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solutions of PDEs and deep generative models are employed to generate new collocation
points to refine the training set. The overall procedure of DAS consists of two components:
solving the PDEs by minimizing the residual loss on the collocation points in the training
set and generating a new training set to further improve the accuracy of the current

gzyevgolre?ﬁmg approximate solution. In particular, we treat the residual as a probability density function
Numerical approximation of PDEs and approximate it with a deep generative model, called KRnet. The new samples from
Adaptive sampling KRnet are consistent with the distribution induced by the residual, i.e., more samples are
Deep generative models located in the region of large residual and less samples are located in the region of small

residual. Analogous to classical adaptive methods such as the adaptive finite element, KRnet
acts as an error indicator that guides the refinement of the training set. Compared to the
neural network approximation obtained with uniformly distributed collocation points, the
developed algorithms can significantly improve the accuracy, especially for low regularity
and high-dimensional problems. We demonstrate the effectiveness of the proposed DAS-
PINNs method with numerical experiments.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, solving partial differential equations (PDEs) with deep learning methods has been receiving increasing
attention [1-3]. Two major types of deep learning methods have been proposed for solving PDEs, including the variational
form subject to deep learning techniques [4-7] and the physics-informed neural networks (PINNs) [8-10,3], both of which
reformulate a PDE problem as an optimization problem and train a deep neural network (DNN) to approximate the solution
of PDE through minimizing the corresponding loss functional. The variational form is based on the weak formulation of
PDEs, while PINN is based on the residual loss of PDEs. Similar ideas of solving PDEs via minimizing the residual loss can
be traced back to the works [11,12] in the 1990’s, where a shallow neural network is optimized on a priori fixed mesh
as an approximation of the solution. Some efforts have been made to incorporate traditional computational techniques to
enhance the performance of solving PDEs with deep neural networks. In [13-16,7], deep neural networks based on domain
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decomposition are proposed to improve the efficiency. A penalty free neural network method [17] and Phygeonet [16]
are developed to deal with complex geometries and irregular domains. A weak formulation with primal and adversarial
networks is proposed in [18], where the PDE problem is converted to an operator norm minimization problem induced by
the weak formulation.

One critical step for all these methods is to approximate the loss functional, where the integral is usually approximated
by the Monte Carlo method with collocation points randomly generated by a uniform distribution on the computational
domain. Since the minimization of the discrete loss functional yields the approximate solution, the accuracy of the ap-
proximate solution is closely related to the accuracy of the discrete loss functional. In contrast to classical computational
methods, where the main concern is the approximation error, one needs to balance the approximation error and the gener-
alization error for the neural network approximation, where the approximation error mainly originates from the modeling
capability of the neural network and the generalization error is mainly related to the data points in the training set, i.e., the
random samples for the discretization of the loss functional. However, for many PDE models, the uniform random sampling
strategy is not efficient especially when the PDE solution has a low regularity, in other words, an integrand of low regularity
may have a large variance in terms of a uniform distribution such that the Monte Carlo approximation of the loss functional
has a large prefactor before the convergence rate O (N~'/2). This issue becomes worse for high-dimensional problems due
to the curse of dimensionality. In high-dimensional spaces, most of the volume of the computational domain concentrates
around its surface [19-21], which means that uniform samples may become less effective for training deep neural networks
to approximate high-dimensional PDEs. For example, the collocation points from the uniform distribution are not suitable
for solving high-dimensional Fokker-Planck equations, while an adaptive strategy through sampling the current approximate
solution is effective [22]. In [23], a selection network is introduced to serve as a weight function to assign higher weights
for samples with large point-wise residuals, which yields a more accurate approximate solution if the selection network is
properly chosen. However, to obtain a valid selection network, one needs to impose additional constraints on the selection
network, which is often a non-trivial task. For low-dimensional problems, it is well known that one can employ adaptive
numerical schemes to deal with PDEs with low-regularity solutions [24-26], which also suggests that the uniform samples
are not the best choice. Therefore, adaptive sampling strategies are crucial for developing more efficient and reliable deep
learning techniques for the approximation of PDEs.

In this work, we develop a deep adaptive sampling method (DAS-PINNs) for the neural network approximation of PDEs
based on residual minimization, where a deep generative model, called KRnet [27-29], is used to guide the sample gener-
ation for the training set. To this end, we need to construct two deep neural network models: one for approximating the
solution and the other one for refining the training set. The neural network approximation is achieved by the standard pro-
cedure of residual minimization. KRnet defines a transport map [30] from the data distribution to a prior distribution (e.g.
the standard Gaussian). KRnet retains two traits of flow-based generative models [31,32]: exact invertibility of the transport
map and efficient computation of the Jacobian determinant, based on which one can obtain an explicit density model using
the change of variables and an effective approach for generating samples through the invertible mapping. The key point in
our proposed framework is that the residual is viewed as a probability density function (PDF) up to a constant and approx-
imating this PDF can be achieved by minimizing the Kullback-Leibler (KL) divergence between the KRnet-induced density
model and the residual-induced distribution. We use the trained KRnet to generate new collocation points to replace or
refine the training set, where more points are put in the region of large residual and less points are put in the region of
small residual. The updated training set is then used to further improve the accuracy of the current approximate solution.
Simply speaking, KRnet acts as an error indicator for the improvement of the training set, which shares similarities with
the classical adaptive finite element method subject to a residual-based posteriori error estimator. In summary, the main
contributions of this work are as follows.

e We utilize a deep generative model as a generic means to reflect the correspondence between the residual and the
error of approximation through efficient PDF approximation and sample generation.

e We propose a deep adaptive sampling (DAS-PINNs) framework, including efficient sampling procedures and training
algorithms, for the adaptive improvement of neural network approximation of PDEs.

The remainder of the paper is organized as follows. In the next section, we briefly describe the deep learning method
used in this work for the approximation of PDEs. After that, the statistical error of the machine learning technique is
illustrated from the perspective of function approximation. Our DAS approach is presented in section 4. We provide the
theoretical analysis of DAS in section 5. In section 6, we demonstrate the efficiency of our adaptive sampling approach with
numerical experiments. The paper is concluded in section 7.

2. Deep learning for PDEs

Let © c R? be a spatial domain, which is bounded, connected and with a polygonal boundary 82, and x € R¢ denote
a spatial variable. The PDE problem is stated as: find u(x) € F : RY — R where F is a proper function space defined on ,
such that
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Lu(x) =s(x), Vxe<,

(1)
bu(x) =g(x), VxeodQ,

where L is the partial differential operator, b is the boundary operator, s(x) is the source function, and g(x) represents the
boundary conditions.

Let u(x; ®) be a neural network with parameters ©. In the framework of PINNs, the goal is to use u(x; ®) to approximate
the solution u(x) through optimizing a loss functional defined as [8,9]

J(;0) = [r@ 0[5 o + ¥ Ib®: O)II3 50 = Jru:; ©)) + ¥ Jp(u; ©)), (2)

where r(x; ®) = Lu(x; ®) — s(x), and b(x; ®) = bu(x; ®) — g(x) measure how well u(x; ©) satisfies the partial differential
equations and the boundary conditions, respectively, and y > 0 is a penalty parameter. Here, ||u||%’Q = fQ lu(x)|?dx and
Hull%ym = fasz |u(x)|?dx. The loss functional (2) is usually discretized numerically before the optimization with respect to ®
is addressed. In practice, one often chooses two sets of uniformly distributed collocation points Sq = {xg)}fi ; and Sye =
{xggz}f’:bl respectively for the discretization of the two terms in the objective functional (2), leading to the following empirical
loss

IN W ©) = r@x: )}, s, + 7 1b&: O}, s, - 3)

where p > 0, and

1
2

1 Ny ) % 1 Ny .
lully, s = (ﬁzu%xg))) o Nl s = | 37 > u(x)
™ i=1 i=1

Note that in the definition of Jy we do not take into account the constants || = fQ dx and |0Q2| = fasz dx and the ratio

induced by these two constants can be dealt with by choosing y = % such that Jy(u) is a Monte Carlo approximation

of J(u) up to a constant scaling factor |©2|. We then seek an approximate solution by minimizing the empirical loss (3), i.e.,

min Jx (u(-; ©)), (4)

which can be solved by stochastic gradient-based methods [33,34].

Recently, some prior error estimates of neural-network-based methods for solving PDEs are established. Combining the
analysis techniques of the least square finite element method [35] with the universal approximation property of neural
networks [36-39], Shin et al. propose an abstract framework for the error estimation of PINNs [40]. Lu et al. derive a prior
estimate of the generalization error for the deep Ritz method with two-layer neural networks [41]. Suppose that u(-, ) is
the minimizer of the empirical loss Jy(u(-; ®)) and u(-; ®*) is the minimizer of J(u(-; ®)), i.e.,

u(; e = argm®in Ju(; ©)),

u(; Oy) = argmin Jn(u(; ©)).

We have

u(x; OF) —u®) =u(x, OF) — ux; ©") + u(x; O) —u(x), (5)
ie.,

E([u¢: 0% —ulg) <E([uc. 03 —u: 09| g) + [ut: ©) —ufg. (6)

where E indicates the expectation and the norm |-|| corresponds to the function space F for u. The first term describes
the statistical error from discretizing the loss functional with the Monte Carlo approximation, and the second term is the
approximation error of minimizing the loss functional over the hypothesis space. The approximation error depends on the
capability of neural networks, while the statistical error depends on the definition of Sg and Sjq. In this work, we focus
on how to reduce the statistical error for problem (4) and our algorithm can also be generalized to other formulations for
the neural network approximation of PDEs. For simplicity, we focus on the integration of the residual r(x; ®) and assume
that the integral on the boundary is well approximated by a prescribed Sjq.

3
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3. Illustration of the statistical error

We first use function approximation as an example to illustrate the statistical error in machine learning. Let X € R¢ and
Y € R subject to a joint distribution px y. Let Y =m(X) be a model and h: x+— y be a function to be approximated. We
know in the L, sense the optimal model is

m’" = argmin [L(m) = / (y —m®))*px.y (x, y)dxdy] : (7)

In reality, we usually do not know px,y and only have a set {(*", y®)}¥ | of data which can be regarded as samples of
px.y. For a certain hypothesis space W, we obtain a regression problem

N
1 . .
My« =arg min | Ly(my) = — O _my, (x0))? |, 8
w ngew[ N (M) Ng(y w® ) ®)
where Ly can be regarded as a Monte Carlo approximation of L and the subscript w indicates the model parameters
specified by W. If we let px y(x,y) =8(y — h(x))p(x), and assume m € V with V being a linear space, we then obtain the
continuous least-squares method for function approximation

mj, =arg m19 [Lv(m) = /(m(x) - h(x))zp(x)dx], (9)
me

where mj, is the best approximation of h located in V subject to a weighted L, norm in terms of a probability density
function p. To approximate h, we consider

N
1 : .
M« —arg min | Ly n(my) = — Y (my(xD) — h(x®))2 |, 10
i gmﬁv[v,m 0 N;} § (&) —h@)) (10)
where {x(i)}{":1 are samples of p, and Ly y is the Monte Carlo approximation of Ly. Here, we use the linear space spanned
by polynomials as an example to show how the statistical error naturally arises from machine learning. Although the
algorithm in this paper does not consider the linear space, it can be used to explain the existence of statistical errors and
clarify the roles of samples. We derive the error estimate for m;« as follows.

Lemma 1. Let h € C(D) be a continuous function defined on a compact domain D c RY and p(x) > 0 be a PDF on D. Let V =
span{q; :i=1,...,n} with q; being orthonormal polynomials in terms of p. For any § > 0 and with probability at least 1 — 25, we
have for a sufficiently large N

-1
lmg- —hi, <C

+ lmy, — hllp,
where C is a constant, and || - ||, is the weighted L, norm in terms of p.

The first term on the right-hand is the statistical error due to the random samples for the approximation of Ly (see
the proof in Appendix A for more details) and its existence does not depend on the choice of V. When N goes to in-
finity, the statistical error goes to zero and only the approximation error is left. In other words, when applying neural
networks to function approximation, we need to pay attention to both the hypothesis space W and the choice of ran-
dom samples {x(i)}f\’: 1» i.e,, the training set, to obtain a trade-off between the statistical error and the approximation error.
For low-dimensional problems, classical methods such as finite element methods avoid the statistical error by using Gauss
quadrature rules, which implies that deep learning methods are in general less efficient than classical methods due to the
existence of statistical error. On the other hand, for high-dimensional problems, classical methods may not be able to obtain
a relatively small approximation error due to the curse of dimensionality and deep learning methods may perform better by
using a capable hypothesis space such as deep neural networks and an affordable sample size for a relatively small statistical
error. A more general estimate about the statistical error needs the Rademacher complexity of the hypothesis space. In this
work, we are interested in the reduction of the statistical error instead of its bound for a certain set of random samples.

4. Deep adaptive sampling method

We now focus on the reduction of the statistical error when neural networks are used to approximate PDEs. Our deep
adaptive sampling method, i.e., the DAS method, will be established from the viewpoint of variance reduction since the
statistical error is induced by the Monte Carlo approximation of the loss. Consider the term J,(u) in equation (2). It is easy
to see that if r®(x) is a smooth function with a good regularity, the most effective way to reduce the error of Jy(u) is

4
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to increase the sample size N. However, if there exists low regularity, the situation might be different. For example, if the
residual is strongly localized, the scenario can be regarded as a rare event. Assume that the residual r2(x) in equation (2)
has a similar behavior to an indicator function 1;(x) where I C 2 and is much smaller than £, i.e.,

CZ/h@M%/ﬂMM«L
Q Q

For simplicity, we assume that |Q2] =1 when presenting the algorithm. To improve the approximation in I, we need to
compute ¢ accurately. Consider a Monte Carlo estimator of ¢ in terms of uniform samples

N
~ 1 :
— (i)
PMC_N,Elll(x ).
i=

The relative error of I3Mc is
Var'/2(Pyc)
¢
We then need a sample size of O(1/¢) to obtain a relative error of O(1). This implies that a set of uniform samples with
size N quickly becomes less effective if the residual is strongly localized and such a problem can be worsened in the
approximation of high-dimensional PDEs. Instead, adaptive sampling can help accelerate the training process and reduce

the relative error (see the example of solving high-dimensional Fokker-Planck equations in [22]). So, we need to choose
more effective random samples instead of uniform samples, which can incorporate the problem properties.

N7V = o))~ N2

4.1. Some ideas on variance reduction

We outline our basic ideas on variance reduction in this section and more details about the algorithm will be presented
later. We first consider the importance sampling technique. For simplicity, we only consider J,(u(x; ®)) in equation (2),
which is the loss induced by the residual. We have

2y @ Ny 2,00,
h@@@»ﬁ@ﬁ=/ﬁ&@w=/1@9%®w%%QZHE%Q (n
A o P(X) "i=1 p(XQ )

where the set {x?z)}f\; is generated with respect to the probability density function (PDF) p(x) instead of a uniform distri-
bution as in equation (3). Note that r2 is defined in £, so a valid p needs to satisfy p(x) =0 for x € RI\Q. The details of
designing such p are presented in the next subsection. If the variance of r2(X)p~1(X) in terms of p(x) is smaller than the
variance of r*(X) in terms of the uniform distribution, the accuracy of the Monte Carlo approximation will be improved for
a fixed sample size N;. The optimal choice for p(x) is
2w @
pry =), (12)
w

where @ = fQ r2(x; ®)dx. The optimal choice is useless in practice since w is the quantity to be computed. One question
that needs to be clarified is whether variance reduction can be achieved if p is sufficiently close to p* in a certain sense.
In practice, one commonly used quantity to measure the difference between two probability distributions is the Kullback-
Leibler (KL) divergence defined as

p(x) }
pr®) |’

where E, indicates the expectation with respect to p. Assuming that p approaches p* in terms of the KL divergence, we
have the following lemma.

DkL(plip™) =Ep [log

Lemma 2. Assume that |2| = 1 and p(x) is a PDF satisfying

D (pllp*) <& < oo,

where Dy, indicates the Kullback-Leibler divergence. For any 0 < a < oo, we have

E[Qulr?) ~ E0| < aNy 2 4+ 22 /pllp /B (r2/p — | > a: p), (13)

where
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N s
2 1T ri(X®)
Qp(r )—N—Zm7

=1
and X® ~ p(x) are i.i.d. random variables. || - lp is the weighted L, norm in terms of p. The tail probability can be bounded as

26)1/2
P2 /p— ] > a: py < P2

When p(x) approaches p*(x), the ratio r?(x)/p(x) approaches p. The second term on the right-hand side of inequality
(13) is related to the tail probability P(|r>/p — 14| > a; p) in terms of p(x), which goes to zero for any a as € — 0. If we
let a=¢f with 0 < g < % the error can be arbitrarily small for any N, when ¢ is sufficiently small. In other words, if
we rewrite the error bound as c(a = 8/3,8)Nr_1/2, we have c(a, &) — 0 for a fixed N, as € — 0. We will obtain variance
reduction when c(a, €) is small enough, together with an extra assumption that Qp[rz] <M < oo since

E [(Qp[r2] E E[rz])z] < max(M. WE |Q,[r?] - Bl

However, we are not able to obtain variance reduction directly because the KL divergence is weaker than the L, norm.
Another option for variance reduction is to relax the definition of J,(u) as:

Ny
Jrpuie ) = [ Poxopadx~ -3 ra o), (14)
o "i=1
where the set {xg)},&] is sampled from the PDF p(x) and p(x) > 0 on Q. If the minimal value of J; ,(u(x; ®)) is zero,
it is easy to see that the minimizer of J, p(u(x; ®)) is also the solution of problem (1) when the boundary conditions are
satisfied. To reduce the error induced by the Monte Carlo approximation, we may adjust p(x) such that the residual r?(x; ®)
does not vary dramatically. This is similar to the classical adaptive finite element method, where the mesh refinement/coars-
ening is supposed to make the approximation error nearly uniform. For our case, we may sample from a distribution that
is close to the residual-induced distribution and add more samples from the region of large residual into the training set.

4.2. PDF approximation and sample generation

Two options for variance reduction are considered in the previous section. To make both ideas practical, the key issue
is to generate samples efficiently from a PDF p(x) ~ u~'r2(x; ®) for a fixed ®. The first option is based on importance
sampling, meaning that an explicit PDF model p(x) is needed. The second option is based on refinement of the training set,
which only needs samples from the region of large residual and does not need the likelihood of the samples. The second
option has been employed in the recent literature to improve the neural network approximation, which is either ad hoc
[42] (only for low-dimensional problems) or based on traditional sampling strategies such as MCMC [43]. To the best of our
knowledge, there does not exist a generic algorithm that can be effectively adapted to both options. We intend to fill this
gap in this work. It is seen from Lemma 2 that the tail probability P(|r?/p — | > a; p) should be small enough for the
effectiveness of p, which means that p must be close enough to the distribution induced by r2. However, the approximation
of PDF is a challenging task especially in high-dimensional spaces. Classical explicit PDF models such as the exponential
family of distributions and Gaussian mixture models are in general not sufficient as an approximator for the PDF induced
by 2. To alleviate this difficulty, we resort to deep generative modes. In particular, we employ a recently developed deep
generative model called KRnet for both probability approximation and sample generation [22,27]. KRnet is one type of
normalizing flows [44], which provides an invertible transport map between a prior distribution and the target distribution.
Unlike other types of deep generative models such as GAN [45-47] and VAE [48], normalizing flows provide an explicit
likelihood. KRnet can be used to address both options for variance reduction while other deep generative models may also
be employed if only the second option is considered. However, one computational issue faced by all deep generative models
is that the distribution induced by r%(x) is usually defined on a compact domain while deep generative models are in
general defined on the whole space. We subsequently address this issue without going into details about the structure of
KRnet.

Let X € RY be a random vector associated with a given data set, and its PDF is denoted by px(x). The target is to
estimate px(x) from data or to generate samples that are consistent with a given px(x). Let Z € R¢ be a random vector
associated with a PDF pz(z), where pz(z) is a prior distribution (e.g., Gaussian distributions). The flow-based generative
modeling is to seek an invertible mapping z = f(x) [31]. By the change of variables, we have the PDF of X = f~1(Z) as

px(®) =pz(f(®)) |det Vy f]. (15)

Once the prior distribution pz(z) is specified, equation (15) provides an explicit density model for X. The inverse of f(-)
provides a convenient way to sample X as X = f~1(Z). The basic idea of KRnet is to define the structure of f(x) in terms

6
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of the Knothe-Rosenblatt rearrangement. Let 1z and fx be the probability measures of two random variables Z, X € R¢
respectively. A mapping 7: Z +— X is called a transport map such that 7z = ux, where Tguz is the push-forward of
iz such that ux(B) = pz(7~1(B)) for every Borel set B [49]. The transport map 7 given by the Knothe-Rosenblatt (K-R)
rearrangement [49,30] has a lower-triangular structure

T1(x1)
» T2(x1,X2)
=T 'w=| . (16)

Ta(x1, ..., Xq)

Simply speaking, KRnet integrates the triangular structure of the K-R rearrangement into the definition of the invertible
mapping z = f(x), which can be regarded as a transport map. More details can be found in [27,22,29].

Let fkrnet(-; ©f) indicate the invertible transport map induced by KRnet, where ® includes the model parameters. An
explicit PDF model pxrnet(X; ©f) can be obtained by letting f = fkrnet in equation (15), i.e.,

Pkrnet(X; O £) = Pz (frrnet(X)) |det Vi fkrnet| - (17)

The samples of pgrnet(x; ®f) are given as X = fK_R]ne,(Z) by sampling Z. A common choice for the distribution of Z is the
standard Gaussian distribution. Depending on the prior knowledge of the problem, a more general model such as Gaussian
mixture model can also be used as the prior distribution. The KRnet fxrnet does not have any constraint on the range of the
mapped data, meaning that both X and Z are defined on RY. Let Z be Gaussian. Due to the invertibility, | det Vy fcrnet| > 0
for any ¥ € RY, which implies that prgnet(X; ©f) >0 for any x € RY. S0 panet (X; ©y) is not consistent with the distribution
induced by r2(x), which is equal to zero on R¥\. To deal with this issue, we propose the following strategy.

Without loss of generality, we can assume that © = [—1/2,1/2]%, since any square domain in R? can be mapped to
Q. Let B=(—(1/2+48/2),1/2 + 8/2)¢ with 0 < § < oo such that  c B. For each dimension of x, we define the following
logarithmic mapping

s 2x+(1+49) 1 1+8e2/5 -1
y=te= 210g (1+8) —2x’ *=EW = e2v/s +1°

with s > 0 being a scale parameter, which defines a one-to-one correspondence between x € (—(1/2+§/2),1/2+6/2) and
y € (—00, +00). Let £(x) : B+~ R? be a d-dimensional mapping such that

Lixp)=L(x), i=1,...,d.
Then the following invertible mapping

Z = fkrnet © £(X) (18)
defines a PDF

DKRnet (X; ®f) = PKRnet (£(X); ®f)|vxe(x)|’ (19)

where the support of prnet(X; ©f) is B.
We now consider a modification of r%(x; ©®). Define a cutoff function as

1, xe @,
[T hs(x), xe B\,

where hs(x) is a piecewise linear function

h(x) = {

1, xe[-1/2,1/2],
§T12x+148), xe (—1/2—-15/2,-1/2),
§T114+8—2x), xe(1/2,1/2+68/2),

0, xe (—00,—1/2—8/2]U[1/2+8/2, 00).

hs(x) =

We consider a modified PDF for any ®
Fx (x) o< (x; O)h(x). (20)
Note that both 7x (x) and Pkrnet(X; © ) have the support B. We then solve the following optimization problem

7= argn(%in Dk (Fx (%) ]| Prrnet (X; © f)), (21)
Of
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where Dk (-||-) indicates the Kullback-Leibler (KL) divergence between two distributions. We finally use

Px (%) o Prrnet(¥; ©F) 10 (x) (22)

as an approximation of the PDF induced by r?(x; ®). If § « 1, most the samples £~ ! o f,{,q]net(z(i); @)?) will be located in

Q. Since 7x(x) « r?(x; ®) on 2, px(x) approximates the rZ(x; ®)-induced PDF well when § is small. In our numerical
experiments, we set § =0.01 and s =2.
We now look at the approximation of ®’}. The KL divergence in the optimization problem (21) can be written as

Dy (Fx (%) || PrRnet (; ®f))=/-fx logfxdx—/?x log PrrnetdX. (23)
B B
The first term on the right-hand side corresponds to the differential entropy of #x, which does not affect the optimization

with respect to ®y. So minimizing the KL divergence is equivalent to minimizing the cross entropy between fx and Pkpnet
[50,51]:

H(x, f’KRnet) = - / x log f’KRnetdx' (24)
B
Since the samples from 7x are not available, we approximate the cross entropy using the importance sampling technique:

o fx(x(i)) @)

A A ~ 1
H(x, PkRnet) ~ —— % log prrnet(X5'; OF), (25)
T iz pKRnet(XB §®f)
(i)}Nr

where p(x; 3} ) is a PDF model with known parameter 6} £ and its samples {x,"},", can be generated efficiently as

with z® being sampled from the prior distribution. We then minimize the discretized cross entropy (25) to obtain an
approximation of @’j’i. The choice for © will be specified in section 4.3 when the adaptive sampling method is defined.

Remark 1. An alternative approach for the approximation of 7x(x) is to minimize the following KL divergence:

Dk (DkRnet (X; ®f)||fx(x))=/ﬁKRnet IOgﬁKRneth—/f?KRnet logFxdx, (27)
B B

which can be approximated by samples from pgrnet(X; ® ). Note that the KL divergence is asymmetric. Minimizing the KL
divergence (23) is not equivalent to the minimization of the KL divergence (27), although both minimizers will be achieved
at Prrnet(X; © ) =Tx (%) if fx can be reached exactly by a certain parameter ©;.

Remark 2. To apply the DAS method to a complex domain, we may use a square or a cube to cover the complex geometry
together with rejection sampling. Moreover, we can also couple DAS with the penalty-free method [17] to handle boundary
conditions more effectively. In this work, we only consider 2 to be a hypercube in RY.

4.3. Adaptive sampling procedure

We are now ready to present our algorithms. In this work, we mainly focus on the adaptivity of Sq for simplicity. The
key step of our adaptivity strategy is to improve the effectiveness of the random samples in the training set Sg, and we
provide two algorithms corresponding to the two options discussed in section 4.1.

I. We replace all the collocation points in the current training set using the new samples for importance sampling. This
corresponds to equation (11).

II. We gradually add more collocation points to the current training set. This corresponds to equation (14), where the new
samples are mainly from the region of large residual.

We first present strategy 1. Let Sq o = {"g),o}l{\i ; and Syq0 be two sets of collocation points that are uniformly sam-
pled from € and 9 respectively. Using Sq 0 and Syq0, we minimize the empirical loss (3) to obtain u(x; ®",i,’(1)). With
u(x; (H)’,i,’(l)), we minimize the cross entropy (25) to get Pxprnet(X; (5)’}’(1)), where we simply use uniform samples for impor-
(i) \Nr

}

tance sampling. To refine the training set, a new set Sq 1 = {Xg ;};; is generated by 1o fK_anet(z("); G)*}’“)) (see equation

8
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(18)). Then we continue to update the approximate solution u(x; ®*’(1)) using Sq 1 as the training set. In general, we use
N ,

Sax= {x(” } ; to obtain u(x; © (kH)) as

@’,ﬁ,’(kﬂ) —argmmj (u(x; ©)),

where u(x; ©) is initialized as u(x; @*’(k>) and J¥ is defined as

N, 2 (D) .
1 L r (XQ k’ O) 2,.()
JNu@0)=—>" - b x5, © (28)
N; ; pKRnet(xg),k§ *’(k)) Z ‘

Starting with Pgrnet(X; @’}‘(k)), the density model Pipnet(¥; @) is updated as

1 Ny rZ(Xg)k’ O* (k+l))h(x(') )

@?<k+1) = arg min ——

Of Nr lngKRnet(xB k7 ®f)» (29)

,(k
i=1 pKRnet(xB’k; 6?( ))

*, (k)

where we let (:)f = ®f in equation (25), i.e., the previous PDF model pgrnet(X; @7,(10) is used for importance sampling

when computing the cross entropy. A new set Sq k41 = {xQ K1li '1 of collocation points is then generated. As detailed in
section 4.2, the support of data points generated by KRnet is B = (—(1/2+8/2),1/2+8/2)¢, while the computation domain
is Q@ =[—1/2,1/2]4. So we need to deal with the collocation points located in B\S2. Instead of neglecting these points, we
project them onto 92. We define an entry-wise projection operator P(X) : B +— Q as

—1/2, ifx;<—1/2,
Px)={x, if—1/2<x<1/2, i=1,....4d, (30)
1/2, ifx;>1/2.

For a sequence of iid. samples zU) generated from the standard Gaussian with j =1,2..., we compute x(j) =¢1lo
f,{,qlnet(z(j)). if xgj) (x(])) we assign x“) to Sq k+1; otherwise, we add P(x(])) to Syq k. The updated training set Sq k41
and Syq k+1 will be used for the next trammg stage. This procedure is repeated until the stopping criterion is satisfied
(see Algorithm 1). Since the collocation points in Sq  will be completely replaced at the next stage, we call this type of
deep adaptive sampling strategy DAS-R for short. The alternative approach given in Remark 1 can also be used to obtain
Pranet(x; ©7 ).

We now look at strategy II. Unlike DAS-R, the number of collocation points in the training set Sq increases gradually.
So we denote this type of deep adaptive sampling strategy by DAS-G for short. Starting with an initial set of collocation
points Sq o = {xg)}?;l (as well as Spq.0) drawn from a uniform distribution defined on €2, we minimize the empirical
loss (3) on the training set Sg o (as well as Syq o) to obtain u(x; G)*N‘(l)). Once we have u(x; G)*N‘(l)) in hand, we can seek

DKRnet (X; ®*’<1)) using the residual r%(x; *’“)) We here use uniform samples to approximate and minimize the cross

g, (1)}

entropy (25). Similar to DAS-R, a new set of collocation points SQ] = {xg is generated by Pkrnet(X; 9*}’(1)) while the

main difference is that we update the training set as Sq 1 = Sq,0 U SQ 1 in other words, Sq o is augmented rather than
replaced by S‘éj. We continue to update u(x; ®) using @’;j(” as the initial parameters and Sq 1 as the training set, which
yields a refined model u(x; G)ﬁ’(z)). Staring from k = 2, we seek Pkrnet(X; G)’;’(k)) using the approach given in Remark 1. We

repeat the procedure to obtain an adaptive algorithm (see Algorithm 2).

Our two adaptive training methods are summarized in Algorithm 1 (DAS-R) and Algorithm 2 (DAS-G), where Nadaptive i a
given number of maximum adaptivity iterations, m is the batch size for stochastic gradient, and N, is the number of epochs
for training u(x; ®) and Ppnet(¥; O ). The algorithms consist of three steps: solving PDE, training KRnet and refining the
training set.

Remark 3. In both strategies, we use uniform samples to approximate and minimize the cross entropy to obtain
DKRnet (X; 6?’(1)), after which either equation (25) or equation (27) can be employed. The main reason of doing this is to use

uniform samples to capture the modes if the residual-induced distribution is multimodal. The obtained PDF pgpnet(X; @?‘(1))

provides a good initialization when equation (27) is employed to seek pkrnet(X; @?’(i)) with i > 1. This choice is usually not
necessary if the modes are not strongly localized or the location of the modes can be encoded into the prior distribution of
KRnet through a Gaussian mixture model.

Remark 4. DAS-R maintains the L, norm of the squared residual by generating a completely new training set while DAS-G
modifies the weight function in equation (14) by adding new random samples to the current training set. According to

9
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Lemma 2, we should achieve variance reduction for a fixed sample size when the residual-induced distribution is well
approximated and the ratio r2(-)/Pkrnet(-; @?’(k)) is bounded. However, the boundness of 12 /Ppnet is not guaranteed in the
current version of DAS-R. This implies that DAS-G may be more robust than DAS-R.

Algorithm 1 DAS-R for PDEs.
)

Input: Initial Prrnet(X; (-)(fo)) , u(x; ©@), maximum epoch number N,, batch size m, initial training set Sq 0 = {xﬂo},&] and Syq0= {ng)z.o}gl'
1: for k =0: Nadaptive — 1 do
2: [/ Solve PDE
3 fori=1:N, do
4 for j steps do
5: Sample m samples from Sgq k.
6 Sample m samples from Sy k.
7 Update u(x; ®) by descending the stochastic gradient of _]}Vs(u(x; ®)) (see equation (28)).
8 end for
9:  end for
10: /[ Train KRnet
11: fori=1:N, do

12: for j steps do

13: Sample m samples from Sgq .

14: Update Prnet(®; © ) by descending the stochastic gradient of H(Fx, Pxrnet) (See equation (25)).
15: end for

16:  end for

17: || Refine training set

18:  Generate Sq k41 C  through Pranet(X; 6}
19: end for

Output: u(x; ©})

,(k+1))

Algorithm 2 DAS-G for PDEs.

Input: Initial Pranet(X; @}0)) , u(x; ®@), maximum epoch number N, batch size m, initial training set Sq 0 = {xg)_o}?;l and Syq.0 = {X;(;}z_g},{\l:bp
1: for k=0: Nadaptive — 1 do

2: [/ Solve PDE

3 fori=1:N, do

4 for j steps do

5: Sample m samples from Sgq k.

6

7

8

Sample m samples from Sjgq k.
Update u(x; ®) by descending the stochastic gradient of [y (u(x; ®)) (see equation (3)).
end for
9:  end for
10:  // Train KRnet
11: fori=1:N, do

12: for j steps do

13: Sample m samples from Sg k.

14: Update prrnet(X; ®) by descending the stochastic gradient of H(Fx, Pkrnet) (see equation (25)).
15: end for

16:  end for

17: /| Refine training set

18:  Generate Sé,k-ﬂ C Q with size n; through Prpnet(*; (e)?(k‘*'”)_

19:  Sqis1=SakUSH -
20: end for
Output: u(x: ©F)

5. Analysis of DAS
As discussed in section 4.3, the key point of our DAS-PINNs method is to achieve variance reduction for the discretization

of the residual loss, based on which we expect to improve the accuracy of the approximate solution. Under certain condi-
tions, we show that the expectation of error bound becomes smaller when the adaptive sampling strategy is employed.

Assumption 1. [35] In problem (1), we let F = ¢ be a Hilbert space and £ a linear operator. Assume that the differential
operator £ and the boundary operator b satisfy

Crlvlize = lLvizq+ 116V e < Callvihe Yves# (31)

where 7 is a Hilbert space defined on  and the positive constants C; and C, are independent of v.

10
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The above condition is called the stability bound [35], which is essential to the existence and uniqueness of problem (1).
Except for this assumption, the following two assumptions for the relationship between r(x; @’,ﬁ,’(k)) and Pgrpet(X; @’}’(k)) are
given.

Assumption 2. Assume that prgrnet(X; ®’}’<k) ) is the optimal candidate for the change of measure in equation (11)

A L (K

Pranet(®; O ) = pr? (x; 031 (32)
where ¢, =1/ [ % (x; G)*N’(k))dx is the normalization constant.

Assumption 3. Let
1 Nr r2(xg); @E(k))

Ri=—- i
A (k=1
r i rena®y ©5C7Y)

be the discrete residual loss at the k-th stage, where each xg) is drawn from Pggnet(X; @*}

ﬁKRnet(xg); (H)’}'(k_l)) € [11, 2] almost surely for eachi=1,2,..., N;.

=1y Assume that 2 (x); 5%/

At each adaptivity stage, the error of the approximate solution is estimated as follows.

Theorem 1. Let u(x; G);‘\,'(k)) € F be a solution of (3) where the collocation points are independently drawn from Pxrnet(X; @’} (kfl)).

Suppose that Assumption 1 and Assumption 3 are satisfied. Given 0 < & < 1, the following error estimate holds

1

2 2

Juex 03 ™) —ucw)| s«/icl’l<R1<+8+Hb(x;®ﬁ(k))H )
2,Q 2,0

with probability at least 1 — exp(—2Ny&2 /(T2 — T1)2).
The approximate solutions at two adjacent adaptivity stages satisfy:

Corollary 1. Under the same conditions of Theorem 1, suppose that Assumption 2 is satisfied and the boundary loss [, (u) is zero, then
the following inequality holds

E(Ri41) < E(R).

Theorem 1 provides an error estimate for the approximate solution similar to the results in [40]. Corollary 1 outlines
the error behavior of a sequence of approximate solutions induced by adaptivity. However, it is not quite straightforward to
quantify the decay of the error due to adaptive refinement. For example, for DAS-R the reduction in variance is up to a tail
probability as shown in Lemma 2 and for DAS-G the loss is changed at each adaptivity stage due to the modification of the
training set. These issues are left for future study.

6. Numerical experiments

In this section, we conduct some numerical experiments to demonstrate the effectiveness of the proposed DAS-PINNs
method, including two low-dimensional and low regularity test problems, one high-dimensional linear test problem, and one
high-dimensional nonlinear test problem. Due to the curse of dimensionality, data are sparse in high-dimensional spaces
[20,19,21], which implies that effective samples should be able to deal with localized information. We mainly use low-
dimensional and low regularity test problems to demonstrate that the sampling strategy affects significantly the performance
of neural network approximation if the residual is strongly localized. For comparison, we also test the performance of the
residual-based adaptive refinement (RAR) method [52,42] (see section 6.2 and section 6.3) for high-dimensional problems,
where RAR searches uniform samples to find those with large residuals and add them to the current training set. RAR is
similar to DAS-G, where the main difference is that the selection of new samples in DAS-G is completely guided by an
optimization problem while RAR relies partially on the intuition of users. All deep neural network models are trained by
the ADAM method [34]. The penalty parameter in equation (3) is set to = 1. The activation function of u(x; ®) is set to
the hyperbolic tangent function. The activation function of KRnet is the rectified linear unit (ReLU) function since we only
use the KRnet for density approximation.

11
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Fig. 1. Approximation errors for the two-dimensional peak test problem. Left: The error w.r.t. sample size |Sq|; Right: The error w.r.t. epoch for |Sq| =
5x 10%.

6.1. Low-dimensional and low regularity test problems

In this part, two-dimensional low regularity problems are considered, where the solution of the first one has a peak and
the solution of the second one has two peaks.

6.1.1. Two-dimensional peak problem
The following elliptic equation is considered

—Au(x1,x2) =s(x1,x2) ing, (33)
u(x1,x2) = g(x1,x2) onaL2,

where the computation domain is 2 = [—1, 1]. In order to quantify the error, we use the following reference solution

u(x1,X2) = €xp (—1000[(X1 —10)? 4+ (X2 — rc)2]> :

which has a peak at the point (r¢, ) and decreases rapidly away from (r¢, r¢). This test problem is often used to test the
performance of adaptive finite element methods [53,24].

We choose a six-layer fully connected neural network u(x; ®) with 32 neurons to approximate the solution. For KRnet,
we take L = 6 affine coupling layers, and two fully connected layers with 24 neurons for each affine coupling layer. The
number of epochs for training both u(x; ®) and p(x; ®) is set to N. = 3000. The learning rate for ADAM optimizer is set
to 0.0001, and the batch size is set to m = 500. Here, we set (rc,1:) = (0.5,0.5). To assess the effectiveness of our DAS
methods, we generate a uniform meshgrid with size 256 x 256 in [—1, 11> and compute the mean square error on these
grid points.

In Fig. 1, we plot the approximation errors given by different sampling strategies with respect to the sample size in
the left plot and with respect to the number of epochs in the right plot. For each |Sg|, we take three runs with different
random seeds for initialization and compute the mean error of the three runs as the final error. For DAS strategies, the
numbers of adaptivity iterations are set to Nagaptive = 4,6, 8, 10 for [Sq| =2 x 10%,3 x 10%,4 x 103, 5 x 10> respectively,
and n, =500 is set for the DAS-G strategy (see section 4.3). For the uniform sampling strategy, the number of epochs is set
to be the same as the total number of epochs of each DAS method. It is clear that for this test problem the DAS methods
(DAS-G and DAS-R) have a better performance than the uniform sampling strategy and DAS-R performs better than DAS-G.
For the same sample size, both DAS-R and DAS-G yield a smaller error than the uniform sampling method. In terms of the
number of epochs, the errors of DAS-R and DAS-G decay in a more consistent way than the uniform sampling method.

In Fig. 2 we compare the exact solution, the DAS solutions given by 5 x 103 nonuniform samples and the approximate
solution given by 5 x 103 uniform samples. It is seen that DAS methods are much more effective than the uniform sampling
method to capture the information in the region of low regularity. Fig. 3 shows the error evolution of DAS-R at different
adaptivity iteration steps. It is seen that the approximation error drops as the adaptivity iteration step k increases, which
is consistent with Corollary 1, and the relaxation time for the optimization iterations reduces as well. Fig. 4 shows the
evolution of the training sets (|Sq| =5 x 103) of DAS-R method with respect to adaptivity iterations k = 1,4, 7,9, where
the initial training set Sg o consists of uniform collocation points on €2 (see section 4.3). It is seen that the largest density
of Sg 1 for DAS-R is around [0.5,0.5] since Sgq x is consistent with the residual-induced distribution. However, we also
expect that the tail of the residual-induced distribution becomes heavier as k increases since the adaptivity tries to make
the residual-induced distribution more uniform, which is illustrated by Sgq 4, Sq,7 and Sgq o.

12
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Fig. 2. Solutions, two-dimensional peak test problem. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)
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Fig. 3. The errors of DAS-R at certain adaptivity iteration steps for the two-dimensional peak test problem. |Sq| =5 x 103.

6.1.2. Two-dimensional test problem with two peaks
In this test problem, we consider the following equation

-V. [U(XL X))V (x] + X%)] + V2u(x1,x2) =s(x1,X2) inQ, (34)
u(xq,x2) = g(x1,x2) onage,
where the computation domain is € = [—1, 1]2. The exact solution of (34) is chosen as

u(x, x2) :e—]OOO[()q—0.5)2+(x2—0.5)2] +e—]OOO[(X]+0.5)2+(X2+0.5)2]
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Fig. 5. Approximation errors for the two-dimensional test problem with two peaks. Left: The error w.r.t. sample size |Sg|; Right: The errors of DAS-G at
each adaptivity iteration steps. |Sg| = 10%.

which has two peaks at the points (0.5,0.5) and (—0.5, —0.5). Here, the Dirichlet boundary condition on 9% is given by
the exact solution.

We choose a six-layer fully connected neural network u(x; ®) with 64 neurons to approximate the solution of (34). For
KRnet, we take L = 8 affine coupling layers, and two fully connected layers with 48 neurons for each affine coupling layer.
The number of epochs for training both u(x; ®) and p(x; ©y) is set to N, = 5000. The learning rate for ADAM optimizer is
set to 0.0001, and the batch size is set to m = 500. Again, we generate a uniform meshgrid with size 256 x 256 in [—1, 1)2
and compute the mean square error on these grid points to assess the effectiveness of our DAS methods.

Fig. 5 shows the approximation errors for this test problem, where the left one displays the errors with respect to
the sample size |Sq| for different sampling strategies, and the right one shows the error evolution of DAS-G at different
adaptivity iteration steps. For each |Sg|, we again take three runs with different random seeds for initialization and compute
the mean error of the three runs as the final error. For the DAS-G strategy, the numbers of adaptivity iterations is set to
Nadaptive = 5 (also for DAS-R), and the numbers of collocation points in Sé(k =1,2,3,4) is set to n, =500, 1 x 103,1.5 x
103,2 x 103 for |Sq| =2.5 x 103, 5 x 103, 7.5 x 103, 10* respectively. For the uniform sampling strategy, we train the model
with 2.5 x 10% epochs to match the total number of epochs of DAS methods. From Fig. 5, it is seen that for this test problem
our DAS methods (DAS-G and DAS-R) have a better performance than the uniform sampling strategy and DAS-G performs
better than DAS-R. It is also seen that the error decreases as the adaptivity iteration step k increases.
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Fig. 6. Solutions, two-dimensional test problem with two peaks.

In Fig. 6 we compare the exact solution, the DAS solutions given by 10* nonuniform samples and the approximate
solution given by 10* uniform samples. It is seen that DAS methods are much more effective than the uniform sampling
method to capture the information around the two peaks. Fig. 7 shows the evolution of sz « Of DAS-G method with respect
to adaptivity iterations k=1,2,3,4 (|Sf2 Wl =2 % 10%), where the initial training set Sq.0 consists of uniform collocation
points on 2 (see section 4.3). Sél shows that the error profile has two peaks. After the training set is augmented with
Sq.1, the error profile becomes more flat as shown by the distribution of Sé 5. After the training set is augmented with
Sq,2, the largest error is found again around the two peaks, and then the subsequent augmentation of the training set yields
a more flat error profile. Such a pattern is repeated until no improvement can be reached.

6.2. High-dimensional linear test problems

Next we consider the d-dimensional elliptic equation

—Aux) =s(x), xinQ=[-1,1], (35)
with an exact solution

ux) = 6—10”7‘”%’
where the Dirichlet boundary condition on 92 is given by the exact solution. We are interested in cases with a large
d > 3. Note that the geometric properties of high-dimensional spaces are significantly different from our intuitions on
low-dimensional ones, e.g., most of the volume of a high-dimensional cube is located around its corners [20,19,21]. If we
use uniform samples to generate Sg, most of the collocation points in S are near the surface of the hypercube. Since
the information of the exact solution is mainly from the neighborhood of the origin, most of the samples in S may not
contribute to training the neural network when d is large enough.

We choose a six-layer fully connected neural network u(x; ®) with 64 neurons to approximate the solution. For KRnet,
we set K =3 and take L =6 affine coupling layers, and two fully connected layers with 64 neurons for each affine coupling
layer. The number of epochs for training both u(x; ®) and p(x; ©f) is set to N, = 3000. The learning rate for ADAM
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Fig. 7. The evolution of S?z,k in DAS-G for the two-dimensional test problem with two peaks.

optimizer is set to 0.0001, and the batch size is set to m = 5000. The numbers of adaptivity iterations is set to Njdaptive = 5.
To measure the quality of approximation, we generate a tensor grid with nf points around the origin (in [—0.1, 0.1]%) where
n; is the number of nodes for each dimension. We define the relative error

lunn — ull,
llull,

where uny and u denote two vectors whose elements are the function values of u(x; ®) and u(x) at the tensor grid
respectively.

We first investigate the relation between the error and the dimensionality d when the uniform sampling strategy is
employed. Fig. 8(a) shows the relative errors in terms of a varying d for a sample size |Sg| =2 x 10°. To roughly match
the number of grid points for different d, we set n; = 16,6, 4,3 for d =4, 6, 8, 10 respectively. It is seen that the relative
error grows quickly to O(1) as d increases. However, as shown in Fig. 8(b), all training losses are finally close to zero for
d=4,6,8,10. This is consistent with the fact that in a high-dimensional space most of the uniform samples are located
around the boundary, where the solution is close to zero. The optimizer is then in favor of the trivial solution since there
are not sufficient samples to resolve the peak at the origin. This phenomenon demonstrates that the uniform sampling
method may become less effective as d increases and the convergence of the approximate solution is highly dependent on
the choice of Sg for a large d.

Fig. 9 shows the relative errors for the uniform sampling strategy, the residual-based adaptive refinement (RAR) method
proposed in [52], DAS-R and DAS-G, where different numbers of samples |Sq| are considered. For each |Sg|, we again take
three runs with different random seeds for initialization and compute the mean error of the three runs as the final error.

For the DAS-G strategy, the numbers of collocation points in S5, (k=1,2,3,4) are set to n, = 10*,2 x 10%,3 x 104, 4 x 10*

for |Sq| =5 x 104,10, 1.5 x 10°, 2 x 10° respectively. For the uniform sampling strategy, we train the model with 1.5 x 10*
epochs to match the total number of epochs of DAS methods. For the heuristic method RAR, the numbers of collocation
points in sfzyk (k=1,2,3,4) are set to n, =5 x 10%,10%, 1.5 x 10%,2.5 x 10* for |Sg| =5 x 10%,10°,1.5 x 10°,2 x 10°
respectively. From Fig. 9, it can be seen that both DAS-G and DAS-R improve the accuracy significantly compared to the
uniform sampling strategy and RAR. In addition, the error of DAS-G decreases slightly faster than that of DAS-R for this
test problem. Table 1 shows the training time and the error for the uniform sampling strategy, the residual-based adaptive
refinement (RAR) method proposed in [52], DAS-R, and DAS-G. It can be seen that the training time of DAS-G is less
than that of DAS-R. Moreover, the training time of DAS-G is approximately equal to that of the uniform sampling strategy.
However, the errors of the uniform sampling strategy and RAR are much larger than that of DAS since the uniform sampling
strategy and RAR are not able to accurately discretize the loss functional for this low-regularity high-dimensional problem.
In Fig. 10 we compare the error evolution of different sampling strategies. From the left plot of Fig. 10, as the number
of epochs increases, the errors of DAS-G and DAS-R decrease quickly, while the errors of RAR and the uniform sampling
strategy do not decrease. This result suggests that for high-dimensional problems DAS methods are able to achieve a good

Relative error =

)
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Fig. 8. The convergence behavior of high-dimensional PDEs with uniform sampling method. Loss is close to zero, but the error is still large for the ten-
dimensional test problem.
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Fig. 9. The error w.r.t. sample size |Sg|, ten-dimensional linear test problem.

approximation with a relatively small number of nonuniform samples while much more uniform samples are needed for
the same accuracy. The right plot of Fig. 10 shows the error of DAS-G at each adaptivity iteration step k. It is seen that the
error drops dramatically after we refine the solution using Sgq 1.

Figs. 11 and 12 show 3000 samples from the training sets (|Sq| =2 x 10°) DAS-R and DAS-G for the first four adaptivity
iterations, where the components xg and x7 are used for visualization. We have also checked the other components, and
no significantly different results were found. For DAS-R, 3000 samples are randomly chosen from Sq (k =1, 2, 3, 4). For
DAS-G, 3000 samples for visualization are randomly selected from Sé’k (k=1,2,3,4). It is seen that the profile of Sq \ is
gradually flattened as k increases, meaning the nonuniform samples are able to smooth the error profile which has a peak
around the origin. As for DAS-G, the improvement takes a similar path. Sfl1 shows that the error profile has a peak around
the origin. After the training set is augmented with Sgq 1, the error profile becomes more flat as shown by the distribution
of S‘gg2 ,. This is expected since more collocation points are added to the neighborhood of the origin which should reduce the
error over there. Such a pattern is similar to what we have observed in Fig. 7. In Fig. 13, we compare the evolution of the
variance of the residual for the training with 5 x 10* samples. We estimate the variance of residual using 59049 grid points
around the origin (these points are also used to compute the relative errors in the above discussion). It is clear that both
DAS-R and DAS-G achieve the variance reduction significantly compared with RAR, which helps reduce the statistical error
dramatically for a fixed sample size. Looking more closely, the variance of DAS-R has a transition between two consecutive
adaptivity iterations, resulting in the oscillation of errors for DAS-R as observed in the left plot of Fig. 10. From Fig. 13, it
can be seen that DAS-G appears more robust than DAS-R for this test problem. We may adjust the communication pattern
between the PDE model and the PDF model to reduce the oscillations, which will be left for future study.
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Table 1
Training time and error for different |[Sq| and sampling strategies, ten-dimensional linear test problem.
sampling strategy ~ DAS-G DAS-R Uniform RAR
|1Sql time error time error time error time error
5x 104 183 h 0.030 338 h 0.250 1.90 h 1.011 145 h 0.993
10° 3.64 h 0.028 6.95 h 0.049 392 h 0.999 3.03 h 1.001
1.5 % 10° 561h 0.010 10.29 h 0.041 585 h 1.003 4,66 h 0.988
2 x 10° 755 h 0.008 13.49 h 0.020 790 h 1.001 574 h 0.978
100 - ‘.. .............................................. = k=0
—_ k=1
..... k=2
0.
10 : —- k=3
— k=4
—_ —
g 10t S 101:
wi F 5 £
102: —.. DAS-G i
: —e— DASR
- =4- Uniform
| =A= RAR 10-2 E
1035+ g ' ' ' ' ' ' L ' ' ' ' ' '
Epoch x10* ©10°

Epoch

Fig. 10. The error evolution of different sampling strategies with |Sq| =2 x 10° and d = 10 (high-dimensional linear test problem). Left: A comparison of
DAS-G, DAS-R and the uniform sampling method; Right: The error evolution of DAS-G at different adaptivity iteration steps.
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Fig. 11. The evolution of Sq  in DAS-R, ten-dimensional linear test problem.

6.3. High-dimensional nonlinear test problem

In this part, the ten-dimensional nonlinear partial differential equation considered is

—Au@) +u@® —u>(® =skx), xinQ=[-1,1]"°. (36)

The exact solution is set to be the same as (35), and the Dirichlet boundary condition on € is given by the exact solution.
The settings of u(x; ®) and KRnet are the same as those in section 6.2.
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Fig. 13. The evolution for the variance of residual, ten-dimensional linear test problem.

The observations are similar to those for the high-dimensional linear problem. Fig. 14 shows the relative errors for the
uniform sampling strategy, RAR, DAS-R and DAS-G, where different numbers of samples |Sq| are considered. Again, we take
three runs with different random seeds for initialization and compute the mean error of the three runs as the final error
for each |Sq|. For the DAS-G strategy, the numbers of collocation points in Sé!k (k=1,2,3,4) are set to the same as those

in section 6.2. For the uniform sampling strategy, we train the model with 1.5 x 10* epochs to match the total number of
epochs of DAS methods. For the heuristic method RAR, the numbers of collocation points in Sé K (k=1,2,3,4) are set to

nr =5x 103,104, 1.5 x 104, 2.5 x 10* for |Sq| =5 x 10%,10°, 1.5 x 10°, 2 x 10° respectively. We compare the training time
for different sampling strategies in Table 2. The results are similar to those in section 6.2. It is seen that the training time
of DAS-G is less than that of DAS-R. Both DAS-G and DAS-R improve the accuracy significantly compared to the uniform
sampling strategy and RAR, and the training time of DAS-G is approximately equal to that of the uniform sampling strategy.
In Fig. 15 we compare the error evolution of different sampling strategies. Similar to the high-dimensional linear problem,
the errors of DAS-G and DAS-R decrease quickly while the errors of the uniform sampling strategy and RAR do not decrease.
The error behavior of DAS-G at each adaptivity iteration step k is shown in the right plot of Fig. 15. It is seen that the
approximation is significantly improved when the adaptivity iteration step k increases from 0 to 1. Fig. 16 and 17 show
3000 samples from the training sets (|Sq| =2 x 10°) DAS-R and DAS-G for the first four adaptivity iterations, where the
components xg and x; are used for visualization. For DAS-R, 3000 samples are randomly chosen from Sq \ (k=1,2,3,4).
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Fig. 14. The error w.r.t. sample size |Sg|, ten-dimensional nonlinear test problem.

Table 2
Training time and error for different |Sq| and sampling strategies, ten-dimensional nonlinear test problem.
sampling strategy ~ DAS-G DAS-R Uniform RAR

|1Sql time error time error time error time error
5 x 104 182h 0042 344h 0.062 184h 1.008 142h  0.999
10° 365h 0020 692h 0.054 3.86h 1.001 297h 1002
1.5 x 10° 581h 0010 1041h 0037 573h 1002 463h 0993
2 x10° 7.82 h 0.009 1387h 0.013 780h 099 575h 0983

100;

100-

— — - —
210 g 10 -
w i}
102: —.- DASG
© —e— DAS-R
" =¢- Uniform 10'2;
| =A= RAR [
1070 02 04 06 08 10 12 14 = ' ' : ' ' '
: : : : : : : 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Epoch <10* Epoch 10°

Fig. 15. The error evolution of different sampling strategies with |Sq| =2 x 10° and d = 10 (high-dimensional nonlinear test problem). Left: A comparison
of DAS-G, DAS-R and the uniform sampling method; Right: The error evolution of DAS-G at different adaptivity iteration steps.

For DAS-G, 3000 samples for visualization are randomly selected from sz ¢ (k=1,2,3,4). Both DAS-R and DAS-G flatten
the error profile through adaptive sampling as we have observed in Figs. 11 and 12. Fig. 18 shows the evolution of the
variance of the residual for DAS-R, DAS-G and RAR. The behavior is similar to that in Fig. 13.

7. Conclusion

In this paper we have developed a deep adaptive sampling (DAS) method and coupled it with physics-informed neural
networks (PINNs) to improve the neural network approximation of PDEs iteratively. The key idea of DAS is to employ a deep
generative model to generate collocation points that are consistent with the distribution induced by an appropriate error
indicator function. In this way, the training set is refined according to the regularity of the PDE solution, which follows
the similar principle of adaptive mesh refinement of classical numerical methods. Numerical experiments have shown that
the DAS method is able to significantly improve the accuracy for the approximation of low regularity problems especially
when the dimensionality is relatively large. The proposed DAS method provides a very general and flexible framework for
an adaptive learning strategy. There are several possible ways to further improve it. First, DAS consists of two DNN-based
models: one model serves as an approximator for the PDE solution and the other one serves as an error indicator for the
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Fig. 17. The evolution of Sé « in DAS-G, ten-dimensional nonlinear test problem.

selection of collocation points. Both models can be chosen in terms of a certain criterion. In this work, we use a regular DNN
for PDE approximation and KRnet for density approximation and sample generation. Second, the underlying distribution for
the training set can be problem dependent. In this work, we choose the residual-induced distribution. We may also use
the gradient of the approximation solution to define an indicator distribution. In [22], we employ KRnet to approximate the
Fokker-Planck equation, where the collocation points are sampled from the approximate solution. Third, the DAS method is
not limited to steady-state PDE problems. We may employ the DAS method on the space-time domain to refine the training
set for the approximation of time-dependent problems. Last but not least, the current training process can also be improved.
Although the current DAS methods work well enough to demonstrate the effectiveness of the algorithm, many questions
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Fig. 18. The evolution for the variance of residual, ten-dimensional nonlinear test problem.

remain open, e.g., what is the optimal way for the two deep models to communicate and what is the optimal sample size
for sz i~ Research on these issues will be reported in forthcoming papers.
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Appendix A. Proof of Lemma 1
Proof. We first introduce the following lemma:
Lemma 3. Consider a perturbed identity matrix 1 + A with ||A||, < 1. We have

1
1+8A)7 |, < —. Al

Proof. For any x # 0, we have
[+ SA)xll2 = lIxll2 — I8AIl2 Xl = (1 — [I8All2) 1X]]2 > O,
which implies that I+ §A is nonsingular. We then have

1=|U+5A) 1A+ 5A)|, = |A+5A)"" + (1+5A)"'5A],
> [a+sm)7 ", — |a+sm)7"|, I5Al,.

which yields the conclusion. O
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Assume that m}, (x) = (v*)Tq(x) and my+(x) = (v")Tq(x), where q(x) = [q1(X), ..., g (®)]" includes the basis functions in
V =span{q; :i=1,...,n} and the vectors v* and ¥* include the coefficients. It is easy to see that v* and v* satisfy the
following linear systems respectively

Av*=b, AV*=h, (A2)
where

N

R 1

4ij =y E qi®")q;x®) ~ (g1, q;) p = aij,
k=1

N
~ 1
bi= ;qxx“‘))h(x”") ~ (qi, h), = bi,

and (qi,qj)p = fD q;(x)qj(x) p(x)dx indicates the inner product of g; and q;. We rewrite the linear system for V" as

(A+8A)V" =b+ b, (A.3)

where SA=A—A and sb=b — b. Let Z= {gi}i_, U {h}. Since both {g;}}'_; and h are continuous on a compact support, we

may assume that |mq(x)my(x)| < M for any my, my € 4 and any x € D, where 0 < M < oo is a constant. Using the Heoffding
bound, we have for any § > 0 with probability at least 1 — 24,

2M21ns—1
V7N (A4)

for any mq, my € 4. This means with probability at least 1 — 2§ we have

2MZ21ns—! 2MZ21Ins-!
6All2 < lI8AllF <1/ — N [8bll, < v/n — N (A.5)

where ||-||r indicates the Frobenius norm. Let §v* = V¥ — v*. It is seen that I6A]l; — 0 as N — oo. Assume that N is large
enough such that ||8A|l, < (1 —r) with 0 <r <1, in other words, (1 — ||8A]l,)~! <r~!. Since g; are orthonormal, we have
A =1. From equations (A.2) and (A.5), we have

N

1
=Y e ma ) — (1, ma)
k=1

sv* = (14 5A) "1 (8b — sAV"),

to which we apply Lemma 3 and the bounds in equation (A.3) and obtain

[2M21ns-1
[8v*]l, <= Isbll; + I8All, [ v*],) <~ +n v, Tn (A.6)

Using the Pythagorean theorem, we have
l[mge —h|5 = mge —my |2 + lh —my |2
2 2
= [6v*II5 + [lh —m*|;
< (I8v*ll2 + Ih —m [ p)?,
which yields that
Img« —hllp < 18v¥ll2 + [lh —my ||, (A7)

Combining equations (A.6) and (A.7), we reach the conclusion. 0O
Appendix B. Proof of Lemma 2

Proof. Let

s @), if1r?/p—pul <a
r(x)_{ 0, otherwise,

where a > 0. We consider
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|1 - 11| <[ @07 — Qp ()| + | Qp () — EEi1| + B - B =11 + 1o + 1. (B1)
The first term I on the right-hand side is bounded as
Ep |Qp(r) — Qp(i)| = E, [P0p™ (X — 2 (X)p~' (X
= / r?(x)dx
Ir2/p—pul>a

< IP/pllpBUr2/p — | > a: p). (82)

where the Cauchy-Schwarz inequality is used in the last step.
The second term I, on the right-hand side can be bounded as

Ep |Qp(#) — EIf]| < Vary(Q, ()

< N2, [Vary (2(X)/p(X))
<aN~1/2, (B.3)

where in the last step we used the fact that for any variable « <Y < g, Var(Y) < % with probability 1. The third term
I3 on the right-hand side can be bounded the same way as I.

We now estimate the tail probability P(|r2/p — | > a; p). Using the correspondence between L; norm and total variation
distance for two probability measures as well as the Pinsker’s inequality, we have

Ip—p*llL, =28(p, p*) < v2DkL(pllp*) <V 2e, (B.4)

which yields that
Ep Hrz/p—uuf,u«/k. (B.5)

From the Markov inequality, we have

U~/ 28
P

P’(‘rz/p—u‘ > a; P)E (B.6)

where the probability is with respect to PDF p(x). Combining the bounds for I;, i =1, 2, 3, and equation (B.6), we reach the
conclusion. O

Appendix C. Proof of Theorem 1

Proof. By Assumption 1, we have

Juces 05 - uew],

<c;! [Hﬁ(u(x; oy’ - ”(x))”z,sz + Hb(u(x; o5 - u(x))Hz’m]

<vac;! (HE(u(x; o) —uem .+ o 03) - ue) Hzm>2 '

Combining Lu(x) = s(x), bu(x) = g(x), r(x; @*N’(k)) = Lu(x; ®E<")) —s(x) and b(x; @*N’(k)) = bu(x; @*N’(k)) — g(x) gives

T e S (T e T

2
Noting that E(Ry) = Hr(x; G)*N'(k)) H2 o and according to the Hoeffding inequality, we have

—2N, &2
P (Ry —E(Rg) > —&) >1—exp <7Z> (C2)
(12 —11)

Combining (C.1) and (C.2) gives that
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1
2 2
Loy —uw| =v2ci! (R b 03]
”u(x N ) —u®) 2’9_«/—1 k+é&+||bx; Oy )2,99

with probability at least 1 — exp(—2N;&2/(13 — 71)%). O
Appendix D. Proof of Corollary 1

Proof. Noting that

Ny 2(0)
Xy ;0
Sy — argmin (*x5:0)

ﬁ.
Ti=1 pKRnet(Xg); 9?( ))
Since @:,'(’H'l) is the optimal solution at the (k + 1)-th stage, we have

Ny Ny

1 on Py o) 1 2 03")
Rit1=—

PO ) 1 §n g Oy (1)
- k 5 k
T i1 pKRnet(xg); @?’( )) Nr i=1 PKRnet(xg)§ 6?( ))

Plugging Pkmnet(¥; (9}"(")) =%, ©5®) into (D.1) gives that

Rii1 < !
k+1 = Ck'
Noting that Ry is a random variable and taking its expectation, it follows that

1
Emuosa=/HW®ﬂ%u=Emu
Q

which completes the proof. O
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