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Quantifying Different Modeling Frameworks Using Topological Data Analysis:
A Case Study with Zebrafish Patterns*
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Abstract. Mathematical models come in many forms across biological applications. In the case of complex,
spatial dynamics and pattern formation, stochastic models also face two main challenges: pattern
data are largely qualitative, and model realizations may vary significantly. Together these issues
make it difficult to relate models and empirical data—or even models and models—limiting how
different approaches can be combined to offer new insights into biology. These challenges also raise
mathematical questions about how models are related, since alternative approaches to the same
problem—e.g., Cellular Potts models; off-lattice, agent-based models; on-lattice, cellular automaton
models; and continuum approaches—treat uncertainty and implement cell behavior in different ways.
To help open the door to future work on questions like these, here we adapt methods from topological
data analysis and computational geometry to quantitatively relate two different models of the same
biological process in a fair, comparable way. To center our work and illustrate concrete challenges,
we focus on the example of zebrafish-skin pattern formation, and we relate patterns that arise from
agent-based and cellular automaton models.
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1. Introduction. Whether focused on vegetation patterns [45], schooling and swarming
[6, 57], collective cell dynamics [9, 14, 43, 77, 99], or another complex system, researchers use
a wide range of mathematical models to study pattern formation. These approaches include
stochastic individual-based models, which may operate on or off lattice, and macroscopic
models in the form of partial differential equations. Understanding how the predictions that
arise across these frameworks are related allows us to assess the impact of modeling assump-
tions. Importantly, the same biological mechanism can be implemented in different ways in
different models, raising questions about how dependent a model’s inferences about a given
mechanism are on its implementation. Quantitative model comparison helps address this by
bringing models together, increasing biological insight by providing more than one perspective.
However, relating different models of the same biological system is not straightforward, partic-
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ularly when considering spatial dynamics and detailed, stochastic models, which often rely on
qualitative observation to judge model output. Motivated by this challenge, we show how to
adapt methods from topological data analysis and computational geometry to quantitatively
describe two models of the same biological system in a comparable way. For concreteness,
we center our study on zebrafish-skin patterns, and we apply our methods to two stochastic,
individual-based models [80, 102].

As we show in Figure 1, zebrafish (Danio rerio) are small fish known for their black
stripes and gold interstripes [55, 82, 99]. These stripe patterns are made up of brightly col-
ored pigment cells and emerge from pigment-cell interactions and the tissue environment
[64, 82, 84, 108]. The diversity of patterns that mutant fish sport when cell interactions are
altered makes zebrafish skin an attractive place to study pattern formation mathematically
[58, 99]. Toward this end, zebrafish patterns have been investigated using many of the mod-
eling approaches that are also used to study biological self-organization in other applica-
tions. Microscopic off-lattice [98, 100, 101, 102, 106] and on-lattice [13, 59, 73, 80] models
have considered the behavior of individual cells. On the macroscopic side, continuum models
[10, 13, 38, 59, 75, 81, 105, 108], including reaction-diffusion equations and integro-differential
equations, have been developed to track cell densities. Other approaches [67] include reducing
complexity by only describing the evolution of the stripe—interstripe interface.

For zebrafish skin and other biological patterns, continuum models have the benefit of be-
ing analytically tractable. They also provide a broad perspective on the overarching features
(such as density-dependent motion [15, 63] or short-range activation and long-range inhibition
[42, 96]) that may be at work. On the other hand, agent-based and cellular automaton mod-
els,! not analytically tractable using traditional techniques, are often closer to the underlying
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Figure 1. Biological background. (a) Zebrafish (Danio rerio) are a model organism for studying verte-
brate development and skin-pattern formation [55, 88, 99]. (b) Their stripes and interstripes form due to
the interactions of pigment cells [75]. (c) Stripes feature X*, I, and M cells, and interstripes consist
of X4 and 1% cells. (d) These cells are organized in three layers, with zanthophores at the surface level
[51, 66, 70, 84]. Images (a) and (b) are adapted from Fadeev et al. [33] and licensed under CC-BY 4.0
(https://creativecommons.org/licenses/by/4.0/); we added the SL bar, text, and schematic in (a) and (b);
images (c) and (d) are adapted from Volkening et al. [102] under CC-BY 4.0.

'Researchers use the terms “agent-based,” “individual-based,” and “cellular automaton” to describe a rich
diversity of models. In this manuscript, “agent-based” means a model that works at the scale of agents—e.g.,
cells—interacting in continuous space. We distinguish this from what we call “cellular automaton” models,
which also focus on the dynamics of agents, but in which space is discrete; see Figure 2.
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Figure 2. Motivation. (a) Prior modeling approaches to pattern formation in zebrafish include stochas-
tic agent-based (off-lattice microscopic) models and cellular automaton (on-lattice microscopic) models [99].
Agent-based models [98, 100, 101, 102] treat cells as particles that interact through ODEs for cell movement
and stochastic, discrete-time rules for differentiation, division, and death. (b) Cellular automaton models
[13, 59, 80] consider space as discrete, and all cell interactions are stochastic rules. Both of these approaches
are not analytically tractable using traditional techniques, and they often involve qualitative observations to
judge model output. This makes it difficult to relate different models, and this challenge motivates our study.
Images (a) and (b) are adapted from Volkening [99] with permission from Elsevier. Copyright (2020) Elsevier
Ltd.

biology and can make detailed predictions about cell interactions. Uncovering how different
types of models are related is a rich mathematical problem. Moreover, because it breaks
down silos and allows us to bring the predictions of different studies together, it has impor-
tant biological applications. To this end, much work has focused on relating macroscopic and
microscopic approaches. In the case of zebrafish patterns, for example, Bullara et al. [13],
Konow et al. [59], and Volkening et al. [98, 101] developed continuum models for cell density
alongside microscopic models. While open questions certainly remain in relating macroscopic
and microscopic models, much less work has focused on understanding the relationship among
different microscopic models, such as on-lattice and off-lattice approaches. We highlight the
studies of Osborne et al. [77] and Plank et al. [89] on cell behavior as examples.

The increased level of biological detail in individual-based models comes at the cost of more
parameters and models rules. The computational complexity of microscopic models—whether
they are, for example, agent-based, cellular automaton, Cellular Potts [44, 49], or vertex-
based models—also leads to more choices and hidden parameters. (See Buttenschon et al.
[14] for a recent review of computational models of cell behavior.) This raises questions about
how choices of computational implementation affect model predictions [60, 77]. However, the
stochastic, complex nature of individual-based models makes it challenging to quantitatively
describe—Ilet alone robustly compare and relate—model output. On top of this, qualitative
observation of a few example simulations may not capture the breadth of patterns that a
stochastic model can generate under the same set of parameters. When models of pattern
formation become more and more detailed, they hit more and more of the same challenges
faced by the underlying biological data that they represent.

Whether studying zebrafish patterns or another biological system, the first step to relating
modeling frameworks at large scale is quantitatively describing self-organization. Methods for
quantifying in vivo and in silico patterns include pair-correlation functions [26, 40, 95|, order
parameters [22, 25, 52|, and pattern-simplicity scores [71, 72]. Recently tools from topologi-
cal data analysis—particularly persistent homology— 17, 18, 19, 20, 29, 41, 74, 78] have also
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emerged as a flexible means of quantifying complex systems and pattern formation [1, 94, 97].
Persistent homology has been applied to many biological systems, including flocking [7, 94],
vascular networks [5, 76, 92], migrating cells [8, 11], intracellular dynamics [23], and fish
skin [68].

Persistent homology characterizes connected components, holes, and higher-dimensional
features in data across scales [78], and interpreting topological summaries can involve choices
and hyper-parameters that are application specific. Recently McGuirl et al. [68] developed
a pipeline for interpreting information from persistent homology as descriptions of spots and
stripes in an agent-based model of zebrafish patterns [102]. The quantification results [68]
involve several hyper-parameters, which are motivated by length scales in the model [102]. A
related issue is that persistent homology is sensitive to outliers [4, 35], and this is challenging
in biological settings, where noise is inherent. This raises questions about how McGuirl
et al.’s approach can be adapted to quantify zebrafish patterns in noisier in vivo settings or
alternative in silico settings. It is also unclear how sensitive the methods [68] are to the choice
of hyper-parameters when interpreting topological summaries.

Motivated by the challenges associated with meaningfully relating different stochastic,
microscopic models, here we apply methods from topological data analysis and computational
geometry to quantify stripe patterns from two models of zebrafish at large scale. The two
focal models of our case study consist of one off-lattice [102] and one on-lattice [80] individual-
based model. These models [80, 102] are a useful place to center our work because they
have largely the same cell interactions at their core from a biological perspective, but their
computational implementation, cell density, and noise structure differ significantly. Drawing
on these differences and similarities, we (1) interpret information from persistent homology
[68] to estimate the number of stripes in patterns, compute stripe width, and identify stripe
interruptions. We then (2) use clustering to group cells into pattern features, and (3) apply
a-shapes, a tool from computational geometry [28, 30], to flexibly trace out stripe boundaries
and estimate curviness. Each of these techniques relies on hyper-parameters, and we outline
how to select their values in a way that ensures our comparisons are robust and fair.

Our work illustrates the challenges that arise when relating biologically similar—but math-
ematically and computationally different—stochastic models, and it shows how choices in the
quantification process affect interpretations of results. This helps open the door to future
large-scale studies of stochastic, spatial models, centered on questions including how sensi-
tive model predictions are to implementation choices, and on how alternative mathematical
perspectives can be combined to address biological questions.

2. Background and methods. We first provide a brief overview of zebrafish-pattern bi-
ology (subsection 2.1) and the two models [80, 102] that serve as the basis of our case study
(subsection 2.2). Because our quantification pipeline relies on tools from topological data
analysis and computational geometry, we then introduce persistent homology [68, 78] and
a-shapes [28, 30] in subsection 2.3.

2.1. Biological background. Wild-type zebrafish are characterized by dark stripes and
gold interstripes that form in their skin [55, 88, 99]. These patterns emerge from the interac-
tions of tens of thousands of pigment cells arranged in three layers [51] (Figure 1(d)). There
are three main types of cells involved in patterning: black melanophores (M), dense orange
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(X4) or loose yellow (X*) xanthophores, and dense silver (I9) or loose blue (I) iridophores
[99]. The melanophores—present in the deepest layer—are restricted to dark stripes on the
main fish body, whereas the other two cell types appear across the pattern in different colors
and forms [37, 50, 51, 66, 70, 84]. Housed in the surface layer, X d cells are tightly packed in
interstripes, and X* cells (also called xanthoblasts) appear in a looser form at lower density in
stripes [66]. Similarly, iridescent iridophores are present as I d'in interstripes and I* in stripes,
sandwiched in the middle layer between melanophores and xanthophores in the skin [51, 91].

As wild-type zebrafish develop over a few months, all of these pigment cells interact
through movement, division, death, and differentiation to form patterns. Cell-cell inter-
actions may be mediated by diffusing signals [86], cellular extensions [32, 48, 53], or other
mechanisms. In all cases, cells occupy a messy, biological environment, and there is inherent
noise in their behavior. New pigment cells can appear through division of existing cells or by
differentiation of precursors [12, 27, 47, 66, 70, 91]. Some cell behaviors are relatively well un-
derstood, and in other cases the interactions underlying cell dynamics are unknown [65, 104].
Iridophores, in particular, are a place in zebrafish-pattern biology where the field has been ac-
tively evolving [47, 65, 86, 87, 90, 91]. Up until roughly 2014, the focus was on melanophores
and xanthophores, and iridophores were not heavily considered (e.g., [64, 84, 93, 108]). This
changed with new observations [91] suggesting iridophores may swap their shape and color in
specific ways (e.g., a loose blue iridophore transitioning to a silver iridophore). More recently
empirical understanding of iridophores has continued to grow and shift, with Gur et al. [47]
suggesting in late 2020 that iridophores differentiate in dense or loose form from precursors,
rather than changing their shape once established.

Because our work applies persistent homology to understand cell organization, the length
scales involved in zebrafish patterns are particularly important in this study. Roughly, the dis-
tance between nearest-neighboring cells tends to be around 50 micrometers (um) [65, 85, 93],
and, at the pattern scale, stripes and interstripes in adult fish are about 500 um wide
[34, 48, 102]; see Figure 4(a). As we discuss in subsection 2.2, the simulated patterns that
we quantify correspond to pre-adult fish that are 12.63 millimeters (mm) long in “standard
length” (SL), which refers to the distance from fish snout to where the body and tailfin meet
(Figure 1(a)) [83]. Because zebrafish grow at different rates, it is customary to describe age in
terms of standardized standard length (SSL, a measurement of SL associated with a reference
zebrafish) or developmental stage, rather than time in days post fertilization [83]. When they
reach 12.63 mm SSL, zebrafish are in the juvenile developmental stage; at this point, patterns
generally include three light interstripes and two dark stripes. Measuring from the front edge
of the bottom fin in Figure 1(a), this corresponds to a fish body that is about 2.3 mm high
[83].

2.2. Focal mathematical models. Our case study centers on two closely related models
that are stochastic and biologically detailed: the off-lattice model [102] developed by Volkening
and Sandstede in 2018, and the on-lattice model [80] built by Owen, Kelsh, and Yates in 2020.
For the remainder of this paper, we refer to the former as the ABM [102] and the latter as the
CA [80]; see Figure 3. In terms of the wild-type cell interactions that they describe and predict,
the models [80, 102] are largely the same from a biological perspective. They differ primarily in
choices of computational implementation, which, in turn, affect how stochasticity shows up in
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Figure 3. Patterns for our focal models [80, 102]. (a) The ABM [102] produces patterns with interstripe
and stripe cells in distinct regions. (b) Cells occupy three layers in zebrafish skin (Figure 1(d)) [51], and we
show these layers separately for easier viewing. (We include X9 cells with M cells for reference.) In the ABM
[102], the presence of three layers of cells is taken into account indirectly by specifying volume-exclusion forces
only between cells that occupy the same layer of skin. Orange X9 cells are separate from M cells. (c¢) Blue
I and silver I cells occupy different regions in the ABM, as do (d) yellow X¢ and orange X? cells. (e) CA
[80] patterns feature zanthophores and iridophores at higher density than ABM patterns, and (f) there is some
overlap of M and X regions, (g) I and I¢ regions, and (h) X* and X regions. For comparison, we use the
same symbols to plot cells in the ABM and CA patterns in (a)—(h), highlighting differences in cell density.
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Figure 4. Biological length scales relevant to our study [80, 102]. (a) Length scales in our study range from
less than 90 um to over 10 mm [65, 80, 83, 85, 93, 102]. (b) We show the mean distance between nearest-
neighboring cells, averaging across 1000 simulations [80, 102]. (The distance between M and X4 cells is for
cells at stripe—interstripe boundaries: to approzimate this, we take the mean distance between nearest M and X¢
cells with distances greater than or equal to 110 um or less than 0 um excluded. This choice may overestimate
the distance between M and X9 cells for the CA [80] slightly, since these cells can occupy the same position in
different grids: if we consider distances of 0 um, the mean distance between M and X cells decreases by about
2 pm.) Bars indicate the standard deviation in the mean distances.
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cell behavior and pattern features. (We focus on the models [80, 102] because of their biological
similarities and mathematical differences; in the future, it would be interesting to consider
other models that differ in the types of cells that they consider, such as [13, 16, 59, 101].) Both
models [80, 102] were built pre-publication of [47], in a biological environment in which the
prevailing view was that iridophores may undergo shape and color changes. Because our focus
is on developing methods for comparing similar models implemented in different ways, the new
findings [47] do not affect our study. We overview the ABM and CA here; see Appendix A
for a deeper dive into a few example model rules, and [80, 102] for full details.

The ABM [102] and CA [80] both include five cell types: black M, blue I*, and yellow X*
cells in stripes, and silver 14 and orange X9 cells in interstripes. They also account for five
dynamics: fish growth, along with cell movement, division or differentiation, death, and shape
changes. The ABM [102] treats cells as particles interacting in continuous space, and tracks
the positions (i.e., (z,y)-coordinates) of cells (point masses) interacting in growing domains.
Volkening et al. implement cell movement through coupled differential equations: each pig-
ment cell has an ODE describing the forces that it feels from other cells. Cell differentiation,
division, death, and changes in shape—the dynamics that influence cell number—all take the
form of stochastic, discrete-time rules. The ABM [102] accounts for three layers of cells in 2D
domains indirectly by specifying volume-exclusion forces only between cells that occupy the
same layer in the skin. On the other hand, the CA [80] is discrete in space, allowing cells to
occupy positions in grids which grow in time through the addition of new grid squares. All cell
behaviors—movement, differentiation, division, death, and shape changes—in Owen et al.’s
model are based on stochastic, continuous-time rules, and they [80] include three separate 2D
grids for melanophores, xanthophores, and iridophores.

Both approaches [80, 102] simulate pattern formation starting from the pelvic-bud devel-
opmental stage, when zebrafish are about 7.6 mm long in standard length and roughly 1.0
mm high. Volkening et al. [102] and Owen et al. [80] start with a rectangular domain that
represents the full fish height (1 mm) and a portion of the fish body length. Because the
models account for the remainder of the fish body differently, their domains grow at different
rates. As we discuss in subsection 3.1, we focus on quantifying patterns that correspond to
juvenile zebrafish at 12.63 mm in standard length, and this milestone is associated with ABM
and CA patterns on domains of different sizes. Growth affects cell positions in both models:
in the ABM, cell positions are multiplied by a scaling factor to account for uniform growth
in a spatially continuous manner. In the CA, grid squares are inserted at randomly selected
locations, modeling uniform growth in a spatially discrete way.

In addition to treating space as continuous or discrete, the models [80, 102] differ in how
they treat time. The ABM has a time step of one day, and three main dynamics occur on each
simulated day of fish development. First, the domain size is increased and cell positions are
stretched to account for fish growth in a deterministic manner. Second, all of the cells undergo
deterministic migration simultaneously. Third, the numbers and types of cells present are
simultaneously updated to account for cell death, differentiation, division, and shape changes.
For example, this means that every existing M cell is evaluated simultaneously for possible
death (according to stochastic rules) each day. In comparison, the CA functions in continuous
time, with an exponential clock that goes off when an “event” should occur. This event could
be vertical domain growth, horizontal domain growth, evaluating a randomly selected M cell
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for potential death, etc. Owen et al. [80] selected most rates for each of these events so that
all of their cells are evaluated for that event once per day. This suggests that both models
may be capturing the same number of behaviors per day on average. However, the ABM
implements cell interactions simultaneously and the CA updates cell populations iteratively.

2.3. Geometric and topological data analysis. The microscopic models [80, 102] that
serve as the basis of our case study produce point-cloud data in the form of pigment-cell
locations. As we show in Figure 3, stripes are visible in patterns generated by these mod-
els [80, 102], but the discrete nature of the data makes them challenging to quantitatively
describe. To help address this, our methodology for quantifying stripe patterns in section 3
draws on techniques from topological data analysis and computational geometry. Specifically,
we utilize persistent homology and a-shapes, which naturally lend themselves to point-cloud
data. We provide an informal introduction to persistent homology and a-shapes here; see
[17, 20, 29, 41, 78, 94] and [28, 30], respectively, for more technical details.

2.3.1. Persistent homology. Persistent homology provides information about the num-
ber of connected components, holes, trapped volumes, and higher-dimensional features in
data across scales [78]. Topaz, Ziegelmeier, and collaborators [7, 94, 97] have used persistent
homology to understand the shape of complex-systems data, and topological techniques are
being increasingly applied to in vivo and in silico biological systems [1]; examples include
[7, 11, 23, 68, 76]. Simplicial complexes are at the core of persistent homology, and we focus
on one type of simplicial complex, namely the Vietoris—Rips complex. To build a Vietoris—
Rips complex, we start with point-cloud data, such as the positions of IV cells in a domain. We
place a ball with diameter ¢ around each point and connect two points with an edge whenever
their respective £/2-balls intersect, indicating that the two points are at most a distance e
apart [7, 94]. If three points are each pairwise at most e apart, we note this by filling in
the triangle bound by the edges between pairs of points. Data points are O-simplices, edges
connecting two points are 1-simplices, and filled-in triangles are 2-simplices [7, 94]. We can
continue this process to generate k-simplices for £ > 0, but we focus on k=0 and k=1 here.

By varying e, we can study how the shape of our point-cloud data evolves across scales.
Specifically, we are interested in the presence of k-dimensional holes, meaning empty regions
bound by k-simplices [7, 94]. Connected components are 0-dimensional holes, and 2D trapped
areas are 1-dimensional holes (i.e., loops) bound by 1-simplices. As we allow € to grow, the
shape of our data in dimension 0 evolves from N isolated points when € = 0 to one large
connected component once ¢ is large enough. McGuirl et al. [68] interpreted dimension-1
topological features, in particular, as holding information about stripe patterns generated by
the ABM [102]. Because the ABM [102] has periodic boundary conditions in z, pattern for-
mation is occurring on a cylinder, as we show in Figure 5(b). If we apply persistent homology
to the positions of X9 cells on this cylindrical domain, interstripes are visible as loops in our
data for a range of € values. On the other hand, applying persistent homology to the positions
of M or X* cells translates into information about stripes [68].

To make this relationship between (inter)stripes and dimension-1 topological features more
precise [68], it is useful to discuss birth and death times [94]. The “birth time” of a topological
feature is the value € = ey, at which the feature first appears, and the “death time” is the
value € = £4eatn at which the feature disappears [68]. A feature’s “persistence” is €geath —Ebirths
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Figure 5. Persistent homology of zebrafish patterns [68]. (a) As an example, we show gold balls of varying
diameter ¢ centered at the positions of X< cells (black points here) from the ABM [102]. (b) Boundary conditions
are periodic in x for the models [80, 102], so unbroken stripes and interstripes form loops. (c) We show the
barcode describing the dimension-1 topological features associated with the pattern in (a). McGuirl et al. [68]
interpreted bars with birth times less than a birth-time cutoff (80 um) and persistence greater than a threshold
(200 um) as corresponding to interstripes. There are three long bars (marked by red triangles) that meet these
conditions, corresponding to three clear interstripes in (a). (d) Persistence diagrams are an alternative means
of summarizing information from persistent homology; here each point represents the birth and death times of
a loop. Because the final loop in (a)—a function of our periodic domain—persists longer than the mazimum &
value that we considered, only two persistent loops (circled in red) are visible.

and this information is often visualized using barcodes and persistence diagrams. We show
the barcode and persistence diagram associated with dimension-1 topological features for an
example of three interstripes in Figure 5. In a barcode, we draw a horizontal bar starting at
epirth and ending at £geatn for each topological feature [94]; these bars are stacked vertically.
A persistence diagram is a scatter plot with birth time as the z-axis and death time as the
y-axis; each point (epirth,Edeath) refers to the birth and death times of a feature. As we
show in Figure 5(c), there are three long bars, corresponding to three highly persistent loops.
Specifically, McGuirl et al. [68] defined the number of interstripes in ABM [102] patterns by
counting the number of X9 loops with persistence greater than a persistence threshold, and
birth time less than a birth-time cutoff. The persistence threshold and birth-time cutoff are
hyper-parameters. In subsection 3.3, we build on the work [68] to make this approach more
flexible for on-lattice stripe patterns and reliably choose hyper-parameter values.

2.3.2. Alpha-shapes. Complementing information about the number of connected com-
ponents and holes in data that persistent homology can provide, a-shapes, a concept from
computational geometry, are a flexible means of characterizing the overall shape of data [28].
A generalization of the convex hull rigorously defined by Edelsbrunner et al. [30], a-shapes
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have been applied to reconstruct surfaces [46, 107], as well as estimate perimeter [2], surface
curvature [61], shape complexity [39], and volume [62]. For example, a-shapes have been used
in structural biology [62] to better understand the shape of protein structures [109]. Like
persistent homology, a-shapes lend themselves to point-cloud data (i.e., cell coordinates in
our case study) and provide information about shape. They also naturally involve the choice
of a hyper-parameter «, and this inherent flexibility makes them suitable for our study.

Alpha-shapes are often described intuitively using circular erasers or spoons with radius
a [28, 30]. In this analogy [28, 30], constructing an a-shape is thought of as carving away
from the convex hull of a point cloud whenever it is possible to do so without removing any
data point. At the final stage, all of the eraser marks with curvature 1/« are approximated
as straight edges. In particular, given some set of points, an associated a-shape is made up of
points and edges representing the boundary of the point cloud [30]. Depending on the value of
the hyper-parameter «, we can select how tightly the a-shape fits our data. For finite a > 0,
the associated a-shape is built by drawing an edge between two data points whenever we can
place a ball of radius « in such a way that (1) the open ball contains no points in our data
set, and (2) the two data points in question lie on the boundary of the closed ball [28].

In Figure 6(a), we show an example point cloud, consisting of discrete points in the shape
of an overturned dumbbell. When « is large (e.g., a =~ 50 in Figure 6), the boundary of the a-
shape is nearly the convex hull of our data, and we miss meaningful structure in the dumbbell
shape. Indeed, when a = 0o, the a-shape is simply the convex hull of the point cloud. As we
decrease « in Figure 6(b), our a-shapes look more like hourglasses and eventually pick up the
shape of the dumbbell between o = 10 and o« = 5. When « =0, the a-shape is just the data
itself [31]. (Notably, a-shapes are also defined for a < 0; see [30, 31] for more information.)
While we do not discuss it further here, there is a connection between a-shapes, Voronoi
diagrams, and Delaunay triangulations [28, 30, 62]. Additionally, a-shapes are related to a-
complexes, which—Ilike the Vietoris—Rips complex that we introduced in subsection 2.3.1—can
serve as the basis for computing persistent homology [28, 31, 78]. In subsection 3.5, we apply
a-shapes to extract stripe—interstripe boundaries and quantify pattern curviness.
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Figure 6. Introduction to a-shapes [28, 30]. (a) As an example, we consider point-cloud data in the shape
of a dumbbell turned on its side. (b) Alpha-shapes [28, 30], a generalization of the convex hull, are a flexible
means of characterizing the boundary of point-cloud data. As o > 0 gets larger, we estimate the boundary of
data less and less tightly, approaching the convex hull as o — oo. We show the circle (or portion of the circle)
with radius o used to construct each a-shape in blue.
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Step 1 Step 2 Step 3 Step 4 Step 5
Generate data by Clean data to remove Compute and Cluster cells Construct

simulating models outlier cells before interpret and remove a-shapes
and crop patterns to computing persistent persistent ’ non-interstripe and calculate
focus domain homology homology clusters boundary length
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Figure 7. Summary of our quantification process and hyper-parameters. To generate our data, we simulate
both models [80, 102] and crop the final patterns to a focus domain length. Because persistent homology can
be sensitive to outliers [4, 35] and CA patterns [80] often feature stray cells, we perform an initial cleaning
step before computing persistent homology using the distances between cells on a domain that is periodic in x
(see Figure 5(c)). We use the birth times and persistence of dimension-1 topological features—corresponding to
loops—to identify the number of stripes and interstripes in each pattern, flag broken patterns, and estimate the
mazimum width of (inter)stripes [68]. Before constructing a-shapes [28, 30| and extracting their boundaries to
quantify interstripe curviness, we cluster X cells into the number of interstripes that we identified in Step 3.

min

If a cluster has fewer than T, " cells, it is likely a stray cell or spot, and we remove it and re-cluster, further
cleaning the data. Importantly, hyper-parameters enter our methods in Step 2 (e.g., defining “outlier”), Step 3

min

(i.e., our birth-time cutoff multiplier and persistence threshold), Step 4 (i.e., T,n'"), and Step 5 (i.e., our alpha
radius). As we discuss in subsection 3.2, we use Npn = 10 cells, Ongy = 08 =220 um, Hl)ng = 0()3(: =130 um,
HféM =215 pum, and Gé(: =170 pum for all of our results. Based on our robustness study in subsection 4.1, we
set Bapm = Bca = 2.5 mean cell—cell distances as our baseline birth-time cutoff; Papm = Pca = 200 um as our
persistence threshold; TR = 784" = 60 cells as our minimum cluster size; and oapm = aca = 100 pm as our
alpha radius. We use these baseline hyper-parameter values for our results in subsection 4.2.

3. Results: Our methodology for quantifying stripe patterns. Here we develop a pipeline
for quantifying stripe patterns from the off-lattice model [102] and the on-lattice model [80]
introduced in subsection 2.2. Our methodology involves cleaning the pattern data to remove
outlier cells, computing persistent homology using cell coordinates, building on the methods
[68] to interpret persistent homology more flexibly, and constructing a-shapes to characterize
curviness. Our five-step process in Figure 7 allows us to comprehensively quantify stripe
patterns emerging from stochastic on- and off-lattice models in a robust, comparable way.
As we summarize in Figure 8, we show how to count the number of stripes and interstripes,
detect the presence of pattern breaks, quantify (inter)stripe width, and characterize interstripe
curviness. Throughout subsections 3.1-3.5, we pay particular attention to pointing out hyper-
parameters and choices in our analysis pipeline.

In addition to providing a broader perspective on wild-type zebrafish stripes in silico,
the summary statistics that our methods produce and the flexibility of our approach open
the door to future studies of several mutants. For example, compared to wild-type zebrafish,
jaguar/obeliz [56, 64] mutants feature widened stripes or interstripes. The stripes in some
leopard and luchs phenotypes [54, 64, 103] are undulating or curvy, and idefiz [36] zebrafish
typically have narrower stripes with breaks or interruptions. As more in vivo and in silico
data on these mutants become available, we expect that our methods could be used to detect
and quantitatively characterize the detailed differences between these striped phenotypes at
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Figure 8. Summary of the pattern features that our methods characterize: number of (inter)stripes, (in-
ter)stripe width, stripe—interstripe boundary curviness, and interruptions in (inter)stripes. See section 3 and
Figure 7. (a) In order to compute (inter)stripe width and stripe—interstripe boundary curviness, we first need
to identify the number of stripes and interstripes in each pattern. (b) Some patterns feature breaks or inter-
ruptions in (inter)stripes, and our methods detect when breaks are present. While our focus is on wild-type
simulations from the off-lattice model [102] and the on-lattice model [80], being able to quantify these features of
stripe patterns has broader biological value. In particular, several zebrafish mutants are characterized by stripe
patterns that are wider, curvier, or more frequently broken than wild-type patterns [36, 54, 64, 103].

large scale. To support future research directions like these, the code that we developed to
quantify patterns, as well as sample data, is publicly available on GitLab [24].

3.1. Step 1: Generate and format data. To generate the data for our case study on
zebrafish patterns, we simulate the ABM [102] and CA [80] under wild-type conditions. This
step involves mild post-processing to frame the output of both models in the same way. As we
discussed in subsection 2.1, zebrafish development is generally measured in fish length, rather
than in time, so we simulate these models until a standard length of 12.63 mm. Because the
ABM [102] includes deterministic domain growth, this corresponds to simulating the model
for 45 days, until the fish reaches an age of 66 days post fertilization. In contrast, the CA [80]
features stochastic domain growth, so there is not a direct correspondence between simulation
time, domain size, and fish standard length. Instead, we simulate the CA [80] until the domain
reaches a size associated with a standard length of 12.63 mm.? We simulate both models 1000
times and save the results at the final time.

The positions of cells in the ABM [102] are in the form of (z,y)-coordinates in pm, while
the positions of cells in the CA [80] are described using lattice indices. We frame the output
of both models as coordinates by using that Owen et al. [80] assume their xanthophore and
iridophore grid squares are 20 um wide, and their M grid squares are 40 ym wide (e.g., we
map the indices (7,7) of a melanophore to (x,y)-coordinates (407,4035)). At this stage, all of
the ABM [102] patterns are on domains of size 3.71 mm long and 2.215 mm high. The domains
associated with CA [80] patterns are all within one grid step of 6.93 mm in length, and they
vary from 1.56 to 3.08 mm in height (in our 1000 simulations), since growth is uncoupled in
the horizontal and vertical directions. To account for the difference in domain length between
the models, we crop CA patterns, only considering the cells in a region of length 3.71 mm in
the center of the domain. Following the approach in [68], we remove the cells that fall within
the top 10% or bottom 10% of the domain height for both the ABM and CA data, since
stripes are often messy and not fully formed in those regions.

?Because the CA model [80] works on a discrete domain, the final domain size is within one grid square
(maximally 40 pm) of the target length.
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We crop patterns vertically using a percentage—rather than a strict number—based on
our observations that both models have been developed to produce the same number of stripes
and interstripes at a standard length of 12.63 mm. In the ABM [102], the result is patterns on
domains of cropped height 1.772 mm. CA [80] cells fall within domains of height between 1.248
and 2.464 mm, depending on the simulation, after our cropping step. (When CA domains are
taller, stripes and interstripes are also wider.) We show example patterns highlighting the
cells that have been cropped out from the top and bottom of the domains in Figure 9. At the
end of Step 1, we have formatted the output of both models as coordinates of cell positions
in micrometers on domains of length 3.71 mm and variable height.

3.2. Step 2: Clean data to remove outlier cells. Our observations suggest that stripe
and interstripe cells occupy distinct regions in ABM [102] patterns. In comparison, the CA
[80] frequently produces outlier cells, such as an isolated black cell in the center of a gold

(a)  ABM, melanophores (b) ABM, dense xanthophores (c)  ABM, loose xanthophores
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(d) CA, melanophores (e) CA, dense xanthophores (f) CA, loose xanthophores
. . . e
(9) CA, melanophores (h) CA, dense xanthophores (i) CA, loose xanthophores
:f 4 -
| I
cropped (10% top, 10% bottom) @ ¥ outliers removed pre-PH ® data for PH 500 um

Figure 9. Steps 1 and 2: Cropping and cleaning to remove outliers. For an example ABM [102] pattern in
(a) and two example CA [80] patterns in (d), (g), we indicate the M cells that we crop out in Step 1 (cyan)
and remove as outliers in Step 2 (red). For the same simulations, the (b), (e), (h) X< and (c), (f), (i) X* cells
that we crop out are cyan, and those we remove as outliers are dark blue. The gray dashed bars are the domain
boundaries, and the solid gray bars mark the cropped boundaries. See Figure 10 for corresponding summary
statistics.
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interstripe; see Figure 3. Because the way that we compute persistent homology in Step 3
is sensitive to outliers like these [4, 35], we perform an initial cleaning step to remove stray
cells. Focusing on the three cell types—M, X9, and X% —for which we compute persistent
homology, we identify outliers by first finding the N, = 10 nearest neighbors of each cell
under the Euclidean norm on a domain that is periodic in . We only consider neighbors
of the same cell type, and we exclude each cell from counting itself. Using the distances
{di}i=1,..N,, from the jth cell of type c € {M, X4 X} to its nearest neighbors of type ¢, we

compute Dj = \/va;‘f d? /Ny If Df$ > 07,, where m € {ABM, CA}, then we classify the jth
cell of type c as an outlier and remove it. This captures that outliers are in low-density areas,
so their distance from their ten nearest neighbors is comparatively large.

We use the thresholds H{A/IBM = Hé‘fA = 220 pm to identify melanophore outliers; H)A(};M =
Oé(/i =130 pm to highlight dense xanthophore outliers; and Og(éM =215 pym and Hé(/: =170 um
to indicate loose xanthophore outliers. These initial cleaning thresholds, as well as our choice
to take into account a cell’s IV,,,, = 10 nearest neighbors, are hyper-parameters that we do not
investigate further. We chose them by observation, selecting values that identified outliers and
fell in a range insensitive to changes. The larger distance thresholds for melanophores reflect
that the distance between these cells is larger; see Figure 4(b). We show the distributions for
the fraction of cells removed by type and model in Figures 10. The number of M cells cleaned
is comparable: a mean of 13.6 cells with a standard deviation of 6.9 cells for the ABM, and a
mean of 14.8 cells with a standard deviation of 8.3 for the CA, across our 1000 simulations. In
comparison, the numbers of X9 and X* cells removed differ between the models. On average,
our methods identify zero X9 outliers in the ABM [102], and 22.6 X¢ outliers with a standard
deviation of 9.2 in the CA [80]. For X* cells, we find a mean and standard deviation of
48.1 + 9.4 outliers in the ABM and 15.2 + 8.4 outliers in the CA.

() 0.16p (b) _ ©
g 0.12} B ABM
L CJCA
3 0.08}
k) |
g 0.04}
0 -3
0 0.02 0.04 0.06 0 2 4 6 8 10.,10° 0 0.05 0.1 0.15
fraction of melanophores fraction of dense xanthophores fraction of loose xanthophores
removed pre-PH . removed pre-PH removed pre-PH

Figure 10. Step 2: Cleaning to remove outliers. Across 1000 ABM [102] and CA [80] simulations, we show
distributions for the fraction of (a) M, (b) X9, and (c) X* cells that we identify as outliers and remove in Step
2 before computing persistent homology (PH). On average, we remove about 1.16% and 2.02% of CA and ABM
M cells, respectively; 0.41% and 0.00% of CA and ABM X cells, respectively; and 0.34% and 9.59% of CA and
ABM X* cells, respectively. Importantly, the places in the domain where cells are being identified as outliers
differ between CA and ABM patterns; see Figure 9 and subsection 3.2. Fractions are based on the cells present
after cropping in Step 1. See Supplementary Material (M154308_01.pdf [local/web 1.04MB]) for corresponding
distributions for the number of cells removed in Step 2; the number of cells removed due to cleaning ranges from
roughly 0 to 80 cells.
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The places where cells are being identified as outliers in the two models are also different;
see Figure 9. As a result, cleaning the ABM data does not affect pattern quantification, and
we only do this to apply the same set of steps to both models. We stress that McGuirl et al.
[68] showed that persistent homology can be applied to quantify the ABM [102] without any
cleaning. This is because the ABM does not produce interstripe cells in stripe regions and vice
versa; instead, as we show in Figures 9(a)—(c), the “outliers” removed from ABM patterns tend
to be cells at the upper and lower domain boundaries. In comparison, cleaning the CA data
allows us to remove stray cells that occur between stripes and interstripes; see Figures 9(d)—
(i). Without this cleaning, the presence of outlier cells in CA patterns makes interpreting
topological summaries difficult in Step 3 (subsection 3.3). It is also worth noting that our
initial cleaning does not account for the presence of X9 spots (see, for example, Figure 9(h))
in some CA stripes. These spots have high enough local density that they are not identified
as outliers, and we return to handling these pattern features in Step 4 (subsection 3.4).

3.3. Step 3: Compute persistent homology to define stripe number and width. By
building on the approach [68] (see subsection 2.3), we use dimension-1 topological features,
which correspond to loops or holes in our data, to count stripes and interstripes, define
stripe and interstripe width, and flag broken or incomplete stripes and interstripes. Using
the cropped, cleaned data from Step 2, we calculate pairwise distances between M cells,
between X9 cells, and between X cells on a domain that is periodic in z. (Because we
crop the CA patterns so that our CA and ABM domains have the same length in Step 1,
we note that specifying boundary conditions that are periodic in x on these cropped domains
is an approximation for CA patterns.) We compute persistent homology in dimension 0 and
dimension 1 based on these pairwise distances using Ripser [3], enforcing a maximum distance
of 650 um in our filtration.

Specifically, we identify unbroken stripes and interstripes using the dimension-1 topological
features (loops) for X¢ and X9 cells, respectively, as below:

(3.1) number of unbroken stripes = Z Ly<B,am, (@) La,-p>p, (1),
X* loops i

(3.2) number of unbroken interstripes = Z Lo, <B,a7, o () La—b,>p, (1),
X4 loops i

where (b;,d;) are the (birth, death)-coordinates of the ith loop; d; — b; is the persistence of
this feature; A7? is the average distance between neighboring cells of type ¢ for the model
m € {ABM,CA} across all 1000 simulations (see Figure 4(b)); and the indicator function
1condition(?) = 1 if the given condition is met for topological feature i, and 0 otherwise. The
birth-time cutoff factor B, and persistence threshold P,, with m € {ABM,CA} are our
hyper-parameters for selecting the loops corresponding to stripes or interstripes in our data.
In comparison, McGuirl et al. [68] used a strict birth-time threshold B in place of our more
flexible cutoff B,,,A.. that depends on the mean distance between cells. We sweep across these
hyper-parameters in subsection 4.1 to identify choices that are robust for our focal models.
Following the approach [68], we use M cells, in addition to X4 and X* cells, when flagging
patterns with stripe or interstripe breaks. Because we expect three interstripes in simulated
zebrafish at the stage that we consider, we count a pattern as having broken interstripes if its
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number of interstripes in (3.2) is less than three. We classify a pattern as having broken stripes
if two conditions are met: (1) its number of stripes in (3.1) is less than two (the expected
number of stripes for our simulated fish) and (2) its number of unbroken stripes from the
perspective of melanophores is also less than two, where we define

(3.3) number of stripes from M perspective = Z 1y, <B,am, (i) 14,—p,>p, (7).
M loops @

McGuirl et al. [68] used both M and X* cells to identify broken stripes in the ABM [102]
because Volkening et al.’s model produces X* cells at low density; see Figure 3(d). This
rationale applies in the reverse to the CA [80]: X cells appear at high density in interstripes,
whereas M cells are at comparatively low density, particularly in wide stripes; see Figures 3(h)
and 9(g). By flagging patterns as broken stripes only when the number of persistent loops
is less than our expected number of stripes for both M and X* cells, we allow for local dips
in density for some stripe cells, as long as another type of stripe cell remains at consistently
high enough density. We choose to focus on xanthophores and melanophores throughout our
stripe-quantification pipeline; in the future, it would also be interesting to include iridophores.

In addition to counting (inter)stripes, we use persistent homology to compute stripe and
interstripe width. Broadly, the death times of topological loops associated with interstripe
cells provide information on stripe width, and vice versa, as below:

(34) stripe width = med xa interstripe loops idi - Aprxa )
——

median death time for interstripe loops boundary separation

(3.5) interstripe width = medx¢ gyipe loops i%i ~ — Ay xa ,
——

v .
median death time for stripe loops boundary separation

where we define X4 and X*¢ dimension-1 topological features as “interstripe loops” or “stripe
loops” using (3.2) and (3.1), respectively, and exclude features with infinite death times d;.
Here A,y xa is the mean distance between nearest melanophores and dense xanthophores at the
stripe—interstripe interface for the specific simulation in question; see Figure 4(b). Subtracting
Ajrxa prevents us from counting the interface-boundary distance twice. Our measurements
of the width of any given (inter)stripe should be interpreted as maximum width.® As an
illustrative example of this, in Figure 5(a), the width of the dark stripe between the bottom
two interstripes is slightly larger than 460 pm —Ajsxa, since a small amount of white space
(a hole) is still visible in between the interstripes at € =460 pm.

3.4. Step 4: Cluster cells into interstripes and further clean data. Broadly, we quantify
curviness by clustering X9 cells into interstripes in Step 4 and then tracing out the upper
and lower boundaries of each interstripe in Step 5. We use the method introduced in [68] to
specify the number of interstripe features (i.e., the target number of clusters N¢) and apply
single-linkage hierarchical clustering to the positions of X9 cells to produce Ng clusters. In the

3In comparison, McGuirl et al. [68] defined stripe width using the persistence of X4 loops. This approach
[68] is similar to ours but does not account for the fact that the distance between M and X9 cells is larger
than the distance between like cells. Additionally, due to an error in ball radius versus diameter, the summary
statistics in [68] report double (inter)stripe width.
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ABM [102], these clusters generally correspond directly to interstripes. Because of differences
in the noise and messiness present in ABM [102] and CA [80] patterns, however, we find that
the same process does not transfer to the on-lattice model [80]. Instead, as in the CA pattern
in Figure 9(h), gold spots or stray X9 cells that remain after our initial cleaning in Step 2
can disrupt clustering. To account for these challenges, we introduce an iterative process to
detect and remove clusters of X9 cells that do not correspond to interstripes. This is a second
round of data cleaning, removing more cells beyond those that we already removed in Step 2.

Before identifying clusters corresponding to interstripes, the first step is determining the
number of interstripe features. To account for gold bridges connecting broken stripes, McGuirl
et al.’s method [68] clusters X9 cells into N = 3 groups when a pattern has no breaks in black
stripes; N, =2 groups when the pattern has one broken stripe; and N; =1 group otherwise.
Our observations suggest that the models [80, 102] are meant to produce patterns with two
stripes and three interstripes at the stage that we quantify. Similar to [68], we thus consider a
pattern to contain one broken stripe when the number of stripes (from the perspective of X*
or M cells—or from the perspective of both) is one; see (3.1) and (3.3). As a book-keeping
step, we also sort our matrix of cell coordinates by their z-coordinates before performing any
clustering. Having cell coordinates in order based on their position from the left to right
boundary of the domain is convenient later in Step 5 (subsection 3.5).

In an iterative process, we cluster our sorted X9 cells into N groups, applying single-
linkage hierarchical clustering to cell coordinates. (We use the Euclidean distance on a domain
that is periodic in z.) We next calculate the number of cells in each cluster, and, if the number
of cells is strictly less than our minimum cluster size 722 with m € {ABM, CA}, we remove
all of the cells in that cluster from the domain. We then re-cluster the remaining X9 cells
into N groups, count the number of cells in our clusters, remove small clusters, and loop
through again as needed. At the end of this process, the result is Ny clusters of X9 cells that
we interpret as corresponding to interstripes. We investigate the role of the hyper-parameter

T in subsection 4.1.

3.5. Step 5: Construct a-shapes to quantify interstripe curviness. To compute the
curviness of stripe—interstripe interfaces, the first step is extracting the boundaries of our
clusters of X9 cells from Step 4. There are many ways to do this: for example, focusing on
one interstripe at a time, McGuirl et al. [68] discretized space and then found the cells with the
maximum and minimum y-coordinates in each grid step. Taken across all the grid positions,
these highest and lowest cells trace out the upper and lower boundaries of an interstripe [68].
Owen et al. [80] developed an algorithm for extracting the upper and lower boundaries of the
center interstripe in the domain. This approach [80] involves expressing the lattice of X d cells
as a binary image and applying the built-in MATLAB function bwmorph to clean the data and
bridge small gaps in interstripes.” Owen et al. then identify the height of the pixels associated

4The function bwmorph is a flexible means of adjusting binary images (matrices of zeros and ones) in
MATLAB. Owen et al. [80] applied bwmorph with the built-in “clean” and “bridge” options. The “clean”
option removes isolated one-valued pixels (i.e., sets them to zero-valued in the binary image); effectively, this
means removing X< cells without other X9 cells next to them in the lattice [80]. The “bridge” option fills
in gaps by changing zero-valued pixels to one-valued when they appear next to two disconnected one-valued
pixels; effectively, this means adding X9 cells to the lattice to fill in holes and smooth out gaps in the pattern
[80].
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with the upper and lower boundaries of the center interstripe. Their methods [80] focus on
interstripe curviness as a whole—rather than stripe—interstripe boundary curviness—so they
later take the mean of these two curves and apply a smoothing algorithm. Importantly, both
approaches [68, 80] rely on discretizing space: the lattice structure of the CA [80] lends itself
to image-processing techniques for binary images, and McGuirl et al. [68] introduce a spatial
discretization to extract interstripe boundaries in the ABM.

We adapt a-shapes [28, 30] to develop a more flexible method for quantifying stripe—
interstripe curviness in zebrafish patterns. As we discussed in subsection 2.3.2, a-shapes
provide a means of describing the boundary of a point cloud and are a generalization of
its convex hull; see Figure 6. Here our point cloud consists of the coordinates of X¢ cells
associated with each interstripe cluster from Step 4. One interstripe at a time, we construct
an a-shape and extract the coordinates of the X4 cells lying on its boundary using the built-in
MATLAB functions alphaShape and boundaryFacets (with holes suppressed). This leads to
a sequence of coordinates (X?’bnd)i:h_., nona that are the vertices of our a-shape, wrapping
around the interstripe. We next find the first index k in this sequence with z-coordinates
equal to the maximum z-coordinates in the sequence. Because we sort the list of X9 cells
with respect to their z-coordinates in Step 4 before clustering into interstripes, this index
splits the boundary X9 cells in a way that captures the top and bottom boundaries of the
interstripe. Specifically, we consider the sequences (X?,bnd)i:17.”7k and (X?’bnd)i:kwﬂ . TO
complete the process, we remove the cells in both of these sequences that fall within 100 gm
(inclusive) of the right or left boundaries of the domain and renumber indices as needed.” This
last step ensures that we have excluded the right and left boundaries of our X9 point cloud.
The result is two sequences of cell coordinates tracing out the top and bottom boundaries of
the interstripe in question.

For each sequence of cell coordinates (X i=1,...N representing the boundary of an
interstripe, we compute the length of the associated piecewise linear curve. We then use the
length of a perfectly straight interstripe to compute curviness, similar to [68], as below:

N—1 |{~-d,bnd d,bnd
YDAERI b il I
b
)

d,bnd
i)

d,bnd d,bnd

7 %

(3.6) curviness of boundary = 100 x <

max; (z ) — min;(x

where ||x|| = /22 + 22 and X" = (g8Pd ydbndy - Repeating this process for each of the
N interstripe clusters from Step 4, we generate 2 X N measurements of boundary curviness.
Across all of these boundaries, we exclude the curves with the maximum and minimum y-
coordinates, since we find that interstripes in some CA patterns (e.g., see Figure 9) extend
beyond the limits of our focal domain. As a result, these uppermost and lowermost curves
are often simply tracing the upper and lower boundaries of the rectangular domain. For the
remaining 2N, — 2 boundary curves, we take the mean of their curviness values from (3.6)

and define this as our measurement of pattern curviness.

5Using 100 pm here is a choice that we do not investigate further. Excluding this small region near the
right and left boundaries of the pattern is fairer to both models. In particular, because we crop CA domains
lengthwise in Step 1, they could potentially be at a disadvantage when computing curviness, since ABM
domains have the benefit of unaltered periodic boundary conditions in x. In addition to helping us separate
cell coordinates into upper and lower boundaries, cropping the region of the pattern for which we compute
interstripe curviness by 200 pm puts both models on equal footing.
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Our method for going from a-shape vertices to two sequences of cells representing the
upper and lower boundaries of an interstripe does not work in all cases. In particular, when a
pattern is assigned N < 3 from Step 4 this means that at least one “interstripe cluster” is, in
fact, two interstripes connected by a bridge across a broken black stripe. Our approach does
not extract boundaries that make intuitive sense in this case. Thus, in our results in section 4,
we present summary statistics on interstripe—stripe boundary curviness for unbroken patterns.
It would be interesting in the future to build on our methods to define and extract the upper
and lower boundaries of interstripes when interruptions are present in the pattern. We suggest
that the single and visible hyper-parameter « associated with constructing a-shapes makes
them a nice tool to use when quantifying curviness, and we sweep across different values of
o, for m € {ABM, CA} to understand its impact in subsection 4.1.

4. Results: Quantitative study of on- and off-lattice microscopic models. We now
apply our methods from section 3 to quantify stripe patterns resulting from two biologically
detailed models of zebrafish, the ABM [102] and CA [80]. We begin by sweeping through
different choices of the hyper-parameters in Figure 7 to determine their effects on pattern
quantification (subsection 4.1). We then select values for our hyper-parameters that allow
us to put simulated patterns from the models [80, 102] on equal footing and present a large-
scale, discerning study of these models in subsection 4.2. See the caption of Figure 7 for a
summary of the baseline hyper-parameter values that we establish in subsection 4.1 and use
in subsection 4.2.

4.1. Robustness study: Choosing hyper-parameters. Our methods in Figure 7 depend
on the choice of values for eight main hyper-parameters: four hyper-parameters associated
with our initial data cleaning in Step 2, two hyper-parameters that emerge in Step 3 when
we interpret persistent homology, one hyper-parameter related to clustering cells into inter-
stripes in Step 4, and a final hyper-parameter that controls how tightly we estimate interstripe
boundaries in Step 5. Importantly, it is not just choices of computational implementation,
but also choices in methods for quantification, that affect how we interpret the output of
different models. Because of this, here we sweep across values of our hyper-parameters to
better understand their roles and select values that are biologically meaningful and robust.
We focus on the four hyper-parameters involved in implementing and interpreting persistent
homology and constructing a-shapes in Steps 3-5. (See section 5 for a discussion of the other
hyper-parameters and additional choices in our pipeline.)

To interpret birth and death times of dimension-1 topological features as information
about (inter)stripe width and number in Step 3 [68], we rely on a birth-time cutoff factor
By, and persistence threshold P,,, where m € {ABM,CA} denotes the potential for dif-
ferent values for the two models [80, 102]. For values B,, = 1,1.25,1.5,...,5.5,5.75,6 and
P,, = 100,120, 140,...,460,480,500 pm in (3.1)-(3.3), we quantify 100 ABM and CA pat-
terns, cropped and cleaned as described in subsection 3.1 and subsection 3.2, under different
choices of B, and P,,. In Figure 11, we show the effects of these hyper-parameters on the
percentage of patterns that our methods identify as having broken stripes or interstripes.
(We find that stripe and interstripe width is less sensitive to B,, and P,,; see Supplementary
Material (M154308_01.pdf [local/web 1.04MB]).) The extreme choice of By, =1 requires that
loops corresponding to (inter)stripes be born at a scale strictly less than the mean distance
between cells. This intuitively leads to no patterns being identified as having three interstripes
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Figure 11. Effects of the birth-time cutoff factor By, and persistence threshold P, on identifying broken
patterns in Step 3 (equations (3.1)—(3.3)). Results are based on 100 ABM [102] and 100 CA [80] patterns,
cropped and cleaned as described in subsection 3.1 and subsection 3.2, that we quantify under each choice of
(Bm, Pm) given. Here By, is a factor multiplied by the appropriate mean cell-cell distance (see Figure 4(b)). (a)
The number of ABM patterns flagged for broken stripes decreases as we relax how early loops must be born to
count as stripes. (b) Our results for CA patterns show similar overall dependence on By, and Pr,, and we note
that broken stripes are rare in CA patterns. (c) For large values of Pm, there are not sufficient topological loops
of X9 cells with persistence P, so the number of ABM patterns flagged as having broken interstripes is 100%.
(d) Our observations suggest that CA patterns feature some X4 cells that “infringe” on black stripe territory;
this may be visible in 100% of CA patterns being flagged for broken interstripes at a lower value of P, relative
to ABM patterns. We highlight the baseline hyper-parameter values that we use in subsection 4.2 in yellow.
The hyper-parameters By, and Py, also play a role in how we quantify (inter)stripe width; see Supplementary
Material (M154308_01.pdf [local/web 1.04MB]).

and two stripes; as expected, our methods flag 100% of patterns as broken when B, is too
low in Figure 11. Similarly, a persistence threshold P,, that is too large—e.g., beyond the
width of interstripes—means our methods flag all patterns as broken because the number of
dimension-1 topological features with large enough persistence is below our target of three.
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Beyond low B,,, and high P,, values, which are restrictive constraints on our inequalities in
(3.1)—(3.3), we suggest that B,, >4 is overly permissive of gaps between cells in (inter)stripes.
This is based on empirical observations that zebrafish stripes are roughly 7-12 cells wide
[75], so By, > 4 means that stripes featuring gaps between adjacent cells comparable to
half a stripe width pass through our methods without being flagged as broken. If we focus
on B,, < 4 in Figure 11, there is a wide range of persistence thresholds under which our
methods are insensitive. Choosing Papwm € [100,340] and Pca € [100,260] pm does not affect
our results. (If we use different hyper-parameters for different cell types, we can consider
a wider range for stripes, but we apply the same cutoff in (3.1)—(3.3).) In agreement with
[68], we thus select Papy = Pca = 200 pm as our baseline value. The sharp drop in ABM
interstripes (Figure 11(c)) flagged as broken between Bapym = 1.25 and 1.5, followed by a
fairly insensitive region, suggests that we should select Bapym € [1.5,3.75]. For CA patterns,
the number of interstripes flagged as broken (Figure 11(d)) repeatedly drops by about half as
Bca increases from 1.25 to 2.25. In the end, choosing a value for B, is a question of how
large of a gap between adjacent cells we permit before calling an (inter)stripe broken, and we
set Bapm = Bca = 2.5 cell-cell distances as our baseline value.

After using our baseline values of B;, and P,, to output the number of stripes and in-
terstripes in Step 3, we turn to the hyper-parameters 7" and a,, that affect our measure-

m
ments of curviness. We evaluate 100 CA and ABM patterns, excluding those with broken
(inter)stripes, under minimum X9 cluster size 72" = 20,30,...,90,100 cells and a-radius
am = 50,60, ..,190,200 pm. Because McGuirl et al. [68] clustered cells into interstripes for
ABM [102] patterns without any need to remove non-interstripe clusters first, we note that
TR =0 cells is valid. For CA patterns, as we show in Figures 12(a)—(b), boundary roughness
makes it challenging to visually specify which X9 cells should be removed before computing
curviness. Sweeping across values of Tg}if and acp, all values of the minimum cluster size
70 hetween 20 and 100 cells lead to the same curviness results, so we do not show this
heatmap. In contrast, choosing T‘Cn/in much lower than 20 cells does not reliably group X9
cells into N clusters that are interstripes, and it causes errors in our algorithm: when Ténlin is
too low, outlier cells in CA patterns are sometimes selected as one of the interstripe clusters
in Step 4. We thus choose Tén/i“ = 60 cells as our baseline value, and set TX%‘}\/I = Tén}f for
consistency.

As we show in Figure 12(c), our results on stripe-interstripe boundary curviness for un-
broken patterns across 100 ABM and CA simulations depend strongly on the choice of radius
o, that we use when constructing a-shapes in Step 5. This is particularly the case for CA pat-
terns, which feature jagged interstripe edges. Selecting «,,, means balancing sharply tracing
out interstripe boundaries with relaxing our curves toward the convex hull of X9 positions. To
gain intuition into the effects of a,;,,, we show the interstripe boundaries that we extracted and
associated boundary curviness under different choices of «y, for two example ABM patterns in
Figures 12(d)—(e) and two example CA patterns in Figures 12(f)—(g). The hyper-parameter
a,, essentially controls how “forgiving” our methods are to peaks and crevices in X9 orga-
nization. Because the boundary curves for aca = 60 pm are very rough and convoluted, we
suggest that this value focuses on details that are too fine in CA patterns. On the other hand,
selecting acp = 140 pm or 180 pm in Figures 12(f)—(g) leads to boundary curves that miss

structure and undulations in X9 organization that we suggest are meaningful. Supported by
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Figure 12. Effects of the minimum cluster size 72" and a-radius o on stripe—interstripe curviness in
Steps 4-5. Our results are for 100 ABM [102] and CA [80] patterns, cropped and cleaned in Steps 1-2. We
show summary statistics for the subset of these patterns classified as unbroken in Step 3 with the baseline
hyper-parameter values established in Figure 11. (a)—(b) Some CA patterns [80] require further cleaning (i.e.,
removal of stray X4 cells and spots) to help ensure the Na groups that we cluster X9 cells into in Step 4
correspond to interstripes. We show a closer look at an example CA pattern with (a) two X9 cells removed
before computing curviness, and one with (a) a larger spot removed. Removed cells are shown in magenta.
Once T8I is large enough to fall into the range [20,100] cells, our methods are insensitive to this choice. Based

n [68], TX%‘}VI =0 cells (i.e., no additional cleaning) is sufficient for ABM patterns. Our choice of baseline
Ualue T2 — 60 cells for m € {ABM, CA} means that X clusters must contain at least 60 cells to be considered
interstripes, and smaller clusters are removed. (c) As the radius am used to compute a-shapes grows, interstripe
boundaries get closer to the convex hull of our X¢ data. (d)—(e) We show two example ABM patterns with
interstripe boundaries (black) extracted under different choices of aasm and (f)—(g) two example CA patterns
with interstripe boundaries (magenta) associated with different aca values. The numbers to the left denote
curviness; see (3.6). We use am, =100 pm for m € {ABM, CA} as our baseline value in subsection 4.2.

these observations and the fact that our curviness measurements for CA patterns show much
less variance and change less rapidly as a function of acpa after about 90 pum in Figure 12(c),
we select aca = 100 um as our baseline value. Again for consistency, we set aagy = 100 pm.
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4.2. Quantitative description of microscopic models at large scale. With the baseline
values of our hyper-parameters from subsection 4.1 (see the caption of Figure 7 for a sum-
mary), we now present a large-scale study of 1000 ABM [102] and 1000 CA [80] patterns.
As we show in Figure 13, our methods provide information on (inter)stripe width, stripe—
interstripe boundary curviness, and the fraction of patterns with overall imperfections (e.g.,
broken stripes). We also track the number of non-interstripe X d clusters removed in Step 4
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Figure 13. Baseline quantification of 1000 patterns generated from the ABM [102] and CA [80]. Distribu-
tions in (a)—(d) are for patterns identified as unbroken (namely, patterns with three interstripes and two stripes).
(a) The overlap of stripe and interstripe cells in CA [80] patterns may play a role in why our methods estimate
stripe width as narrower in CA patterns than in ABM [102] patterns. (b) With respect to interstripe width and
other pattern features, CA [80] patterns are more variable than ABM [102] patterns. (c) High curviness may
be associated with the presence of spots in patterns or with incorrectly classified broken patterns; see Figure 9.
(d) To help account for spots in CA patterns, we further clean the data in Step 4; here we show the number
of X% clusters removed before computing curviness. (€) ABM [102] patterns are susceptible to breaks in stripes
and interstripes, while (f) CA [80] are most susceptible to breaks in interstripes. For the ABM (top row) and
CA (bottom row), we show example patterns that our methods identify (g) as unbroken, (h) as having broken
interstripes, (1) as having unbroken stripes, or (j) as having breaks in stripes and interstripes. (k) While our
methods classify these patterns as unbroken, they feature imperfections and represent false negatives in the form
of a narrow break (ABM) and prominent spot (CA). Red scale bar in (g)—(k) is 500 pm.
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before computing boundary curviness. Interpreting our results depends on viewpoint: from
one perspective, the ABM and CA patterns are remarkably similar, particularly given the
differences in noise structure and outlier cells that we accounted for in subsection 3.2. From
another perspective, the results in Figure 13 show that the ABM and CA—despite being bi-
ologically similar—do produce different behaviors, most notably related to variability across
simulations. Our quantitative approach allows us to move beyond viewing a few sample pat-
terns from the stochastic models [80, 102] to better understand the features that these models
give rise to at large scale.

As we show in Figure 13(a), the mean stripe width (across 1000 simulations) for the ABM
[102] is about 416 pm, and the mean stripe width for the CA [80] is about 343 pm, a difference
that corresponds to less than two M cells. The mean interstripe widths for the ABM and
CA are closer: 403 pm and 373 pm, respectively (see Figure 13(b)). This is a difference
of less than one X9 cell from the perspective of the ABM [102] and less than two X9 cells
from the perspective of the CA [80]. In terms of stripe—interstripe boundary curviness based
on (3.6) (Figure 13(c)), the mean curviness of ABM patterns not flagged as broken is about
7.0 with a standard deviation of about 1.8. Similarly, the mean curviness of CA patterns is
about 11.8 +3.0. As we show in Figure 13(d), across the portion of our 1000 ABM and CA
simulations that are not flagged as broken, 99.1% of ABM patterns do not undergo additional
cleaning of X9 cells in Step 4. In comparison about a quarter of unbroken CA patterns contain
small X9 clusters that we remove before computing interstripe-stripe boundary curviness.

At the pattern scale, we show the percentage of ABM and CA patterns that our methods
identify as unbroken, as having broken interstripes only, as having broken stripes only, or as
having breaks in stripes and interstripes in Figures 13(e)—(f). We find that our quantifica-
tion pipeline reports a remarkably similar percentage of ABM [102] and CA [80] patterns as
unbroken. Beyond this, ABM patterns [102] display breaks of different types, whereas CA
patterns [100] are most susceptible to breaks in interstripes. Additionally, we flag—as a subset
of patterns classified as “unbroken”—a rough estimate of the ABM and CA patterns that we
suggest are false negatives. (False negatives are simulations that our methods should have
classified as having pattern errors but did not.)

How we flag patterns as potential false negatives is model specific. In particular, based
on our observations and the results [68], we expect dependable separation of X9 cells into
interstripes in ABM [102] patterns. Thus, we suspect that the eight out of 1000 ABM patterns
that are classified as unbroken, yet led to removal of some positive number of X9 cells in Step
4, are, in fact, broken. As we show in Figures 14(c)—(d) for two examples among these eight
patterns, this is indeed the case. The eight ABM false negatives occur because Bapy is just
large enough so that the number of stripes from the perspective of either X¢ or M cells in
(3.1) or (3.3) is two, allowing the narrow gaps in Figures 14(c)—(d) to pass by undetected. As
a result, interstripes that are actually connected by a bridge are forced into three clusters,
and the result is haphazard removal of X9 cells in Step 4.

On the other hand, we flag 52 “unbroken” CA patterns as potential false negatives in
Figure 13(f). These fall into two groups: (1) patterns that require more than 25 X9 clusters
to be removed in Step 4 before computing curviness, and (2) patterns with at least one stripe—
interstripe boundary with curviness greater than 25. Patterns meeting these conditions are
rare, as indicated by the distributions in Figures 13(c)—(d). We show a few example CA
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Figure 14. False negatives, spots, and the role of domain growth. (a) Across the subset of 1000 ABM and
CA patterns identified by our methods as unbroken, we show the total number of X cells removed in Step
4 wversus the domain height. Because the ABM [102] has deterministic domain growth, all scatter points are
stacked at the same height; there are only eight patterns with more than zero X cells cleaned in Step 4. The
CA [80] includes stochastic domain growth, meaning that domains of the same length have different heights.
Interestingly, the spread of scatter points spreads with tall CA domains. (b) Removal of X cells in Step 4 and
our curviness computations in Step 5 are related, since interstripe boundaries must curve and bend to encompass
any X9 cells remaining in the pattern. We observe that the mean curviness of CA patterns increases and spreads
with increasing domain height, particularly after CA domains become taller than ABM domains. The letters in
(a), (b) refer to examples in (c)—(g). (c), (d) We show two example “unbroken” ABM [102] patterns; the top row
provides the full pattern, and the bottom row focuses on M and X% cells for clarity, with X cells removed in
Step 4 indicated in magenta and interstripe boundaries shown in blue. We see odd behavior because X< cells are
being forced into three clusters, when only two are present. A narrow bridge is clearly visible in these patterns,
and we conclude that all eight ABM [102] patterns with any removal of X9 cells in Step 4 are false negatives.
(e)—(g) CA patterns with large numbers of X cells removed in Step 4 and high curviness often feature X9 spots.
Comparing (f) and (g), for example, it can be challenging to judge what constitutes a spot versus a finger of an
interstripe that should be included in its boundary. We flag CA [80] with very high curviness or a large number
of X4 clusters removed in Step 4 as potentially spotted; see Figure 13.

patterns among these 52 potential false negatives in Figures 14(e)—(g): these patterns clearly
include large X4 spots or tortuous boundaries. Because our methods do not directly quantify
spots, flagging CA patterns in Figure 13(f) with very high curviness or many outlier X4
cells serves as a rough proxy for indicating that a subset of “unbroken” patterns feature spot
imperfections. Adding to our methods and those in [68] to identify and characterize spots in
CA patterns directly is an important direction for future research.
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To further check our methodology, we viewed 200 patterns for each model. For the ABM
[102], 171 of these patterns (85.5%) were classified as unbroken by our methods, and our
qualitative observations agree in 170 cases. The single false negative features a narrow gap
in a black stripe, and, as discussed above, it is flagged as potentially broken because it leads
to more than zero X9 cells removed in Step 4. We agree with the 18 (9%), 8 (4%), and 3
(1.5%) patterns identified by our methods as having breaks in interstripes, stripes, or both,
respectively. We had more difficulty classifying the CA [80] simulations visually, since these
patterns feature more outliers and cells grouped less distinctly into stripes and interstripes.
Across 200 CA patterns, our methods identified 0 with broken stripes (we agree) and 34 (17%)
with broken interstripes (we suggest 7 of these are false positives and not broken). Among
the 166 (83%) patterns that our methods identified as unbroken, we suggest four of these
have interstripe breaks and three feature one or more prominent spots. Ten more of these
unbroken patterns were flagged for high curviness as discussed above, and they all have at
least one large visual spot. Our visual checks add confidence that our methods are capturing
a meaningful overall picture of the patterns generated by both models [80, 102].

As a final note, we comment on a few interesting features of our curviness results in
Figure 13(c). First, because X9 cells are more dense in CA patterns than in ABM patterns
(see Figure 3), we thought this might lead our methods to interpret CA patterns as curvier
than ABM patterns. To better understand this, we calculated the mean distance between
pairs of X9 cells that share an edge in each graph representing an interstripe boundary, across
all unbroken patterns. We found that the mean edge length in ABM boundary curves is about
62.7 pm—a little under twice the mean distance between neighboring X9 cells—and the mean
edge length in CA boundary curves is about 83.8 pm—just under four times the mean distance
between nearest X9 cells. This adds support to the conclusion that the difference in curviness
between ABM [102] and CA [80] patterns is an inherent feature of the models. Moreover, we
find that high curviness and high numbers of X¢ clusters removed in Step 4 are more common
in CA patterns on tall domains; see Figures 14(a)—(b). As we discuss in section 5, this has
biological implications and may be related naturally to the interplay between nonlocal cell
interactions and increased vertical domain growth.

5. Discussion and conclusions. Different modeling studies offer complementary perspec-
tives and expertise on biological systems. However, as models become more detailed, it is
more challenging to understand their behavior—let alone relate their dynamics to the be-
havior of other models. This is particularly true when stochastic realizations of the same
model are variable. To help address this challenge in the case of zebrafish stripe patterns,
we developed a method for quantitatively relating two stochastic, microscopic models of cell
behavior at large scale. Patterns generated by the models [80, 102] in our case study are
similar by limited observation, but feature important differences in cell density and outlier
cells. Our approach uses tools from topological and geometric data analysis (namely persis-
tent homology and a-shapes), as well as clustering and data cleaning, to count stripes and
interstripes, estimate stripe width, and measure stripe-interstripe boundary curviness. We
applied our methodology to the off-lattice model [102] and the on-lattice model [80]. These
two models [80, 102], which are biologically similar but computationally and mathematically
different, provide an excellent place to better understand the role of hyper-parameters in

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/23 to 128.148.194.11 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

QUANTIFYING DIFFERENT MODELS USING TDA: ZEBRAFISH 3259

our quantification pipeline. We swept across a range of values to choose hyper-parameters
that allow for meaningful quantitative descriptions of the models [80, 102] alongside one
another.

We found that ABM [102] and CA [80] patterns are susceptible to different types of
noise and “imperfections.” (We use “imperfections” to broadly refer to patterns with broken
stripes or interstripes, spots, or high curviness. Because large-scale quantitative data on
in vivo zebrafish patterns is not available to the best of our knowledge, we do not know
if these imperfections are biological errors.) ABM [102] patterns feature clear separation
between stripe and interstripe cells, whereas the CA [80] often produces stray stripe cells
in interstripes, and vice versa. We also observed differences in how ABM and CA patterns
break: our methodology suggests that the ABM produces some patterns with breaks in stripes
and interstripes. On the other hand, breaks in CA patterns are concentrated in interstripes.
Across all of our quantification results, we found that CA [80] patterns are more variable than
ABM [102] patterns. Interestingly, our methodology uncovers the presence of gold spots in
some CA [80] stripes.

As we discussed in subsection 4.2, spots and highly curved interstripes are more common
for CA simulations with above-average vertical domain growth. Since vertical growth stretches
cell positions in a way that widens (inter)stripes, the appearance of spots on tall domains
may be related to how nonlocal cell interactions in the models [80, 101, 102] constrain stripe
width. In particular, based on empirical findings [75], M cells require signals from interstripe
cells at long range for survival. Once stripe width is stretched too far by vertical domain
growth in CA patterns, we would expect death of M cells in the middle of the interstripe,
providing the opportunity for X9 cells to differentiate there. Thus, when vertical domain
growth is high, we observe gold spots of X9 cells emerging in the middle of stripes like those
in Figure 14(g). L-iridophores, an additional cell type that appears later in stripe formation
and is not included in the models [80, 102], may play a role in pattern maintenance, helping
prevent wide stripes from breaking into spots in wvivo [37, 102]. As empirical data becomes
available, better understanding the interplay of domain growth and pattern formation is an
exciting direction for future work.

Our study focused on the role of hyper-parameters in interpreting persistent homology
and constructing a-shapes. We did not sweep across the hyper-parameters involved in Steps 1
and 2 in part because computing persistent homology is the main computational bottleneck in
our approach. We thus comment on the other hyper-parameters in our quantification pipeline
and discuss some alternative choices here. First, cropping ABM and CA domains to the
same length and removing the top 10% and bottom 10% of cells vertically in Step 1 may
have affected our results. It is possible that this could cause some CA patterns with very
curvy—but unbroken—(inter)stripes to appear broken on the cropped domains. It is thus
worth keeping in mind that our results are descriptions of patterns in a focus domain region.

Second, we did not perform a robustness study of the hyper-parameters related to data
cleaning in Step 2. For the ABM [102], as we noted in subsection 3.2, McGuirl et al. [68]
showed that no cleaning is needed before computing persistent homology, so any reasonable
hyper-parameter values (including removing no cells) in Step 2 works. For CA [80] patterns,
data cleaning is much more important, and selecting the values of hyper-parameters in Step
2 is a balance between (1) preserving the structure of CA patterns and (2) removing outlier
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cells that disrupt our interpretation of persistent homology. The choice of hyper-parameters
that we made in subsection 3.2 allowed us to interpret topological summaries as information
about stripes and interstripes in Step 3. Working with outliers when computing persistent ho-
mology is challenging in general, and it would be interesting to apply methods from statistical
topological data analysis [4, 21, 23, 35] to zebrafish patterns in the future.

Third, we made choices about which cell types to base measurements on throughout our
quantification process. For example, when characterizing the curviness of stripe—interstripe
boundaries, we could have based our measurements on M or X* cells (i.e., curviness of black
stripe boundaries), X9 cells (i.e., curviness of gold interstripe boundaries), or a combination of
cells of several types. Like McGuirl et al. [68], we chose to focus on X cells. The overlap of M
and X4 cells at stripe-interstripe boundaries in CA [80] patterns makes it challenging not only
to visually trace out boundaries in CA patterns, but also to define (inter)stripe width. When
looking at a pattern like the one in Figure 12(a), where does the top interstripe end and the
stripe begin? What cells are part of interstripes, and what cells—if any—are present in spots?
Indeed, when observing large sets of simulated patterns from the ABM [102] and particularly
the CA [80], we found it very difficult to consistently judge model output visually. This further
highlights the value of our automated approach and careful consideration of hyper-parameters
when quantifying messy, cell-based patterns at large scale.

Both models [80, 102] simulate zebrafish mutant patterns, and McGuirl et al. [68] de-
veloped methods for quantifying several of these mutants for the ABM [102]. Future work
could build on this approach [68] and our work to quantify CA spot patterns. In terms of
(inter)stripe width and curviness, our work with stripe patterns shows that the on-lattice
model [80] produces more variability across simulations than does the off-lattice model [102].
It would be interesting to investigate whether or not this is also the case for mutant patterns,
and to identify what features of the models give rise to this difference in variability. In par-
ticular, throughout our work, we did not attempt to determine what causes the differences
and similarities that our methods uncover between ABM [102] and CA [80] patterns. It may
be the structure of stochasticity in cell behaviors, the parameters in model rules, choices of
computational implementation, or something else that leads to these features. By developing
quantitative methods that can be applied flexibly across models, our work helps opens the door
to future studies that address mathematical questions like these and bring the perspectives of
different microscopic models together to better understand biological systems.

Appendix A. Additional details on the two models in our case study. To give more
intuition into our focal models [80, 102], we discuss their rules for two cell dynamics (as
examples among many) in more detail here. First, the ABM [102] and CA [80] specify that
one of the ways that the loose iridophore at position I? can swap to dense is when two
inequalities are met, namely,

N N
(A1) Z 1QI§ (M;) <a and Z 1915_, (X$) < b= Ig transforms to dense,
=1 loc i=1 ~lons

two conditions must be met

where a =3 and b =9 cells for the ABM [102], and a =1 and b= 16 cells for the CA [80]. Here
Nfé and Ny are the current numbers of X4 and M cells, respectively. The indicator functions
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1oz (1) and 1oz (-) count the number of cells in a long-range annulus or short-range ball
around z; see [80, 102] for length scales. In the ABM, I? refers to the coordinates of the jth
loose iridophore in continuous space, and, in the CA, the coordinates are in discrete space.
Similarly, M; and X? mark the positions of the ith melanophore and dense xanthophore,
respectively.

As an example of a dynamic that the models describe in a subtly different way, both
models [80, 102] account for M differentiation from uniformly distributed precursors. Given a
randomly selected location z in the domain (either (x,y)-coordinates or a grid site), the ABM
and CA treat z as the location of a precursor that differentiates into an M cell according to
long- and short-range signals. The ABM implements the rule

N;é Nld Num
(A.2) d 1o, (XH+D 1 (I >a+B> 1oz (M;) and
i=1 i=1 i=1
long-range signals
N Nu NY
Z lo: (X$) + E 1= (M;) + E 1oz (1) <y = M differentiates at z,
i=1 i=1 i=1

local signals: competition and preventing overcrowding

where a = 3 cells [101], 8 = 3.5, n = 4 cells, and ijl is the number of I4 cells. Using the
same notation, the corresponding CA rule for M differentiation at the randomly selected grid
position z is

Ng N{ Nu
(A.3) Z oz (X)) + Z Loz I >a+p Z Loz (M) and
=1 =1 =1

long-range signals (same as Eqn. (A.2))

N Nu NY
Z 1g: (X$) < 'yz 1o= (M;) and Z 1oz (I <k = M differentiates at z,
i=1 i=1

loc
i=1

local signals: competition

where a =3 cells, 5 =10, v =12, and k = 3 cells. The difference in 8 for the ABM and CA
long-range terms in Eqn. (A.2) and (A.3) may be related to the difference in M density in
these models; « is a delay term, slowing how quickly M cells differentiate after the appearance
of interstripe cells.

Code availability. The MATLAB and Python programs that we developed to quantify
on-lattice and off-lattice stripe patterns are publicly available on GitLab [24]. We also include
a sample simulation from each model on GitLab [24]. A large set of example simulations from
the agent-based model [102] is available at [69], and code to generate simulated data from the
cellular automaton model is publicly available at [79].
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