be a spatial domain, which is bounded, connected and with a polygonal boundary ∂�, and x ∈ Rd denote 

a spatial variable. The PDE problem is stated as: find u(x) ∈ F : Rd �→ R where F is a proper function space defined on �, 

such that
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Lu(x) = s(x), ∀x ∈ �,

bu(x) = g(x), ∀x ∈ ∂�,
(1)

where L is the partial differential operator, b is the boundary operator, s(x) is the source function, and g(x) represents the 

boundary conditions.

Let u(x; �) be a neural network with parameters �. In the framework of PINNs, the goal is to use u(x; �) to approximate 

the solution u(x) through optimizing a loss functional defined as [8,9]

J (u(·;�)) = ‖r(x;�)‖22,� + γ ‖b(x;�)‖22,∂� = Jr(u(x;�)) + γ Jb(u(x;�)), (2)

where r(x; �) = Lu(x; �) − s(x), and b(x; �) = bu(x; �) − g(x) measure how well u(x; �) satisfies the partial differential 

equations and the boundary conditions, respectively, and γ > 0 is a penalty parameter. Here, ‖u‖22,� =
∫

�
|u(x)|2dx and 

‖u‖22,∂� =
∫

∂�
|u(x)|2dx. The loss functional (2) is usually discretized numerically before the optimization with respect to �

is addressed. In practice, one often chooses two sets of uniformly distributed collocation points S� = {x(i)
� }Nr

i=1 and S∂� =
{x(i)

∂�}Nb

i=1
respectively for the discretization of the two terms in the objective functional (2), leading to the following empirical 

loss

JN (u(·;�)) = ‖r(x;�)‖2Nr ,S�
+ γ̂ ‖b(x;�)‖2Nb,S∂�

, (3)

where γ̂ > 0, and

‖u‖Nr ,S�
=
(

1

Nr

Nr
∑

i=1

u2(x
(i)
� )

)

1
2

, ‖u‖Nb,S∂�
=

⎛

⎝

1

Nb

Nb
∑

i=1

u2(x
(i)
∂�)

⎞

⎠

1
2

.

Note that in the definition of JN we do not take into account the constants |�| =
∫

�
dx and |∂�| =

∫

∂�
dx and the ratio 

induced by these two constants can be dealt with by choosing γ̂ = γ |∂�|
|�| such that JN(u) is a Monte Carlo approximation 

of J (u) up to a constant scaling factor |�|. We then seek an approximate solution by minimizing the empirical loss (3), i.e.,

min
�

JN(u(·;�)), (4)

which can be solved by stochastic gradient-based methods [33,34].

Recently, some prior error estimates of neural-network-based methods for solving PDEs are established. Combining the 

analysis techniques of the least square finite element method [35] with the universal approximation property of neural 

networks [36–39], Shin et al. propose an abstract framework for the error estimation of PINNs [40]. Lu et al. derive a prior 

estimate of the generalization error for the deep Ritz method with two-layer neural networks [41]. Suppose that u(·,�∗
N) is 

the minimizer of the empirical loss JN(u(·;�)) and u(·;�∗) is the minimizer of J (u(·;�)), i.e.,

u(·;�∗) = argmin
�

J (u(·;�)),

u(·;�∗
N) = argmin

�
JN(u(·;�)).

We have

u(x;�∗
N) − u(x) = u(x,�∗

N) − u(x;�∗) + u(x;�∗) − u(x), (5)

i.e.,

E
(
∥

∥u(·;�∗
N) − u

∥

∥

�

)

≤ E
(
∥

∥u(·,�∗
N) − u(·;�∗)

∥

∥

�

)

+
∥

∥u(·;�∗) − u
∥

∥

�
, (6)

where E indicates the expectation and the norm ‖·‖� corresponds to the function space F for u. The first term describes 

the statistical error from discretizing the loss functional with the Monte Carlo approximation, and the second term is the 

approximation error of minimizing the loss functional over the hypothesis space. The approximation error depends on the 

capability of neural networks, while the statistical error depends on the definition of S� and S∂� . In this work, we focus 

on how to reduce the statistical error for problem (4) and our algorithm can also be generalized to other formulations for 

the neural network approximation of PDEs. For simplicity, we focus on the integration of the residual r(x; �) and assume 

that the integral on the boundary is well approximated by a prescribed S∂� .
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3. Illustration of the statistical error

We first use function approximation as an example to illustrate the statistical error in machine learning. Let X ∈ Rd and 

Y ∈ R subject to a joint distribution ρX ,Y . Let Ŷ = m(X) be a model and h : x �→ y be a function to be approximated. We 

know in the L2 sense the optimal model is

m∗ = argmin
m

[

L(m) =
∫

(y −m(x))2ρX,Y (x, y)dxdy

]

. (7)

In reality, we usually do not know ρX,Y and only have a set {(x(i), y(i))}N
i=1

of data which can be regarded as samples of 

ρX,Y . For a certain hypothesis space W , we obtain a regression problem

mw∗ = arg min
mw∈W

[

LN(mw) = 1

N

N
∑

i=1

(y(i) −mw(x(i)))2

]

, (8)

where LN can be regarded as a Monte Carlo approximation of L and the subscript w indicates the model parameters 

specified by W . If we let ρX,Y (x, y) = δ(y − h(x))ρ(x), and assume m ∈ V with V being a linear space, we then obtain the 

continuous least-squares method for function approximation

m∗
V = argmin

m∈V

[

LV (m) =
∫

(m(x) − h(x))2ρ(x)dx

]

, (9)

where m∗
V is the best approximation of h located in V subject to a weighted L2 norm in terms of a probability density 

function ρ . To approximate h, we consider

m v̂
∗ = arg min

m v̂∈V

[

LV ,N(m v̂) = 1

N

N
∑

i=1

(m v̂(x
(i)) − h(x(i)))2

]

, (10)

where {x(i)}N
i=1

are samples of ρ , and LV ,N is the Monte Carlo approximation of LV . Here, we use the linear space spanned 

by polynomials as an example to show how the statistical error naturally arises from machine learning. Although the 

algorithm in this paper does not consider the linear space, it can be used to explain the existence of statistical errors and 

clarify the roles of samples. We derive the error estimate for m v̂
∗ as follows.

Lemma 1. Let h ∈ C(D) be a continuous function defined on a compact domain D ⊂ Rd and ρ(x) > 0 be a PDF on D. Let V =
span{qi : i = 1, . . . ,n} with qi being orthonormal polynomials in terms of ρ . For any δ > 0 and with probability at least 1 − 2δ, we 

have for a sufficiently large N

‖m v̂
∗ − h‖ρ ≤ C

√

ln δ−1

N
+ ‖m∗

V − h‖ρ ,

where C is a constant, and ‖ · ‖ρ is the weighted L2 norm in terms of ρ .

The first term on the right-hand is the statistical error due to the random samples for the approximation of LV (see 

the proof in Appendix A for more details) and its existence does not depend on the choice of V . When N goes to in-

finity, the statistical error goes to zero and only the approximation error is left. In other words, when applying neural 

networks to function approximation, we need to pay attention to both the hypothesis space W and the choice of ran-

dom samples {x(i)}N
i=1

, i.e., the training set, to obtain a trade-off between the statistical error and the approximation error. 

For low-dimensional problems, classical methods such as finite element methods avoid the statistical error by using Gauss 

quadrature rules, which implies that deep learning methods are in general less efficient than classical methods due to the 

existence of statistical error. On the other hand, for high-dimensional problems, classical methods may not be able to obtain 

a relatively small approximation error due to the curse of dimensionality and deep learning methods may perform better by 

using a capable hypothesis space such as deep neural networks and an affordable sample size for a relatively small statistical 

error. A more general estimate about the statistical error needs the Rademacher complexity of the hypothesis space. In this 

work, we are interested in the reduction of the statistical error instead of its bound for a certain set of random samples.

4. Deep adaptive sampling method

We now focus on the reduction of the statistical error when neural networks are used to approximate PDEs. Our deep 

adaptive sampling method, i.e., the DAS method, will be established from the viewpoint of variance reduction since the 

statistical error is induced by the Monte Carlo approximation of the loss. Consider the term Jr(u) in equation (2). It is easy 

to see that if r2(x) is a smooth function with a good regularity, the most effective way to reduce the error of JN(u) is 

4
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to increase the sample size N . However, if there exists low regularity, the situation might be different. For example, if the 

residual is strongly localized, the scenario can be regarded as a rare event. Assume that the residual r2(x) in equation (2)

has a similar behavior to an indicator function 1I (x) where I ⊂ � and is much smaller than �, i.e.,

ζ =
∫

�

1I (x)dx ≈
∫

�

r2(x)dx � 1.

For simplicity, we assume that |�| = 1 when presenting the algorithm. To improve the approximation in I , we need to 

compute ζ accurately. Consider a Monte Carlo estimator of ζ in terms of uniform samples

P̂MC = 1

N

N
∑

i=1

1I (x
(i)).

The relative error of P̂MC is

Var1/2( P̂MC)

ζ
= N−1/2((1 − ζ )/ζ )1/2 ≈ (ζN)−1/2.

We then need a sample size of O(1/ζ ) to obtain a relative error of O(1). This implies that a set of uniform samples with 

size N quickly becomes less effective if the residual is strongly localized and such a problem can be worsened in the 

approximation of high-dimensional PDEs. Instead, adaptive sampling can help accelerate the training process and reduce 

the relative error (see the example of solving high-dimensional Fokker-Planck equations in [22]). So, we need to choose 

more effective random samples instead of uniform samples, which can incorporate the problem properties.

4.1. Some ideas on variance reduction

We outline our basic ideas on variance reduction in this section and more details about the algorithm will be presented 

later. We first consider the importance sampling technique. For simplicity, we only consider Jr(u(x; �)) in equation (2), 

which is the loss induced by the residual. We have

Jr (u(x;�)) = E[r2] =
∫

�

r2(x;�)dx =
∫

�

r2(x;�)

p(x)
p(x)dx ≈ 1

Nr

Nr
∑

i=1

r2(x
(i)
� ;�)

p(x
(i)
� )

, (11)

where the set {x(i)
� }Nr

i=1
is generated with respect to the probability density function (PDF) p(x) instead of a uniform distri-

bution as in equation (3). Note that r2 is defined in �, so a valid p needs to satisfy p(x) = 0 for x ∈ Rd\�. The details of 

designing such p are presented in the next subsection. If the variance of r2(X)p−1(X) in terms of p(x) is smaller than the 

variance of r2(X) in terms of the uniform distribution, the accuracy of the Monte Carlo approximation will be improved for 

a fixed sample size Nr . The optimal choice for p(x) is

p∗(x) = r2(x;�)

μ
, (12)

where μ =
∫

�
r2(x; �)dx. The optimal choice is useless in practice since μ is the quantity to be computed. One question 

that needs to be clarified is whether variance reduction can be achieved if p is sufficiently close to p∗ in a certain sense. 

In practice, one commonly used quantity to measure the difference between two probability distributions is the Kullback-

Leibler (KL) divergence defined as

DKL(p‖p∗) = Ep

[

log
p(x)

p∗(x)

]

,

where Ep indicates the expectation with respect to p. Assuming that p approaches p∗ in terms of the KL divergence, we 

have the following lemma.

Lemma 2. Assume that |�| = 1 and p(x) is a PDF satisfying

DKL(p‖p∗) ≤ ε < ∞,

where DKL indicates the Kullback-Leibler divergence. For any 0 < a < ∞, we have

E

∣

∣

∣
Q p[r2] − E[r2]

∣

∣

∣
≤ aN

−1/2
r + 2‖r2/p‖p

√

P (|r2/p − μ| > a; p), (13)

where
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Q p(r
2) = 1

Nr

Nr
∑

i=1

r2(X (i))

p(X (i))
,

and X (i) ∼ p(x) are i.i.d. random variables. ‖ · ‖p is the weighted L2 norm in terms of p. The tail probability can be bounded as

P (|r2/p − μ| > a; p) ≤ μ(2ε)1/2

a
.

When p(x) approaches p∗(x), the ratio r2(x)/p(x) approaches μ. The second term on the right-hand side of inequality 

(13) is related to the tail probability P (|r2/p − μ| > a; p) in terms of p(x), which goes to zero for any a as ε → 0. If we 

let a = εβ with 0 < β < 1
2
, the error can be arbitrarily small for any Nr when ε is sufficiently small. In other words, if 

we rewrite the error bound as c(a = εβ , ε)N
−1/2
r , we have c(a, ε) → 0 for a fixed Nr as ε → 0. We will obtain variance 

reduction when c(a, ε) is small enough, together with an extra assumption that Q p[r2] ≤ M < ∞ since

E

[

(

Q p[r2] − E[r2]
)2
]

≤ max{M,μ}E
∣

∣

∣
Q p[r2] − E[r2]

∣

∣

∣
.

However, we are not able to obtain variance reduction directly because the KL divergence is weaker than the L2 norm.

Another option for variance reduction is to relax the definition of Jr(u) as:

Jr,p(u(x;�)) =
∫

�

r2(x;�)p(x)dx ≈ 1

Nr

Nr
∑

i=1

r2(x
(i)
� ;�), (14)

where the set {x(i)
� }Nr

i=1
is sampled from the PDF p(x) and p(x) > 0 on �. If the minimal value of Jr,p(u(x; �)) is zero, 

it is easy to see that the minimizer of Jr,p(u(x; �)) is also the solution of problem (1) when the boundary conditions are 

satisfied. To reduce the error induced by the Monte Carlo approximation, we may adjust p(x) such that the residual r2(x; �)

does not vary dramatically. This is similar to the classical adaptive finite element method, where the mesh refinement/coars-

ening is supposed to make the approximation error nearly uniform. For our case, we may sample from a distribution that 

is close to the residual-induced distribution and add more samples from the region of large residual into the training set.

4.2. PDF approximation and sample generation

Two options for variance reduction are considered in the previous section. To make both ideas practical, the key issue 

is to generate samples efficiently from a PDF p(x) ≈ μ−1r2(x; �) for a fixed �. The first option is based on importance 

sampling, meaning that an explicit PDF model p(x) is needed. The second option is based on refinement of the training set, 

which only needs samples from the region of large residual and does not need the likelihood of the samples. The second 

option has been employed in the recent literature to improve the neural network approximation, which is either ad hoc 

[42] (only for low-dimensional problems) or based on traditional sampling strategies such as MCMC [43]. To the best of our 

knowledge, there does not exist a generic algorithm that can be effectively adapted to both options. We intend to fill this 

gap in this work. It is seen from Lemma 2 that the tail probability P (|r2/p − μ| > a; p) should be small enough for the 

effectiveness of p, which means that p must be close enough to the distribution induced by r2 . However, the approximation 

of PDF is a challenging task especially in high-dimensional spaces. Classical explicit PDF models such as the exponential 

family of distributions and Gaussian mixture models are in general not sufficient as an approximator for the PDF induced 

by r2 . To alleviate this difficulty, we resort to deep generative modes. In particular, we employ a recently developed deep 

generative model called KRnet for both probability approximation and sample generation [22,27]. KRnet is one type of 

normalizing flows [44], which provides an invertible transport map between a prior distribution and the target distribution. 

Unlike other types of deep generative models such as GAN [45–47] and VAE [48], normalizing flows provide an explicit 

likelihood. KRnet can be used to address both options for variance reduction while other deep generative models may also 

be employed if only the second option is considered. However, one computational issue faced by all deep generative models 

is that the distribution induced by r2(x) is usually defined on a compact domain while deep generative models are in 

general defined on the whole space. We subsequently address this issue without going into details about the structure of 

KRnet.

Let X ∈ Rd be a random vector associated with a given data set, and its PDF is denoted by pX (x). The target is to 

estimate pX (x) from data or to generate samples that are consistent with a given pX (x). Let Z ∈ Rd be a random vector 

associated with a PDF pZ (z), where pZ (z) is a prior distribution (e.g., Gaussian distributions). The flow-based generative 

modeling is to seek an invertible mapping z = f (x) [31]. By the change of variables, we have the PDF of X = f −1(Z) as

pX (x) = pZ ( f (x)) |det∇x f | . (15)

Once the prior distribution pZ (z) is specified, equation (15) provides an explicit density model for X . The inverse of f (·)
provides a convenient way to sample X as X = f −1(Z). The basic idea of KRnet is to define the structure of f (x) in terms 

6
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of the Knothe-Rosenblatt rearrangement. Let μZ and μX be the probability measures of two random variables Z , X ∈ Rd

respectively. A mapping T : Z �→ X is called a transport map such that T#μZ = μX , where T#μZ is the push-forward of 

μZ such that μX (B) = μZ (T −1(B)) for every Borel set B [49]. The transport map T given by the Knothe-Rosenblatt (K-R) 

rearrangement [49,30] has a lower-triangular structure

z = T
−1(x) =

⎡

⎢

⎢

⎢

⎣

T1(x1)

T2(x1, x2)
...

Td(x1, . . . , xd)

⎤

⎥

⎥

⎥

⎦

. (16)

Simply speaking, KRnet integrates the triangular structure of the K-R rearrangement into the definition of the invertible 

mapping z = f (x), which can be regarded as a transport map. More details can be found in [27,22,29].

Let fKRnet(·; � f ) indicate the invertible transport map induced by KRnet, where � f includes the model parameters. An 

explicit PDF model pKRnet(x; � f ) can be obtained by letting f = fKRnet in equation (15), i.e.,

pKRnet(x;� f ) = pZ ( fKRnet(x)) |det∇x fKRnet| . (17)

The samples of pKRnet(x; � f ) are given as X = f −1
KRnet

(Z) by sampling Z . A common choice for the distribution of Z is the 

standard Gaussian distribution. Depending on the prior knowledge of the problem, a more general model such as Gaussian 

mixture model can also be used as the prior distribution. The KRnet fKRnet does not have any constraint on the range of the 

mapped data, meaning that both X and Z are defined on Rd . Let Z be Gaussian. Due to the invertibility, | det∇x fKRnet| > 0

for any x ∈ Rd , which implies that pKRnet(x; � f ) > 0 for any x ∈ Rd . So pKRnet(x; � f ) is not consistent with the distribution 

induced by r2(x), which is equal to zero on Rd\�. To deal with this issue, we propose the following strategy.

Without loss of generality, we can assume that � = [−1/2, 1/2]d , since any square domain in Rd can be mapped to 

�. Let B = (−(1/2 + δ/2), 1/2 + δ/2)d with 0 < δ < ∞ such that � ⊂ B . For each dimension of x, we define the following 

logarithmic mapping

y = �(x) = s

2
log

2x+ (1+ δ)

(1+ δ) − 2x
, x = �−1(y) = 1+ δ

2

e2y/s − 1

e2y/s + 1
,

with s > 0 being a scale parameter, which defines a one-to-one correspondence between x ∈ (−(1/2 + δ/2), 1/2 + δ/2) and 

y ∈ (−∞, +∞). Let �(x) : B �→ Rd be a d-dimensional mapping such that

�i(xi) = �(xi), i = 1, . . . ,d.

Then the following invertible mapping

z = fKRnet ◦ �(x) (18)

defines a PDF

p̂KRnet(x;� f ) = pKRnet(�(x);� f )|∇x�(x)|, (19)

where the support of p̂KRnet(x; � f ) is B .

We now consider a modification of r2(x; �). Define a cutoff function as

h(x) =
{

1, x ∈ �,
∏d

i=1 hδ(xi), x ∈ B\�,

where hδ(x) is a piecewise linear function

hδ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ∈ [−1/2,1/2],
δ−1(2x+ 1+ δ), x ∈ (−1/2− δ/2,−1/2),

δ−1(1+ δ − 2x), x ∈ (1/2,1/2+ δ/2),

0, x ∈ (−∞,−1/2 − δ/2] ∪ [1/2+ δ/2,∞).

We consider a modified PDF for any �

r̂X (x) ∝ r2(x;�)h(x). (20)

Note that both r̂X (x) and p̂KRnet(x; � f ) have the support B . We then solve the following optimization problem

�∗
f = argmin

� f

DKL(r̂X (x)‖p̂KRnet(x;� f )), (21)

7
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where DKL(·‖·) indicates the Kullback-Leibler (KL) divergence between two distributions. We finally use

pX (x) ∝ p̂KRnet(x;�∗
f )1�(x) (22)

as an approximation of the PDF induced by r2(x; �). If δ � 1, most the samples �−1 ◦ f −1
KRnet

(z(i); �∗
f
) will be located in 

�. Since r̂X (x) ∝ r2(x; �) on �, pX (x) approximates the r2(x; �)-induced PDF well when δ is small. In our numerical 

experiments, we set δ = 0.01 and s = 2.

We now look at the approximation of �∗
f
. The KL divergence in the optimization problem (21) can be written as

DKL(r̂X (x)‖p̂KRnet(x;� f )) =
∫

B

r̂X log r̂Xdx−
∫

B

r̂X log p̂KRnetdx. (23)

The first term on the right-hand side corresponds to the differential entropy of r̂X , which does not affect the optimization 

with respect to � f . So minimizing the KL divergence is equivalent to minimizing the cross entropy between r̂X and p̂KRnet

[50,51]:

H(r̂X , p̂KRnet) = −
∫

B

r̂X log p̂KRnetdx. (24)

Since the samples from r̂X are not available, we approximate the cross entropy using the importance sampling technique:

H(r̂X , p̂KRnet) ≈ − 1

Nr

Nr
∑

i=1

r̂X (x
(i)
B )

p̂KRnet(x
(i)
B ; �̂ f )

log p̂KRnet(x
(i)
B ;� f ), (25)

where p̂(x; �̂ f ) is a PDF model with known parameter �̂ f and its samples {x(i)
B }Nr

i=1
can be generated efficiently as

x
(i)
B = �

−1 ◦ f −1
KRnet

(z(i); �̂ f ) (26)

with z(i) being sampled from the prior distribution. We then minimize the discretized cross entropy (25) to obtain an 

approximation of �∗
f
. The choice for �̂ f will be specified in section 4.3 when the adaptive sampling method is defined.

Remark 1. An alternative approach for the approximation of r̂X (x) is to minimize the following KL divergence:

DKL(p̂KRnet(x;� f )‖r̂X (x)) =
∫

B

p̂KRnet log p̂KRnetdx−
∫

B

p̂KRnet log r̂Xdx, (27)

which can be approximated by samples from p̂KRnet(x; � f ). Note that the KL divergence is asymmetric. Minimizing the KL 

divergence (23) is not equivalent to the minimization of the KL divergence (27), although both minimizers will be achieved 

at p̂KRnet(x; � f ) = r̂X (x) if r̂X can be reached exactly by a certain parameter � f .

Remark 2. To apply the DAS method to a complex domain, we may use a square or a cube to cover the complex geometry 

together with rejection sampling. Moreover, we can also couple DAS with the penalty-free method [17] to handle boundary 

conditions more effectively. In this work, we only consider � to be a hypercube in Rd .

4.3. Adaptive sampling procedure

We are now ready to present our algorithms. In this work, we mainly focus on the adaptivity of S� for simplicity. The 

key step of our adaptivity strategy is to improve the effectiveness of the random samples in the training set S� , and we 

provide two algorithms corresponding to the two options discussed in section 4.1.

I. We replace all the collocation points in the current training set using the new samples for importance sampling. This 

corresponds to equation (11).

II. We gradually add more collocation points to the current training set. This corresponds to equation (14), where the new 

samples are mainly from the region of large residual.

We first present strategy I. Let S�,0 = {x(i)
�,0}

Nr

i=1
and S∂�,0 be two sets of collocation points that are uniformly sam-

pled from � and ∂� respectively. Using S�,0 and S∂�,0 , we minimize the empirical loss (3) to obtain u(x; �∗,(1)
N ). With 

u(x; �∗,(1)
N ), we minimize the cross entropy (25) to get p̂KRnet(x; �∗,(1)

f
), where we simply use uniform samples for impor-

tance sampling. To refine the training set, a new set S�,1 = {x(i)
�,1}

Nr

i=1
is generated by �−1 ◦ f −1

KRnet
(z(i); �∗,(1)

f
) (see equation 

8
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(18)). Then we continue to update the approximate solution u(x; �∗,(1)
N ) using S�,1 as the training set. In general, we use 

S�,k = {x(i)

�,k
}Nr

i=1
to obtain u(x; �∗,(k+1)

N ) as

�
∗,(k+1)
N = argmin

�
J IS

N (u(x;�)),

where u(x; �) is initialized as u(x; �∗,(k)
N ) and J IS

N is defined as

J IS

N (u(x;�)) = 1

Nr

Nr
∑

i=1

r2(x
(i)

�,k
;�)

p̂KRnet(x
(i)

�,k
;�∗,(k)

f
)

+ 1

Nb

Nb
∑

i=1

b2(x
(i)

∂�,k
;�). (28)

Starting with p̂KRnet(x; �∗,(k)

f
), the density model p̂KRnet(x; � f ) is updated as

�
∗,(k+1)

f
= argmin

� f

− 1

Nr

Nr
∑

i=1

r2(x
(i)

B,k
;�∗,(k+1)

N )h(x
(i)

B,k
)

p̂KRnet(x
(i)

B,k
;�∗,(k)

f
)

log p̂KRnet(x
(i)

B,k
;� f ), (29)

where we let �̂ f = �
∗,(k)

f
in equation (25), i.e., the previous PDF model p̂KRnet(x; �∗,(k)

f
) is used for importance sampling 

when computing the cross entropy. A new set S�,k+1 = {x(i)

�,k+1
}Nr

i=1
of collocation points is then generated. As detailed in 

section 4.2, the support of data points generated by KRnet is B = (−(1/2 + δ/2), 1/2 + δ/2)d , while the computation domain 

is � = [−1/2, 1/2]d . So we need to deal with the collocation points located in B\�. Instead of neglecting these points, we 

project them onto ∂�. We define an entry-wise projection operator P(x) : B �→ � as

P(xi) =

⎧

⎪

⎨

⎪

⎩

−1/2, if xi < −1/2,

xi, if − 1/2 ≤ xi ≤ 1/2,

1/2, if xi > 1/2.

i = 1, . . . ,d, (30)

For a sequence of i.i.d. samples z( j) generated from the standard Gaussian with j = 1, 2 . . ., we compute x
( j)
B = �

−1 ◦
f −1
KRnet

(z( j)). if x
( j)
B = P(x

( j)
B ), we assign x

( j)
B to S�,k+1; otherwise, we add P(x

( j)
B ) to S∂�,k . The updated training set S�,k+1

and S∂�,k+1 will be used for the next training stage. This procedure is repeated until the stopping criterion is satisfied 

(see Algorithm 1). Since the collocation points in S�,k will be completely replaced at the next stage, we call this type of 

deep adaptive sampling strategy DAS-R for short. The alternative approach given in Remark 1 can also be used to obtain 

p̂KRnet(x; �∗,(k)

f
).

We now look at strategy II. Unlike DAS-R, the number of collocation points in the training set S� increases gradually. 

So we denote this type of deep adaptive sampling strategy by DAS-G for short. Starting with an initial set of collocation 

points S�,0 = {x(i)
� }nr

i=1
(as well as S∂�,0) drawn from a uniform distribution defined on �, we minimize the empirical 

loss (3) on the training set S�,0 (as well as S∂�,0) to obtain u(x; �∗,(1)
N ). Once we have u(x; �∗,(1)

N ) in hand, we can seek 

p̂KRnet(x; �∗,(1)

f
) using the residual r2(x; �∗,(1)

N ). We here use uniform samples to approximate and minimize the cross 

entropy (25). Similar to DAS-R, a new set of collocation points S
g
�,1 = {xg,(i)�,1 }nr

i=1
is generated by p̂KRnet(x; �∗,(1)

f
) while the 

main difference is that we update the training set as S�,1 = S�,0 ∪ S
g
�,1 , in other words, S�,0 is augmented rather than 

replaced by S
g
�,1 . We continue to update u(x; �) using �

∗,(1)
N as the initial parameters and S�,1 as the training set, which 

yields a refined model u(x; �∗,(2)
N ). Staring from k = 2, we seek p̂KRnet(x; �∗,(k)

f
) using the approach given in Remark 1. We 

repeat the procedure to obtain an adaptive algorithm (see Algorithm 2).

Our two adaptive training methods are summarized in Algorithm 1 (DAS-R) and Algorithm 2 (DAS-G), where Nadaptive is a 

given number of maximum adaptivity iterations, m is the batch size for stochastic gradient, and Ne is the number of epochs 

for training u(x; �) and p̂KRnet(x; � f ). The algorithms consist of three steps: solving PDE, training KRnet and refining the 

training set.

Remark 3. In both strategies, we use uniform samples to approximate and minimize the cross entropy to obtain 

p̂KRnet(x; �∗,(1)

f
), after which either equation (25) or equation (27) can be employed. The main reason of doing this is to use 

uniform samples to capture the modes if the residual-induced distribution is multimodal. The obtained PDF p̂KRnet(x; �∗,(1)

f
)

provides a good initialization when equation (27) is employed to seek p̂KRnet(x; �∗,(i)

f
) with i > 1. This choice is usually not 

necessary if the modes are not strongly localized or the location of the modes can be encoded into the prior distribution of 

KRnet through a Gaussian mixture model.

Remark 4. DAS-R maintains the L2 norm of the squared residual by generating a completely new training set while DAS-G 

modifies the weight function in equation (14) by adding new random samples to the current training set. According to 

9
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Lemma 2, we should achieve variance reduction for a fixed sample size when the residual-induced distribution is well 

approximated and the ratio r2(·)/p̂KRnet(·; �∗,(k)

f
) is bounded. However, the boundness of r2/p̂KRnet is not guaranteed in the 

current version of DAS-R. This implies that DAS-G may be more robust than DAS-R.

Algorithm 1 DAS-R for PDEs.

Input: Initial p̂KRnet(x; �(0)

f
) , u(x; �(0)), maximum epoch number Ne , batch size m, initial training set S�,0 = {x(i)

�,0}
Nr

i=1
and S∂�,0 = {x(i)

∂�,0}
Nb

i=1
.

1: for k = 0 : Nadaptive − 1 do

2: // Solve PDE
3: for i = 1 : Ne do

4: for j steps do

5: Sample m samples from S�,k .

6: Sample m samples from S∂�,k .

7: Update u(x; �) by descending the stochastic gradient of J IS

N (u(x; �)) (see equation (28)).
8: end for

9: end for

10: // Train KRnet
11: for i = 1 : Ne do

12: for j steps do

13: Sample m samples from S�,k .

14: Update p̂KRnet(x; � f ) by descending the stochastic gradient of H(r̂X , ̂pKRnet) (see equation (25)).
15: end for

16: end for

17: // Refine training set

18: Generate S�,k+1 ⊂ � through p̂KRnet(x; �∗,(k+1)
f

).

19: end for

Output: u(x; �∗
N )

Algorithm 2 DAS-G for PDEs.

Input: Initial p̂KRnet(x; �(0)

f
) , u(x; �(0)), maximum epoch number Ne , batch size m, initial training set S�,0 = {x(i)

�,0}
nr
i=1

and S∂�,0 = {x(i)
∂�,0}

Nb

i=1
.

1: for k = 0 : Nadaptive − 1 do

2: // Solve PDE
3: for i = 1 : Ne do

4: for j steps do

5: Sample m samples from S�,k .

6: Sample m samples from S∂�,k .

7: Update u(x; �) by descending the stochastic gradient of JN (u(x; �)) (see equation (3)).
8: end for

9: end for

10: // Train KRnet
11: for i = 1 : Ne do

12: for j steps do

13: Sample m samples from S�,k .

14: Update p̂KRnet(x; � f ) by descending the stochastic gradient of H(r̂X , ̂pKRnet) (see equation (25)).
15: end for

16: end for

17: // Refine training set

18: Generate Sg

�,k+1
⊂ � with size nr through p̂KRnet(x; �∗,(k+1)

f
).

19: S�,k+1 = S�,k ∪ S
g

�,k+1
.

20: end for

Output: u(x; �∗
N )

5. Analysis of DAS

As discussed in section 4.3, the key point of our DAS-PINNs method is to achieve variance reduction for the discretization 

of the residual loss, based on which we expect to improve the accuracy of the approximate solution. Under certain condi-

tions, we show that the expectation of error bound becomes smaller when the adaptive sampling strategy is employed.

Assumption 1. [35] In problem (1), we let F = H be a Hilbert space and L a linear operator. Assume that the differential 

operator L and the boundary operator b satisfy

C1 ‖v‖2,� ≤ ‖Lv‖2,� + ‖bv‖2,∂� ≤ C2 ‖v‖2,� ∀v ∈ H (31)

where H is a Hilbert space defined on � and the positive constants C1 and C2 are independent of v .

10
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The above condition is called the stability bound [35], which is essential to the existence and uniqueness of problem (1). 

Except for this assumption, the following two assumptions for the relationship between r(x; �∗,(k)
N ) and p̂KRnet(x; �∗,(k)

f
) are 

given.

Assumption 2. Assume that p̂KRnet(x; �∗,(k)

f
) is the optimal candidate for the change of measure in equation (11)

p̂KRnet(x;�∗,(k)

f
) = ckr

2(x;�∗,(k)
N ) (32)

where ck = 1/ 
∫

�
r2(x; �∗,(k)

N )dx is the normalization constant.

Assumption 3. Let

Rk = 1

Nr

Nr
∑

i=1

r2(x
(i)
� ;�∗,(k)

N )

p̂KRnet(x
(i)
� ;�∗,(k−1)

f
)

be the discrete residual loss at the k-th stage, where each x
(i)
� is drawn from p̂KRnet(x; �∗,(k−1)

f
). Assume that r2(x

(i)
� ; �∗,(k)

N )/

p̂KRnet(x
(i)
� ; �∗,(k−1)

f
) ∈ [τ1, τ2] almost surely for each i = 1, 2, . . . , Nr .

At each adaptivity stage, the error of the approximate solution is estimated as follows.

Theorem 1. Let u(x; �∗,(k)
N ) ∈ F be a solution of (3) where the collocation points are independently drawn from p̂KRnet(x; �∗,(k−1)

f
). 

Suppose that Assumption 1 and Assumption 3 are satisfied. Given 0 < ε < 1, the following error estimate holds

∥

∥

∥
u(x;�∗,(k)

N ) − u(x)

∥

∥

∥

2,�
≤

√
2C−1

1

(

Rk + ε +
∥

∥

∥
b(x;�∗,(k)

N )

∥

∥

∥

2

2,∂�

)
1
2

.

with probability at least 1 − exp(−2Nrε
2/(τ2 − τ1)

2).

The approximate solutions at two adjacent adaptivity stages satisfy:

Corollary 1. Under the same conditions of Theorem 1, suppose that Assumption 2 is satisfied and the boundary loss Jb(u) is zero, then 

the following inequality holds

E(Rk+1) ≤ E(Rk).

Theorem 1 provides an error estimate for the approximate solution similar to the results in [40]. Corollary 1 outlines 

the error behavior of a sequence of approximate solutions induced by adaptivity. However, it is not quite straightforward to 

quantify the decay of the error due to adaptive refinement. For example, for DAS-R the reduction in variance is up to a tail 

probability as shown in Lemma 2 and for DAS-G the loss is changed at each adaptivity stage due to the modification of the 

training set. These issues are left for future study.

6. Numerical experiments

In this section, we conduct some numerical experiments to demonstrate the effectiveness of the proposed DAS-PINNs 

method, including two low-dimensional and low regularity test problems, one high-dimensional linear test problem, and one 

high-dimensional nonlinear test problem. Due to the curse of dimensionality, data are sparse in high-dimensional spaces 

[20,19,21], which implies that effective samples should be able to deal with localized information. We mainly use low-

dimensional and low regularity test problems to demonstrate that the sampling strategy affects significantly the performance 

of neural network approximation if the residual is strongly localized. For comparison, we also test the performance of the 

residual-based adaptive refinement (RAR) method [52,42] (see section 6.2 and section 6.3) for high-dimensional problems, 

where RAR searches uniform samples to find those with large residuals and add them to the current training set. RAR is 

similar to DAS-G, where the main difference is that the selection of new samples in DAS-G is completely guided by an 

optimization problem while RAR relies partially on the intuition of users. All deep neural network models are trained by 

the ADAM method [34]. The penalty parameter in equation (3) is set to γ̂ = 1. The activation function of u(x; �) is set to 

the hyperbolic tangent function. The activation function of KRnet is the rectified linear unit (ReLU) function since we only 

use the KRnet for density approximation.

11
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Fig. 1. Approximation errors for the two-dimensional peak test problem. Left: The error w.r.t. sample size |S�|; Right: The error w.r.t. epoch for |S�| =
5 × 103 .

6.1. Low-dimensional and low regularity test problems

In this part, two-dimensional low regularity problems are considered, where the solution of the first one has a peak and 

the solution of the second one has two peaks.

6.1.1. Two-dimensional peak problem

The following elliptic equation is considered

−
u(x1, x2) = s(x1, x2) in �,

u(x1, x2) = g(x1, x2) on ∂�,
(33)

where the computation domain is � = [−1, 1]2 . In order to quantify the error, we use the following reference solution

u(x1, x2) = exp
(

−1000[(x1 − rc)
2 + (x2 − rc)

2]
)

,

which has a peak at the point (rc, rc) and decreases rapidly away from (rc, rc). This test problem is often used to test the 

performance of adaptive finite element methods [53,24].

We choose a six-layer fully connected neural network u(x; �) with 32 neurons to approximate the solution. For KRnet, 

we take L = 6 affine coupling layers, and two fully connected layers with 24 neurons for each affine coupling layer. The 

number of epochs for training both u(x; �) and p(x; � f ) is set to Ne = 3000. The learning rate for ADAM optimizer is set 

to 0.0001, and the batch size is set to m = 500. Here, we set (rc, rc) = (0.5, 0.5). To assess the effectiveness of our DAS 

methods, we generate a uniform meshgrid with size 256 × 256 in [−1, 1]2 and compute the mean square error on these 

grid points.

In Fig. 1, we plot the approximation errors given by different sampling strategies with respect to the sample size in 

the left plot and with respect to the number of epochs in the right plot. For each |S�|, we take three runs with different 

random seeds for initialization and compute the mean error of the three runs as the final error. For DAS strategies, the 

numbers of adaptivity iterations are set to Nadaptive = 4, 6, 8, 10 for |S�| = 2 × 103, 3 × 103, 4 × 103, 5 × 103 respectively, 

and nr = 500 is set for the DAS-G strategy (see section 4.3). For the uniform sampling strategy, the number of epochs is set 

to be the same as the total number of epochs of each DAS method. It is clear that for this test problem the DAS methods 

(DAS-G and DAS-R) have a better performance than the uniform sampling strategy and DAS-R performs better than DAS-G. 

For the same sample size, both DAS-R and DAS-G yield a smaller error than the uniform sampling method. In terms of the 

number of epochs, the errors of DAS-R and DAS-G decay in a more consistent way than the uniform sampling method.

In Fig. 2 we compare the exact solution, the DAS solutions given by 5 × 103 nonuniform samples and the approximate 

solution given by 5 ×103 uniform samples. It is seen that DAS methods are much more effective than the uniform sampling 

method to capture the information in the region of low regularity. Fig. 3 shows the error evolution of DAS-R at different 

adaptivity iteration steps. It is seen that the approximation error drops as the adaptivity iteration step k increases, which 

is consistent with Corollary 1, and the relaxation time for the optimization iterations reduces as well. Fig. 4 shows the 

evolution of the training sets (|S�| = 5 × 103) of DAS-R method with respect to adaptivity iterations k = 1, 4, 7, 9, where 

the initial training set S�,0 consists of uniform collocation points on � (see section 4.3). It is seen that the largest density 

of S�,1 for DAS-R is around [0.5, 0.5] since S�,k is consistent with the residual-induced distribution. However, we also 

expect that the tail of the residual-induced distribution becomes heavier as k increases since the adaptivity tries to make 

the residual-induced distribution more uniform, which is illustrated by S�,4 , S�,7 and S�,9 .
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Fig. 2. Solutions, two-dimensional peak test problem. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 3. The errors of DAS-R at certain adaptivity iteration steps for the two-dimensional peak test problem. |S�| = 5× 103 .

6.1.2. Two-dimensional test problem with two peaks

In this test problem, we consider the following equation

−∇ ·
[

u(x1, x2)∇(x21 + x22)
]

+ ∇2u(x1, x2) = s(x1, x2) in �,

u(x1, x2) = g(x1, x2) on ∂�,
(34)

where the computation domain is � = [−1, 1]2 . The exact solution of (34) is chosen as

u(x1, x2) = e−1000[(x1−0.5)2+(x2−0.5)2] + e−1000[(x1+0.5)2+(x2+0.5)2],
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Fig. 4. The evolution of S�,k in DAS-R for the two-dimensional peak test problem.

Fig. 5. Approximation errors for the two-dimensional test problem with two peaks. Left: The error w.r.t. sample size |S�|; Right: The errors of DAS-G at 
each adaptivity iteration steps. |S�| = 104 .

which has two peaks at the points (0.5, 0.5) and (−0.5, −0.5). Here, the Dirichlet boundary condition on ∂� is given by 

the exact solution.

We choose a six-layer fully connected neural network u(x; �) with 64 neurons to approximate the solution of (34). For 

KRnet, we take L = 8 affine coupling layers, and two fully connected layers with 48 neurons for each affine coupling layer. 

The number of epochs for training both u(x; �) and p(x; � f ) is set to Ne = 5000. The learning rate for ADAM optimizer is 

set to 0.0001, and the batch size is set to m = 500. Again, we generate a uniform meshgrid with size 256 × 256 in [−1, 1]2
and compute the mean square error on these grid points to assess the effectiveness of our DAS methods.

Fig. 5 shows the approximation errors for this test problem, where the left one displays the errors with respect to 

the sample size |S�| for different sampling strategies, and the right one shows the error evolution of DAS-G at different 

adaptivity iteration steps. For each |S�|, we again take three runs with different random seeds for initialization and compute 

the mean error of the three runs as the final error. For the DAS-G strategy, the numbers of adaptivity iterations is set to 

Nadaptive = 5 (also for DAS-R), and the numbers of collocation points in S
g
�(k = 1, 2, 3, 4) is set to nr = 500, 1 × 103, 1.5 ×

103, 2 × 103 for |S�| = 2.5 × 103, 5 × 103, 7.5 × 103, 104 respectively. For the uniform sampling strategy, we train the model 

with 2.5 ×104 epochs to match the total number of epochs of DAS methods. From Fig. 5, it is seen that for this test problem 

our DAS methods (DAS-G and DAS-R) have a better performance than the uniform sampling strategy and DAS-G performs 

better than DAS-R. It is also seen that the error decreases as the adaptivity iteration step k increases.
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Fig. 6. Solutions, two-dimensional test problem with two peaks.

In Fig. 6 we compare the exact solution, the DAS solutions given by 104 nonuniform samples and the approximate 

solution given by 104 uniform samples. It is seen that DAS methods are much more effective than the uniform sampling 

method to capture the information around the two peaks. Fig. 7 shows the evolution of S
g

�,k
of DAS-G method with respect 

to adaptivity iterations k = 1, 2, 3, 4 (|Sg

�,k
| = 2 × 103), where the initial training set S�,0 consists of uniform collocation 

points on � (see section 4.3). S
g
�,1 shows that the error profile has two peaks. After the training set is augmented with 

S�,1 , the error profile becomes more flat as shown by the distribution of S
g
�,2 . After the training set is augmented with 

S�,2 , the largest error is found again around the two peaks, and then the subsequent augmentation of the training set yields 

a more flat error profile. Such a pattern is repeated until no improvement can be reached.

6.2. High-dimensional linear test problems

Next we consider the d-dimensional elliptic equation

−
u(x) = s(x), x in � = [−1,1]d, (35)

with an exact solution

u(x) = e−10‖x‖22 ,

where the Dirichlet boundary condition on ∂� is given by the exact solution. We are interested in cases with a large 

d > 3. Note that the geometric properties of high-dimensional spaces are significantly different from our intuitions on 

low-dimensional ones, e.g., most of the volume of a high-dimensional cube is located around its corners [20,19,21]. If we 

use uniform samples to generate S� , most of the collocation points in S� are near the surface of the hypercube. Since 

the information of the exact solution is mainly from the neighborhood of the origin, most of the samples in S� may not 

contribute to training the neural network when d is large enough.

We choose a six-layer fully connected neural network u(x; �) with 64 neurons to approximate the solution. For KRnet, 

we set K = 3 and take L = 6 affine coupling layers, and two fully connected layers with 64 neurons for each affine coupling 

layer. The number of epochs for training both u(x; �) and p(x; � f ) is set to Ne = 3000. The learning rate for ADAM 
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Fig. 7. The evolution of S
g

�,k
in DAS-G for the two-dimensional test problem with two peaks.

optimizer is set to 0.0001, and the batch size is set to m = 5000. The numbers of adaptivity iterations is set to Nadaptive = 5. 

To measure the quality of approximation, we generate a tensor grid with ndt points around the origin (in [−0.1, 0.1]d) where 

nt is the number of nodes for each dimension. We define the relative error

Relative error = ‖uNN − u‖2
‖u‖2

,

where uNN and u denote two vectors whose elements are the function values of u(x; �) and u(x) at the tensor grid 

respectively.

We first investigate the relation between the error and the dimensionality d when the uniform sampling strategy is 

employed. Fig. 8(a) shows the relative errors in terms of a varying d for a sample size |S�| = 2 × 105 . To roughly match 

the number of grid points for different d, we set nt = 16, 6, 4, 3 for d = 4, 6, 8, 10 respectively. It is seen that the relative 

error grows quickly to O(1) as d increases. However, as shown in Fig. 8(b), all training losses are finally close to zero for 

d = 4, 6, 8, 10. This is consistent with the fact that in a high-dimensional space most of the uniform samples are located 

around the boundary, where the solution is close to zero. The optimizer is then in favor of the trivial solution since there 

are not sufficient samples to resolve the peak at the origin. This phenomenon demonstrates that the uniform sampling 

method may become less effective as d increases and the convergence of the approximate solution is highly dependent on 

the choice of S� for a large d.

Fig. 9 shows the relative errors for the uniform sampling strategy, the residual-based adaptive refinement (RAR) method 

proposed in [52], DAS-R and DAS-G, where different numbers of samples |S�| are considered. For each |S�|, we again take 

three runs with different random seeds for initialization and compute the mean error of the three runs as the final error. 

For the DAS-G strategy, the numbers of collocation points in S
g

�,k
(k = 1, 2, 3, 4) are set to nr = 104, 2 ×104, 3 ×104, 4 ×104

for |S�| = 5 ×104, 105, 1.5 ×105, 2 ×105 respectively. For the uniform sampling strategy, we train the model with 1.5 ×104

epochs to match the total number of epochs of DAS methods. For the heuristic method RAR, the numbers of collocation 

points in S
g

�,k
(k = 1, 2, 3, 4) are set to nr = 5 × 103, 104, 1.5 × 104, 2.5 × 104 for |S�| = 5 × 104, 105, 1.5 × 105, 2 × 105

respectively. From Fig. 9, it can be seen that both DAS-G and DAS-R improve the accuracy significantly compared to the 

uniform sampling strategy and RAR. In addition, the error of DAS-G decreases slightly faster than that of DAS-R for this 

test problem. Table 1 shows the training time and the error for the uniform sampling strategy, the residual-based adaptive 

refinement (RAR) method proposed in [52], DAS-R, and DAS-G. It can be seen that the training time of DAS-G is less 

than that of DAS-R. Moreover, the training time of DAS-G is approximately equal to that of the uniform sampling strategy. 

However, the errors of the uniform sampling strategy and RAR are much larger than that of DAS since the uniform sampling 

strategy and RAR are not able to accurately discretize the loss functional for this low-regularity high-dimensional problem. 

In Fig. 10 we compare the error evolution of different sampling strategies. From the left plot of Fig. 10, as the number 

of epochs increases, the errors of DAS-G and DAS-R decrease quickly, while the errors of RAR and the uniform sampling 

strategy do not decrease. This result suggests that for high-dimensional problems DAS methods are able to achieve a good 
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Fig. 8. The convergence behavior of high-dimensional PDEs with uniform sampling method. Loss is close to zero, but the error is still large for the ten-
dimensional test problem.

Fig. 9. The error w.r.t. sample size |S�|, ten-dimensional linear test problem.

approximation with a relatively small number of nonuniform samples while much more uniform samples are needed for 

the same accuracy. The right plot of Fig. 10 shows the error of DAS-G at each adaptivity iteration step k. It is seen that the 

error drops dramatically after we refine the solution using S�,1 .

Figs. 11 and 12 show 3000 samples from the training sets (|S�| = 2 × 105) DAS-R and DAS-G for the first four adaptivity 

iterations, where the components x6 and x7 are used for visualization. We have also checked the other components, and 

no significantly different results were found. For DAS-R, 3000 samples are randomly chosen from S�,k (k = 1, 2, 3, 4). For 

DAS-G, 3000 samples for visualization are randomly selected from S
g

�,k
(k = 1, 2, 3, 4). It is seen that the profile of S�,k is 

gradually flattened as k increases, meaning the nonuniform samples are able to smooth the error profile which has a peak 

around the origin. As for DAS-G, the improvement takes a similar path. S
g
�,1 shows that the error profile has a peak around 

the origin. After the training set is augmented with S�,1 , the error profile becomes more flat as shown by the distribution 

of S
g
�,2 . This is expected since more collocation points are added to the neighborhood of the origin which should reduce the 

error over there. Such a pattern is similar to what we have observed in Fig. 7. In Fig. 13, we compare the evolution of the 

variance of the residual for the training with 5 × 104 samples. We estimate the variance of residual using 59049 grid points 

around the origin (these points are also used to compute the relative errors in the above discussion). It is clear that both 

DAS-R and DAS-G achieve the variance reduction significantly compared with RAR, which helps reduce the statistical error 

dramatically for a fixed sample size. Looking more closely, the variance of DAS-R has a transition between two consecutive 

adaptivity iterations, resulting in the oscillation of errors for DAS-R as observed in the left plot of Fig. 10. From Fig. 13, it 

can be seen that DAS-G appears more robust than DAS-R for this test problem. We may adjust the communication pattern 

between the PDE model and the PDF model to reduce the oscillations, which will be left for future study.
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Table 1

Training time and error for different |S�| and sampling strategies, ten-dimensional linear test problem.

|S�|
sampling strategy DAS-G DAS-R Uniform RAR

time error time error time error time error

5× 104 1.83 h 0.030 3.38 h 0.250 1.90 h 1.011 1.45 h 0.993

105 3.64 h 0.028 6.95 h 0.049 3.92 h 0.999 3.03 h 1.001

1.5× 105 5.61 h 0.010 10.29 h 0.041 5.85 h 1.003 4.66 h 0.988

2× 105 7.55 h 0.008 13.49 h 0.020 7.90 h 1.001 5.74 h 0.978

Fig. 10. The error evolution of different sampling strategies with |S�| = 2 × 105 and d = 10 (high-dimensional linear test problem). Left: A comparison of 
DAS-G, DAS-R and the uniform sampling method; Right: The error evolution of DAS-G at different adaptivity iteration steps.

Fig. 11. The evolution of S�,k in DAS-R, ten-dimensional linear test problem.

6.3. High-dimensional nonlinear test problem

In this part, the ten-dimensional nonlinear partial differential equation considered is

−
u(x) + u(x) − u3(x) = s(x), x in � = [−1,1]10. (36)

The exact solution is set to be the same as (35), and the Dirichlet boundary condition on ∂� is given by the exact solution. 

The settings of u(x; �) and KRnet are the same as those in section 6.2.
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Fig. 12. The evolution of S
g

�,k
in DAS-G, ten-dimensional linear test problem.

Fig. 13. The evolution for the variance of residual, ten-dimensional linear test problem.

The observations are similar to those for the high-dimensional linear problem. Fig. 14 shows the relative errors for the 

uniform sampling strategy, RAR, DAS-R and DAS-G, where different numbers of samples |S�| are considered. Again, we take 

three runs with different random seeds for initialization and compute the mean error of the three runs as the final error 

for each |S�|. For the DAS-G strategy, the numbers of collocation points in S
g

�,k
(k = 1, 2, 3, 4) are set to the same as those 

in section 6.2. For the uniform sampling strategy, we train the model with 1.5 × 104 epochs to match the total number of 

epochs of DAS methods. For the heuristic method RAR, the numbers of collocation points in S
g

�,k
(k = 1, 2, 3, 4) are set to 

nr = 5 × 103, 104, 1.5 × 104, 2.5 × 104 for |S�| = 5 × 104, 105, 1.5 × 105, 2 × 105 respectively. We compare the training time 

for different sampling strategies in Table 2. The results are similar to those in section 6.2. It is seen that the training time 

of DAS-G is less than that of DAS-R. Both DAS-G and DAS-R improve the accuracy significantly compared to the uniform 

sampling strategy and RAR, and the training time of DAS-G is approximately equal to that of the uniform sampling strategy. 

In Fig. 15 we compare the error evolution of different sampling strategies. Similar to the high-dimensional linear problem, 

the errors of DAS-G and DAS-R decrease quickly while the errors of the uniform sampling strategy and RAR do not decrease. 

The error behavior of DAS-G at each adaptivity iteration step k is shown in the right plot of Fig. 15. It is seen that the 

approximation is significantly improved when the adaptivity iteration step k increases from 0 to 1. Fig. 16 and 17 show 

3000 samples from the training sets (|S�| = 2 × 105) DAS-R and DAS-G for the first four adaptivity iterations, where the 

components x6 and x7 are used for visualization. For DAS-R, 3000 samples are randomly chosen from S�,k (k = 1, 2, 3, 4). 
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Fig. 14. The error w.r.t. sample size |S�|, ten-dimensional nonlinear test problem.

Table 2

Training time and error for different |S�| and sampling strategies, ten-dimensional nonlinear test problem.

|S�|
sampling strategy DAS-G DAS-R Uniform RAR

time error time error time error time error

5× 104 1.82 h 0.042 3.44 h 0.062 1.84 h 1.008 1.42 h 0.999

105 3.65 h 0.020 6.92 h 0.054 3.86 h 1.001 2.97 h 1.002

1.5× 105 5.81 h 0.010 10.41 h 0.037 5.73 h 1.002 4.63 h 0.993

2× 105 7.82 h 0.009 13.87 h 0.013 7.80 h 0.996 5.75 h 0.983

Fig. 15. The error evolution of different sampling strategies with |S�| = 2 × 105 and d = 10 (high-dimensional nonlinear test problem). Left: A comparison 
of DAS-G, DAS-R and the uniform sampling method; Right: The error evolution of DAS-G at different adaptivity iteration steps.

For DAS-G, 3000 samples for visualization are randomly selected from S
g

�,k
(k = 1, 2, 3, 4). Both DAS-R and DAS-G flatten 

the error profile through adaptive sampling as we have observed in Figs. 11 and 12. Fig. 18 shows the evolution of the 

variance of the residual for DAS-R, DAS-G and RAR. The behavior is similar to that in Fig. 13.

7. Conclusion

In this paper we have developed a deep adaptive sampling (DAS) method and coupled it with physics-informed neural 

networks (PINNs) to improve the neural network approximation of PDEs iteratively. The key idea of DAS is to employ a deep 

generative model to generate collocation points that are consistent with the distribution induced by an appropriate error 

indicator function. In this way, the training set is refined according to the regularity of the PDE solution, which follows 

the similar principle of adaptive mesh refinement of classical numerical methods. Numerical experiments have shown that 

the DAS method is able to significantly improve the accuracy for the approximation of low regularity problems especially 

when the dimensionality is relatively large. The proposed DAS method provides a very general and flexible framework for 

an adaptive learning strategy. There are several possible ways to further improve it. First, DAS consists of two DNN-based 

models: one model serves as an approximator for the PDE solution and the other one serves as an error indicator for the 
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Fig. 16. The evolution of S�,k in DAS-R, ten-dimensional nonlinear test problem.

Fig. 17. The evolution of S
g

�,k
in DAS-G, ten-dimensional nonlinear test problem.

selection of collocation points. Both models can be chosen in terms of a certain criterion. In this work, we use a regular DNN 

for PDE approximation and KRnet for density approximation and sample generation. Second, the underlying distribution for 

the training set can be problem dependent. In this work, we choose the residual-induced distribution. We may also use 

the gradient of the approximation solution to define an indicator distribution. In [22], we employ KRnet to approximate the 

Fokker-Planck equation, where the collocation points are sampled from the approximate solution. Third, the DAS method is 

not limited to steady-state PDE problems. We may employ the DAS method on the space-time domain to refine the training 

set for the approximation of time-dependent problems. Last but not least, the current training process can also be improved. 

Although the current DAS methods work well enough to demonstrate the effectiveness of the algorithm, many questions 
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Fig. 18. The evolution for the variance of residual, ten-dimensional nonlinear test problem.

remain open, e.g., what is the optimal way for the two deep models to communicate and what is the optimal sample size 

for S
g

�,k
. Research on these issues will be reported in forthcoming papers.
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Appendix A. Proof of Lemma 1

Proof. We first introduce the following lemma:

Lemma 3. Consider a perturbed identity matrix I + δA with ‖δA‖2 < 1. We have

∥

∥(I+ δA)−1
∥

∥

2
≤ 1

1− ‖δA‖2
. (A.1)

Proof. For any x �= 0, we have

‖(I+ δA)x‖2 ≥ ‖x‖2 − ‖δA‖2 ‖x‖2 = (1− ‖δA‖2)‖x‖2 > 0,

which implies that I + δA is nonsingular. We then have

1 =
∥

∥(I+ δA)−1(I+ δA)
∥

∥

2
=
∥

∥(I+ δA)−1 + (I+ δA)−1δA
∥

∥

2

≥
∥

∥(I+ δA)−1
∥

∥

2
−
∥

∥(I+ δA)−1
∥

∥

2
‖δA‖2 ,

which yields the conclusion. �
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Assume that m∗
V (x) = (v∗)Tq(x) and m v̂

∗ (x) = (v̂
∗
)Tq(x), where q(x) = [q1(x), . . . , qn(x)]T includes the basis functions in 

V = span{qi : i = 1, . . . , n} and the vectors v∗ and v̂
∗
include the coefficients. It is easy to see that v∗ and v̂

∗
satisfy the 

following linear systems respectively

Av∗ = b, Âv̂
∗ = b̂, (A.2)

where

âi j =
1

N

N
∑

k=1

qi(x
(k))q j(x

(k)) ≈ 〈qi,q j〉ρ = ai j,

b̂i =
1

N

N
∑

k=1

qi(x
(k))h(x(k)) ≈ 〈qi,h〉ρ = bi,

and 〈qi, q j〉ρ =
∫

D
qi(x)q j(x)ρ(x)dx indicates the inner product of qi and q j . We rewrite the linear system for v̂

∗
as

(A+ δA)v̂
∗ = b + δb, (A.3)

where δA = Â− A and δb = b̂ − b. Let B = {qi}ni=1
∪ {h}. Since both {qi}ni=1

and h are continuous on a compact support, we 

may assume that |m1(x)m2(x)| ≤ M for any m1, m2 ∈ B and any x ∈ D , where 0 < M < ∞ is a constant. Using the Heoffding 

bound, we have for any δ > 0 with probability at least 1 − 2δ,

∣

∣

∣

∣

∣

1

N

N
∑

k=1

m1(x
(k))m2(x

(k)) − 〈m1,m2〉ρ

∣

∣

∣

∣

∣

≤

√

2M2 ln δ−1

N
, (A.4)

for any m1, m2 ∈ B. This means with probability at least 1 − 2δ we have

‖δA‖2 ≤ ‖δA‖F ≤ n

√

2M2 ln δ−1

N
, ‖δb‖2 ≤

√
n

√

2M2 ln δ−1

N
, (A.5)

where ‖·‖F indicates the Frobenius norm. Let δv∗ = v̂
∗ − v∗ . It is seen that ‖δA‖2 → 0 as N → ∞. Assume that N is large 

enough such that ‖δA‖2 ≤ (1 − r) with 0 < r < 1, in other words, (1 − ‖δA‖2)−1 ≤ r−1 . Since qi are orthonormal, we have 

A = I. From equations (A.2) and (A.5), we have

δv∗ = (I+ δA)−1(δb − δAv∗),

to which we apply Lemma 3 and the bounds in equation (A.3) and obtain

∥

∥δv∗∥
∥

2
≤ r−1(‖δb‖2 + ‖δA‖2

∥

∥v∗∥
∥

2
) ≤ r−1(

√
n + n

∥

∥v∗∥
∥

2
)

√

2M2 ln δ−1

N
. (A.6)

Using the Pythagorean theorem, we have

‖m v̂
∗ − h‖2ρ = ‖m v̂

∗ −m∗
V ‖2ρ + ‖h −m∗

V ‖2ρ
= ‖δv∗‖22 + ‖h −m∗‖2ρ
≤ (‖δv∗‖2 + ‖h −m∗

V ‖ρ)2,

which yields that

‖m v̂
∗ − h‖ρ ≤ ‖δv∗‖2 + ‖h −m∗

V ‖ρ . (A.7)

Combining equations (A.6) and (A.7), we reach the conclusion. �

Appendix B. Proof of Lemma 2

Proof. Let

r̂(x) =
{

r(x), if |r2/p − μ| ≤ a;
0, otherwise,

where a > 0. We consider
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∣

∣

∣
Q p[r2] − E[r2]

∣

∣

∣
≤
∣

∣

∣
Q p(r

2) − Q p(r̂
2)

∣

∣

∣
+
∣

∣

∣
Q p(r̂

2) − E[r̂2]
∣

∣

∣
+
∣

∣

∣
E[r̂2] − E[r2]

∣

∣

∣
= I1 + I2 + I3. (B.1)

The first term I1 on the right-hand side is bounded as

Ep

∣

∣

∣
Q p(r

2) − Q p(r̂
2)

∣

∣

∣
= Ep

∣

∣

∣
r2(X)p−1(X) − r̂2(X)p−1(X)

∣

∣

∣

=
∫

|r2/p−μ|>a

r2(x)dx

≤ ‖r2/p‖p

√

P (|r2/p − μ| > a; p), (B.2)

where the Cauchy-Schwarz inequality is used in the last step.

The second term I2 on the right-hand side can be bounded as

Ep

∣

∣

∣
Q p(r̂

2) − E[r̂2]
∣

∣

∣
≤
√

Varp(Q p(r̂2))

≤ N−1/2
√

Varp(r̂2(X)/p(X))

≤ aN−1/2, (B.3)

where in the last step we used the fact that for any variable α ≤ Y ≤ β , Var(Y ) ≤ (α−β)2

4
with probability 1. The third term 

I3 on the right-hand side can be bounded the same way as I1 .

We now estimate the tail probability P (|r2/p −μ| > a; p). Using the correspondence between L1 norm and total variation 

distance for two probability measures as well as the Pinsker’s inequality, we have

‖p − p∗‖L1 = 2δ(p, p∗) ≤
√

2DKL(p‖p∗) ≤
√
2ε, (B.4)

which yields that

Ep

[
∣

∣

∣
r2/p − μ

∣

∣

∣

]

≤ μ
√
2ε. (B.5)

From the Markov inequality, we have

P

(
∣

∣

∣
r2/p − μ

∣

∣

∣
≥ a; p

)

≤ μ
√
2ε

a
, (B.6)

where the probability is with respect to PDF p(x). Combining the bounds for I i , i = 1, 2, 3, and equation (B.6), we reach the 

conclusion. �

Appendix C. Proof of Theorem 1

Proof. By Assumption 1, we have
∥

∥

∥
u(x;�∗,(k)

N ) − u(x)

∥

∥

∥

2,�

≤C−1
1

[

∥

∥

∥
L(u(x;�∗,(k)

N ) − u(x))

∥

∥

∥

2,�
+
∥

∥

∥
b(u(x;�∗,(k)

N ) − u(x))

∥

∥

∥

2,∂�

]

≤
√
2C−1

1

(

∥

∥

∥
L(u(x;�∗,(k)

N ) − u(x))

∥

∥

∥

2

2,�
+
∥

∥

∥
b(u(x;�∗,(k)

N ) − u(x))

∥

∥

∥

2

2,∂�

)
1
2

.

Combining Lu(x) = s(x), bu(x) = g(x), r(x; �∗,(k)
N ) =Lu(x; �∗,(k)

N ) − s(x) and b(x; �∗,(k)
N ) = bu(x; �∗,(k)

N ) − g(x) gives

∥

∥

∥
u(x;�∗,(k)

N ) − u(x)

∥

∥

∥

2,�
≤

√
2C−1

1

(

∥

∥

∥
r(x;�∗,(k)

N )

∥

∥

∥

2

2,�
+
∥

∥

∥
b(x;�∗,(k)

N )

∥

∥

∥

2

2,∂�

)
1
2

. (C.1)

Noting that E(Rk) =
∥

∥

∥
r(x;�∗,(k)

N )

∥

∥

∥

2

2,�
, and according to the Hoeffding inequality, we have

P (Rk − E(Rk) ≥ −ε) ≥ 1− exp

( −2Nrε
2

(τ2 − τ1)2

)

. (C.2)

Combining (C.1) and (C.2) gives that
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∥

∥

∥
u(x;�∗,(k)

N ) − u(x)

∥

∥

∥

2,�
≤

√
2C−1

1

(

Rk + ε +
∥

∥

∥
b(x;�∗,(k)

N )

∥

∥

∥

2

2,∂�

)
1
2

with probability at least 1 − exp(−2Nrε
2/(τ2 − τ1)

2). �

Appendix D. Proof of Corollary 1

Proof. Noting that

�
∗,(k+1)
N = argmin

�

1

Nr

Nr
∑

i=1

r2(x
(i)
� ;�)

p̂KRnet(x
(i)
� ;�∗,(k)

f
)
.

Since �
∗,(k+1)
N is the optimal solution at the (k + 1)-th stage, we have

Rk+1 = 1

Nr

Nr
∑

i=1

r2(x
(i)
� ;�∗,(k+1)

N )

p̂KRnet(x
(i)
� ;�∗,(k)

f
)

≤ 1

Nr

Nr
∑

i=1

r2(x
(i)
� ;�∗,(k)

N )

p̂KRnet(x
(i)
� ;�∗,(k)

f
)
. (D.1)

Plugging p̂KRnet(x; �∗,(k)

f
) = ckr

2(x; �∗,(k)
N ) into (D.1) gives that

Rk+1 ≤ 1

ck
.

Noting that Rk+1 is a random variable and taking its expectation, it follows that

E(Rk+1) ≤ 1

ck
=
∫

�

r2(x;�∗,(k)
N )dx = E(Rk),

which completes the proof. �
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