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THE BIGGER PICTURE Thanks to the rapid advances in artificial intelligence, AI for science (AI4Science) has
emerged as one of the new promising research directions for modern science and engineering. In this review,
we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental designmethods
for accelerating the discovery of novel functionalmaterials aswell as enhancing the understanding of compo-
sition-process-structure-property relationships. We specifically discuss the challenges and opportunities in
integrating prior scientific knowledge and physics principles with AI and machine learning (ML) models for
accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based
prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic
regression are detailed in the review, along with several detailed case studies and results in materials
discovery.
SUMMARY

Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from
the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-
throughput screening, to one that builds on knowledge-driven advanced informatics techniques enabled by
the latest advances in signal processing and machine learning. In this review, we discuss the major research
issues that need to be addressed to expedite this transformation along with the salient challenges involved.
We especially focus onBayesian signal processing andmachine learning schemes that are uncertainty aware
and physics informed for knowledge-driven learning, robust optimization, and efficient objective-driven
experimental design.
INTRODUCTION

Accelerating the development of novel functional materials with

desirable properties is a worldwide imperative because it can

facilitate advances in diverse fields across science, engineering,

and biomedicine with significant potential contributions to eco-

nomic growth. For example, the US Materials Genome Initiative

(MGI) calls for cutting the cost and time for bringing new mate-

rials from discovery to deployment by half by integrating exper-

iments, computer simulations, and data analytics.1,2 However,

the current prevailing practice in materials discovery primarily

relies on trial-and-error experimental campaigns or high-

throughput virtual screening approaches by computational sim-

ulations, neither of which can efficiently explore the huge mate-

rials design space to develop materials that possess targeted

functional properties.
This is an open access article under the CC BY-N
To fundamentally shift the current trial-and-error practice to an

efficient informatics-driven practice, there have been increasing

research efforts to develop signal processing (SP) and machine

learning (ML) methods that may ultimately enable autonomous

materials discovery and expedite the discovery of novel mate-

rials at a substantially reduced cost and time.3–5 When applying

SP and ML methods in materials science, several unique chal-

lenges arise, which include (1) a limited amount of data (if any)

for investigating and exploring new materials systems, (2) data

of varying and inconsistent quality because of technical limita-

tions and a lack of common profiling prototypes, (3) significant

complexity and uncertainty in existing computational simulation

and surrogate models,6 and (4) incomplete domain knowledge.

To cope with the aforementioned challenges and to effectively

discover novel functional materials with the desired target prop-

erties, robust decision-making strategies are critical for efficient
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exploration of the immense materials design space through

effective learning, optimization, and experimental design under

significant uncertainty. Directly applying existing data-driven

SP and ML methods falls short of achieving these goals, and

comprehensive theoretical and methodological developments

tailored to address these unique challenges are crucial. Some

salient issues that need to be addressed include the following:
(1) Knowledge-based prior construction: mapping scientific

knowledge into a prior distribution that reflects model un-

certainty to alleviate the issues stemming from data

scarcity

(2) Model fusion: updating the prior distribution to a posterior

distribution with multiple uncertain models and data sour-

ces of different data quality

(3) Uncertainty quantification (UQ): quantification of the cost

of uncertainty relative to one or more objectives for effi-

cient materials discovery

(4) Optimization under uncertainty (OUU): derivation of an

optimal operator from the posterior distribution

(5) Optimal experimental design (OED): efficient experi-

mental design and data acquisition schemes to improve

the model to explore the materials design space more

effectively

(6) Knowledge discovery: closing the knowledge gap in the

current model, such as composition-process-structure-

property (CPSP) relationships relevant to the materials

discovery objectives, based on newly acquired data or

increased model knowledge

In this article, we will review the recent advances related to the

aforementioned research issues. Especially, we will provide an

in-depth review of Bayesian SP and ML approaches for knowl-

edge-driven learning, objective-based UQ, and efficient experi-

mental design for materials discovery under substantial model

and data uncertainties. The core foundation underlying these

strategies is a Bayesian framework that enables mathematical

representation of the model and data uncertainties, encoding

available domain knowledge into a Bayesian prior, seamlessly

integrating experimental (or simulation) data with the domain

knowledge to obtain a posterior, quantifying the impact of the

uncertainty on the objective, and effective design of strategies

that can reduce this uncertainty. It is important to note that the

guiding principle of the aforementioned Bayesian framework is

to have a (knowledge-based) prior represent an uncertainty class

of models. The prior characterizes the state of our knowledge

about the model representing the system, based on which we

can design operators to achieve the scientific objectives. Artifi-

cial intelligence for science (AI4Science) has emerged as an

enormous modern research field. Because of the rapidly

evolving nature of this field, it is challenging to provide a compre-

hensive review of all ongoing research efforts, and the readers

are strongly encouraged to refer to additional resources,

including recent publications in AI4Science7–10 as well as those

in AI/ML-augmented materials discovery.11–13

In the following sections, we first introduce the UQ framework

that encompasses the various components in knowledge-driven

learning, optimization, and experimental design. This will be fol-

lowed by in-depth discussion of the individual research themes,
2 Patterns 4, November 10, 2023
where we will review the latest research results along these

directions.
Bayesian learning, UQ, and experimental design
Engineering generally aims at optimization to achieve opera-

tional objectives when studying complex systems. Because all

but very simple systems must account for randomness, modern

engineering may be defined as the study of optimal operators on

random processes. Besides the mathematical and computa-

tional challenges that arise with classical system identification

(learning) and operator optimization (control or filtering, for

example) problems, such as nonstationary processes, high di-

mensions, and nonlinear operators, another profound issue is

model uncertainty. For instance, with linear filtering there may

be incomplete knowledge regarding the covariance functions

or power spectra in the case of Wiener filtering. In such cases,

not only must optimization of the operator (i.e., filter in this

example) be relative to the original cost function but also relative

to an uncertainty class of random processes. This naturally leads

to the need for postulation of a new cost function that integrates

the original cost function with the model uncertainty. If there is a

prior (or posterior) distribution governing the likelihood of a

model within the uncertainty class, then one can choose an oper-

ator that minimizes the expected cost over all possible models in

the uncertainty class. In what follows, we first lay out the mathe-

matical foundations pertinent to quantifying and handling model

uncertainty and then review relevant existing literature, with

recent efforts focusing on materials science research.
Mathematical backgrounds
The design of optimal operators can take different forms de-

pending on the random process constituting the scientific model

and the operator class of interest. The operators might be filters,

classifiers, or controllers. The underlying random process might

be a random signal/image for filtering, a feature-label distribution

for classification, or a Markov process for control. Optimal oper-

ator design involves a mathematical model representing the un-

derlying (materials) system and a class of operators from which

the best operator that minimizes the cost function reflecting

the objective should be selected. It takes the general form

jopt = argmin
j˛J

CðjÞ; (Equation 1)

where J is the operator class, and CðjÞ is the cost of applying

operator c on the system. The genesis of such an operator

design formulation can be traced back to the Wiener-

Kolmogorov theory in SP for optimal linear filters developed in

the 1930s,14,15 where the operational objective is to recover

the underlying signals given noisy observations with the mini-

mum mean squared error (MSE). In this class of filtering prob-

lems, the operators mentioned above are filters. The underlying

system can be modeled by a joint random process ðXðtÞ;YðsÞÞ,
t˛T ; s˛S. Optimal filtering involves estimating the signal YðsÞ
at time s via a filter c given observations fXðtÞgt˛ T . A filter

j˛J is a mapping on the space of possible observed signals,

and a cost function takes the form CðYðsÞ; bY ðsÞÞ, with bY ðsÞ =

jðXÞðsÞ. For fixed s˛S, an optimal filter is defined by Equation 1

with CðjÞ = CðYðsÞ; jðXÞðsÞÞ = E½ðYðsÞ � jðXÞðsÞÞ2�. Similar
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operator design formulations have been adopted in control16

and, more recently, in ML,17 where the corresponding operators

are controllers that can desirably alter the system behavior or

predictive models for system properties of interest (e.g., classi-

fiers). For example, the operator may be a predictor that tries

to characterize the property of a given material based on input

features (such as its composition and structure).

When the true model is not known with certainty, it would be

prudent to consider the entire uncertainty class Q of possible

models that contains that true model q˛Q, where qmay be typi-

cally a parameter vector specifying the model rather than aiming

at accurate inference of the true model. GivenQ, the goal would

then be to design a robust operator that guarantees good perfor-

mance over all possible models. For example, there have been

significant research efforts taking a minimax strategy to design

robust operators:

jQ
minimax = argmin

j˛J
max
q˛Q

CqðjÞ; (Equation 2)

WhereCqðjÞ characterizes the cost of the operator c formodel q.

Taking filtering as an example, CqðjÞ = CðYðs; qÞ; jðXÞðs; qÞÞ,
where q denotes the model parameters for the signal and obser-

vation random processes. Such aminimax robust strategy is risk

averse because it aims to find an operator whose worst perfor-

mance over an uncertainty class of models Q is the best among

all operators in J18,19. Minimax robustness has been applied in

many optimization frameworks; for example, for filtering20–23

with a general formulation in the context of game theory,24 as

well as recently in ML.25,26 One critical downside of minimax

robustness is that, in avoiding the worst-case scenario, the

average performance of the designed operator can be poor, in

particular when the prior knowledge about the uncertainty class

Q is available and the worst-case model is unlikely. There has

been extensive research on alleviating this potential issue by

developing risk measures, such as conditional value at risk in a

recently proposed risk quadrangle scheme,18 to achieve better

trade-off between the attainment of the operational objective

and the aversion of potential risk because of uncertainty.

Unlike such minimax robust strategies, we focus on Bayesian

robust strategies that try to optimize the expected performance

in the presence of uncertainty. This leads to the design of the

intrinsically Bayesian robust (IBR) operator, which is defined as

jQ
IBR = argmin

j˛J
EQ½CqðjÞ�; (Equation 3)

where the expectation is with respect to a prior probability distri-

bution pðqÞ of the uncertain model q˛Q. While not as risk averse

as minimax robust operators, these Bayesian robust operators

guarantee optimal performance on average. The prior pðqÞ prob-
abilistically characterizes our prior knowledge as to which

models are more likely to be the true model than the others. If

there is no prior knowledge beyond the uncertainty class itself,

then a uniform (non-informative) prior may be used.
Related works
Before we delve into the Bayesian framework for learning, UQ,

and experimental design, here we provide a literature review of

related topics. We first review the history of operator design, in
particular related to filtering, classification, and control. For

optimal operator design in filtering, Kalman-Bucy recursive

filtering was proposed in the 1960s27 after the Wiener filter.14,15

Optimal control began in the 1950s, as did classification as

now understood. In all three areas, it was quickly recognized

that often the underlying scientific model would not be

known—hence the development of adaptive linear/Kalman fil-

ters and adaptive controllers.28,29 Classification became depen-

dent on classification rules that make no effort to estimate the

true feature-label distribution.17 From the perspective of model

uncertainty classes, control theorists delved into Bayesian

robust control for Markov decision processes in the work of

Bellman and Kalaba,30 Silver,31 and Martin30–32 in the 1960s,

but computation was prohibitive, and adaptive methods pre-

vailed. Optimal linear filtering was approached via minimax in

the late 1970s in the work of Kuznetsov,20 Kassam and Lim,21

Poor,22 and Verdu and Poor.24 Model-constrained Bayesian

robust (MCBR) MSE linear filtering and classification appeared

in the early 2000s.33,34

When considering uncertainty in optimization, there has been

extensive research in designing different risk metrics for UQ. For

example, different values at risk18 and quantities of interest

(QoIs)19 have been proposed based on different statistics

when modeling random processes or the corresponding model

parameters as random variables, including the ones based on

prediction variance35 and predictive entropy.36,37 With these

risk metrics, different robust operator design strategies have

been studied to derive risk-averse operators that can achieve

good performance.19,25,26,35,37–39 While introducing additional

risk metrics enables balancing the trade-off between the opera-

tional objectives and the potential risk (or regret) because of un-

certainty, incorporating different metrics with different strategies

can be subjective. For example, there may be large predictive

variance or entropy, but it may not always directly affect the

operational objectives and, thereafter, consequent decision-

making.

Bayesian learning and experimental design offers one solution

for robust design under uncertainty.19,40–44 In this framework,

UQ can be naturally measured by the loss of performance

because of the utilization of a robust operator to copewith uncer-

tainty. This leads to an experimental design strategy where ex-

periments are selected to optimally reduce this performance

loss, following the early thinking of Bayesian robust filtering

and control.15,30–32 Such an experimental design framework,

rooted in the foundation of modern engineering, closes the

loop from scientific knowledge on a complex system, models

for the complex system under uncertainty, data generated by

the system, and experiments to enhance the current system

knowledge to better attain the objectives. In this paper, we focus

on this closed-loop framework, which distinguishes itself from (1)

other existing schemes that are purely data driven45–48 or (2)

experimental design frameworks based on high-throughput sim-

ulations, such as P 4U49 and DAKOTA.50

Data-driven frameworks heavily depend on the availability of

data, upon which ‘‘black box’’ surrogate models are trained.

They typically model the operators (used to achieve the objec-

tives) of interest rather than modeling the system itself when

designing experiments. For example, in materials discovery,

many existing methods rely on Bayesian optimization (BO),
Patterns 4, November 10, 2023 3
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Figure 1. Illustration of the knowledge-driven optimal experimental
design (OED) cycle for materials discovery
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which uses Gaussian processes (GPs) as surrogate models to

directly approximate the target materials properties as ‘‘black

box’’ functions.51–53 While BO may be useful for optimizing

the properties, the acquired data do not improve our knowl-

edge regarding the materials system. As a consequence, there

is often a scientific gap in making prior assumptions on these

‘‘black box’’ models and their uncertainty.54 To better integrate

scientific knowledge, such as materials’ process-structure-

property relationships, as detailed under ‘‘Knowledge-driven

prior construction,’’ the model uncertainty should be directly

imposed on the system model that incorporates inter-relation-

ships among the underlying random processes. For simula-

tion-based frameworks, including P 4U and DAKOTA, UQ,

sensitivity analysis, and experimental design are mostly based

on forward model simulations, which do not provide a natural

way to propagate the data generated by the selected experi-

ments back to the system to fill the gap in our system knowl-

edge and to improve the current model, which is precisely

what our proposed paradigm aims to do. The emphasis here

is that (1) the uncertainty is placed directly on the underlying

random process (i.e., current knowledge regarding the mate-

rials system) and not on surrogate models that reflect opera-

tional performance on this uncertain process and that (2) the

experimental design is centered around attaining specific ob-

jectives. A wide range of approaches can emerge, depending

on the assumptions made regarding the uncertainty class, ac-

tion space, and experiment space. Popular Bayesian experi-

mental design policies, such as knowledge gradient (KG)46,47

and efficient global optimization (EGO),45 are special cases in

this framework under their modeling assumptions. These ap-

proaches often adopt generic surrogate models with the uncer-

tainty placed on the reward function; therefore, there is no

direct connection between the prior model assumptions and

the underlying process/system.

Because of these characteristics, Bayesian frameworks have

been increasingly used to address a wide range of materials dis-

covery problems.55–59 BO’s ability to balance the exploration
4 Patterns 4, November 10, 2023
and exploitation is ideally suited in materials discovery tasks

because queries to the materials design space (either through

computations or experiments) are extremely resource intensive.

Most approaches focused on materials discovery are myopic in

the sense that increased knowledge of thematerials space being

explored is not necessarily part of the objective. In other cases,

Bayesian learning is used to increase knowledge of the physics

underlying observed physical phenomena without much atten-

tion being put on improving the materials’ performance relative

to the existing state of the art.60–64 In materials discovery appli-

cations, the complexity and stochasticity because of substantial

model and data uncertainty call for SP and ML approaches in a

Bayesian setting that can provide a unified closed-loop frame-

work for objective-based learning and optimal design of robust

operators and effective experiments under uncertainty. This is

illustrated in Figure 1.
IBR operator and mean objective cost of uncertainty
(MOCU)-based UQ
In this section, we focus on the objective-based UQ (objective-

UQ) framework using the MOCU,65,66 which measures the ex-

pected loss with respect to the final operational objective

because of the model uncertainty. Uncertainty is directly

imposed on the model representing the underlying system and

not on the parameters of the operator, as typically done in the

ML community. Because the uncertainty is on the systemmodel,

reduction of this uncertainty inevitably leads to improving our

knowledge regarding the system, leaving no discrepancy be-

tween what is learned (through data acquisition or experiments)

about the model and what we know about the underlying system

(and the relevant science).

Consider a stochastic model M with uncertainty class Q

composed of possible parameter vectors. Let C be a cost func-

tion and J a class of operators on M. For each operator j˛J,

CqðjÞ denotes the cost of applying c on the model parametrized

by q˛Q. An IBR operator on M is an operator jIBR ˛J so that

the expected value over Q of the cost CqðjÞ is minimized by

jIBR as formulated in Equation 3,67 the expected value being

with respect to a prior probability distribution pðqÞ capturing

model uncertainty over Q. Here, each parameter vector q˛Q

corresponds to a model, and pðqÞ quantifies the likelihood that

a model is Q and therefore reflects prior knowledge. If there is

no prior knowledge beyond the uncertainty class itself, then it

is taken to be uniform with all models being equally likely. Given

a data sample S sampled independently from the full model, the

IBR theory can be used with a posterior distribution p�ðqÞ =

pðqjSÞ, giving the optimal Bayesian operator. Because of

the optimality of the IBR operator jIBR over Q,

EQ½CqðjIBRÞ�%EQ½CqðjÞ� for any operator c. For q˛Q, the

objective cost of uncertainty relative to q is the difference be-

tween CqðjIBRÞ and CqðjqÞ. Averaging this loss differential pro-

vides our basic UQ, the MOCU:65

MOCUðQÞ = Eq½CqðjIBRÞ � CqðjqÞ�; (Equation 4)

where jq denotes the optimal operator with respect to the model

specified by the model parameter q. The expectation is

computed with respect to the distribution pðqÞ of the model q

in the uncertainty class Q.



Figure 2. Illustration of the historical context
of the intrinsically Bayesian robust (IBR)
framework and the concept of mean
objective cost of uncertainty (MOCU)
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While the entropy of the prior (or posterior) has been

commonly used to measure model uncertainty, entropy, how-

ever, does not focus on the objective. In other words, there

may be large entropy, but it may not directly affect the opera-

tional objective because it may not affect the expected cost in

Equation 13. Unlike entropy, MOCU aims to quantify the uncer-

tainty that practically ‘‘matters’’ as it pertains to a specific objec-

tive (Figure 1).

IBR (with a prior) and optimal Bayesian (with an updated pos-

terior given observed data) operator design have been applied

inmodern engineering, statistics, andML. Based on different op-

erators (for example, for filtering, classification, and control) and

their corresponding cost functions, the research focus has been

mostly on solving the corresponding inference and optimization

problems, known as Bayesian learning or Bayesian inverse prob-

lems.68–70When systems understanding and operator design are

the objectives of modeling complex systems, Bayesian experi-

mental design and decision-making are often with respect to

the uncertainty class of models and the cost function related to

the operator of interest. More importantly, MOCUprovides a nat-

ural measure for the cost of uncertainty that quantifies the poten-

tial operator performance degradation because of uncertainty,

directly focusing on operational objectives. Therefore, this IBR-

MOCU framework not only provides the robust operator design

and objective-oriented UQ but also leads to experimental design

tochooseanexperiment tooptimally reduceperformance lossby

adding to existing scientific knowledge. The IBR-MOCU para-

digm follows in line from the early thinking of Wiener and Kolmo-

gorov, and it extendsandunifiespreviousworkon robust filtering,

classification, and control. The historical context of the IBR-

MOCU framework is depicted in Figure 2.

In the following sections, we focus on recent developments on

the corresponding components of this IBR-MOCU framework,

including prior construction, model fusion, OED, and automated

feature engineering for knowledge discovery in the context of

materials science applications.

Knowledge-driven prior construction
The first challenge of applying SP/ML methods in the MOCU

framework to materials science is modeling and quantifying un-

certainty because there rarely exist sufficient data for satisfac-

tory system identification because of the enormous search

space and the complicated CPSP relationships.4 Small samples

are commonplace in materials applications, in particular when

the research focus is to discover novel complex functional mate-
rials. Thereafter, if prior knowledge, such

as physics principles, may help constrain

the SP/ML model space, it is critical to uti-

lize these in systems modeling.71–73 While

Bayesian methods naturally model the un-

certainty because of their distribution-

based nature to treat model parameters

as random variables, the salient obstacle
confronting Bayesian methods is how to appropriately impose

model prior.

Regarding prior construction, Jaynes74 has remarked,

‘‘. there must exist a general formal theory of determination

of priors by logical analysis of prior information—and that to

develop it is today the top priority research problem of Bayesian

theory.’’ However, the most common practice of Bayesian

methods is to adopt either non-informative or conjugate prior

for computational convenience. When there are limited data or

strong scientific prior knowledge, it is precisely then that the

formal structure as commented by Jaynes74 is critical for appro-

priate prior construction.

In this section, we first briefly review traditional prior construc-

tion methods and then focus on the formal structure for prior

construction involving a constrained optimization, in which

the constraints incorporate existing scientific knowledge

augmented by slackness variables. The constraints tighten the

prior distribution in accordance with prior knowledge while at

the same time avoiding inadvertent over-restriction of the prior,

an important consideration with small samples.

Traditional priors
Starting from Jeffreys’75 non-informative prior, therewas a series

of information-theoretic and statistical methods: maximal data

information priors (MDIP),76 non-informative priors for integers,77

entropic priors,78 reference (non-informative) priors obtained

through maximization of the missing information,79 and least

informative priors.80 As discussed in the literature,81–83 the prin-

ciple of maximum entropy can be seen as amethod of construct-

ing least informative priors,84,85 though it was first introduced in

statistical mechanics for assigning probabilities. Except in the

Jeffreys’75 prior, almost all of the methods are based on optimi-

zation: maximizing or minimizing an objective function, usually

an information theoretic one. The least informative prior80 is

found among a restricted set of distributions, whereas the

feasible region is a set of convex combinations of certain types

of distributions. Zellner86 proposed several non-informative

and informative priors for different problems. All of these

methods emphasize the separation of prior knowledge and

observed sample data.

A priori knowledge in the form of graphical models (e.g., Mar-

kov random fields) has also been widely utilized to either

constrain the model space (for example, in covariance matrix

estimation in Gaussian graphical models)87,88 or impose regula-

rization terms.89 In these studies, using a given graphical model
Patterns 4, November 10, 2023 5
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illustrating the interactions between variables, different prob-

lems have been addressed; e.g., constraints on the matrix

structure87,90,91 or known independencies between vari-

ables.88,92 Nonetheless, these studies rely on a fundamental

assumption: the given prior knowledge is complete and hence

provides one single solution. However, in many applications,

the given prior knowledge is uncertain, incomplete, and may

contain errors. Therefore, instead of interpreting the prior knowl-

edge as a single solution (e.g., a single deterministic covariance

matrix), we aim to construct a prior distribution on an uncer-

tainty class.

CPSP relationships in materials science
A central tenet in the field of materials science and engineering is

that the processing history controls the material’s internal struc-

ture, which, in turn, controls the effective (macroscale) properties

or performance characteristics exhibited by the material. Explo-

ration and exploitation of the materials space thus necessitate

the generation of CPSP linkages.93,94 Given the multiscale na-

ture of the material’ structures,93 such (abstract) sets of CPSP

linkages can be visualized as a large connected and nested

network of models that mediate the flow of information about

the material’s state and behavior up and down the scales.

Any single model in this large network of models can be

formally expressed as fðm;4Þ, where m represents the appropriate

CPSP variables (i.e., related to process history, material struc-

ture, or material property), and 4 denotes variables describing

the physics controlling the material phenomenon of interest. Es-

tablished domain knowledge can be used to construct a prior on

4. Seeking fðm;4Þ allows us to explicitly capture physics in formu-

lating our ML/AI models. This allows us to use physics-based

simulation data to train fðm;4Þ by independently varying m and

4. Given the enormous challenges associated with the develop-

ment of concurrent multiscale CPSP relationships, materials

analysis tends to be carried out (most of the time) at different,

not necessarily strongly coupled scales. At the mesoscale level

and beyond (i.e., larger than the atomic scale), several efforts

have been made to predict materials’ behavior by using data-

driven approaches.Most successful efforts at this scale have ex-

ploited low-dimensional representation of microstructure infor-

mation to build effective property models.95 To date, however,

there is not much work on the direct use of physical principles

to constrain the models used to establish these CPSP linkages.

In this regard, more success has been achieved when consid-

ering the structure-property connections at the atomic scale.

From the atomic point of view, materials are fundamentally

composed of atoms of similar or different types of chemical ele-

ments located on real-space sites. The equilibrium atomic struc-

tures of materials are reached through the minimization of total

energy originated from the complex interaction among ions

and electrons in the presence/absence of the external field. It

consists of the Coulomb and kinetic energy of electrons and

ions and the additional important contributions from quantum

mechanical effects, such as (1) exchange energy because of

the fermionic spin statistics of electrons, (2) static and dynamical

correlation energy beyond the single Slater determinant approx-

imated electronic wave functions, and (3) nuclear quantum

effects when tunneling and delocalization of ions become impor-

tant.96 Recently, a graph convolutional neural network has been
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applied to describe crystal and molecular structures of materials

because atoms and bonds can be perfectly represented by

graph nodes and edges, respectively. Recent examples include

the crystal graph convolutional neural networks (CGCNN),97 the

improved CGCNN (iCGCNN),98 the materials graph network

(MEGNet),99 etc. An underlying physical prior hypothesis is the

locality of interactions; that is, the physical knowledge of interest

can be learned from the local chemical interactions. For

example, in the CGCNN,97 the feature vector vi for atom i is up-

dated via iterative convolution as

v
ðt+1Þ
i = v

ðtÞ
i +

X
j;k

s
�
z
ðtÞ
ði;jÞkW

ðtÞ
f + b

ðtÞ
f

�
1g

�
z
ðtÞ
ði;jÞkW

ðtÞ
s + bðtÞ

s

�
;

(Equation 5)

where z
ðtÞ
ði;jÞk = v

ðtÞ
i 4v

ðtÞ
j 4uði;jÞk is the concatenated neighbor vec-

tor consisting of atom i’s feature vector vi, feature vector vj of

atom j located on the k-th bond of atom i, and the corresponding

bond feature uði;jÞk . s is a sigmoid function, and g is a nonlinear

softmax activation function. W and b denote the convolution

weight matrix and bias of the corresponding layer, respectively.

In these convolutional filters, the summation only runs through

the local neighboring sites via local coordination determination97

or Voronoi tessellation.98 The results from these graph convolu-

tional neural network approaches are promising because it is

generally true that the physical interaction decreases as the dis-

tance of ði; jÞ atom pair (i.e., bond length), increases. This a priori

physical knowledge is built inside these graph networks as an im-

plicit constraint. While the bare Coulomb operator decays slowly

with 1=r, the destructive interference of electronicwave functions

in many-particle systems leads to the nearsightedness of elec-

tronic matter in the absence of long-range ionic interac-

tions;100,101 i.e., local electronic properties, such as electron den-

sity, depend mostly on the effective external potential at nearby

locations. However, for ionic systems, the long-range Coulomb

interaction can have a non-negligible contribution to the total en-

ergy and atomic forces evenwhen the ði; jÞ atompair is separated

far away, and further consideration to include these long-range

interactions will be of great importance to more accurate

describe the physical properties of ionic materials. In addition

to these interaction-based physics principles, another important

consideration when developing ML methods for materials sys-

tems is to make sure that the input feature and the derived

descriptor representations should be invariant to the symmetries

of the system, such as rotation, reflection, translation, and per-

mutation of atoms of the same species. Kernel-based methods

and topological invariants based on group theory have been

recently investigated to help improve the accuracy of predictions

in the ML modeling of solid state materials.102

Maximal knowledge-driven prior (MKDIP) construction
Knowledge-driven prior construction utilizes first principles and

expert domain knowledge to alleviate the model/data uncer-

tainty and the small sample size issues through constraining

the model space or deriving the uncertainty class of models

based on physical and chemical constraints. Incorporating sci-

entific knowledge to directly constrain Bayesian predictive

models can achieve robust predictions, which would be impos-

sible by using data alone. In materials science, there is a
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substantial body of knowledge in the form of phenomenological

models and physical theories for prior construction. Such knowl-

edge can be used in choosing features or descriptors and

constrain the model space for predicting novel materials with

desired properties.

To translate more general materials knowledge into Bayesian

learning, a general prior construction framework can be devel-

oped to map the known physical, chemical, and structural con-

straints into prior distributions in Bayesian learning. We have

proposed such a framework, capable of transforming any source

of prior information to prior probabilities given an uncertainty

class of predictive models.103–106 We call the final prior probabil-

ity constructed via this framework an MKDIP. The new MKDIP

construction constitutes two steps: (1) functional information

quantification, where prior knowledge manifested as functional

relationships is quantified as constraints to regularize the prior

probabilities in an information theoretic way, and (2) objective-

based prior selection, where, by combining sample data and

prior knowledge, we build an objective function in which the ex-

pected mean log likelihood is regularized by the quantified infor-

mation in step (1). As a special case, where we do not have any

sample data, or where there is only one data point available for

constructing the prior probability, the proposed framework is

reduced to a regularized extension of themaximum entropy prin-

ciple (MaxEnt).107

By introducing general constraints, which can appear as con-

ditional statements based on expert domain knowledge or phys-

ics principles, the idea here is to maximally constrain the model

uncertainty with respect to the prior knowledge characterized

by these constraints. To give a simple example, assuming that

we know a priori, based on physics principles, that certain micro-

structural properties R for a target material are determined by its

composition X, we then can derive the corresponding constraint

Ep½HqðRjXÞ�% x, where HqðRjXÞ denotes the conditional Shan-

non entropy of R given X under the probabilistic model deter-

mined by q. If our prior knowledge is correct, then HqðRjXÞ/ 0

for any appropriate model. Hence, under the uncertainty charac-

terized by the prior distribution pðqÞ, we aim to derive the MKDIP

with the expected conditional entropy as small as possible. De-

pending on different types of prior knowledge, we can write

different forms of such constraints. Specifically, the MKDIP con-

struction integrates materials science and statistical learning by

(1) model prior knowledge quantification, where general mate-

rials knowledge, from physical theories or expert domain knowl-

edge, is quantified via quantitative constraints or conditional

probabilities and (2) optimization, where MKDIP construction re-

quires solving the constrained optimization problems depending

on different applications and data types of available observed

measurements. When sufficient data exist, we can also split the

data for prior construction and for updating the posterior, appro-

priately integrating prior knowledge and existing data.

In particular, MKDIP aims to derive the solution to the following

optimization problem:

argmin
p˛P

Ep½Cqðx;DÞ�; (Equation 6)

whereP is the set of all proper priors, andCqðx;DÞ is a cost func-
tion that depends on 1 q, the random vector parameterizing the

underlying probability distribution; (2) x, our state of (prior) knowl-
edge; and (3) D, partial observations. Alternatively, by parame-

terizing the prior probability as pðq;gÞ, with g˛G denoting the

hyperparameters, the MKDIP can be found by solving

argmin
g˛G

Epðq;gÞ½Cqðx;DÞ�: (Equation 7)

We have considered cost functions Cq that can be decom-

posed into three terms:106

Cqðx;DÞ = l1

h
ð1 � bÞgð1Þ

q ðgÞ + bg
ð2Þ
q ðDÞ

i
+ l2g

ð3Þ
q ðxÞ;

where b, l1, and l2 are non-negative regularization parameters.

Here, gð1Þð $Þ denotes the information-theoretic cost, which can

take different forms, including MaxEnt;107 gð2Þð $Þ is the cost

that involves the partially observed data when they are available,

including regularized MDIP and regularized expected mean log

likelihood prior;103 and, more critically, gð3Þð $Þ denotes the

knowledge-driven constraints that convert prior knowledge

into functional constraints to further regularize the prior as

detailed in Boluki et al.106 Using this cost function, we formulate

the MKDIP construction problem as the following optimization

problem:

argming˛GEq

h
ð1 � bÞgð1Þ

q ðgÞ+ bg
ð2Þ
q ðDÞ

i
Subject to : Eq

h
g
ð3Þ
q;i

i
> 0; i˛ f1;.; ncg;

(Equation 8)

where g
ð3Þ
q;i , ci˛ f1; .; ncg, are constraints resulting from our

state of knowledge x via the mapping T : x/Eq½gð3Þ
q;i �> 0,

ci˛ f1; .; ncg; for example, based on the aforementioned

composition-structure relationship Ep½HqðRjXÞ�. The overall

MKDIP scheme is illustrated in Figure 3.

In contrast to non-informative priors, MKDIP aims to incorpo-

rate the available prior knowledge and uses part of the data to

construct an informative prior. While, in theory, the observed

data can be entirely used in the optimization problem in Equa-

tion 8, in practice one should be cautious to avoid overfitting to

the given data. TheMKDIP construction here introduces a formal

procedure for incorporating prior knowledge. It allows the incor-

poration of the knowledge of functional relationships and any

constraints on the conditional probabilities. Finally, we shall

note that deriving the solution to the MKDIP optimization prob-

lem Equation 8 can be challenging because of the non-convexity

of the objective function and constraints. Nevertheless, feasible

and local optimal solutions, especially with the specific distribu-

tion families and constraint forms, can be derived.103
Integrating prior knowledge in materials science
Xue et al.52 have applied Bayesian learning and experimental

design based on materials knowledge using results from the

Landau-Devonshire theory for piezoelectric materials. In partic-

ular, a Bayesian regression model,54 constrained by the Landau

functional form and the constraints on morphotropic phase

boundaries (MPBs), was developed to guide the design of novel

materials with the functional response of interest and to help

navigate the search space efficiently so that the desired compo-

sition can be achieved in a few trials. The Landau-Devonshire
Patterns 4, November 10, 2023 7



Figure 3. Illustration of knowledge-based
prior construction via MKDIP
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theory has been widely used to reproduce phase diagrams for

many piezoelectrics and to investigate their performance at the

MPB. The ferroelectric nanodomain phases can be character-

ized by different polarization vectors, p! = n!p, where n! =

½n1;n2; n3�T is a unit vector in the direction of polarization, and

p is its magnitude.108 The free energy, g, of the ferroelectric sys-

tem (e.g., BaTiO3 -based piezoelectrics) can be described by a

Landau polynomial that depends on the modulus of the polariza-

tion vector (p) and the polarization direction ( n
!
) at a given tem-

perature t:

gðp; n!; tÞ =
a

2

�
n2
1 + n2

2 + n2
3

�
p2 +

b1

4

�
n2
1+n

2
2+n

2
3

�2
p4

+
b2

4

�
n4
1 + n4

2 + n4
3

�
p4 +

g1

6

�
n2
1+n

2
2+n

2
3

�3
p6

+
g2

6

�
n6
1 + n6

2 + n6
3

�
p6 +

g3

6

�
n2
1n

2
2n

2
3

�
p6;

where the coefficients a, b0s, and g0s are materials dependent

and often determined from experiments; for example, b2ðt; xÞ
depends on the temperature (t) and composition (x). The MPB

is a phase boundary where the two phases (i.e., tetragonal [T]

and rhombohedral [R] phases in BaTiO3-based piezoelectrics)

coexist and have degenerate free energy. Therefore, at MPB

(t = tMPB and x = xMPB), gT = gR, which leads to

b2ðtMPB; xMPBÞ + 24g2 � g3

27
p2
eqðtMPB; xMPBÞ = 0;

p2
eqðt; xÞ denotes the polarization at equilibrium and has the func-

tional form rðt � tCðxÞÞ, where r is a constant, and tCðxÞ is the

composition-dependent Curie temperature. Based on these re-

lationships (more details can be found in Xue et al.52), the MPB

curve has the following quadratic form:

tMPBðxÞ = u1x
2 +u2x +C1;

where u1, u2, and C1 are the corresponding model parameters

to learn from experimental data. This serves as the prior knowl-

edge to constrain our Bayesian regressionmodel tomap thema-

terial composition x to the MPB curves.

As illustrated in Figure 4,with theminimal collecteddata (only 20

characterized BaTiO3-based piezoelectrics), the Bayesian regres-

sion model with the aforementioned functional constraints pro-

vides reliable phase boundaries and faithful uncertainty estimates.

More importantly, we demonstrated our approach for finding

BaTiO3-based piezoelectrics with the desired target of a vertical
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MPB. We have predicted, synthesized,

and characterized a solid solution, (Ba0.5
Ca0.5)TiO3-Ba(Ti0.7Zr0.3)O3, with piezoelec-

tric properties showing better temperature

reliability than other BaTiO3-based piezo-

electrics in our initial training data.

When the prior knowledge, including

different functional forms and constraints,

is available, the MKDIP framework can
help take the best advantage of them to explicitly determine the

predictive models as well as their corresponding predictors for

specific functional responses of interest. Besides such explicit

functional-form prior knowledge, which allows us to directly

constrain predictive models, the existing prior knowledge on

CPSP relationships may simply be in the form of correlation, con-

ditional relationships, and inequality constraints. To enable users,

especially materials domain experts, to easily explore and inte-

grate existing phenomenological knowledge into Bayesian

learning, infrastructure and friendly user interfaces should be

developed to help prior construction via active knowledge acqui-

sition from either materials scientists or even more recent large

language foundation models as the unprecedented knowledge

base.9,13 The current practice is mostly hand crafted based on

different problems and how data scientists work with their collab-

orating materials scientists. More interfacing efforts between data

scientists and materials domain experts are required to achieve

more synergistic collaboration in materials science.

Bayesian model averaging (BMA) with experimental
design
With a derived surrogate model, wewould like to exploit it in com-

bination with experiments to accelerate the development of new

materials. However, often, because of incomplete prior knowl-

edge, there are multiple feasible surrogate models within the un-

certainty class. We further explore a Bayesian experimental

design framework that is capable of adaptively selecting or aggre-

gating competing models connecting materials composition and

processing features to performance metrics through BMA.109,110

Review on Bayesian model fusion

Bayesian model fusion methods have been studied extensively

to achieve better predictive accuracy as well as robust risk and

uncertainty estimates.70,109,111,112 There are different Bayesian

model ensemble strategies stemming from the Bayes’ theorem

from Bayesian inference,70 including Bayesian model selection,

Bayesian model combination, and BMA. They all start with an

ensemble of candidate models as the uncertainty model class

and then update the model posterior probabilities given

observed data. The main difference among these different

strategies lies in how the updated posterior probabilities guide

the way to derive posterior predictive probabilities. For example,

Bayesian model selection aims to identify the best predicting

model(s) with different criteria, including the Bayesian informa-

tion criterion (BIC) and Akaike information criterion (AIC).113,114

Bayesian model combination often samples the best model
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Figure 4. Bayesian learning and experimental design constrained by the Landau functional for discovery of BaTiO3-based piezoelectrics as
described in the text
Shown are predicted (solid lines) and experimental (dots) phase diagrams for BZT-m50-n30, together with uncertainty estimates, from Bayesian regression. The
solid lines show the mean phase boundaries, and the dashed lines mark the 95% confidence intervals. Notice the uncertainty reduction given more data.
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subsets based on the updated model posterior, hoping to

achieve better convergence.115 In this paper, we focus on

BMA, which essentially relies on the weighted ensemble of the

models in the uncertainty class by the model posterior.109,112

The theoretical properties of BMA have been studied in the liter-

ature. For example, BMA can achieve better prediction perfor-

mance than any model in the uncertainty class.109,116 The corre-

sponding implementations addressing model uncertainty have

also been investigated for more effective and efficient inference

procedures.112

BMA with MOCU for OED

For Bayesian experimental design in general, there can be three

categories of objective functions to guide the experimental

design. In the first case, we have a parametric model where

the parameters come from an underlying physical system. One

such example is in biomedicine, where the objective function is

the likelihood of the cell being in a cancerous state, given a

state-space model based on genetic regulatory pathways.117

Another example is in imaging (for example, for image recon-

struction or filtering), where the parameters characterize the im-

age appearance, and the objective function is an error measure

between two images.

In the second category, the features are given, and the param-

eters come from a surrogate model used in place of the actual

physical model but are believed to be appropriately related to

the physical model. For example, in the materials science appli-

cations under ‘‘OED with MOCU,’’ the surrogate model is based

on the time-dependent Ginzburg-Landau (TDGL) theory and

simulates the free energy given dopant parameters, the objective

function is the energy dissipation, and the action is to find an
optimal dopant and concentration.5 To see how the approach

in Dehghannasiri et al.5 fits the above general theory, the reader

can refer to Boluki et al.118

In the third category, we do not know the physical model, and

we lack sufficient knowledge to posit a surrogate model with

known features/forms relating to our objective. This case arises

in many scenarios where the objective function is a ‘‘black box’’

function. Nevertheless, we can adopt a model, albeit one with

known predictive properties. This model can be a kernel-based

model, such as a GP.119 Moreover, this model can consist of a

set of possible parametric families, a kernel-based model with

different possible feature sets, or even kernel-based models

with different choices for the kernel function. In such scenarios,

we do not a priori have any knowledge about which feature set or

model family would be the best, and reliable model selection

cannot be performed before starting the experiment design

loop because of the limited number of observed samples.

Considering the average prediction from models based on

different feature sets or model families weighted by their poste-

rior probability of being the correct model, namely BMA, is one

possible approach.

In the context of materials discovery, we can frame the model

averaging problem in a hierarchy to define a family of uncertain

model classes in which, for example, different features

contribute differently to functional property prediction differently.

With such a hierarchical Bayesian model, BMA, essentially

weighing all the possible models by their corresponding proba-

bility of being the true model, is embedded in BO for OED to

realize a system not only capable of autonomously and adap-

tively learning the surrogate predictive models for the most
Patterns 4, November 10, 2023 9
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promising materials of desired properties but also utilizing the

models to efficiently guide exploration of the design space.

With more acquired data, the uncertainty of different models

will be quantified, and improved predictivemodels aswell as effi-

cient experimental design can be attained.

Again, assume an uncertainty classQwith the probability mea-

sureP, characterizingpredictivemodelsonadesignspaceX. The

experimental design goal is to optimize an objective function

f : Q3 X/R. For example, we want to find a design x˛ X that

minimizes an unknown true objective function fðx; qtÞ over X,

where qt ˛Q denotes the truemodel.When there is no strongprior

knowledge on functional forms of the objective function, often GP

regression (GPR) is adopted and iteratively updated given data

from performed experiments Dn: Pðf jx;DnÞ � GPðyjm;KÞ, where

fm;Kg denote the corresponding mean and kernel parameters.

To account for potential model uncertainty, BMA can be used for

more robust modeling of the objective function:

Pðf jx;DnÞ =
XL

i = 1

PðijDnÞPðf jx;Dn;mi;KiÞ; (Equation 9)

where i is the index of the candidate models in the uncer-

tainty class.

As explained under ‘‘Bayesian learning, UQ, and experimental

design,’’ a robust design is an element xR ˛X that minimizes the

average of the objective function across all possibilities in the un-

certainty class relative to a probability distribution governing the

corresponding space. This probability at each experimental

design iteration is the posterior distribution given the observed

data points available up to that step. Mathematically,

xR
n = argmin

x˛X

Eq½fðx; qÞjDn�; (Equation 10)

where Dn denotes the observed data till the nth iteration. MOCU

in this context can be defined as the average gain in the attained

objective between the robust design and the actual optimal de-

signs across the possibilities:

MOCUX
n ðQÞ = Eq

�
f
�
xR
n ; q

� � f
�
x�
q; q

���Dn

�
; (Equation 11)

where x�q denotes the optimal action for a given model parame-

terized by q, including both GPR parameters and additional pa-

rameters from BMA. Note that, if we actually knew the true (cor-

rect) model, then we would simply take the optimal design for

that model, and MOCU would be 0. Denoting the set of possible

experiments by X, the best experiment x�n at each time step (in

one-step look-ahead scenario) is the one that maximally reduces

the expected MOCU following the experiment; i.e.,

x�n = argmin
x˛X

Ex

�
Eq

�
f
�
xR
n+1; q

���x;Dn

�� � Eq

�
f
�
xR
n ; q

���Dn

�
:

(Equation 12)

In most cases in materials discovery, each experiment is synthe-

sizing the corresponding materials design and measuring its

actual properties (or their noisy versions). Thus, the experiment

space is equivalent to the design space.

It is beneficial to recognize that MOCU can be viewed as the

minimum expected value of a Bayesian loss function, where
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the Bayesian loss function maps an operator (the materials

design in this context) to its differential objective value (for using

the given operator instead of an optimal operator), and its mini-

mum expectation is attained by an optimal robust operator

that minimizes the average differential objective value. In deci-

sion theory, this differential objective value has been referred

to as the regret. Under certain conditions, MOCU-based exper-

imental design is, in fact, equivalent to KG and EGO.118

BMA for materials science applications
We have integrated BMA with the MOCU-based experimental

design to deploy an autonomous computational materials dis-

covery framework that is capable of performing optimal sequen-

tial computational experiments to find optimal materials and

updating the knowledge on materials system model at the

same time. One of our recent exercises120 consisted of imple-

menting the BMA approach for robust selection of computa-

tional experiments to optimize properties of the MAX phase

crystal system.121 Employing BMA approaches using a set of

GPR functions based on different feature sets, we demonstrated

that the framework was robust against selection of poor feature

sets because the approach considers all the feature sets at once,

updating their relative statistical weights according to their ability

to predict (successful) outcomes of unrealized simulations. More

critically, we have demonstrated the effectiveness of our compu-

tational materials discovery platform for single and multiobjec-

tive optimization problems.

This framework has been used efficiently for objective-ori-

ented exploration of materials design spaces (MDSs) through

computational models and, more importantly to guide exper-

iments by focusing on gathering data in sections of the MDS

that will result in the most efficient path to achieving the

optimal material within resource budgets. Additionally, the

BO approach was successfully combined with BMA for auton-

omous and adaptive learning, which may be used to auto-

select the best models in the MDS, thereby eliminating the

requirement of knowing the best model a priori. Thus, this

framework constitutes a paradigm shift in the approach to

materials discovery by simultaneously (1) accounting for the

need to adaptively build increasingly effective models for the

accelerated discovery of materials while (2) accounting for

the uncertainty in the models themselves. It enables a long-

desired seamless connection between computation and ex-

periments, each informing the other, while progressing opti-

mally toward the target material.

In our implementation for MAX phase crystal systems, after

training the GPs based on the current and previous observa-

tions, solving for the GP hyperparameters to maximize the mar-

ginal likelihood of the observed data, each GP provides a

Gaussian distribution over the objective function value of each

design. Averaging several GPs based on their posterior model

probabilities is like mixing weighted Gaussian distributions

over the objective value of each design. Based on the sum of

weighted Gaussian distributions, the MOCU-based utility func-

tion or other acquisition functions, including expected improve-

ment (EI) with a single objective45 or expected hypervolume

improvement (EHVI) with multiobjectives,122 can be calculated

for all possible designs, and the maximizer is chosen as the

next experiment. In our experiments, six sets of basic



Figure 5. Bayesian experimental design with BMA for MAX phases as described in the text
(A) The change of average maximum bulk modulus for the original six feature sets with the number of design iterations.
(B) The change of average maximum bulk modulus comparing BMA surrogates with the best and worst feature sets.
(C) The change of posterior model probabilities corresponding to six feature sets.
(D) The average number of sampled Pareto front points when considering bulk modulus and shear modulus.
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compositional and structural features were chosen a priori

without assuming any knowledge of their suitability for the un-

derlying true model that generates data. We have investigated

whether the updated model posterior in BMA captured the ex-

pected CPSP relationships.120 The goal of experimental design

is to discover MAX phases with maximum bulk modulus and

minimum shear modulus, which were computed through density

functional theory (DFT) calculations123,124 for 1,500 randomly

sampled MAX ternary carbide/nitride crystals. Among these

DFT-calculated results, there were 10 MAX phases belonging

to the Pareto front when considering the design goals. All of

the reported performances of Bayesian experimental design

were based on the average values of 1,500 runs starting from

the random initial sets of 10 training samples. In Figure 5A, we

show the change of the average maximum bulk modulus with

the iterations of sequential experimental design. It is clear that,

among six models with different features, the feature set F2

achieves the best experimental design performance because

the average maximum bulk modulus is consistently higher than

the other models. On the other hand, F6 has the worst perfor-

mance. When adopting BMA (either based on first-order or sec-

ond-order maximum likelihood inference [BMA1 or BMA2,

respectively]), it is clear that BMA achieves robust performance

even when some models may not have good predictive power

(Figure 5B). With the increasing number of iterations, it is also

clear that the posterior probability of the best model, F2, gets

higher (Figure 5C). Last but not least, as shown in Figure 5D,

our BMA-based multiobjective experimental design can

approach the Pareto front within a small number of sequential

design iterations considering the vast MAX ternary carbide/

nitride space. All of these experimental results on the maximiza-

tion/minimization of mechanical properties of MAX phases sug-

gest that BMA-based model fusion can lead to considerable

reduction in the number of experiments/computations that

need to be carried out to identify the desired solutions to this

specific materials design problem.

Along these directions, we can develop robust Bayesian

learning methods by model fusion that exploit correlations

among sources/models. Together with amultiinformation source

optimization framework driven by scientific knowledge, they will

reliably and efficiently identify, given the current knowledge, the

next best information source to query and guide the materials

design.125
OED with MOCU
In the context of OED, it has a long history in science and engi-

neering as a properly designed experimental procedure that pro-

vides much greater efficiency than simply making random

probes. Indeed, Francis Bacon’s call for experimental design in

1620 is often taken to be the beginning of modern science.126

MOCU-based OED

Because the MOCU65,66 can be used to quantify the objective-

based uncertainty, it provides an effective means to estimate

the expected impact of potential experiments on the objective

(i.e., operational goal) through the reduction ofmodel uncertainty.

Suppose we are given a set of potential experiments from which

the next experiment could be chosen.Which among the possible

experiments should be selected if we wish to optimally improve

the operational performance of the operator based on the ex-

pected experimental outcome? A natural way to select the best

possible experiment would be to choose the one that would

lead to the minimum expected remaining MOCU after observing

its outcome. To bemore specific, let x˛X be an experiment in the

experimental design spaceX. Given x, theMOCU conditioned on

this experiment can be computed as

MOCUðQjxÞ = Eqjx
h
Cq

�
j
Qjx
IBR

�
� CqðjqÞ

i
; (Equation 13)

where j
Qjx
IBR is the IBR operator that is optimally robust for the un-

certainty class of models Qjx that is now conditioned on this

experiment x, and the expectation is taken with respect to the

conditional distribution pðqjxÞ. The expected remaining MOCU

can be evaluated by

RðQjxÞ = Ex½MOCUðQjxÞ�; (Equation 14)

and the optimal experiment x� is the one that minimizes the ex-

pected remaining MOCU in Equation 14 so that it satisfies

x� = argmin
x˛X

RðQjxÞ: (Equation 15)

While this strategy does not guarantee that the selected

experiment will indeed minimize the uncertainty impacting the

objective among all experiments (because the experimental

outcome is not known in advance with certainty), it will be
Patterns 4, November 10, 2023 11



Figure 6. Experimental design results based on a 5-oscillator
Kuramoto model with uncertain coupling strength between the
oscillators as described in the text
The MOCU-based OED scheme quickly reduces the model uncertainty that
impacts the performance.
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optimal on average. Recently, this MOCU-based experimental

design scheme has been developed for a variety of systems

and applications, which include enhancing the performance of

gene-regulatory network intervention with partial network knowl-

edge,117,127 synchronization of an uncertain Kuramoto model

that consists of interconnected oscillators with uncertain interac-

tion strength,128,129 optimal sequential sampling,130 Bayesian

classification through active learning,44,131 and robust filtering

of uncertain stochastic differential equation (SDE) systems.42

For materials discovery via OED guided by MOCU, as shown

in Equation 15, optimization algorithms have to be developed

based on the structure of the input design space as well as the

properties of the MOCU computation based on different prob-

lem settings. For example, if we are investigating pool-based

high-throughput screening or discovery problems with a finite

set of candidates, either exhaustive search as in typical BO im-

plementations5,53,131 or dynamic programming algorithms

based on KGs47,132–134 can be developed for solving the optimi-

zation problems. When the input design space is continuous and

the gradient of MOCU can be estimated, gradient-based local

search algorithms can be implemented, as discussed in Zhao

et al.135 There are also other solution strategies that can be

used to solve OED guided byMOCU, including sampling and ge-

netic and other evolutionary algorithms.136

Figure 6 shows the performance of the MOCU-based OED

strategy in reducing the uncertainty that impacts the synchroni-

zation cost of a Kuramoto model that consists of 5 oscillators,

where the coupling strength between oscillators is uncertain

and known only up to a range.128 In this example, an experiment

picks an oscillator pair and observes whether the selected oscil-

lator pair is synchronized in the absence of external control. The

observation can be used to reduce the range of the uncertain

coupling strength between the oscillators. For this Kuramoto

model, there exist

	
5
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potential experiments in the experi-

mental design space X, and Figure 6 shows how MOCU de-
12 Patterns 4, November 10, 2023
creases as a function of experimental updates. As can be

seen, the MOCU-based OED strategy leads to a sharp reduction

in uncertainty within a few updates, outperforming random se-

lection (which selects one of the possible experiments from X

with uniform probability) or an entropy-based approach (which

selects the experiment for the oscillator pair whose coupling

strength has the largest uncertain range).

OED for shape memory alloy (SMA)
In materials design, the MOCU-based OED strategy has been

applied to a computational problem for shape memory alloy

(SMA) design with desired stress-strain profiles for a particular

dopant at a given concentration utilizing the TDGL theory.5 The

TDGL model simulates the free energy for a specific dopant

with a specified concentration, given the dopant’s parameters,

which is considered an oracle in the experiments. Because the

computational complexity of the TDGL model is enormous, an

uncertain surrogate model is first trained to approximately pre-

dict a dissipation energy for a specified dopant and concentra-

tion. In particular, based on TDGL, a reciprocal function is adop-

ted to model the energy dissipation at a specific temperature as

a function of dopant potency, dopant spread, and dopant con-

centration. The experimental design goal is to discover SMAs

with the minimum energy dissipation, and therefore this surro-

gate model is used as the cost function to define MOCU to effi-

ciently guide throughout the experimental design iterations for

an optimal dopant and concentration. With the MOCU defined

based on this Landau mesoscale surrogate for SMAs as the

cost function, the expected remaining MOCU, given the corre-

sponding dopant and its corresponding concentration levels,

can be computed by the definition in Equation 14. The optimal

experiment can then be determined tominimize the expected re-

maining MOCU under model uncertainty as in Equation 15.

In the reported experiments,5 MOCU-based OED was

compared with the pure exploitation and random selection pol-

icies. Averaged over 10,000 simulations, our MOCU-based

OED strategy, which strives to minimize the uncertainty in the

model pertaining to the design objective, identified the dopant

and concentration with the optimal dissipation after only two it-

erations on average, while either exploitation or random selec-

tion policies cannot find the optimal dopant even after 10 itera-

tions. Getting optimal results after fewer iterations is especially

crucial in materials discovery, where measurements by either

high-throughput simulation models or synthesis and profiling ex-

periments are expensive and time consuming.

Automatic feature engineering (AFE)
Finally, with accumulated knowledge and data from experi-

mental design based on objective-UQ using MOCU, we may

help fill in the missing gap of the understanding in materials sys-

tems under study. In materials science, the fundamental para-

digm is the existence of causal relationships connecting compo-

sition and processing (i.e., the modifications to a material’s

current state), structure (i.e., the multiscale arrangement of the

material), and properties (i.e., the response of the material to

an external stimulus); i.e., CPSP relationships. The navigation

of this CPSP space is enormously resource intensive, regardless

of whether this query is on physical experiments or computa-

tional ones. As a result, it typically takes more than 20 years to
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identify, develop, and finally deploy one material in real-world

applications—a key bottleneck for the MGI.1,3,4 Attempting to

use physics-agnostic models to build these relationships is

limited by the scarcity of the training data itself. Moreover, one

would be interested in discovering derived relationships that

connect features to properties/behavior because these relation-

ships can further be used to design/discover materials with

optimal properties. Besides designing and discovering prom-

ising newmaterials with desired functional properties, identifying

critical input features (related to composition, process, structure)

that determine function properties as well as principled CPSP re-

lationships can provide a systematic understanding of the under-

lying physics for different materials systems. Such knowledge

can be explored and updated, as illustrated in the previous ex-

amples under ‘‘Integrating prior knowledge in materials science’’

and ‘‘BMA for materials science applications.’’ One such knowl-

edge discovery strategy is AFE, which enables us to use physics

constraints on learning surrogate models while facilitating

the discovery of fundamental materials design rules at the

same time.

Engineered features obeying physics principles provide valu-

able interpretability that is critical to help new knowledge discov-

ery and consequent critical decision-making. It is worth noting

that, in scientific ML (sciML) involving complex systems, training

data tend to be scarce and noisy because obtaining data can be

difficult, time consuming, and costly. Materials problems clearly

reflect these challenges.

Related work in feature engineering
Feature representation learning has been studied extensively in

the SP/ML community, including ‘‘white box’’ methods based

on specific basis families (Fourier and wavelet are two represen-

tatives) and data-driven ‘‘black box’’ methods, such as dictionary

learning and deep learning.137–139 Although ‘‘black box’’ deep

AFE models140 have shown great potential to improve the corre-

sponding ML algorithm performance, we focus on feature engi-

neering, aiming to derive features based on explicit functional

forms in this survey. Desirable feature engineering should attain

considerable improvement of prediction performance and gener-

alizability as well as good interpretability with little manual labor.

Among the existing methods, deep feature synthesis141 extracts

features based on explicit functional relationships without ex-

perts’ domain knowledge through stacking multiple primary fea-

tures and implementing operations or transformations on them,

but it suffers from efficiency and scalability problems because

of its brute-force way to generate and select features. Kaul

et al.142 proposed Autolearn by regression-based feature

learning through mining pairwise feature associations. While it

avoids overfitting, to which deep learning-based FE methods

are amenable, and improves the efficiency by selecting subsets

of engineered features according to stability and information

gain, it does not directly produce interpretable features. Khurana

et al.143 introduced Cognito, which formulates the feature engi-

neering problem as a search on the transformation tree with an

incremental search strategy to explore the prominent features

and later extended the framework by combining reinforcement

learning (RL) with a linear functional approximation144 to improve

the efficiency. A similar framework has recently been developed

in Zhang et al.,145 where the deep reinforcement learning (DRL)
policy is learned on a tree-like transformation graph. It improves

the policy learning capability compared with Cognito. However,

both frameworks do not explicitly incorporate available prior

knowledge into the AFE procedures.

For AFE in materials science applications, we are interested in

finding the actuating mechanisms of the materials’ functional

properties of interest by identifying a set of physically meaningful

variablesand their relationships.146Suchasetofphysicalvariables

with corresponding parameters that uniquely describe the mate-

rials’ properties of interest can be denoted as ‘‘descriptors.’’

Discovering descriptors in materials science can help better pre-

dict target functional properties with potential interpretability for

a given complete class of materials.147 Several methods have

been developed, such as a method based on compressed

sensing147 and the more recent Sure Independent Screening

and Sparse Operation (SISSO)148 by brute-force search to

generate and select subsets of generated features by sure inde-

pendent screening149 togetherwith sparseoperators suchas least

absolute shrinkage and selection operator (LASSO).150 These

methods pose a scalability challenge with the exponentially

growing memory requirement to store intermediate features and

high computational complexity to search for features.

Physics-constrained AFE
In our recently developed AFE framework,151 a feature genera-

tion tree (FGT) was constructed with physics constraints to

explore the engineered feature (descriptor) space more effi-

ciently based on first principles, which was demonstrated in

several materials problems to be able to take advantage of prior

chemical and physical knowledge of the materials systems un-

der study.

Our FGT-based AFE framework focuses on sciML applica-

tions, where interpretability is critical to help consequent critical

decision-making under data scarcity and uncertainty. Specif-

ically, AFE strategies have been developed by combining FGT

exploration with Deep Reinforcement Learning (DRL)152 to

address the interpretability and scalability challenges. Instead

of employing a brute-force way to perform algebraic operations

on the raw features in a given dataset and then selecting impor-

tant descriptors, we combine the descriptor generating and se-

lecting processes together by constructing FGTs and devel-

oping the corresponding tree exploration policies guided by a

deep Q network (DQN). An efficient exploration of the prominent

descriptors can be attained in the growing feature space based

on the allowed algebraic operations. Our FGT-based AFE strate-

gies construct interpretable descriptors based on a list of oper-

ations according to the DRL learned policies, which are more

scalable and flexible with the performance-complexity trade-

off with the help of adjustable batch size for generating interme-

diate features. More critical to materials science and other sciML

problems, our FGT provides a flexible framework for incorpo-

rating prior knowledge (e.g., physics constraints) to generate

and select features. This is important for knowledge discovery

via interpretable learning with physics constraints under data

scarcity and uncertainty because the space connecting intrinsic

materials attributes/features to materials behavior is vast,

sparse, and complex in nature.

In particular, let x0 denote the finite set of p variables as raw or

primary features fx10;.; xp0g and y the target output vector. AFE
Patterns 4, November 10, 2023 13



Algorithm 1. DQN for AFE

1: input: Primary features F0, Action set O

2: for d = 1;2;. do

3: Construct new DQN

4: Clear Buffer

5: for episode = 1; 2;.;N do

6: for i = 0; 1;.; do

7: 4i = e-Greedy Method(Fi;e)

8: Fd
i+1;Ri; ci+1 = FGT_Grow fFd

i ;4i;cig
9: Buffer )fFd

i ;F
d
i+1;4i;Ri;ci+1g

10: Train DQN with experience replay

11: if Ri > threshold then

12: goto Output

13: end if

14: if ci R cmax then

15: break

16: end if

17: end for

18: end for

19: S) Candidate set Sd with n features of highest Ri

20: end for

21: Output: Optimal feature set F� chosen from S

ll
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is to develop an algorithm to construct sets of engineered

features as interpretable and predictive descriptors Fi =

fg1ðx0; c1Þ;g2ðx0; c2Þ;.g based on explicit functional forms

with allowed algebraic operations that accurately predict y.

The set of algebraic operations 4 in an operation set O can be

constructed based on prior knowledge; for example, with the

following unary and binary operations: O = fexpð $Þ; logð $Þ;
ð$Þ2; ð$Þ3; ð$Þ� 1;

ffiffiffi
$

p
;

ffiffiffi
$3

p
; + ; � ; 3 ; Og. For each function gðx0;

cÞ, c denotes the complexity of the corresponding generated

descriptor—the number of algebraic operations. For example,

the function exp ðx00Þ3ðx10Þ
2
+

ffiffiffiffiffiffiffiffiffi
ðx20Þ

q
has a complexity of 5.

The operation set O can be pre-defined based on the prior

knowledge about the system under study. If we denote the pri-

mary features x0 by F0, then Fi denotes the iteratively generated

set of descriptors with the maximum allowed complexity ci. Our

goal is to find an optimal descriptor set F� that maximizes the

prediction performance score; for example, by classification or

regression accuracy, ALfF 0;yg:

F� = argmax
cfk ˛F;fk ˛ F

ALfF; yg; (Equation 16)

where L denotes the prediction model (for example, linear

regression or Support Vector Machine (SVM) for interpretability

with generated descriptors), and fk is any descriptor (including

primary features) in F, the set of all generated features with the

maximum allowed complexity cmax.

The combinatorial optimization problem in Equation 16 is NP

hard. We solve it approximately by introducing the FGT to itera-

tively construct the descriptor space and transform the problem

into a tree search problem for efficient AFE. Each node in the

FGT represents a set of descriptors Fi, and each edge represents

an operation 4. We denote ðFdÞ� = fðf1Þ�; ðf2Þ�;.; ðfdÞ�g as the

top d optimal features when we choose the cardinality of F� as
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d and ðfdÞ� as the selected optimal feature for the dth dimension

of ðFdÞ�. The FGT exploration aims to search for the best de-

scriptors ðf1Þ�; ðf2Þ�;. one by one based on the testing accu-

racy given the observed data. The corresponding complete

AFE procedure constructs the feature subspace Fd sequentially

as the search space of each ðfdÞ� exploration, starting from the

root node F0 with the primary feature set. At each node Fi, we

would like to learn a generation policy p to choose an operation

4i to generate the new descriptor set Fjðj > iÞ as the correspond-

ing child node, with which the current optimal ðFdÞ0 and

ALfðFdÞ0; yg will be updated accordingly. The FGT will grow by

repeating the operations above until it reaches the maximum

complexity cmax.

To learn the FGT generation policy p, we adopt a DQN with

experience replay.152 Formally, we define the states, actions

and rewards as follows:

d state Fd
i , denoting a set of primary features or generated

descriptors when looking for the dth optimal descriptor;

d action pðFd
i Þ = 4i, denoting an operation in the set O;

d reward: RðFd
i ; 4iÞ = max

F 0
ð1:001 � ALfF 0; ygÞ� 1, where

0%ALfF 0;yg%1.

The pseudo-code for learning DQN-based FGT exploration is

given in Algorithm 1. To have a flexible exploration procedure for

performance-complexity trade-off and incorporation of prior

knowledge, each ðfdÞ� in F� can be chosen from the top n fea-

tures with highest rewards in the corresponding feature sub-

space Fd, composing a candidate set Sd. So ðFd� 1Þ� can have

multiple combinations according to the whole candidate sets

S = fS1;.;Sd� 1g, and F 0 also has multiple combinations ac-

cording to different ðFd� 1Þ� and fd. Consequently the reward is

computed as the maximum reward over F 0.
Note that when we apply binary operations on Fi, beside the

one feature in the Fi, we have to choose another feature in the



Figure 7. Copper energy regression results for different interatomic potential models
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generated descriptor space, leading to the exponentially explod-

ing number of new descriptors. To achieve appropriate perfor-

mance-complexity trade-off, we introduce flexible batch sam-

pling to randomly sample a feature subspace B from F as a

‘‘batch set’’ each time and enumerate fs only from B and take

the maximum reward from all of the combinations as the reward.

When prior knowledge is available as physics constraints on

applying corresponding operations to specific feature groups,

this batch sampling procedure can naturally take care of them.

AFE to learn interatomic potential models for copper
First-principles DFT123,124 has been extensively applied in mate-

rials science, physics, and chemistry. However, it is often con-

strained to simulate materials with 100–1,000 atoms for several

thousands ab initio molecular dynamics steps, covering about

10 picoseconds. In contrast, classic interatomic potentials have

been widely adopted in the past, allowing large-scale molecular

dynamics simulation ofmillions of atoms formillions of time steps

(that is, covering >10 nanoseconds). However, the construction

of the functional form and the optimization of the corresponding

parameters of classic potentials are highly nontrivial. Recently,

developing and training neural network potentials based on

first-principles DFT calculations of relatively small systems has

become an important research direction in the atomistic simula-

tion in combination with active learning.153–156 Very recently, a

feature engineering method has been pursued where genetic

programming was applied to develop fast and accurate classic

interatomic potentials with explicit functional forms from physi-

cally meaningful hypothesis space.136 Particularly, genetic pro-

gramming was applied to optimize the exact functional form of

pairwise and many-body potentials as well as other potential

forms, highlighting an important avenue toward the development

of physics-constrained models with analytic functional form.

Different from the above genetic programming approach, we

have adopted our FGT-based AFE and evaluated its ability to

find potential models from data generated by DFT. To compare

with the genetic programming symbolic regression approach,136

we used the same 150 snapshots of 32-atom DFT molecular dy-

namics simulations on fcc copper in Hernandez et al.,136 where

each snapshot was generated every 100 steps with a time step

of 1 fs. We adopted the same 150 snapshots, including 50 snap-

shots from ab initio molecular dynamics performed at 300 K in
the canonical (NVT) ensemble, 50 snapshots at 1,400 K in the

NVT ensemble, and 50 snapshots at 1,400 K in the isothermal-

isobaric (NPT) ensemble with pressure at 100 kPa. The 150 total

energies calculated by Hernandez et al.136 were considered the

target output of interest,157 with the random split of 125 struc-

tures and their corresponding total energies for training, and

the remaining 125 structures and total energies for validation,

for feature engineering.

We have compared our AFEwith the recently developed phys-

ics-informed genetic programmingmethod136 to arrive at analyt-

ical many-body classical interatomic potential models. Figure 7

shows the plots of predicted total energy of these different cop-

per structures vs. the simulated total energy based on primary

features (left), genetic-programming-generated descriptors

(center), and AFE-generated descriptors (right) on the same

held-out testing data. With the same simulated molecular dy-

namics data and experimental setup in the paper, our AFE has

achieved the total energy prediction with a mean absolute error

(MAE) of 3.73 meV/atom within 12 h. By contrast, the reported

model GP1 by genetic programming in Hernandez et al.136 had

a prediction MAE of 4.13 meV/atom after 360 CPU hours on

the same training and test sets.

Our proposed AFE strategies approximate the expected future

reward of engineered descriptors through DQN-based policy

learning and replace the exhaustive feature generation by DQN-

guided FGT exploration considering physics prior knowledge.

Consequently, our AFE enhances scalability and computational

efficiency without sacrificing prediction performance, as demon-

strated in the reported experiment as well as other materials

systems in Xiang et al.151 The results of these real-world materials

science experiments have demonstrated the potential of our DQN-

guided FGT exploration in reducing the runtime and enhancing the

scalability for AFE. More importantly, the engineered descriptors

are interpretable with the corresponding lists of algebraic opera-

tions on the original primary features. Our physics-constrained

AFE aims at generalizable learning under data scarcity and uncer-

tainty. Interpretable instead of ‘‘black box’’ learning helps new

knowledge discovery and better decision-making.

Conclusions and future work
When facing real-world complex systems in various science and

engineering domains—such as complex materials systems,
Patterns 4, November 10, 2023 15
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which are our focus in this paper—where acquisition of ample

data is practically difficult and formidably expensive, currently

existing ML methods fail to produce reliable and generalizable

predictions. To cope with the current shortcomings of existing

SP and ML schemes in materials discovery, there is a pressing

need for novel methods that enable robust optimal decision-

making under challenging conditions, such as small data size,

enormous system complexity, nonstationarity, as well as data

and model uncertainty. In this paper, we have presented recent

efforts in knowledge-driven learning, optimization, and experi-

mental design, andwe have also provided their historical context

against the rich research history in the SP community revolving

around robust filtering and control, which can probably be dated

back to the 1950s. Specifically, we have shown several exam-

ples in an objective-based UQ framework—via MOCU—to

develop sciML methods to address the aforementioned chal-

lenges in accelerating materials discovery, focusing on learning

and experimental design under uncertainty. The problems of

studying complex systems will persist in diverse science and en-

gineering disciplines, and we expect that the learning and opti-

mization schemes based on objective-based UQ presented in

this paper would provide a useful guideline for developing new

sciML methods that more effectively incorporate scientific

knowledge, design surrogate ML models that are better suited

for the given systems under study, and devise computational so-

lutions that are more scalable and efficient.
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Qian, X., Arróyave, R., and Qian, X. (2021). Physics-constrained auto-
matic feature engineering for predictive modeling in materials science.
In the 35th AAAI Conference on Artificial Intelligence (AAAI 2021)).

152. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforcement learning. Nature
518, 529–533. https://doi.org/10.1038/nature14236.

153. Podryabinkin, E.V., and Shapeev, A.V. (2017). Active learning of linearly
parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180.
https://doi.org/10.1016/j.commatsci.2017.08.031.

154. Zhang, L., Lin, D.-Y., Wang, H., Car, R., andWeinan, E. (Feb 2019). Active
learning of uniformly accurate interatomic potentials for materials simula-
tion. Phys. Rev. Mater. 3, 023804. https://doi.org/10.1103/PhysRevMa-
terials.3.023804.

155. Vandermause, J., Torrisi, S.B., Batzner, S., Xie, Y., Sun, L., Kolpak, A.M.,
and Kozinsky, B. (2020). On-the-fly active learning of interpretable
Bayesian force fields for atomistic rare events. npj Comput. Mater. 6,
20. https://doi.org/10.1038/s41524-020-0283-z.

156. Wilson, N., Willhelm, D., Qian, X., Arróyave, R., and Qian, X. (2022). Batch
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