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THE BIGGER PICTURE

discovery.

Thanks to the rapid advances in artificial intelligence, Al for science (Al4Science) has
emerged as one of the new promising research directions for modern science and engineering. In this review,
we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental design methods
for accelerating the discovery of novel functional materials as well as enhancing the understanding of compo-
sition-process-structure-property relationships. We specifically discuss the challenges and opportunities in
integrating prior scientific knowledge and physics principles with Al and machine learning (ML) models for
accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based
prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic
regression are detailed in the review, along with several detailed case studies and results in materials

SUMMARY

Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from
the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-
throughput screening, to one that builds on knowledge-driven advanced informatics techniques enabled by
the latest advances in signal processing and machine learning. In this review, we discuss the major research
issues that need to be addressed to expedite this transformation along with the salient challenges involved.
We especially focus on Bayesian signal processing and machine learning schemes that are uncertainty aware
and physics informed for knowledge-driven learning, robust optimization, and efficient objective-driven

experimental design.

INTRODUCTION

Accelerating the development of novel functional materials with
desirable properties is a worldwide imperative because it can
facilitate advances in diverse fields across science, engineering,
and biomedicine with significant potential contributions to eco-
nomic growth. For example, the US Materials Genome Initiative
(MGI) calls for cutting the cost and time for bringing new mate-
rials from discovery to deployment by half by integrating exper-
iments, computer simulations, and data analytics.'* However,
the current prevailing practice in materials discovery primarily
relies on trial-and-error experimental campaigns or high-
throughput virtual screening approaches by computational sim-
ulations, neither of which can efficiently explore the huge mate-
rials design space to develop materials that possess targeted
functional properties.

aaaaaa

To fundamentally shift the current trial-and-error practice to an
efficient informatics-driven practice, there have been increasing
research efforts to develop signal processing (SP) and machine
learning (ML) methods that may ultimately enable autonomous
materials discovery and expedite the discovery of novel mate-
rials at a substantially reduced cost and time.*>"> When applying
SP and ML methods in materials science, several unique chal-
lenges arise, which include (1) a limited amount of data (if any)
for investigating and exploring new materials systems, (2) data
of varying and inconsistent quality because of technical limita-
tions and a lack of common profiling prototypes, (3) significant
complexity and uncertainty in existing computational simulation
and surrogate models,® and (4) incomplete domain knowledge.

To cope with the aforementioned challenges and to effectively
discover novel functional materials with the desired target prop-
erties, robust decision-making strategies are critical for efficient
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exploration of the immense materials design space through
effective learning, optimization, and experimental design under
significant uncertainty. Directly applying existing data-driven
SP and ML methods falls short of achieving these goals, and
comprehensive theoretical and methodological developments
tailored to address these unique challenges are crucial. Some
salient issues that need to be addressed include the following:

(1) Knowledge-based prior construction: mapping scientific
knowledge into a prior distribution that reflects model un-
certainty to alleviate the issues stemming from data
scarcity

(2) Model fusion: updating the prior distribution to a posterior
distribution with multiple uncertain models and data sour-
ces of different data quality

(3) Uncertainty quantification (UQ): quantification of the cost
of uncertainty relative to one or more objectives for effi-
cient materials discovery

(4) Optimization under uncertainty (OUU): derivation of an
optimal operator from the posterior distribution

(5) Optimal experimental design (OED): efficient experi-
mental design and data acquisition schemes to improve
the model to explore the materials design space more
effectively

(6) Knowledge discovery: closing the knowledge gap in the
current model, such as composition-process-structure-
property (CPSP) relationships relevant to the materials
discovery objectives, based on newly acquired data or
increased model knowledge

In this article, we will review the recent advances related to the
aforementioned research issues. Especially, we will provide an
in-depth review of Bayesian SP and ML approaches for knowl-
edge-driven learning, objective-based UQ, and efficient experi-
mental design for materials discovery under substantial model
and data uncertainties. The core foundation underlying these
strategies is a Bayesian framework that enables mathematical
representation of the model and data uncertainties, encoding
available domain knowledge into a Bayesian prior, seamlessly
integrating experimental (or simulation) data with the domain
knowledge to obtain a posterior, quantifying the impact of the
uncertainty on the objective, and effective design of strategies
that can reduce this uncertainty. It is important to note that the
guiding principle of the aforementioned Bayesian framework is
to have a (knowledge-based) prior represent an uncertainty class
of models. The prior characterizes the state of our knowledge
about the model representing the system, based on which we
can design operators to achieve the scientific objectives. Artifi-
cial intelligence for science (Al4Science) has emerged as an
enormous modern research field. Because of the rapidly
evolving nature of this field, it is challenging to provide a compre-
hensive review of all ongoing research efforts, and the readers
are strongly encouraged to refer to additional resources,
including recent publications in Al4Science’'° as well as those
in Al/ML-augmented materials discovery.'' "%

In the following sections, we first introduce the UQ framework
that encompasses the various components in knowledge-driven
learning, optimization, and experimental design. This will be fol-
lowed by in-depth discussion of the individual research themes,
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where we will review the latest research results along these
directions.

Bayesian learning, UQ, and experimental design

Engineering generally aims at optimization to achieve opera-
tional objectives when studying complex systems. Because all
but very simple systems must account for randomness, modern
engineering may be defined as the study of optimal operators on
random processes. Besides the mathematical and computa-
tional challenges that arise with classical system identification
(learning) and operator optimization (control or filtering, for
example) problems, such as nonstationary processes, high di-
mensions, and nonlinear operators, another profound issue is
model uncertainty. For instance, with linear filtering there may
be incomplete knowledge regarding the covariance functions
or power spectra in the case of Wiener filtering. In such cases,
not only must optimization of the operator (i.e., filter in this
example) be relative to the original cost function but also relative
to an uncertainty class of random processes. This naturally leads
to the need for postulation of a new cost function that integrates
the original cost function with the model uncertainty. If there is a
prior (or posterior) distribution governing the likelihood of a
model within the uncertainty class, then one can choose an oper-
ator that minimizes the expected cost over all possible models in
the uncertainty class. In what follows, we first lay out the mathe-
matical foundations pertinent to quantifying and handling model
uncertainty and then review relevant existing literature, with
recent efforts focusing on materials science research.

Mathematical backgrounds

The design of optimal operators can take different forms de-
pending on the random process constituting the scientific model
and the operator class of interest. The operators might be filters,
classifiers, or controllers. The underlying random process might
be a random signal/image for filtering, a feature-label distribution
for classification, or a Markov process for control. Optimal oper-
ator design involves a mathematical model representing the un-
derlying (materials) system and a class of operators from which
the best operator that minimizes the cost function reflecting
the objective should be selected. It takes the general form

Vopt = argmi‘r;’C(z//L (Equation 1)

where W is the operator class, and C(y) is the cost of applying
operator iy on the system. The genesis of such an operator
design formulation can be traced back to the Wiener-
Kolmogorov theory in SP for optimal linear filters developed in
the 1930s,'*"® where the operational objective is to recover
the underlying signals given noisy observations with the mini-
mum mean squared error (MSE). In this class of filtering prob-
lems, the operators mentioned above are filters. The underlying
system can be modeled by a joint random process (X(t),Y(s)),
te T,se S. Optimal filtering involves estimating the signal Y (s)
at time s via a filter { given observations {X(t)};. . A filter
Y e W is a mapping on the space of possible observed signals,
and a cost function takes the form C(Y(s), Y (s)), with Y(s) =
Y(X)(s). For fixed s € S, an optimal filter is defined by Equation 1
with C() = C(Y(s),¥(X)(s)) = E[(Y(s) — ¥(X)(s))?]. Similar
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operator design formulations have been adopted in control'®

and, more recently, in ML,"” where the corresponding operators
are controllers that can desirably alter the system behavior or
predictive models for system properties of interest (e.g., classi-
fiers). For example, the operator may be a predictor that tries
to characterize the property of a given material based on input
features (such as its composition and structure).

When the true model is not known with certainty, it would be
prudent to consider the entire uncertainty class ® of possible
models that contains that true model § € ®, where 6 may be typi-
cally a parameter vector specifying the model rather than aiming
at accurate inference of the true model. Given ©®, the goal would
then be to design a robust operator that guarantees good perfor-
mance over all possible models. For example, there have been
significant research efforts taking a minimax strategy to design
robust operators:

lf//n@ﬂnimax = argml‘gr;lag)(cﬂ(‘//)v (Equation 2)

Where Cy(y) characterizes the cost of the operator s for model 6.
Taking filtering as an example, Cy(y) = C(Y(s;8), y(X)(s;0)),
where 6 denotes the model parameters for the signal and obser-
vation random processes. Such a minimax robust strategy is risk
averse because it aims to find an operator whose worst perfor-
mance over an uncertainty class of models ® is the best among
all operators in W'®'9. Minimax robustness has been applied in
many optimization frameworks; for example, for filtering®®*
with a general formulation in the context of game theory,? as
well as recently in ML.>>*® One critical downside of minimax
robustness is that, in avoiding the worst-case scenario, the
average performance of the designed operator can be poor, in
particular when the prior knowledge about the uncertainty class
® is available and the worst-case model is unlikely. There has
been extensive research on alleviating this potential issue by
developing risk measures, such as conditional value at risk in a
recently proposed risk quadrangle scheme,'® to achieve better
trade-off between the attainment of the operational objective
and the aversion of potential risk because of uncertainty.
Unlike such minimax robust strategies, we focus on Bayesian
robust strategies that try to optimize the expected performance
in the presence of uncertainty. This leads to the design of the
intrinsically Bayesian robust (IBR) operator, which is defined as

Viem = argminEe[Cu(¥)], (Equation 3)

where the expectation is with respect to a prior probability distri-
bution () of the uncertain model € ®. While not as risk averse
as minimax robust operators, these Bayesian robust operators
guarantee optimal performance on average. The prior m(6) prob-
abilistically characterizes our prior knowledge as to which
models are more likely to be the true model than the others. If
there is no prior knowledge beyond the uncertainty class itself,
then a uniform (non-informative) prior may be used.

Related works

Before we delve into the Bayesian framework for learning, UQ,
and experimental design, here we provide a literature review of
related topics. We first review the history of operator design, in
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particular related to filtering, classification, and control. For
optimal operator design in filtering, Kalman-Bucy recursive
filtering was proposed in the 1960s°” after the Wiener filter.'*"®
Optimal control began in the 1950s, as did classification as
now understood. In all three areas, it was quickly recognized
that often the underlying scientific model would not be
known—hence the development of adaptive linear/Kalman fil-
ters and adaptive controllers.?®2° Classification became depen-
dent on classification rules that make no effort to estimate the
true feature-label distribution.'” From the perspective of model
uncertainty classes, control theorists delved into Bayesian
robust control for Markov decision processes in the work of
Bellman and Kalaba,*° Silver,®' and Martin®*=2? in the 1960s,
but computation was prohibitive, and adaptive methods pre-
vailed. Optimal linear filtering was approached via minimax in
the late 1970s in the work of Kuznetsov,?° Kassam and Lim,?’
Poor,?”> and Verdu and Poor.’* Model-constrained Bayesian
robust (MCBR) MSE linear filtering and classification appeared
in the early 2000s.%%3*

When considering uncertainty in optimization, there has been
extensive research in designing different risk metrics for UQ. For
example, different values at risk'® and quantities of interest
(Qols)'® have been proposed based on different statistics
when modeling random processes or the corresponding model
parameters as random variables, including the ones based on
prediction variance®® and predictive entropy.*®” With these
risk metrics, different robust operator design strategies have
been studied to derive risk-averse operators that can achieve
good performance.92°:26:35:37-39 \Whijle introducing additional
risk metrics enables balancing the trade-off between the opera-
tional objectives and the potential risk (or regret) because of un-
certainty, incorporating different metrics with different strategies
can be subjective. For example, there may be large predictive
variance or entropy, but it may not always directly affect the
operational objectives and, thereafter, consequent decision-
making.

Bayesian learning and experimental design offers one solution
for robust design under uncertainty.'®*°"** In this framework,
UQ can be naturally measured by the loss of performance
because of the utilization of a robust operator to cope with uncer-
tainty. This leads to an experimental design strategy where ex-
periments are selected to optimally reduce this performance
loss, following the early thinking of Bayesian robust filtering
and control.’®%°2 Such an experimental design framework,
rooted in the foundation of modern engineering, closes the
loop from scientific knowledge on a complex system, models
for the complex system under uncertainty, data generated by
the system, and experiments to enhance the current system
knowledge to better attain the objectives. In this paper, we focus
on this closed-loop framework, which distinguishes itself from (1)
other existing schemes that are purely data driven®>™® or (2)
experimental design frameworks based on high-throughput sim-
ulations, such as IT 4U*° and DAKOTA.*°

Data-driven frameworks heavily depend on the availability of
data, upon which “black box” surrogate models are trained.
They typically model the operators (used to achieve the objec-
tives) of interest rather than modeling the system itself when
designing experiments. For example, in materials discovery,
many existing methods rely on Bayesian optimization (BO),
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Figure 1. lllustration of the knowledge-driven optimal experimental
design (OED) cycle for materials discovery

which uses Gaussian processes (GPs) as surrogate models to
directly approximate the target materials properties as “black
box” functions.”’ > While BO may be useful for optimizing
the properties, the acquired data do not improve our knowl-
edge regarding the materials system. As a consequence, there
is often a scientific gap in making prior assumptions on these
“plack box” models and their uncertainty.>* To better integrate
scientific knowledge, such as materials’ process-structure-
property relationships, as detailed under “Knowledge-driven
prior construction,” the model uncertainty should be directly
imposed on the system model that incorporates inter-relation-
ships among the underlying random processes. For simula-
tion-based frameworks, including IT 4U and DAKOTA, UQ,
sensitivity analysis, and experimental design are mostly based
on forward model simulations, which do not provide a natural
way to propagate the data generated by the selected experi-
ments back to the system to fill the gap in our system knowl-
edge and to improve the current model, which is precisely
what our proposed paradigm aims to do. The emphasis here
is that (1) the uncertainty is placed directly on the underlying
random process (i.e., current knowledge regarding the mate-
rials system) and not on surrogate models that reflect opera-
tional performance on this uncertain process and that (2) the
experimental design is centered around attaining specific ob-
jectives. A wide range of approaches can emerge, depending
on the assumptions made regarding the uncertainty class, ac-
tion space, and experiment space. Popular Bayesian experi-
mental design policies, such as knowledge gradient (KG)*®*”
and efficient global optimization (EGO),*® are special cases in
this framework under their modeling assumptions. These ap-
proaches often adopt generic surrogate models with the uncer-
tainty placed on the reward function; therefore, there is no
direct connection between the prior model assumptions and
the underlying process/system.

Because of these characteristics, Bayesian frameworks have
been increasingly used to address a wide range of materials dis-
covery problems.®>™°? BO’s ability to balance the exploration
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and exploitation is ideally suited in materials discovery tasks
because queries to the materials design space (either through
computations or experiments) are extremely resource intensive.
Most approaches focused on materials discovery are myopic in
the sense that increased knowledge of the materials space being
explored is not necessarily part of the objective. In other cases,
Bayesian learning is used to increase knowledge of the physics
underlying observed physical phenomena without much atten-
tion being put on improving the materials’ performance relative
to the existing state of the art.°®** In materials discovery appli-
cations, the complexity and stochasticity because of substantial
model and data uncertainty call for SP and ML approaches in a
Bayesian setting that can provide a unified closed-loop frame-
work for objective-based learning and optimal design of robust
operators and effective experiments under uncertainty. This is
illustrated in Figure 1.

IBR operator and mean objective cost of uncertainty
(MOCU)-based UQ

In this section, we focus on the objective-based UQ (objective-
UQ) framework using the MOCU,®>°® which measures the ex-
pected loss with respect to the final operational obijective
because of the model uncertainty. Uncertainty is directly
imposed on the model representing the underlying system and
not on the parameters of the operator, as typically done in the
ML community. Because the uncertainty is on the system model,
reduction of this uncertainty inevitably leads to improving our
knowledge regarding the system, leaving no discrepancy be-
tween what is learned (through data acquisition or experiments)
about the model and what we know about the underlying system
(and the relevant science).

Consider a stochastic model M with uncertainty class ®
composed of possible parameter vectors. Let C be a cost func-
tion and W a class of operators on M. For each operator y € W,
Cy(y) denotes the cost of applying ¥ on the model parametrized
by 6 e ®. An IBR operator on M is an operator y,gg € W so that
the expected value over ® of the cost Cy(y) is minimized by
¥igr as formulated in Equation 3,°” the expected value being
with respect to a prior probability distribution #(6) capturing
model uncertainty over ®. Here, each parameter vector e ®
corresponds to a model, and «(6) quantifies the likelihood that
a model is ® and therefore reflects prior knowledge. If there is
no prior knowledge beyond the uncertainty class itself, then it
is taken to be uniform with all models being equally likely. Given
a data sample S sampled independently from the full model, the
IBR theory can be used with a posterior distribution 7*(6) =
w(0|S), giving the optimal Bayesian operator. Because of
the optimality of the |IBR operator y;gg over O,
Eo[Co(¥1gr)] < Ee[Cy(y)] for any operator . For fe ®, the
objective cost of uncertainty relative to 0 is the difference be-
tween Cy(ygr) and Cy(y,). Averaging this loss differential pro-
vides our basic UQ, the MOCU:®°

MOCU(®) = Ey[Cy(¥igr) — Ca(¥y)], (Equation 4)
where v, denotes the optimal operator with respect to the model
specified by the model parameter 6. The expectation is
computed with respect to the distribution 7(#) of the model 6
in the uncertainty class ©.
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While the entropy of the prior (or posterior) has been
commonly used to measure model uncertainty, entropy, how-
ever, does not focus on the objective. In other words, there
may be large entropy, but it may not directly affect the opera-
tional objective because it may not affect the expected cost in
Equation 13. Unlike entropy, MOCU aims to quantify the uncer-
tainty that practically “matters” as it pertains to a specific objec-
tive (Figure 1).

IBR (with a prior) and optimal Bayesian (with an updated pos-
terior given observed data) operator design have been applied
in modern engineering, statistics, and ML. Based on different op-
erators (for example, for filtering, classification, and control) and
their corresponding cost functions, the research focus has been
mostly on solving the corresponding inference and optimization
problems, known as Bayesian learning or Bayesian inverse prob-
lems.®®~"° When systems understanding and operator design are
the objectives of modeling complex systems, Bayesian experi-
mental design and decision-making are often with respect to
the uncertainty class of models and the cost function related to
the operator of interest. More importantly, MOCU provides a nat-
ural measure for the cost of uncertainty that quantifies the poten-
tial operator performance degradation because of uncertainty,
directly focusing on operational objectives. Therefore, this IBR-
MOCU framework not only provides the robust operator design
and objective-oriented UQ but also leads to experimental design
to choose an experiment to optimally reduce performance loss by
adding to existing scientific knowledge. The IBR-MOCU para-
digm follows in line from the early thinking of Wiener and Kolmo-
gorov, and it extends and unifies previous work on robust filtering,
classification, and control. The historical context of the IBR-
MOCU framework is depicted in Figure 2.

In the following sections, we focus on recent developments on
the corresponding components of this IBR-MOCU framework,
including prior construction, model fusion, OED, and automated
feature engineering for knowledge discovery in the context of
materials science applications.

Knowledge-driven prior construction

The first challenge of applying SP/ML methods in the MOCU
framework to materials science is modeling and quantifying un-
certainty because there rarely exist sufficient data for satisfac-
tory system identification because of the enormous search
space and the complicated CPSP relationships.* Small samples
are commonplace in materials applications, in particular when
the research focus is to discover novel complex functional mate-
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Figure 2. lllustration of the historical context
of the intrinsically Bayesian robust (IBR)
framework and the concept of mean
objective cost of uncertainty (MOCU)

MOCU-based
optimal
experimental
design

rials. Thereafter, if prior knowledge, such
as physics principles, may help constrain
the SP/ML model space, it is critical to uti-
lize these in systems modeling.”'~"® While
Bayesian methods naturally model the un-
certainty because of their distribution-
based nature to treat model parameters
as random variables, the salient obstacle
confronting Bayesian methods is how to appropriately impose
model prior.

Regarding prior construction, Jaynes’® has remarked,
“... there must exist a general formal theory of determination
of priors by logical analysis of prior information—and that to
develop it is today the top priority research problem of Bayesian
theory.” However, the most common practice of Bayesian
methods is to adopt either non-informative or conjugate prior
for computational convenience. When there are limited data or
strong scientific prior knowledge, it is precisely then that the
formal structure as commented by Jaynes’* is critical for appro-
priate prior construction.

In this section, we first briefly review traditional prior construc-
tion methods and then focus on the formal structure for prior
construction involving a constrained optimization, in which
the constraints incorporate existing scientific knowledge
augmented by slackness variables. The constraints tighten the
prior distribution in accordance with prior knowledge while at
the same time avoiding inadvertent over-restriction of the prior,
an important consideration with small samples.

proposed approach

Traditional priors

Starting from Jeffreys’*” non-informative prior, there was a series
of information-theoretic and statistical methods: maximal data
information priors (MDIP),”® non-informative priors for integers,””
entropic priors,”® reference (non-informative) priors obtained
through maximization of the missing information,”® and least
informative priors.®° As discussed in the literature,®'®° the prin-
ciple of maximum entropy can be seen as a method of construct-
ing least informative priors,®*® though it was first introduced in
statistical mechanics for assigning probabilities. Except in the
Jeffreys’’® prior, almost all of the methods are based on optimi-
zation: maximizing or minimizing an objective function, usually
an information theoretic one. The least informative prior80 is
found among a restricted set of distributions, whereas the
feasible region is a set of convex combinations of certain types
of distributions. Zeliner®® proposed several non-informative
and informative priors for different problems. All of these
methods emphasize the separation of prior knowledge and
observed sample data.

A priori knowledge in the form of graphical models (e.g., Mar-
kov random fields) has also been widely utilized to either
constrain the model space (for example, in covariance matrix
estimation in Gaussian graphical models)®”® or impose regula-
rization terms.®° In these studies, using a given graphical model
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illustrating the interactions between variables, different prob-
lems have been addressed; e.g., constraints on the matrix
structure®”°%°" or known independencies between vari-
ables.?®°? Nonetheless, these studies rely on a fundamental
assumption: the given prior knowledge is complete and hence
provides one single solution. However, in many applications,
the given prior knowledge is uncertain, incomplete, and may
contain errors. Therefore, instead of interpreting the prior knowl-
edge as a single solution (e.g., a single deterministic covariance
matrix), we aim to construct a prior distribution on an uncer-
tainty class.

CPSP relationships in materials science

A central tenet in the field of materials science and engineering is
that the processing history controls the material’s internal struc-
ture, which, in turn, controls the effective (macroscale) properties
or performance characteristics exhibited by the material. Explo-
ration and exploitation of the materials space thus necessitate
the generation of CPSP linkages.?>* Given the multiscale na-
ture of the material’ structures,®® such (abstract) sets of CPSP
linkages can be visualized as a large connected and nested
network of models that mediate the flow of information about
the material’s state and behavior up and down the scales.

Any single model in this large network of models can be
formally expressed as f(u,p), where prepresents the appropriate
CPSP variables (i.e., related to process history, material struc-
ture, or material property), and ¢ denotes variables describing
the physics controlling the material phenomenon of interest. Es-
tablished domain knowledge can be used to construct a prior on
¢. Seeking f(u, ¢) allows us to explicitly capture physics in formu-
lating our ML/AI models. This allows us to use physics-based
simulation data to train f(u, ¢) by independently varying p and
¢. Given the enormous challenges associated with the develop-
ment of concurrent multiscale CPSP relationships, materials
analysis tends to be carried out (most of the time) at different,
not necessarily strongly coupled scales. At the mesoscale level
and beyond (i.e., larger than the atomic scale), several efforts
have been made to predict materials’ behavior by using data-
driven approaches. Most successful efforts at this scale have ex-
ploited low-dimensional representation of microstructure infor-
mation to build effective property models.?® To date, however,
there is not much work on the direct use of physical principles
to constrain the models used to establish these CPSP linkages.
In this regard, more success has been achieved when consid-
ering the structure-property connections at the atomic scale.

From the atomic point of view, materials are fundamentally
composed of atoms of similar or different types of chemical ele-
ments located on real-space sites. The equilibrium atomic struc-
tures of materials are reached through the minimization of total
energy originated from the complex interaction among ions
and electrons in the presence/absence of the external field. It
consists of the Coulomb and kinetic energy of electrons and
ions and the additional important contributions from quantum
mechanical effects, such as (1) exchange energy because of
the fermionic spin statistics of electrons, (2) static and dynamical
correlation energy beyond the single Slater determinant approx-
imated electronic wave functions, and (3) nuclear quantum
effects when tunneling and delocalization of ions become impor-
tant.”® Recently, a graph convolutional neural network has been
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applied to describe crystal and molecular structures of materials
because atoms and bonds can be perfectly represented by
graph nodes and edges, respectively. Recent examples include
the crystal graph convolutional neural networks (CGCNN),’” the
improved CGCNN (iCGCNN),”® the materials graph network
(MEGNet),*® etc. An underlying physical prior hypothesis is the
locality of interactions; that is, the physical knowledge of interest
can be learned from the local chemical interactions. For
example, in the CGCNN,®” the feature vector v; for atom i is up-
dated via iterative convolution as

t+1 t t (t (t t t t
vt = foZa(zE,})kW,) + bf)) @g(zg,_})kwg) + bi)),
jk
(Equation 5)

where zgfj,)k = v,(t) @V/@ @u, isthe concatenated neighbor vec-
tor consisting of atom /’s feature vector v;, feature vector v; of
atom j located on the k-th bond of atom i, and the corresponding
bond feature u(, . o is a sigmoid function, and g is a nonlinear
softmax activation function. W and b denote the convolution
weight matrix and bias of the corresponding layer, respectively.
In these convolutional filters, the summation only runs through
the local neighboring sites via local coordination determination®”
or Voronoi tessellation.?® The results from these graph convolu-
tional neural network approaches are promising because it is
generally true that the physical interaction decreases as the dis-
tance of (i,j) atom pair (i.e., bond length), increases. This a priori
physical knowledge is built inside these graph networks as anim-
plicit constraint. While the bare Coulomb operator decays slowly
with 1/r, the destructive interference of electronic wave functions
in many-particle systems leads to the nearsightedness of elec-
tronic matter in the absence of long-range ionic interac-
tions;'°% %" e., local electronic properties, such as electron den-
sity, depend mostly on the effective external potential at nearby
locations. However, for ionic systems, the long-range Coulomb
interaction can have a non-negligible contribution to the total en-
ergy and atomic forces even when the (i, j) atom pair is separated
far away, and further consideration to include these long-range
interactions will be of great importance to more accurate
describe the physical properties of ionic materials. In addition
to these interaction-based physics principles, another important
consideration when developing ML methods for materials sys-
tems is to make sure that the input feature and the derived
descriptor representations should be invariant to the symmetries
of the system, such as rotation, reflection, translation, and per-
mutation of atoms of the same species. Kernel-based methods
and topological invariants based on group theory have been
recently investigated to help improve the accuracy of predictions
in the ML modeling of solid state materials.'%?

Maximal knowledge-driven prior (MKDIP) construction

Knowledge-driven prior construction utilizes first principles and
expert domain knowledge to alleviate the model/data uncer-
tainty and the small sample size issues through constraining
the model space or deriving the uncertainty class of models
based on physical and chemical constraints. Incorporating sci-
entific knowledge to directly constrain Bayesian predictive
models can achieve robust predictions, which would be impos-
sible by using data alone. In materials science, there is a
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substantial body of knowledge in the form of phenomenological
models and physical theories for prior construction. Such knowl-
edge can be used in choosing features or descriptors and
constrain the model space for predicting novel materials with
desired properties.

To translate more general materials knowledge into Bayesian
learning, a general prior construction framework can be devel-
oped to map the known physical, chemical, and structural con-
straints into prior distributions in Bayesian learning. We have
proposed such a framework, capable of transforming any source
of prior information to prior probabilities given an uncertainty
class of predictive models.'%~% We call the final prior probabil-
ity constructed via this framework an MKDIP. The new MKDIP
construction constitutes two steps: (1) functional information
quantification, where prior knowledge manifested as functional
relationships is quantified as constraints to regularize the prior
probabilities in an information theoretic way, and (2) objective-
based prior selection, where, by combining sample data and
prior knowledge, we build an objective function in which the ex-
pected mean log likelihood is regularized by the quantified infor-
mation in step (1). As a special case, where we do not have any
sample data, or where there is only one data point available for
constructing the prior probability, the proposed framework is
reduced to aregularized extension of the maximum entropy prin-
ciple (MaxEnt)."%”

By introducing general constraints, which can appear as con-
ditional statements based on expert domain knowledge or phys-
ics principles, the idea here is to maximally constrain the model
uncertainty with respect to the prior knowledge characterized
by these constraints. To give a simple example, assuming that
we know a priori, based on physics principles, that certain micro-
structural properties R for a target material are determined by its
composition X, we then can derive the corresponding constraint
E.[Hs(RIX)] < &, where Hy(R|X) denotes the conditional Shan-
non entropy of R given X under the probabilistic model deter-
mined by 6. If our prior knowledge is correct, then Hy(R|X)— 0
for any appropriate model. Hence, under the uncertainty charac-
terized by the prior distribution 7 (), we aim to derive the MKDIP
with the expected conditional entropy as small as possible. De-
pending on different types of prior knowledge, we can write
different forms of such constraints. Specifically, the MKDIP con-
struction integrates materials science and statistical learning by
(1) model prior knowledge quantification, where general mate-
rials knowledge, from physical theories or expert domain knowl-
edge, is quantified via quantitative constraints or conditional
probabilities and (2) optimization, where MKDIP construction re-
quires solving the constrained optimization problems depending
on different applications and data types of available observed
measurements. When sufficient data exist, we can also split the
data for prior construction and for updating the posterior, appro-
priately integrating prior knowledge and existing data.

In particular, MKDIP aims to derive the solution to the following
optimization problem:

argming [Cy(,D)], (Equation 6)

where IT is the set of all proper priors, and Cy (&, D) is a cost func-
tion that depends on 1 4, the random vector parameterizing the
underlying probability distribution; (2) £, our state of (prior) knowl-
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edge; and (3) D, partial observations. Alternatively, by parame-
terizing the prior probability as «(6;v), with vy € I" denoting the
hyperparameters, the MKDIP can be found by solving

argmirgE,,(ﬁ;y) [Cy(€,D)). (Equation 7)
Ye

We have considered cost functions C, that can be decom-

posed into three terms:'%®

Cs(£,D) = X |(1 = B)gy (v) + Bg (D) | + 220, (),

where B, A1, and A, are non-negative regularization parameters.
Here, g\")( -) denotes the information-theoretic cost, which can
take different forms, including MaxEnt;'®” g®(-) is the cost
that involves the partially observed data when they are available,
including regularized MDIP and regularized expected mean log
likelihood prior;'%® and, more critically, g©®(-) denotes the
knowledge-driven constraints that convert prior knowledge
into functional constraints to further regularize the prior as
detailed in Boluki et al.'°® Using this cost function, we formulate
the MKDIP construction problem as the following optimization
problem:

argmin, . & (1 — 8)ai"(v) + 89}’ (D)

(Equation 8)
Subject to : E; [ggﬂ >0sie {1,....,nc},

where gf,), Vie {1,...,nc}, are constraints resulting from our
state of knowledge & via the mapping 7: £—Ey [gff,)} >0,
Vie {1, ..., n;}; for example, based on the aforementioned
composition-structure relationship E;[Hy(R|X)]. The overall
MKDIP scheme is illustrated in Figure 3.

In contrast to non-informative priors, MKDIP aims to incorpo-
rate the available prior knowledge and uses part of the data to
construct an informative prior. While, in theory, the observed
data can be entirely used in the optimization problem in Equa-
tion 8, in practice one should be cautious to avoid overfitting to
the given data. The MKDIP construction here introduces a formal
procedure for incorporating prior knowledge. It allows the incor-
poration of the knowledge of functional relationships and any
constraints on the conditional probabilities. Finally, we shall
note that deriving the solution to the MKDIP optimization prob-
lem Equation 8 can be challenging because of the non-convexity
of the objective function and constraints. Nevertheless, feasible
and local optimal solutions, especially with the specific distribu-
tion families and constraint forms, can be derived.'%®

Integrating prior knowledge in materials science

Xue et al.>> have applied Bayesian learning and experimental
design based on materials knowledge using results from the
Landau-Devonshire theory for piezoelectric materials. In partic-
ular, a Bayesian regression model,>* constrained by the Landau
functional form and the constraints on morphotropic phase
boundaries (MPBs), was developed to guide the design of novel
materials with the functional response of interest and to help
navigate the search space efficiently so that the desired compo-
sition can be achieved in a few trials. The Landau-Devonshire
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theory has been widely used to reproduce phase diagrams for
many piezoelectrics and to investigate their performance at the
MPB. The ferroelectric nanodomain phases can be character-
ized by different polarization vectors, p = n'p, where n’ =
[N 7n2,n3]T is a unit vector in the direction of polarization, and
p is its magnitude.'% The free energy, g, of the ferroelectric sys-
tem (e.g., BaTiO3 -based piezoelectrics) can be described by a
Landau polynomial that depends on the modulus of the polariza-
tion vector (p) and the polarization direction (1) at a given tem-
perature T:

« B4

iT) = 5 (n? +n +n)p? + —(n$+n§+n§)2p4

4
+ %(nq‘ +ny + n3)p* +%(n$+n§+n§)3p6

+ % (n$ +n§ + nd)p® + %( n3n3)p®,

where the coefficients o, B’'s, and y’s are materials dependent
and often determined from experiments; for example, 8>(,x)
depends on the temperature (1) and composition (x). The MPB
is a phase boundary where the two phases (i.e., tetragonal [T]
and rhombohedral [R] phases in BaTiOs-based piezoelectrics)
coexist and have degenerate free energy. Therefore, at MPB
(r =1uwps and x = Xyps), g7 = gr, Which leads to

24y, — v3 ,

B2 (Tmpe, Xmes) + 57 Peq(TMPB,XMPB) =0,

pgq(@x) denotes the polarization at equilibrium and has the func-
tional form p(t — 7¢(x)), where p is a constant, and 7¢(x) is the
composition-dependent Curie temperature. Based on these re-
lationships (more details can be found in Xue et al.®?), the MPB
curve has the following quadratic form:

TMPB(X) = CL)1X2 +CL)2X+C17

where w1, w2, and Cy are the corresponding model parameters
to learn from experimental data. This serves as the prior knowl-
edge to constrain our Bayesian regression model to map the ma-
terial composition x to the MPB curves.

Asiillustrated in Figure 4, with the minimal collected data (only 20
characterized BaTiO3-based piezoelectrics), the Bayesian regres-
sion model with the aforementioned functional constraints pro-
vides reliable phase boundaries and faithful uncertainty estimates.
More importantly, we demonstrated our approach for finding
BaTiO3-based piezoelectrics with the desired target of a vertical
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Figure 3. lllustration of knowledge-based
prior construction via MKDIP

frue model
(unknown)
MPB. We have predicted, synthesized,
and characterized a solid solution, (Bag s
Cag 5)TiOz-Ba(Tip 7Zro.3)O3, with piezoelec-
tric properties showing better temperature
reliability than other BaTiO3-based piezo-
electrics in our initial training data.

When the prior knowledge, including
different functional forms and constraints,
is available, the MKDIP framework can
help take the best advantage of them to explicitly determine the
predictive models as well as their corresponding predictors for
specific functional responses of interest. Besides such explicit
functional-form prior knowledge, which allows us to directly
constrain predictive models, the existing prior knowledge on
CPSP relationships may simply be in the form of correlation, con-
ditional relationships, and inequality constraints. To enable users,
especially materials domain experts, to easily explore and inte-
grate existing phenomenological knowledge into Bayesian
learning, infrastructure and friendly user interfaces should be
developed to help prior construction via active knowledge acqui-
sition from either materials scientists or even more recent large
language foundation models as the unprecedented knowledge
base.”'® The current practice is mostly hand crafted based on
different problems and how data scientists work with their collab-
orating materials scientists. More interfacing efforts between data
scientists and materials domain experts are required to achieve
more synergistic collaboration in materials science.

Bayesian model averaging (BMA) with experimental
design

With a derived surrogate model, we would like to exploit it in com-
bination with experiments to accelerate the development of new
materials. However, often, because of incomplete prior knowl-
edge, there are multiple feasible surrogate models within the un-
certainty class. We further explore a Bayesian experimental
design framework that is capable of adaptively selecting or aggre-
gating competing models connecting materials composition and
processing features to performance metrics through BMA. %9119

Review on Bayesian model fusion

Bayesian model fusion methods have been studied extensively
to achieve better predictive accuracy as well as robust risk and
uncertainty estimates.”® %9112 There are different Bayesian
model ensemble strategies stemming from the Bayes’ theorem
from Bayesian inference,’® including Bayesian model selection,
Bayesian model combination, and BMA. They all start with an
ensemble of candidate models as the uncertainty model class
and then update the model posterior probabilities given
observed data. The main difference among these different
strategies lies in how the updated posterior probabilities guide
the way to derive posterior predictive probabilities. For example,
Bayesian model selection aims to identify the best predicting
model(s) with different criteria, including the Bayesian informa-
tion criterion (BIC) and Akaike information criterion (AIC).""%"'4
Bayesian model combination often samples the best model
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Figure 4. Bayesian learning and experimental design constrained by the Landau functional for discovery of BaTiOs-based piezoelectrics as

described in the text

Shown are predicted (solid lines) and experimental (dots) phase diagrams for BZT-

m50-n30, together with uncertainty estimates, from Bayesian regression. The

solid lines show the mean phase boundaries, and the dashed lines mark the 95% confidence intervals. Notice the uncertainty reduction given more data.

subsets based on the updated model posterior, hoping to
achieve better convergence.'’® In this paper, we focus on
BMA, which essentially relies on the weighted ensemble of the
models in the uncertainty class by the model posterior.'%%""?
The theoretical properties of BMA have been studied in the liter-
ature. For example, BMA can achieve better prediction perfor-
mance than any model in the uncertainty class.'%'"® The corre-
sponding implementations addressing model uncertainty have
also been investigated for more effective and efficient inference
procedures.'"?

BMA with MOCU for OED

For Bayesian experimental design in general, there can be three
categories of objective functions to guide the experimental
design. In the first case, we have a parametric model where
the parameters come from an underlying physical system. One
such example is in biomedicine, where the objective function is
the likelihood of the cell being in a cancerous state, given a
state-space model based on genetic regulatory pathways.'"”
Another example is in imaging (for example, for image recon-
struction or filtering), where the parameters characterize the im-
age appearance, and the objective function is an error measure
between two images.

In the second category, the features are given, and the param-
eters come from a surrogate model used in place of the actual
physical model but are believed to be appropriately related to
the physical model. For example, in the materials science appli-
cations under “OED with MOCU,” the surrogate model is based
on the time-dependent Ginzburg-Landau (TDGL) theory and
simulates the free energy given dopant parameters, the objective
function is the energy dissipation, and the action is to find an

optimal dopant and concentration.® To see how the approach
in Dehghannasiri et al.” fits the above general theory, the reader
can refer to Boluki et al.”'®

In the third category, we do not know the physical model, and
we lack sufficient knowledge to posit a surrogate model with
known features/forms relating to our objective. This case arises
in many scenarios where the objective function is a “black box”
function. Nevertheless, we can adopt a model, albeit one with
known predictive properties. This model can be a kernel-based
model, such as a GP.""® Moreover, this model can consist of a
set of possible parametric families, a kernel-based model with
different possible feature sets, or even kernel-based models
with different choices for the kernel function. In such scenarios,
we do not a priori have any knowledge about which feature set or
model family would be the best, and reliable model selection
cannot be performed before starting the experiment design
loop because of the limited number of observed samples.
Considering the average prediction from models based on
different feature sets or model families weighted by their poste-
rior probability of being the correct model, namely BMA, is one
possible approach.

In the context of materials discovery, we can frame the model
averaging problem in a hierarchy to define a family of uncertain
model classes in which, for example, different features
contribute differently to functional property prediction differently.
With such a hierarchical Bayesian model, BMA, essentially
weighing all the possible models by their corresponding proba-
bility of being the true model, is embedded in BO for OED to
realize a system not only capable of autonomously and adap-
tively learning the surrogate predictive models for the most
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promising materials of desired properties but also utilizing the
models to efficiently guide exploration of the design space.
With more acquired data, the uncertainty of different models
will be quantified, and improved predictive models as well as effi-
cient experimental design can be attained.

Again, assume an uncertainty class ® with the probability mea-
sure I1, characterizing predictive models on a design space X. The
experimental design goal is to optimize an objective function
f: ® x X—R. For example, we want to find a design xe X that
minimizes an unknown true objective function f(x;6;) over X,
where 6; € ® denotes the true model. When there is no strong prior
knowledge on functional forms of the objective function, often GP
regression (GPR) is adopted and iteratively updated given data
from performed experiments D,: P(f|x; D,) ~ GP(y|u,K), where
{u,K} denote the corresponding mean and kernel parameters.
To account for potential model uncertainty, BMA can be used for
more robust modeling of the objective function:

L
ZP/|D (F1%; Dy, 1, Ki),

i=

P(f|x; D) (Equation 9)

where i is the index of the candidate models in the uncer-
tainty class.

As explained under “Bayesian learning, UQ, and experimental
design,” a robust design is an element x? € X that minimizes the
average of the objective function across all possibilities in the un-
certainty class relative to a probability distribution governing the
corresponding space. This probability at each experimental
design iteration is the posterior distribution given the observed
data points available up to that step. Mathematically,

. 0)|Dnl,

x; = argminE,[f(x;
Xxe X

(Equation 10)

where D,, denotes the observed data till the nth iteration. MOCU
in this context can be defined as the average gain in the attained
objective between the robust design and the actual optimal de-
signs across the possibilities:

MOCU, (®) = E,[f(xF;0) — f(x;;0)|Dn),

(Equation 11)
where xj denotes the optimal action for a given model parame-
terized by 0, including both GPR parameters and additional pa-
rameters from BMA. Note that, if we actually knew the true (cor-
rect) model, then we would simply take the optimal design for
that model, and MOCU would be 0. Denoting the set of possible
experiments by &, the best experiment £}, at each time step (in
one-step look-ahead scenario) is the one that maximally reduces
the expected MOCU following the experiment; i.e.,

= argminE; [E, [f (x5, ,; 6)

teE

]| = Elf(:)[Dn).
(Equation 12)

In most cases in materials discovery, each experiment is synthe-
sizing the corresponding materials design and measuring its
actual properties (or their noisy versions). Thus, the experiment
space is equivalent to the design space.

It is beneficial to recognize that MOCU can be viewed as the
minimum expected value of a Bayesian loss function, where
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the Bayesian loss function maps an operator (the materials
design in this context) to its differential objective value (for using
the given operator instead of an optimal operator), and its mini-
mum expectation is attained by an optimal robust operator
that minimizes the average differential objective value. In deci-
sion theory, this differential objective value has been referred
to as the regret. Under certain conditions, MOCU-based exper-
imental design is, in fact, equivalent to KG and EGO."'®

BMA for materials science applications

We have integrated BMA with the MOCU-based experimental
design to deploy an autonomous computational materials dis-
covery framework that is capable of performing optimal sequen-
tial computational experiments to find optimal materials and
updating the knowledge on materials system model at the
same time. One of our recent exercises'?® consisted of imple-
menting the BMA approach for robust selection of computa-
tional experiments to optimize properties of the MAX phase
crystal system.'?" Employing BMA approaches using a set of
GPR functions based on different feature sets, we demonstrated
that the framework was robust against selection of poor feature
sets because the approach considers all the feature sets at once,
updating their relative statistical weights according to their ability
to predict (successful) outcomes of unrealized simulations. More
critically, we have demonstrated the effectiveness of our compu-
tational materials discovery platform for single and multiobjec-
tive optimization problems.

This framework has been used efficiently for objective-ori-
ented exploration of materials design spaces (MDSs) through
computational models and, more importantly to guide exper-
iments by focusing on gathering data in sections of the MDS
that will result in the most efficient path to achieving the
optimal material within resource budgets. Additionally, the
BO approach was successfully combined with BMA for auton-
omous and adaptive learning, which may be used to auto-
select the best models in the MDS, thereby eliminating the
requirement of knowing the best model a priori. Thus, this
framework constitutes a paradigm shift in the approach to
materials discovery by simultaneously (1) accounting for the
need to adaptively build increasingly effective models for the
accelerated discovery of materials while (2) accounting for
the uncertainty in the models themselves. It enables a long-
desired seamless connection between computation and ex-
periments, each informing the other, while progressing opti-
mally toward the target material.

In our implementation for MAX phase crystal systems, after
training the GPs based on the current and previous observa-
tions, solving for the GP hyperparameters to maximize the mar-
ginal likelihood of the observed data, each GP provides a
Gaussian distribution over the objective function value of each
design. Averaging several GPs based on their posterior model
probabilities is like mixing weighted Gaussian distributions
over the objective value of each design. Based on the sum of
weighted Gaussian distributions, the MOCU-based utility func-
tion or other acquisition functions, including expected improve-
ment (El) with a single objective®® or expected hypervolume
improvement (EHVI) with multiobjectives,'®? can be calculated
for all possible designs, and the maximizer is chosen as the
next experiment. In our experiments, six sets of basic
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Figure 5. Bayesian experimental design with BMA for MAX phases as described in the text

(A) The change of average maximum bulk modulus for the original six feature sets with the number of design iterations.
(B) The change of average maximum bulk modulus comparing BMA surrogates with the best and worst feature sets.
(C) The change of posterior model probabilities corresponding to six feature sets.

(D) The average number of sampled Pareto front points when considering bulk modulus and shear modulus.

compositional and structural features were chosen a priori
without assuming any knowledge of their suitability for the un-
derlying true model that generates data. We have investigated
whether the updated model posterior in BMA captured the ex-
pected CPSP relationships.'*° The goal of experimental design
is to discover MAX phases with maximum bulk modulus and
minimum shear modulus, which were computed through density
functional theory (DFT) calculations'®*'>* for 1,500 randomly
sampled MAX ternary carbide/nitride crystals. Among these
DFT-calculated results, there were 10 MAX phases belonging
to the Pareto front when considering the design goals. All of
the reported performances of Bayesian experimental design
were based on the average values of 1,500 runs starting from
the random initial sets of 10 training samples. In Figure 5A, we
show the change of the average maximum bulk modulus with
the iterations of sequential experimental design. It is clear that,
among six models with different features, the feature set F»
achieves the best experimental design performance because
the average maximum bulk modulus is consistently higher than
the other models. On the other hand, Fg has the worst perfor-
mance. When adopting BMA (either based on first-order or sec-
ond-order maximum likelihood inference [BMA1 or BMA2,
respectively)), it is clear that BMA achieves robust performance
even when some models may not have good predictive power
(Figure 5B). With the increasing number of iterations, it is also
clear that the posterior probability of the best model, F», gets
higher (Figure 5C). Last but not least, as shown in Figure 5D,
our BMA-based multiobjective experimental design can
approach the Pareto front within a small number of sequential
design iterations considering the vast MAX ternary carbide/
nitride space. All of these experimental results on the maximiza-
tion/minimization of mechanical properties of MAX phases sug-
gest that BMA-based model fusion can lead to considerable
reduction in the number of experiments/computations that
need to be carried out to identify the desired solutions to this
specific materials design problem.

Along these directions, we can develop robust Bayesian
learning methods by model fusion that exploit correlations
among sources/models. Together with a multiinformation source
optimization framework driven by scientific knowledge, they will
reliably and efficiently identify, given the current knowledge, the
next best information source to query and guide the materials
design.'?®

OED with MOCU

In the context of OED, it has a long history in science and engi-
neering as a properly designed experimental procedure that pro-
vides much greater efficiency than simply making random
probes. Indeed, Francis Bacon’s call for experimental design in
1620 is often taken to be the beginning of modern science.'?®
MOCU-based OED

Because the MOCU®®®® can be used to quantify the objective-
based uncertainty, it provides an effective means to estimate
the expected impact of potential experiments on the objective
(i.e., operational goal) through the reduction of model uncertainty.
Suppose we are given a set of potential experiments from which
the next experiment could be chosen. Which among the possible
experiments should be selected if we wish to optimally improve
the operational performance of the operator based on the ex-
pected experimental outcome? A natural way to select the best
possible experiment would be to choose the one that would
lead to the minimum expected remaining MOCU after observing
its outcome. To be more specific, let £ € E be an experimentin the
experimental design space E. Given £, the MOCU conditioned on
this experiment can be computed as

MOCU(®I) = Eu¢ [Co(vi) — Co(ws)],  (Equation 13)

where xp%‘é is the IBR operator that is optimally robust for the un-
certainty class of models ®|¢ that is now conditioned on this
experiment £, and the expectation is taken with respect to the
conditional distribution w(6|¢). The expected remaining MOCU
can be evaluated by

R(®¢) = E:[MOCU(®|¢)], (Equation 14)
and the optimal experiment £* is the one that minimizes the ex-
pected remaining MOCU in Equation 14 so that it satisfies

£ = argminR(®[£). (Equation 15)

teB

While this strategy does not guarantee that the selected
experiment will indeed minimize the uncertainty impacting the
objective among all experiments (because the experimental
outcome is not known in advance with certainty), it will be
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Figure 6. Experimental design results based on a 5-oscillator
Kuramoto model with uncertain coupling strength between the
oscillators as described in the text

The MOCU-based OED scheme quickly reduces the model uncertainty that
impacts the performance.

optimal on average. Recently, this MOCU-based experimental
design scheme has been developed for a variety of systems
and applications, which include enhancing the performance of
gene-regulatory network intervention with partial network knowl-
edge,""”"?" synchronization of an uncertain Kuramoto model
that consists of interconnected oscillators with uncertain interac-
tion strength,'®'?° optimal sequential sampling,'*® Bayesian
classification through active learning,**'®' and robust filtering
of uncertain stochastic differential equation (SDE) systems.*

For materials discovery via OED guided by MOCU, as shown
in Equation 15, optimization algorithms have to be developed
based on the structure of the input design space as well as the
properties of the MOCU computation based on different prob-
lem settings. For example, if we are investigating pool-based
high-throughput screening or discovery problems with a finite
set of candidates, either exhaustive search as in typical BO im-
plementations®>*'*' or dynamic programming algorithms
based on KGs*’*'*27'** can be developed for solving the optimi-
zation problems. When the input design space is continuous and
the gradient of MOCU can be estimated, gradient-based local
search algorithms can be implemented, as discussed in Zhao
et al.”®® There are also other solution strategies that can be
used to solve OED guided by MOCU, including sampling and ge-
netic and other evolutionary algorithms."*®

Figure 6 shows the performance of the MOCU-based OED
strategy in reducing the uncertainty that impacts the synchroni-
zation cost of a Kuramoto model that consists of 5 oscillators,
where the coupling strength between oscillators is uncertain
and known only up to a range.'?® In this example, an experiment
picks an oscillator pair and observes whether the selected oscil-
lator pair is synchronized in the absence of external control. The
observation can be used to reduce the range of the uncertain
coupling strength between the oscillators. For this Kuramoto

model, there exist (g) potential experiments in the experi-

mental design space &, and Figure 6 shows how MOCU de-
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creases as a function of experimental updates. As can be
seen, the MOCU-based OED strategy leads to a sharp reduction
in uncertainty within a few updates, outperforming random se-
lection (which selects one of the possible experiments from &
with uniform probability) or an entropy-based approach (which
selects the experiment for the oscillator pair whose coupling
strength has the largest uncertain range).

OED for shape memory alloy (SMA)

In materials design, the MOCU-based OED strategy has been
applied to a computational problem for shape memory alloy
(SMA) design with desired stress-strain profiles for a particular
dopant at a given concentration utilizing the TDGL theory.® The
TDGL model simulates the free energy for a specific dopant
with a specified concentration, given the dopant’s parameters,
which is considered an oracle in the experiments. Because the
computational complexity of the TDGL model is enormous, an
uncertain surrogate model is first trained to approximately pre-
dict a dissipation energy for a specified dopant and concentra-
tion. In particular, based on TDGL, a reciprocal function is adop-
ted to model the energy dissipation at a specific temperature as
a function of dopant potency, dopant spread, and dopant con-
centration. The experimental design goal is to discover SMAs
with the minimum energy dissipation, and therefore this surro-
gate model is used as the cost function to define MOCU to effi-
ciently guide throughout the experimental design iterations for
an optimal dopant and concentration. With the MOCU defined
based on this Landau mesoscale surrogate for SMAs as the
cost function, the expected remaining MOCU, given the corre-
sponding dopant and its corresponding concentration levels,
can be computed by the definition in Equation 14. The optimal
experiment can then be determined to minimize the expected re-
maining MOCU under model uncertainty as in Equation 15.

In the reported experiments,” MOCU-based OED was
compared with the pure exploitation and random selection pol-
icies. Averaged over 10,000 simulations, our MOCU-based
OED strategy, which strives to minimize the uncertainty in the
model pertaining to the design objective, identified the dopant
and concentration with the optimal dissipation after only two it-
erations on average, while either exploitation or random selec-
tion policies cannot find the optimal dopant even after 10 itera-
tions. Getting optimal results after fewer iterations is especially
crucial in materials discovery, where measurements by either
high-throughput simulation models or synthesis and profiling ex-
periments are expensive and time consuming.

Automatic feature engineering (AFE)

Finally, with accumulated knowledge and data from experi-
mental design based on objective-UQ using MOCU, we may
help fill in the missing gap of the understanding in materials sys-
tems under study. In materials science, the fundamental para-
digm is the existence of causal relationships connecting compo-
sition and processing (i.e., the modifications to a material’s
current state), structure (i.e., the multiscale arrangement of the
material), and properties (i.e., the response of the material to
an external stimulus); i.e., CPSP relationships. The navigation
of this CPSP space is enormously resource intensive, regardless
of whether this query is on physical experiments or computa-
tional ones. As a result, it typically takes more than 20 years to
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identify, develop, and finally deploy one material in real-world
applications—a key bottleneck for the MGI.">* Attempting to
use physics-agnostic models to build these relationships is
limited by the scarcity of the training data itself. Moreover, one
would be interested in discovering derived relationships that
connect features to properties/behavior because these relation-
ships can further be used to design/discover materials with
optimal properties. Besides designing and discovering prom-
ising new materials with desired functional properties, identifying
critical input features (related to composition, process, structure)
that determine function properties as well as principled CPSP re-
lationships can provide a systematic understanding of the under-
lying physics for different materials systems. Such knowledge
can be explored and updated, as illustrated in the previous ex-
amples under “Integrating prior knowledge in materials science”
and “BMA for materials science applications.” One such knowl-
edge discovery strategy is AFE, which enables us to use physics
constraints on learning surrogate models while facilitating
the discovery of fundamental materials design rules at the
same time.

Engineered features obeying physics principles provide valu-
able interpretability that is critical to help new knowledge discov-
ery and consequent critical decision-making. It is worth noting
that, in scientific ML (sciML) involving complex systems, training
data tend to be scarce and noisy because obtaining data can be
difficult, time consuming, and costly. Materials problems clearly
reflect these challenges.

Related work in feature engineering

Feature representation learning has been studied extensively in
the SP/ML community, including “white box” methods based
on specific basis families (Fourier and wavelet are two represen-
tatives) and data-driven “black box” methods, such as dictionary
learning and deep learning.'®~'%° Although “black box” deep
AFE models'*° have shown great potential to improve the corre-
sponding ML algorithm performance, we focus on feature engi-
neering, aiming to derive features based on explicit functional
forms in this survey. Desirable feature engineering should attain
considerable improvement of prediction performance and gener-
alizability as well as good interpretability with little manual labor.
Among the existing methods, deep feature synthesis'*' extracts
features based on explicit functional relationships without ex-
perts’ domain knowledge through stacking multiple primary fea-
tures and implementing operations or transformations on them,
but it suffers from efficiency and scalability problems because
of its brute-force way to generate and select features. Kaul
et al."*? proposed Autolearn by regression-based feature
learning through mining pairwise feature associations. While it
avoids overfitting, to which deep learning-based FE methods
are amenable, and improves the efficiency by selecting subsets
of engineered features according to stability and information
gain, it does not directly produce interpretable features. Khurana
et al."*® introduced Cogni to, which formulates the feature engi-
neering problem as a search on the transformation tree with an
incremental search strategy to explore the prominent features
and later extended the framework by combining reinforcement
learning (RL) with a linear functional approximation'** to improve
the efficiency. A similar framework has recently been developed
in Zhang et al.,’*® where the deep reinforcement learning (DRL)
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policy is learned on a tree-like transformation graph. It improves
the policy learning capability compared with Cognito. However,
both frameworks do not explicitly incorporate available prior
knowledge into the AFE procedures.

For AFE in materials science applications, we are interested in
finding the actuating mechanisms of the materials’ functional
properties of interest by identifying a set of physically meaningful
variables and their relationships.'“® Such a set of physical variables
with corresponding parameters that uniquely describe the mate-
rials’ properties of interest can be denoted as “descriptors.”
Discovering descriptors in materials science can help better pre-
dict target functional properties with potential interpretability for
a given complete class of materials.’*’ Several methods have
been developed, such as a method based on compressed
sensing'®” and the more recent Sure Independent Screening
and Sparse Operation (SISSO)'“® by brute-force search to
generate and select subsets of generated features by sure inde-
pendent screening’“° together with sparse operators such as least
absolute shrinkage and selection operator (LASSO).'*° These
methods pose a scalability challenge with the exponentially
growing memory requirement to store intermediate features and
high computational complexity to search for features.

Physics-constrained AFE

In our recently developed AFE framework,"®" a feature genera-
tion tree (FGT) was constructed with physics constraints to
explore the engineered feature (descriptor) space more effi-
ciently based on first principles, which was demonstrated in
several materials problems to be able to take advantage of prior
chemical and physical knowledge of the materials systems un-
der study.

Our FGT-based AFE framework focuses on sciML applica-
tions, where interpretability is critical to help consequent critical
decision-making under data scarcity and uncertainty. Specif-
ically, AFE strategies have been developed by combining FGT
exploration with Deep Reinforcement Learning (DRL)'*? to
address the interpretability and scalability challenges. Instead
of employing a brute-force way to perform algebraic operations
on the raw features in a given dataset and then selecting impor-
tant descriptors, we combine the descriptor generating and se-
lecting processes together by constructing FGTs and devel-
oping the corresponding tree exploration policies guided by a
deep Q network (DQN). An efficient exploration of the prominent
descriptors can be attained in the growing feature space based
on the allowed algebraic operations. Our FGT-based AFE strate-
gies construct interpretable descriptors based on a list of oper-
ations according to the DRL learned policies, which are more
scalable and flexible with the performance-complexity trade-
off with the help of adjustable batch size for generating interme-
diate features. More critical to materials science and other sciML
problems, our FGT provides a flexible framework for incorpo-
rating prior knowledge (e.g., physics constraints) to generate
and select features. This is important for knowledge discovery
via interpretable learning with physics constraints under data
scarcity and uncertainty because the space connecting intrinsic
materials attributes/features to materials behavior is vast,
sparse, and complex in nature.

In particular, let xq denote the finite set of p variables as raw or
primary features {xJ, ..., xo} and y the target output vector. AFE
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Algorithm 1. DQN for AFE

1: input: Primary features Fp, Action set O
2:ford=1,2,...do

3: Construct new DQN

4: Clear Buffer

5: forepisode =1,2,....N do
6: fori=0,1,..
7.

8

., do
¢; = e-Greedy Method(Fj,e)

2 F2,,Ri,cis1 = FGT_Grow {F9, ¢;,ci}
9: Buffer ‘—{I:,d,l:lg1,q0i,Ri,C/+1}
10: Train DQN with experience replay
11: if R; > threshold then
12: goto Output
13: end if
14: if ¢c; > Ccmax then
15: break
16: end if
17: end for
18: end for

19: S« Candidate set S? with n features of highest R;
20: end for
21: Output: Optimal feature set F* chosen from S

is to develop an algorithm to construct sets of engineered
features as interpretable and predictive descriptors F; =
{g1(x0,C1),92(X0,C2), ...} based on explicit functional forms
with allowed algebraic operations that accurately predict y.
The set of algebraic operations ¢ in an operation set O can be
constructed based on prior knowledge; for example, with the
following unary and binary operations: O = {exp(-), log(-),
(2 ()3 )L, +, — , x, =} For each function g(xo,
c), ¢ denotes the complexity of the corresponding generated
descriptor—the number of algebraic operations. For example,
the function exp (xg)x(xa)zh/(xﬁ) has a complexity of 5.
The operation set O can be pre-defined based on the prior
knowledge about the system under study. If we denote the pri-
mary features xq by Fo, then F; denotes the iteratively generated
set of descriptors with the maximum allowed complexity c;. Our
goal is to find an optimal descriptor set F* that maximizes the
prediction performance score; for example, by classification or
regression accuracy, A, {F',y}:

F* = argmax A {F,y},

Vfke Ffke F

(Equation 16)

where L denotes the prediction model (for example, linear
regression or Support Vector Machine (SVM) for interpretability
with generated descriptors), and f* is any descriptor (including
primary features) in F, the set of all generated features with the
maximum allowed complexity Cpmax-

The combinatorial optimization problem in Equation 16 is NP
hard. We solve it approximately by introducing the FGT to itera-
tively construct the descriptor space and transform the problem
into a tree search problem for efficient AFE. Each node in the
FGT represents a set of descriptors F;, and each edge represents
an operation ¢. We denote (F9)* = {(f')*, (f3)", ..., (f%)*} as the
top d optimal features when we choose the cardinality of F* as
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dand (f9)* as the selected optimal feature for the dth dimension
of (F9)*. The FGT exploration aims to search for the best de-
scriptors (f1)*, (f2)*, ... one by one based on the testing accu-
racy given the observed data. The corresponding complete
AFE procedure constructs the feature subspace F? sequentially
as the search space of each (f¢)" exploration, starting from the
root node Fy with the primary feature set. At each node F;, we
would like to learn a generation policy w to choose an operation
¢; to generate the new descriptor set F;(j > i) as the correspond-
ing child node, with which the current optimal (F¢) and
AL{(F?)',y} will be updated accordingly. The FGT will grow by
repeating the operations above until it reaches the maximum
complexity Cpax-

To learn the FGT generation policy 7, we adopt a DQN with
experience replay.'®® Formally, we define the states, actions
and rewards as follows:

® state F?, denoting a set of primary features or generated
descriptors when looking for the dth optimal descriptor;

@ action 7r(F,.d) = ¢,, denoting an operation in the set O;

e reward: R(F?, ¢;) = max(1.001 — AL{F’,y})’1, where
0<A{F.y}<1. F

The pseudo-code for learning DQN-based FGT exploration is
given in Algorithm 1. To have a flexible exploration procedure for
performance-complexity trade-off and incorporation of prior
knowledge, each (f9)" in F* can be chosen from the top n fea-
tures with highest rewards in the corresponding feature sub-
space F9, composing a candidate set S¢. So (F?~')" can have
multiple combinations according to the whole candidate sets
S = {S',...,89- "}, and F’ also has multiple combinations ac-
cording to different (F~1)* and 9. Consequently the reward is
computed as the maximum reward over F’.

Note that when we apply binary operations on F;, beside the
one feature in the F;, we have to choose another feature in the
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Figure 7. Copper energy regression results for different interatomic potential models

generated descriptor space, leading to the exponentially explod-
ing number of new descriptors. To achieve appropriate perfor-
mance-complexity trade-off, we introduce flexible batch sam-
pling to randomly sample a feature subspace B from [ as a
“batch set” each time and enumerate f° only from B and take
the maximum reward from all of the combinations as the reward.
When prior knowledge is available as physics constraints on
applying corresponding operations to specific feature groups,
this batch sampling procedure can naturally take care of them.

AFE to learn interatomic potential models for copper
First-principles DFT'2*"24 has been extensively applied in mate-
rials science, physics, and chemistry. However, it is often con-
strained to simulate materials with 100-1,000 atoms for several
thousands ab initio molecular dynamics steps, covering about
10 picoseconds. In contrast, classic interatomic potentials have
been widely adopted in the past, allowing large-scale molecular
dynamics simulation of millions of atoms for millions of time steps
(that is, covering >10 nanoseconds). However, the construction
of the functional form and the optimization of the corresponding
parameters of classic potentials are highly nontrivial. Recently,
developing and training neural network potentials based on
first-principles DFT calculations of relatively small systems has
become an important research direction in the atomistic simula-
tion in combination with active learning.'**"'*° Very recently, a
feature engineering method has been pursued where genetic
programming was applied to develop fast and accurate classic
interatomic potentials with explicit functional forms from physi-
cally meaningful hypothesis space.'*® Particularly, genetic pro-
gramming was applied to optimize the exact functional form of
pairwise and many-body potentials as well as other potential
forms, highlighting an important avenue toward the development
of physics-constrained models with analytic functional form.
Different from the above genetic programming approach, we
have adopted our FGT-based AFE and evaluated its ability to
find potential models from data generated by DFT. To compare
with the genetic programming symbolic regression approach, '*°
we used the same 150 snapshots of 32-atom DFT molecular dy-
namics simulations on fcc copper in Hernandez et al.,"*® where
each snapshot was generated every 100 steps with a time step
of 1 fs. We adopted the same 150 snapshots, including 50 snap-
shots from ab initio molecular dynamics performed at 300 K in

the canonical (NVT) ensemble, 50 snapshots at 1,400 K in the
NVT ensemble, and 50 snapshots at 1,400 K in the isothermal-
isobaric (NPT) ensemble with pressure at 100 kPa. The 150 total
energies calculated by Hernandez et al.'*® were considered the
target output of interest,'®” with the random split of 125 struc-
tures and their corresponding total energies for training, and
the remaining 125 structures and total energies for validation,
for feature engineering.

We have compared our AFE with the recently developed phys-
ics-informed genetic programming method'*® to arrive at analyt-
ical many-body classical interatomic potential models. Figure 7
shows the plots of predicted total energy of these different cop-
per structures vs. the simulated total energy based on primary
features (left), genetic-programming-generated descriptors
(center), and AFE-generated descriptors (right) on the same
held-out testing data. With the same simulated molecular dy-
namics data and experimental setup in the paper, our AFE has
achieved the total energy prediction with a mean absolute error
(MAE) of 3.73 meV/atom within 12 h. By contrast, the reported
model GP1 by genetic programming in Hernandez et al.'*® had
a prediction MAE of 4.13 meV/atom after 360 CPU hours on
the same training and test sets.

Our proposed AFE strategies approximate the expected future
reward of engineered descriptors through DQN-based policy
learning and replace the exhaustive feature generation by DQN-
guided FGT exploration considering physics prior knowledge.
Consequently, our AFE enhances scalability and computational
efficiency without sacrificing prediction performance, as demon-
strated in the reported experiment as well as other materials
systems in Xiang et al.’®" The results of these real-world materials
science experiments have demonstrated the potential of our DQN-
guided FGT exploration in reducing the runtime and enhancing the
scalability for AFE. More importantly, the engineered descriptors
are interpretable with the corresponding lists of algebraic opera-
tions on the original primary features. Our physics-constrained
AFE aims at generalizable learning under data scarcity and uncer-
tainty. Interpretable instead of “black box” learning helps new
knowledge discovery and better decision-making.

Conclusions and future work
When facing real-world complex systems in various science and
engineering domains—such as complex materials systems,
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which are our focus in this paper—where acquisition of ample
data is practically difficult and formidably expensive, currently
existing ML methods fail to produce reliable and generalizable
predictions. To cope with the current shortcomings of existing
SP and ML schemes in materials discovery, there is a pressing
need for novel methods that enable robust optimal decision-
making under challenging conditions, such as small data size,
enormous system complexity, nonstationarity, as well as data
and model uncertainty. In this paper, we have presented recent
efforts in knowledge-driven learning, optimization, and experi-
mental design, and we have also provided their historical context
against the rich research history in the SP community revolving
around robust filtering and control, which can probably be dated
back to the 1950s. Specifically, we have shown several exam-
ples in an objective-based UQ framework—via MOCU—to
develop sciML methods to address the aforementioned chal-
lenges in accelerating materials discovery, focusing on learning
and experimental design under uncertainty. The problems of
studying complex systems will persist in diverse science and en-
gineering disciplines, and we expect that the learning and opti-
mization schemes based on objective-based UQ presented in
this paper would provide a useful guideline for developing new
sciML methods that more effectively incorporate scientific
knowledge, design surrogate ML models that are better suited
for the given systems under study, and devise computational so-
lutions that are more scalable and efficient.
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