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A ubiquitous arrangement in nature is a free-flowing fluid coupled to a porous medium,
for example a river or lake lying above a porous bed. Depending on the environmental
conditions, thermal convection can occur and may be confined to the clear fluid region,
forming shallow convection cells, or it can penetrate into the porous medium, forming
deep cells. Here, we combine three complementary approaches – linear stability analysis,
fully nonlinear numerical simulations and a coarse-grained model – to determine the
circumstances that lead to each configuration. The coarse-grained model yields an
explicit formula for the transition between deep and shallow convection in the physically
relevant limit of small Darcy number. Near the onset of convection, all three of
the approaches agree, validating the predictive capability of the explicit formula. The
numerical simulations extend these results into the strongly nonlinear regime, revealing
novel hybrid configurations in which the flow exhibits a dynamic shift from shallow to
deep convection. This hybrid shallow-to-deep convection begins with small, random initial
data, progresses through a metastable shallow state and arrives at the preferred steady
state of deep convection. We construct a phase diagram that incorporates information
from all three approaches and depicts the regions in parameter space that give rise to
each convective state.
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1. Introduction

Convection in fluid–porous systems is a universally observed phenomenon, with
applications arising in technological, geophysical and astrophysical settings. In
technological and industrial applications, fluid–porous convection is prevalent in heat
sinks and cooling technologies found in laptops and computers (Yu, Lee & Yook 2010,
2011; Al-Zamily 2017), as well as in the solidification of alloys (Le Bars & Worster
2006a,b). Geophysical examples can be seen in the coupled fluid–porous flow of subglacial
or dry salt lakes (Hirata, Goyeau & Gobin 2012; Couston 2021; Lasser, Ernst & Goehring
2021), in carbon dioxide sequestration or the flow of oil in underground reservoirs
(Allen 1984; Ewing 1997; Huppert & Neufeld 2014) and in contaminant transport
in subsoil water reservoirs (Curran & Allen 1990; Allen & Khosravani 1992). Other
geophysical applications that feature natural convection include plate tectonics (Zhang
& Libchaber 2000; Mac Huang et al. 2018), cave ventilation (Khazmutdinova et al. 2019)
and morphological formation from solute-laden flows (Wykes et al. 2018; Mac Huang
et al. 2020; Mac Huang & Moore 2022). The phenomenon of convection also extends far
beyond Earth and into astrophysical applications, such as in moons of Saturn and Jupiter
(Choblet et al. 2017; Le Reun & Hewitt 2020; Vilella et al. 2020).
Although flow in fluid–porous systems has been a staple of the research community

since Saffman’s and Jones’s work in the 1970s (Saffman 1971; Jones 1973), convection
in these systems still poses unique and timely questions. Recent years have seen a
resurgence of research on fluid–porous convection from a variety of viewpoints, including
conducting nonlinear stability analysis, exploring bifurcations and developing stable
numerical schemes for solutions (McCurdy, Moore & Wang 2019; Chen et al. 2020; Han,
Wang &Wang 2020; Chen et al. 2022; Wang &Wu 2021). One recurring theme observed
in many of these works is the contrast between deep convection, in which convection cells
occupy the entirety of the coupled domain, and shallow convection, in which cells only
circulate in the free-flow region.
The arrangement that we consider is a saturated porous layer lying beneath a clear

fluid region that is free from obstructions, illustrated with the schematic in figure 1.
This entire coupled system is heated from below. Each domain has a governing set of
equations for the fluid flow – Navier–Stokes for the free-flow region and Darcy’s equations
for the porous medium – with a set of conditions imposed along the interface between
the two. If the temperature difference between the lower and upper plates rises above
a critical threshold, then the conductive state becomes unstable and gives way to natural
convection. If the temperature difference is sufficiently small, the conductive state remains
stable.
In previous work, McCurdy et al. (2019) conducted linear and nonlinear stability

analyses of the superposed system. With certain parameter regimes, the bimodal marginal
stability curves suggested that a small change in the depth ratio of the two regions could
trigger a drastic change in the convection patterns. The interested reader can look ahead to
figure 2(a,b) to see the stark contrast between the flow profiles for depth ratios of d̂ = 0.18
and d̂ = 0.19, respectively. Indeed, slightly altering the depth ratio induces a qualitative
shift in flow behaviour, as originally observed by Chen & Chen (1988). This drastic change
spurred McCurdy et al. (2019) to develop a simple, coarse-grained model to narrow down
the parameter ranges for which the transition occurs. This simple model, which neglected
any coupling between the free-flow and porous regions, provided promising results and
laid the groundwork for the current study.
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z = 0

z = df

z = −dm

Temperature: TU

Temperature: TL

Free-flow, Ωf

Porous medium, Ωm

Interface, Γi

Figure 1. Schematic of the domain Ω = {(x, y) ∈ R
2 × z ∈ (−dm, df )}, comprising a free-flow region Ωf and

a porous medium Ωm. The two subdomains meet at an interface Γi. The upper and lower boundaries are
impermeable and held at constant temperatures TU and TL, respectively, with TL > TU . We assume periodicity
of the velocity and temperature in the horizontal direction(s) as well.
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Figure 2. Marginally stable flow configurations and temperature profiles (colour) for (a) d̂ = 0.18 (deep
convection) and (b) d̂ = 0.19 (shallow convection), with

√
Da = 5.0 × 10−3, Prm = 0.7, εT = 0.7, α = 1.0

fixed. (c) Marginal stability curves while varying d̂ from d̂ = 0.15 to d̂ = 0.22 by increments of 0.05 with the
respective critical Rayleigh numbers Ra∗

m shown in red. As d̂ crosses the critical depth ratio of d̂∗ = 0.181
for this parameter regime, the most unstable wavenumber jumps from am ≈ 2.1 to am ≈ 14.5. This signifies a
sudden transition from deep to shallow convection (at the onset of convection) as d̂ increases from d̂ < d̂∗ →
d̂ > d̂∗.
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Here, we improve upon the model to better account for the flow conditions at the
interface between the fluid and the porous medium. The analysis results in a simple,
explicit formula for the critical depth ratio at which shallow convection transitions to
deep convection. We expect the new formula to be relevant for geophysical applications,
such as predicting the penetration of tracers into groundwater, and industrial applications,
for instance controlling heat dissipation by appropriately choosing the depth and/or
porosity of a heat sink. To test the new model, we conduct numerical simulations of the
fully nonlinear, coupled Navier–Stokes–Darcy–Boussinesq system. Computing numerical
solutions to this system presents several challenges, for example accurately representing
the sharp transitions in physical properties (e.g. density, conductivity, diffusivity) across
interfaces and achieving stable time-stepping in face of the nonlinearities present in
the Navier–Stokes equations. As the numerical scheme is detailed, we explain how we
address each of these challenges. Ultimately, the fully nonlinear numerical simulations
provide a more comprehensive picture of fluid–porous convection, revealing novel flow
configurations not easily predicted by stability analysis or the coarse-grained model.
A few recent works have focused on convection in superposed fluid–porous layers

from a numerical perspective. Zhang, Shan & Hou (2020) used a finite element
method (FEM) to study the stationary Navier–Stokes–Darcy–Boussinesq system and
investigated the well-posedness of their finite element approximation. Other works have
numerically examined convection in related systems (Tatsuo et al. 1986; Valencia-Lopez
& Ochoa-Tapia 2001; Al-Zamily 2017; Le Reun & Hewitt 2021), albeit with different
governing equations (e.g. the Brinkman system instead of the Darcy system, or the Stokes
equations instead of Navier–Stokes). Some works have explored schemes to couple the
Cahn–Hilliard equations with fluid–porous flow (Chen et al. 2020, 2021), while others
have taken an analytical approach to convection in coupled layers. For example, Han
et al. (2020) recently examined transitions in the same Navier–Stokes–Darcy–Boussinesq
system considered here, although through a different lens. Their main focus was the
transition from a conductive to a convective state as the Raleigh number increases. The
work of Han et al. (2020) rigorously showed that transitions exist between different
convective profiles, like deep and shallow convection, and noted how the transitions
behaved – as continuous transitions or jump transitions – around their critical Rayleigh
numbers. In this work, we examine a similar kind of transition as we develop a model
to predict the parameter regimes where the switch between deep and shallow convection
takes place. This kind of transition, dubbed a ‘dynamic transition’ by Han et al. (2020), is a
bifurcation of the system as one moves through the parameter space and has been observed
in a number of papers (Chen & Chen 1988, 1989, 1992; McKay 1998; Straughan 2002;
Hirata et al. 2007; Yin, Fu & Tan 2013; McCurdy et al. 2019). Our model improves the
prediction of our previous model by utilizing an open boundary condition at the interface
when calculating the critical Rayleigh numbers in our theory. Additionally, we note a
second kind of transition in this paper. This transition, which we refer to as a ‘dynamic
shift’, is associated with the time evolution of the system where the conductive state
transitions through a metastable shallow-convection state en route to its steady state of
deep convection. Our numerical simulations shed light on this new flow configuration:
shallow-to-deep convection.
The article is organized as follows. In § 2, we present the system of equations, interface

conditions and the non-dimensionalized system. Then, the transition theory – one of the
two main contributions of this work – is introduced in § 3 along with results showing its
efficacy. Next, we detail our numerical scheme using a FEM in § 4, and we note how
the treatment of interfacial and nonlinear terms allows us to write the system as a set of
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linear, sequentially decoupled equations. Results are shown in § 5 along with a discussion
of how our three complementary approaches – stability analysis, fully nonlinear numerical
simulations and the coarse-grained model – agree to provide a more complete picture of
convection in fluid–porous systems. Our results showcase the second main contribution of
this paper: the novel convection pattern of shallow-to-deep convection.

2. The coupled Navier–Stokes–Darcy system

In this section, we present the governing equations, detail the boundary and interface
conditions and introduce the non-dimensional system.

2.1. Governing equations
In the free-flow zone, we use the same system as that studied by McCurdy et al. (2019) and
Han et al. (2020) – the incompressible Navier–Stokes equations with constant viscosity
and the Boussinesq approximation, coupled with the advection–diffusion equations for
heat:

ρ0

(
∂uf
∂tf

+ (
uf · ∇)

uf

)
= ∇ · T

(
uf , pf

) − gρ0
[
1 − β

(
Tf − T0

)]
k,

∇ · uf = 0,

∂Tf
∂tf

+ uf · ∇Tf = κf(
ρ0cp

)
f

∇2Tf ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where uf = (uf , vf ,wf ), pf and Tf are the free-flow velocity, pressure and temperature,
respectively, with g, ρ0, β and T0 as acceleration due to gravity, the reference density
of the fluid, the coefficient of thermal expansion and the temperature of the conductive
state at the interface, respectively. The stress tensor and rate of strain tensor are defined
as T (uf , pf ) = 2μ0D(uf ) − pf I and D(uf ) = 1

2(∇uf + ∇uf T), respectively, with μ0 as
dynamic viscosity and k as the upward-pointing unit normal. Additionally, κf , cp and
λf = κf /(ρ0cp)f are the thermal conductivity of the fluid, specific heat capacity of the
fluid and thermal diffusivity of the fluid, respectively.
For fluid flow in the porous medium, we assume the medium has a small porosity, as is

generally applicable to geophysical systems (Bear 1972; Nield & Bejan 2017). We therefore
employ the Darcy–Boussinesq system with the advection–diffusion equation for heat:

ρ0

χ

∂um
∂tm

+ μ0

Π
um = −∇pm − gρ0 [1 − β (Tm − TL)]k,

∇ · um = 0,(
ρ0cp

)
m(

ρ0cp
)
f

∂Tm
∂tm

+ um · ∇Tm = κm(
ρ0cp

)
f

∇2Tm,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

where um = (um, vm,wm), pm and Tm are the velocity, pressure and temperature in the
porous medium, respectively, χ andΠ are the porosity and permeability, λm = κm/(ρ0cp)f
is the thermal diffusivity of the medium and TL is the temperature at the lower boundary
of the domain. We assume the medium to be homogeneous and isotropic so that the
permeability Π is constant and scalar-valued. The thermal conductivity κm and specific
heat capacity (ρ0cp)m of the porous medium are defined as averages of the fluid and
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solid components. While many studies neglect the time derivative ∂tum in the first equation
of (2.2), retaining this term is useful for energy analysis of the system (see McCurdy et al.
2019).

2.2. Boundary and interface conditions
The domain, shown in figure 1, consists of flat, horizontal, non-penetrable plates at the top
and bottom with a non-deforming interface between the two regions, Ωf = {(x, y, z) ∈
R
2 × (0, df )} for the free flow and Ωm = {(x, y, z) ∈ R

2 × (−dm, 0)} for the porous
medium. The temperature is held constant at the top and bottom plates. The flow satisfies
a free-slip condition at the top and an impermeable condition at the bottom:

Tf = TU, uf · n = ∂uf τ

∂n
= 0 on z = df ,

Tm = TL, um · n = 0 on z = −dm,

⎫⎬
⎭ (2.3)

where uf τ
= (uf , vf ) denotes the tangential (horizontal) components of the velocity at the

top of the domain with n as the unit normal vector.
At the interface Γi (z = 0), we require continuity of temperature, heat flux and the

normal component of velocity:

Tf = Tm,

κf∇Tf · n = κm∇Tm · n,

uf · n = um · n.

⎫⎪⎬
⎪⎭ (2.4)

For the last two conditions, we use the Beavers–Joseph–Saffman–Jones (BJSJ) condition
(Saffman 1971) and the Lions interface condition to specify the tangential and normal
stresses, respectively. The BJSJ condition, also known as the Navier-slip condition, is

− τ · T
(
uf , pf

)
n = μ0α√

Π
τ · uf , (2.5)

where α is an empirically determined coefficient and τ denotes the unit tangent vectors.
Lastly, the Lions interface condition is

− n · T
(
uf , pf

)
n + ρ0

2

∣∣uf ∣∣2 = pm. (2.6)

The inclusion of the (ρ0/2)|uf |2 term in this interface condition is essential in conducting
the nonlinear stability analysis (Chidyagwai & Rivière 2009; Çeşmelioğlu & Rivière 2008,
2009; Discacciati & Quarteroni 2009; Girault & Rivière 2009; McCurdy et al. 2019).

2.3. System of perturbed variables
Instead of working with the physical variables, we consider the perturbed variables; that
is, we consider the deviation of the velocity, temperature and pressure profiles from
their conductive steady states. The conductive state, denoted with an overhead bar, is a
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stationary fluid and a piecewise-linear temperature:

ūf = ūm = 0,

T̄f = T0 + z
TU − T0

df
,

T̄m = T0 + z
T0 − TL

dm
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

Here, T0 represents the interface temperature of the conductive solution

T0 = κmdf TL + κf dmTU
κmdf + κf dm

. (2.8)

If TU > TL, the conductive state is stable, but if TL > TU , buoyancy can destabilize the
system. Throughout this work, we only consider the case where TL > TU . Additionally,
we choose p̄f and p̄m to satisfy

∇p̄f = −gρ0
(
1 − β

(
T̄f − T0

))
k,

∇p̄m = −gρ0
(
1 − β

(
T̄m − TL

))
k.

}
(2.9)

With the perturbation variables vj, θj and πj for j = {f ,m} regions, we perturb the
steady-state solutions:

uf = ūf + vf , um = ūm + vm,

Tf = T̄f + θf , Tm = T̄m + θm,

pf = p̄f + πf , pm = p̄m + πm.

⎫⎪⎬
⎪⎭ (2.10)

Substituting (2.10) into the original system produces a system for the perturbed
variables:

ρ0

(
∂vf

∂tf
+ (

vf · ∇)
vf

)
= ∇ · T

(
vf , πf

) + gρ0βθfk,

∇ · vf = 0,

∂θf

∂tf
+ vf · ∇θf = λf∇2θf − vf · k

(
TU − T0

df

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.11)

for Ωf ;

ρ0

χ

∂vm

∂tm
+ μ0

Π
vm = −∇πm + gρ0βθmk,

∇ · vm = 0(
ρ0cp

)
m(

ρ0cp
)
f

∂θm

∂tm
+ vm · ∇θm = λm∇2θm − vm · k

(
T0 − TL

dm

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12)
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for Ωm;

θf = θm,

κf∇θf · n = κm∇θm · n,

vf · n = vm · n,

−τ · T
(
vf , πf

)
n = μ0α√

Π
τ · vf ,

−n · T
(
vf , πf

)
n + ρ0

2

∣∣vf ∣∣2 = πm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

for the interface conditions on Γi; and

θf = 0, vf · n = ∂vf τ

∂n
= 0 on z = df ,

θm = 0, vm · n = 0 on z = −dm

⎫⎬
⎭ (2.14)

for the boundary conditions.

2.4. Non-dimensional system
As in previous work, we non-dimensionalize the system using the porous values
as a reference (Chen & Chen 1988; Straughan 2002; McCurdy et al. 2019), with
non-dimensional variables denoted by tildes:

vj = ṽj
ν

dm
, xj = x̃jdm, tj = t̃

d2m
λm

, θj = θ̃j
(T0 − TL) ν

λm
, πj = π̃j

ρ0ν
2

d2m
,

(2.15a–e)
for j = {f ,m}, where ν = μ0/ρ0 is the kinematic viscosity. We also note that the stress
tensor has been altered slightly from when it was first introduced; the non-dimensional
stress tensor is defined as T̃ (vf , πf ) = 2D(vf ) − πf I .
Substituting the non-dimensional variables into (2.11)–(2.14) results in the governing

equations (after dropping the tildes) forΩf = {(x, y, z) ∈ R
2 × (0, d̂)}, where d̂ is the ratio

of the free-flow depth to that of the porous medium:

1
Prm

∂vf

∂t
+ (

vf · ∇)
vf = ∇ · T̃

(
vf , πf

) + Ram
Da

θfk,

∇ · vf = 0,

∂θf

∂t
+ Prmvf · ∇θf = εT∇2θf + 1

εT
vf · k,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.16)

for Ωm = {(x, y, z) ∈ R
2 × (−1, 0)}:
Da

Prmχ

∂vm

∂t
+ vm = −Da∇πm + Ramθmk,

∇ · vm = 0,

�
∂θm

∂t
+ Prmvm · ∇θm = ∇2θm + vm · k,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.17)
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and at Γi = {(x, y, z) ∈ R
2 × (z = 0)}:

θf = θm, (2.18a)

εT∇θf · n = ∇θm · n, (2.18b)

vf · n = vm · n (2.18c)

−τ · T̃
(
vf , πf

)
n = α√

Da

(
τ · vf

)
, (2.18d)

−n · T̃
(
vf , πf

)
n + 1

2
|vf |2 = πm. (2.18e)

Boundary conditions at the top and bottom of the domain are

θf = 0, vf · n = ∂vf τ

∂n
= 0 on z = d̂,

θm = 0, vm · n = 0 on z = −1.

⎫⎬
⎭ (2.19)

The non-dimensional numbers d̂, Prm, Da, εT and � are defined by

d̂ = df
dm

, Prm = ν

λm
, Da = Π

d2m
, εT = λf

λm
, � =

(
ρ0cp

)
m(

ρ0cp
)
f

, (2.20a–e)

and the Rayleigh numbers of both regions are

Ram = gβ (TL − T0)Dad3m
νλm

, Raf = d̂4

Daε2T
Ram. (2.21a,b)

While the Rayleigh number of the porous medium is used throughout this work, the
corresponding Rayleigh number of the free-flow region can be determined via the
relationship above.
The depth ratio of the two layers d̂ plays a central role in our study. Other dimensionless

parameters, like Prm, εT , �, represent values inherent to the fluid and/or porous medium.
In industrial applications, these cannot easily be altered, or it may be impractical to do so.
However, the depth ratio can more readily be changed; for example, by adding or removing
fluid from the free-flow layer, the depth ratio varies. The coarse-grained model presented
in the next section details how changing the depth ratio can significantly affect convection
profiles.
The second parameter of interest for geophysical applications is the Darcy number

Da – especially the small-Darcy regime since many materials have small permeability
values. Relatively impervious materials, like limestone or granite, can have permeabilities
between 10−18 and 10−15 m2, while more porous media, like sorted gravel or sand, can
have permeabilities in the range 10−10 � Π � 10−7 m2 (Bear 1972; Nield & Bejan 2017).
The resulting Darcy numbers in experiments and/or simulations are small (typically
10−10 ≤ Da ≤ 10−5), highlighting the necessity to study the relevant small-Darcy regime
in more depth, as done in Lyu & Wang (2021).

3. Coarse-grained model for the transition between deep and shallow convection

McCurdy et al. (2019) conducted linear and nonlinear stability analyses of the
Navier–Stokes–Darcy–Boussinesq system to determine the threshold Rayleigh number
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needed for the conductive state to become unstable at a given wavenumber, am. For a fixed
depth ratio, figure 2(c) shows the collection of these points in the am–am plane, called the
marginal stability curve, which delineates regions of stability from instability. The critical
Rayleigh number Ra∗

m is the global minimum of this curve, representing the lowest Ram
value that produces a flow instability. The corresponding critical wavenumber a∗

m dictates
the flow configuration at the onset of convection: small a∗

m (i.e. large wavelength) indicates
deep convection cells that occupy the entire coupled domain as seen in figure 2(a), while
large a∗

m (i.e. small wavelength) indicates narrow convection cells that occupy the fluid
region only, as seen in figure 2(b). The bimodal nature of the marginal stability curve can
create an abrupt shift between these two flow configurations as the depth ratio changes.
The marginal stability curves shown in figure 2(c) are calculated for a range of d̂ values

using the linear stability analysis outlined by McCurdy et al. (2019). The global minimum
of each curve corresponds to Ra∗

m and is indicated by a red dot. The red arrow illustrates
the path that connects sequential values of Ra∗

m as d̂ increases from 0.15 to 0.22. As seen
in the figure, a jump in a∗

m occurs as d̂ changes from 0.18 to 0.19, indicating an abrupt
transition from deep convection to shallow convection.
This observation spurred McCurdy et al. (2019) to develop a simple model to predict the

critical depth ratio d̂∗ that distinguishes shallow convection from deep convection. A brief
outline of this model is as follows. First, due to the dimensionless definitions, the depth
ratio can be expressed as the following combination of the other parameters:

d̂ =
[
RafDaε2T
Ram

]1/4

. (3.1)

Of particular importance is the appearance of the two Raleigh numbers, Raf and Ram. If
the Rayleigh number exceeds its critical value in the fluid region, Raf > Ra∗

f , but remains
below the critical value in the porous medium, Ram < Ra∗

m, then only shallow convection
cells would be expected to form. On the other hand, if the Rayleigh number exceeds the
critical value in both regions, then convection cells can penetrate deeper into the porous
domain. Hence, the transition between shallow and deep convection should occur when
both Rayleigh numbers, Raf and Ram, become critical simultaneously. In reality, the
critical values, Ra∗

f and Ra∗
m, are coupled to one another through the flow details at the

interface. However, McCurdy et al. (2019) showed that useful estimates could be obtained
by treating the fluid and porous regions as uncoupled for the sake of calculating Ra∗

f and

Ra∗
m, and then inputting these values into (3.1) to estimate the critical depth ratio d̂∗ that

defines the transition between shallow and deep convection:

d̂∗ =
[
Ra∗

f

Ra∗
m
Daε2T

]1/4

. (3.2)

In particular, McCurdy et al. (2019) assumed no-slip and no-penetration conditions along
the boundaries of the fluid domain and no-penetration conditions along the boundaries
of the porous medium. These assumptions yield Ra∗

f = 1707.8 and Ra∗
m = 4π2 ≈ 39.5,

which gives

d̂∗ =
[
1707.8
39.5

Daε2T

]1/4
. (3.3)

This formula was shown to predict the actual critical depth ratio to within a relative error
of 13%–17% for the cases tested by McCurdy et al. (2019). This level of accuracy, while
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εT = 0.5 εT = 0.7 εT = 1.0
√
Da a∗

m,1 Ra∗
m a∗

m,1 Ra∗
m a∗

m,1 Ra∗
m

1.0 × 10−2 2.1 11.04 2.1 11.66 2.1 12.34
5.0 × 10−3 2.1 14.05 2.1 14.85 2.1 15.72
2.5 × 10−3 2.1 16.75 2.1 17.60 2.1 18.50
1.0 × 10−3 2.1 19.76 2.2 20.50 2.2 21.28
5.0 × 10−4 2.2 21.55 2.2 22.20 2.2 22.83
2.5 × 10−4 2.2 22.98 2.2 23.49 2.2 24.00
1.0 × 10−4 2.3 24.37 2.3 24.74 2.3 25.09
1.0 × 10−5 2.3 26.82 2.3 26.78 2.3 26.72

Table 1. Critical Rayleigh numbers Ram,c and their critical wavenumbers a∗
m,1 at respective d̂

∗ values with
εT = {0.5, 0.7, 1.0} and Darcy numbers Da → 0.

not exceptional, is promising considering that the formula neglects any kind of coupling
between the two regions.
Here, we further refine this model by introducing asymptotically weak coupling at the

interface (see e.g. Moore & Shelley 2012). As demonstrated below, the new model yields
improved estimates for d̂∗, with relative errors of the order of 0%–4% for sufficiently
small Da. We first asymptotically expand both velocity fields, i.e. inside the fluid and the
medium regions, in small Da := ε2:

vj
ε = vj

(0) + εvj
(1) + ε2vj

(2) + · · · , for j ∈ {f ,m}. (3.4)

If Da = 0, the Darcy system (2.17) is degenerate, giving a porous-medium velocity that
vanishes throughout the domain, vm

(0) ≡ 0. Therefore, interface condition (2.18c) gives
vf

(0) · n = 0 at leading order. Meanwhile, the leading-order equation of the BJSJ condition
(2.18d) gives vf

(0) · τ = 0. Thus, both components of the fluid velocity vf
(0) vanish at the

interface to leading order in ε, and so the no-slip and no-penetration interface conditions
assumed by McCurdy et al. (2019) are valid to leading order in the fluid domain. We
therefore continue to use the corresponding value Ra∗

f = 1707.8 in the new model.
Approaching the interface from the porous-medium side, though, the condition for

an impenetrable boundary, vm · n = 0, is not recovered as the leading-order non-trivial
dynamics in small Darcy number. In the improved model, we instead view the top of the
porous domain as an open boundary, along which the pressure is uniform (Nield & Bejan
2017). Due to Darcy’s law (2.17), the condition of constant pressure along a horizontal
interface implies that the tangential velocity vanishes vm × n = 0, which produces a
critical value of Ra∗

m = 27.1 at the porous wavenumber of a∗
m,1 = 2.3 for the uncoupled

porous medium (Tyvand 2002; Nield & Bejan 2017). Although we have been so far unable
to rigorously justify the use of this condition from first principles, we observe that, in
practice, it yields significantly improved estimates for Ra∗

m and a∗
m,1 as Da → 0. Table 1

demonstrates this idea by showing the true critical values Ra∗
m for the coupled system and

their critical wavenumbers as calculated numerically by the linear stability analysis, for a
range of Darcy numbers and three values of εT . The table shows that as Da → 0, Ra∗

m is
well approximated by 27.1 in each case, with relative errors of the order of 1%–2%.
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Figure 3. Critical depth ratios for various εT (ratio of thermal diffusivities) values, εT = 0.5, 0.7, 1.0. The
solid lines represent the predicted d̂∗ values from our theory (3.5), and the circles are the d̂∗ values calculated
from the marginal stability curves determined by McCurdy et al. (2019).

With these new critical Rayleigh numbers, we obtain the more accurate coarse-grained
model for predicting the critical depth ratio:

d̂∗ =
[
1707.8
27.1

Daε2T

]1/4
. (3.5)

As we show below, the results produced with this model become increasingly accurate in
the small-Darcy limit, which is reasonable given that our intuition in choosing boundary
conditions came from the small-Darcy limit.
Figure 3 shows data for three different εT values while varying Da, since our formula is

a function of these two variables. As Da → 0, the critical depth ratio d̂∗ goes to zero as
well. We plot the critical depth ratios found with two methods – the first predicted from
the heuristic theory, compared with the second obtained from the marginal stability results
from McCurdy et al. (2019). To show that our model predicts d̂∗ going to zero at the same
rate as the actual values found using the linear stability analysis d̂∗

LSA, we plot the data Da
versus d̂∗ with a log–log plot along with a reference triangle to illustrate the slope of 1/4.
To quantify the error of our predicted d̂∗ values, we define the relative error between the

predicted d̂∗ values from (3.5), d̂∗
Thry, and values found using the linear stability analysis,

d̂∗
LSA, with

erel =

∣∣∣d̂∗
LSA − d̂∗

Thry

∣∣∣
d̂∗
LSA

. (3.6)

The relative errors are noted in table 2. For Da = 1.0 × 10−4, the model has about 10%
relative error, while the relative error drops to less than 2% when Da = 1.0 × 10−8. The
worst relative error with our new formula outperforms the best relative error of the formula
presented in McCurdy et al. (2019).
This coarse-grained model allows us to accurately predict the depth ratio that triggers a

shift between deep and shallow convection. In applications with technology, being able
to harness convection in this manner could have considerable impact with the design
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εT = 0.5 εT = 0.7 εT = 1.0
√
Da erel erel erel

1.0 × 10−2 13.00% 11.71% 10.36%
5.0 × 10−3 9.52% 7.91% 6.55%
2.5 × 10−3 6.73% 5.33% 3.84%
1.0 × 10−3 3.89% 2.68% 1.32%
5.0 × 10−4 2.33% 1.20% 0.004%
2.5 × 10−4 1.10% 0.10% 0.96%
1.0 × 10−4 0.06% 0.91% 1.84%

Table 2. Relative errors – calculated with (3.6) – between predicted d̂∗ values and values found using the
linear stability analysis with εT = {0.5, 0.7, 1.0} and Darcy numbers Da → 0.

of heat sinks. By selecting physical properties of the porous medium, a suitable depth
ratio could be chosen to obtain the desired flow configuration to prevent overheating and
enhance circulation. Rather than conduct costly experiments to determine a depth ratio
that yields the intended results, our formula provides a reference for an appropriate range
of d̂ values needed for deep or shallow convection.
This bifurcation from shallow to deep convection is highlighted in several works, using

linear stability or numerical simulations to show the deep versus shallow convection
profiles. Finding the critical depth ratio with either of these methods – linear stability
and numerical simulations – can be computationally expensive and time-consuming. Our
model allows us to accurately predict a range of depth ratios where this shift in convection
occurs, each of which are in good agreement with the critical depth ratios found by
previous researchers. For example, with the same governing equations we consider, Chen
& Chen (1988) showed via linear stability that a transition occurred between depth ratios of
d̂ = 0.12 and d̂ = 0.13 using the fixed parameters

√
Da = 0.003, εT = 0.7. Substituting

these values into (3.5) allows our model to predict that a transition occurs at a depth ratio
of

d̂∗ =
[
1707.8
27.1

(0.003)2 (0.7)2
]1/4

≈ 0.1291, (3.7)

agreeing well with the work conducted by Chen & Chen (1988). The recent work by Han
et al. (2020) presented an example where the convection profiles shifted from shallow
to deep convection as the depth ratio was altered from d̂ = 0.16 to d̂ = 0.17, found via
numerics and their centre manifold theory (see figure 5.2 of Han et al. (2020)). With
the values of Da = 25 × 10−6 and εT = 0.7 from this example in their work, we predict
a critical depth ratio of d̂∗ ≈ 0.1667, which falls in the range determined by Han et al.
The formula we developed greatly reduces the computational time needed to determine
where the shallow to deep transition occurs. Using our coarse-grained model bypasses the
necessity of searching through large parameter spaces while solving stability problems or
conducting numerical simulations, as it quickly narrows the parameter regime where the
transition occurs, especially for small Darcy numbers. In the Appendix, we present data
showing good agreement between true critical depth ratios and those predicted from our
model. Additionally, we show that our formula (3.5) can be used to predict how altering the
ratio of thermal diffusivities εT or the Darcy number Da can trigger a shift in convection.
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Although each of the papers noted above use two-dimensional simulations or
experiments in their work, our model can also be used in three-dimensional settings
as well. Since our theory comes from the stability of the uncoupled systems under the
assumption of infinite horizontal plates, both the two- and three-dimensional problems
reduce to one spatial dimension – the vertical direction. As such, our model can be applied
to both two- and three-dimensional systems, albeit with some error since the assumption of
infinite horizontal plates cannot be satisfied in physical settings or numerical simulations.
The main limitation of our coarse-grained model is that the results are confined to

the onset of convection, where Raleigh numbers are close to their critical counterparts.
To develop a more comprehensive understanding of this phenomenon over a more broad
parameter regime, we turn to numerical simulations of the full, nonlinear system.

4. Numerical scheme

The stability analyses and coarse-grained model can predict flow configurations near the
onset of convection, but numerical simulations are needed to examine dynamics outside of
this regime. In this section, we present a numerical scheme to simulate convection in the
superposed fluid–porous medium system using a FEM. The main advantage to this scheme
is that, by lagging the nonlinear terms and the terms associated with interface conditions,
we produce a set of linear, sequentially decoupled equations. A similar scheme was
studied by Chen et al. (2020) with the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq
system – or the same system we study with the inclusion of a phase-field function using
the Cahn–Hilliard equations. Using a numerical method related to that of Chen et al.
(2020) is beneficial since the method is unconditionally long-time stable. We outline the
scheme below, and note the time-lagged terms as they are shown. Next, we detail how the
variational forms are obtained, using the following notation for vector-valued functions f
and g and matrix-valued functions A and B:

( f , g)j =
∫

Ωj

f · g dΩj, 〈A,B〉j =
∫

Ωj

A : B dΩj, ‖f ‖2j = ( f , f )j, |f |2 = f · f ,

(4.1a–d)
for domains j ∈ {f ,m} where the f and m subscripts correspond to the fluid and porous
medium regions, respectively.
We introduce the following finite element spaces:

(i) Wf = {w f ∈ [H1(Ωf )]2 : w f · n = 0 at top + periodic on left and right},
(ii) Qf = {qf ∈ L2(Ωf ) :

∫
Ωf

qf dx = 0} = L20(Ωf ),

(iii) Qm = {qm ∈ L2(Ωm) :
∫
Ωm

qm dx = 0} = L20(Ωm),
(iv) Ψ = {ψ ∈ H1(Ω) : ψ = 0 at top and bottom + periodic on left and right}.
The space Ψ spans the entire domain and is reserved for the temperature field over Ω ,

since the advection–diffusion equation for heat can be written as one equation over the
entirety of the domain. Instead of solving two problems for θf and θm, we solve only one
for

θ =
{

θf for x ∈ Ωf ,

θm for x ∈ Ωm.
(4.2)

With superscripts denoting the time iteration, we present the variational problems
corresponding to the system (2.16)–(2.19).
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First, given (vf
(n), vf

(n−1), θ
(n)
m ), we find the perturbed pressure in the porous medium

π
(n+1)
m ∈ Qm with

Da
(
∇π(n+1)

m , ∇qm
)
m

− Ram
(
θ(n)
m k, ∇qm

)
m

+
∫

Γi

[
Da

Prmχ

vf
(n) − vf

(n−1)

Δt
+ vf

(n)

]
· nqm dΓi = 0 ∀ qm ∈ Qm. (4.3)

To begin decoupling the problems, we use the previous vf
(n) values in the integral along

the interface. Our treatment of the interface term, along with the method in which we solve
for the Darcy velocity, differs from the method used in Chen et al. (2020). We still observe
experimentally that our method is stable, with the time-step restriction of Δt ∼ O(Da) or
smaller. Having solved for π

(n+1)
m , we can use the previous Darcy velocity vm

(n) to find
the updated velocity vm

(n+1). The Darcy equation is

Da
Prmχ

vm
(n+1) − vm

(n)

Δt
+ vm

(n+1) = −Da∇π(n+1)
m + Ramθ(n)

m k, (4.4)

which we can solve for vm
(n+1) with

vm
(n+1) =

[
−Da∇π(n+1)

m + Ramθ(n)
m k + Da

PrmχΔt
vm

(n)
] (

PrmχΔt
Da + PrmχΔt

)
. (4.5)

Next, using (vf
(n), π

(n+1)
m , θ

(n)
f ) – where the previously-found π

(n+1)
m term is used in an

integral along the interface – we find (vf
(n+1), π

(n+1)
f ) ∈ Wf × Qf by solving(

1
Prm

vf
(n+1) − vf

(n)

Δt
,wf

)
f

+ Bf

(
vf

(n), vf
(n+1),wf

)
+ 2

〈
D

(
vf

(n+1)
)

,D
(
wf

)〉
f

−
(
π

(n+1)
f , ∇ · wf

)
f
+

(
∇ · vf

(n+1), qf
)
f

+ Ram
Da

(
θ

(n)
f ,wf · k

)
f
+

∫
Γi

π(n+1)
m

(
wf · n

)
dΓi

+
∫

Γi

α√
Da

(
vf

(n+1) · τ
) (

wf · τ
)
dΓi = 0 ∀wf ∈ Wf , qf ∈ Qf , (4.6)

where the trilinear term Bf is defined with

2Bf (u, v,w) =
∫

Ωf

(u · ∇v)w − (u · ∇w) v dΩf

+
∫

Γi

(u · w) (v · n) − (u · v) (w · n) dΓi. (4.7)

The first integral of the trilinear term Bf was first used by Temam in the late 1960s
(Temam 1968, 1969a,b) and has remained a critical tool in approximating solutions to
the Navier–Stokes equations since then. The second integral is included to deal with the
non-homogeneous boundary value in our application. The skew-symmetric form of the
trilinear term B(vf

(n), vf
(n+1),w f )f allows for partial time-lagging of the nonlinear term
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of Navier–Stokes, which linearizes the problem while still conserving the energy of the
system. Treating the nonlinear term in this manner has been used in a number of recent
works (Chen et al. 2020, 2021), albeit for an additional reason as well. With the coupled
Navier–Stokes–Darcy equations, use of this trilinear form allows for cancellation of the
1
2 |vf |2 term from the Lions interface condition (2.18e) with integration by parts on the
(v · ∇)v term of Navier–Stokes.
With the velocity of both subdomains known, we write them as a single, updated

velocity field:

v(n+1) =
{

vf
(n+1) for x ∈ Ωf ,

vm
(n+1) for x ∈ Ωm.

(4.8)

With (v(n+1), θ (n)), we obtain θ(n+1) ∈ Ψ by solving(
δ1

θ(n+1) − θ(n)

Δt
, ψ

)
Ω

+ PrmB
(
v(n+1), θ (n+1), ψ

)

+
(
δ2∇θ(n+1), ∇ψ

)
Ω

−
(
δ3v

(n+1) · k, ψ
)

Ω
= 0 ∀ ψ ∈ Ψ, (4.9)

where the coefficients δi are defined by

δ1 =
{
1 for x ∈ Ωf ,

� for x ∈ Ωm,
δ2 =

{
εT for x ∈ Ωf ,

1 for x ∈ Ωm,
δ3 =

{
1/εT for x ∈ Ωf ,

1 for x ∈ Ωm,

(4.10a–c)
and the trilinear term B is defined with

2B (u, v,w) =
∫

Ω

u · (w∇v) − u · (v∇w) dΩ. (4.11)

These coefficients are discontinuous over the interface since they are related to physical
properties of each region, and are chosen to enforce the interface conditions – continuity
of the temperature and heat flux. With the updated velocity field over the entire domain,
we are also able to solve for the streamlines φ:(

∇φ(n+1), ∇ϕ
)

Ω
−

(
∇ × v(n+1), ϕ

)
Ω

= 0 ∀ϕ ∈ Φ, (4.12)

where Φ = {ϕ ∈ H1(Ω) : ϕ = 0 on top and bottom + periodic on left and right}.
Each simulation begins by perturbing the conductive steady state. That is, we apply

a seeded, random perturbation (of the order of 10−6) to a stationary fluid and a
piecewise-linear temperature profile. The simulations begin with

vf
(0) = vm

(0) = 0 + ε1(x),

θ
(0)
f = θ(0)

m = 0 + ε2(x),

⎫⎬
⎭ (4.13)

where ε1(x) and ε2(x) are small, seeded, random perturbations. These perturbations – the
components of the vector-valued function ε1(x) and the scalar ε2(x) – take the form

A
N∑

k,�=−N

1√
π
exp

(
−1
2

(
k2 + �2

))
sin

(
kπx
Lx

+ αk,�

)
sin

(
�π( y − d̂)

1 + d̂
+ βk,�

)
, (4.14)

where αk,�, βk,� are randomized phases from a uniform distribution on [0, 2π) and A sets
the overall magnitude of the perturbation.
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Figure 4. Shallow and deep convection with temperature (colour) and streamlines (contour) at their respective
steady states, with (a) Ram = 10, d̂ = 0.35 at t = 3.0 and (b) Ram = 30, d̂ = 0.20 at t = 3.0, respectively.
Fixed parameters: Da = 1.0 × 10−4, Prm = 0.7, εT = 0.7, α = 1.0, Δt = 2.5 × 10−4.

For numerical stability, the time step is heavily restricted by the requirement Δt ∼
O(Da). Our method is first-order in time and second-order in space. The time integrator
could be swapped out for a high-order method. However, in practice, we find that the
spatial error dominates errors from time discretization, essentially rendering higher-order
time integrators unnecessary. Each simulation conducted in this work has a length scale in
x of 2.1 units, which, through experimentation, we determined to be the smallest domain
able to support a pair of counter-rotating, deep convection cells. The length scale in y has
height 1 + d̂, with 1 unit for the porous height and d̂ for the fluid region. For the spatial
discretization, we use a uniform grid with 32 × 32 triangular elements over a unit area
in the non-dimensional domain. Future work is being conducted on using a non-uniform
mesh for this system to investigate the associated errors with this discretization. All of the
numerical simulations are run using FreeFem++ (Hecht 2012).

5. Results and discussion

From stability analyses and our theory, there are two types of convection we expect –
deep and shallow convection. In figure 4, these two flow configurations are shown at their
steady states with streamlines shown as contours and the temperature profiles in colour.
The system with deep convection exhibits cells which extend throughout the entirety of
the domain, evidenced by the wave-like temperature profile and streamlines circulating
throughout the whole domain. In contrast, with shallow convection, almost all of the
velocity and temperature deviations from the conductive state are confined to the fluid
region alone, leaving the porous medium largely unchanged with the exception of a small
region immediately below the interface. For these two cases, the systems begin with
random initial data and go directly to their preferred convection states.
With the case shown in figure 4(a), the fluid evolves from random, disorganized data

to a steady state with shallow convection. Conversely, for the simulation in figure 4(b),
the system goes from the perturbed conductive state to a stable steady state of deep
convection. That is, in these two respective cases, the shallow convection case’s cells
originate and stay in the fluid region, while cells from the deep convection case occupy
the whole domain for the duration of the simulations. This phenomenon is expected; with
these two types of convection, instabilities from one group of wavenumbers outperform
the other by a significant margin. For example, with deep convection, the growth from
small wavenumbers of the perturbation dominates any contribution from the larger
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Figure 5. Shallow-to-deep convection with Ram = 20, d̂ = 0.30 with temperature (colour) and streamlines
(contour). Fixed parameters: Da = 1.0 × 10−4, Prm = 0.7, εT = 0.7, α = 1.0, Δt = 2.5 × 10−4.

wavenumbers, resulting in large cells. Alternatively, with shallow convection, the growth
from small wavenumbers pales in comparison to that of the larger wavenumbers.
There is another form of convection that the stability analyses cannot predict though:

shallow-to-deep convection, as shown in figure 5. This kind of convection takes place in
a parameter regime where both the small and large wavenumbers are unstable, and the
interaction between their instabilities gives rise to this hybrid category of convection.
In these situations, the system goes from random initial data to a metastable shallow
convection state, followed by the collapse and consolidation of cells in the fluid region. The
joined cells gain enough strength to penetrate into the porous medium, forming larger-scale
cells which occupy the fluid and porous regions alike, and the system finally steadies out
at the preferred stable configuration of deep convection. For this choice of parameters, this
route – from random initial data to a metastable shallow state followed by a dynamic
shift to deep convection – is the route taken from perturbing the unstable conductive
state. While we observe shallow-to-deep convection, we never observe a deep-to-shallow
dynamic shift; this leads us to speculate that when both small and large wavenumbers are
unstable, deep convection is the preferred steady state of this system.
Although shallow-to-deep convection and deep convection ultimately both achieve

a steady state with cells that extend throughout the domain, they are distinct flow
progressions. Their most notable differences concern the routes taken to their steady state
and the efficiency of heat transfer; shallow-to-deep convection has metastable shallow cells
before forming deep convection cells for its steady state, and these flow profiles can exhibit
higher Nusselt values compared with their counterparts with deep convection.
To measure convection, we define two quantities. The first is a mathematical energy

that allows us to find the Ram value where dE/dt = 0, distinguishing between the regions
of stability and instability – with dE/dt < 0 and dE/dt > 0, respectively – as done in
McCurdy et al. (2019). This uses the volume-averaged norms of the perturbed velocity and
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Figure 6. (a) Energy and (b) Nusselt profiles for the three flow configurations shown in figures 4 and 5. Fixed
parameters: Da = 1.0 × 10−4, Prm = 0.7, εT = 0.7, α = 1.0, Δt = 2.5 × 10−4.

temperature profiles, measuring how these profiles compare with their conductive steady
states:

2E(t) = 1
Prm

1
V

‖v‖2Ω + 1
V

‖θ‖2Ω, (5.1)

with V as the volume. Qualitatively, the onset of convection is noted by a jump in the
energy profile. Second, we use the physically motivated Nusselt number Nu(t) as the ratio
of vertical convective and conductive fluxes with

Nu(t) = Jcnv + Jcnd
Jcnd

with Jcnv = (
u · k,

(
θ + T̄

))
Ω

and Jcnd = − (
δ2∇

(
θ + T̄

) · k, 1
)
Ω

,

⎫⎪⎬
⎪⎭ (5.2a,b)

where T̄ is the conductive temperature and δ2 is defined in (4.10a–c), which allows us to
write the conductive fluxes of each region as a single term.
In figure 6, we plot the energy and Nusselt profiles for the three different qualitative

states presented in figures 4 and 5. For each curve, the initial jump indicates the time
of noticeable formation of convection cells in their respective cases with their steady
states achieved as the profiles level out. The deep and shallow cases (shown in red and
blue, respectively) show the formation of cells, immediately followed by a steady state.
The phenomenon of shallow convection cells forming faster than deep cells is expected.
Shallow cells have nothing obstructing their formation, while deep convection is hindered
by the porous medium. As a result, it takes longer for the fluid to gain enough velocity
in the porous region for noticeable deep convection cells to form. More precisely, the
characteristic time scale for the porous-medium flow given in (2.15a–e) is d2m/λm, which
has been normalized to unity in our analysis. The flow time scale for the fluid region,
meanwhile, is d2f /λf , which is shorter by a factor of d̂2/εT .
These time scales can be used to better understand the shallow-to-deep convection case,

which is shown by the yellow curves in figure 6. The first jump in E and Nu occurs as the
convection cells form in the free-flow zone, followed sometime later by a secondary jump
whereby the cells coalesce into the larger, deep convection cells and push into the porous
medium. As noted above, the time scale for porous-medium flow has been normalized to
unity and the time scale for free-fluid flow is shorter by a factor of d̂2/εT or about 0.09 in
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the case shown. These values are consistent with a quick initial onset free-flow convection,
followed by a slower shift to deep convection.
The jumps in Nu with the shallow-to-deep case demonstrate that these configurations

have the potential to transfer heat more efficiently than their counterparts with deep or
shallow convection. Further investigations into this hybrid flow pattern could determine
the parameter regimes which produce shallow-to-deep convection to maximize heat
flow in various applications, like heat sink technology. For example, in comparing
the deep convection and shallow-to-deep convection cases with the E(t) and Nu(t)
profiles, we see both cases eventually steady out to approximately the same energy;
that is, they have comparable deviations from their conductive states. However, the case
with shallow-to-deep convection has a larger Nusselt number than its deep-convection
counterpart, indicating a greater efficiency in transferring heat. We speculate that
shallow-to-deep convection is more efficient in its heat transfer than deep convection due
to the route each takes to its steady state. For shallow-to-deep convection, as cells form and
gain speed in the free-flow region, there is a spike in the Nu profile. As the shallow cells
consolidate and penetrate into the medium, a second spike in the Nusselt value occurs.
The parameters for the simulations with deep and shallow convection are chosen so that

a single group of wavenumbers was contributing to the perturbations. These calculations
come from looking at the marginal stability curves that identify the Ram values for the
onset of convection at a given depth ratio. For larger Rayleigh numbers, where the small
and large wavenumbers both contribute to perturbation growth, the stability analyses
cannot predict the preferred flow configuration. To provide a more holistic picture of flow
behaviour, we use marginal stability analyses and numerical simulations to identify regions
in a d̂–Ram phase space where each configuration occurs.
Marginal stability analyses are able to predict the Ram values for the onset of convection

at a given depth ratio (shown with the solid black lines of figure 7). There is a small region
above the critical Rayleigh numbers where a single group of wavenumbers is unstable,
resulting in either deep or shallow convection, and the upper bound is denoted in the
phase-space diagrams with the dashed lines. For example, with d̂ = 0.2 and Ram = 25,
only the small wavenumbers are unstable, resulting in deep convection. However, once
the Rayleigh number is increased past the dashed line, say to Ram = 50 or Ram = 80, the
larger wavenumbers are unstable as well. In regions where both groups of wavenumbers
are unstable, linear stability analysis and our coarse-grained model are not able to
accurately predict convection patterns. In practice, we find the deep or shallow convection
regimes extend above the predicted regions from the stability analyses, as evidenced
with the green and red triangles extending into the blue region where both groups of
wavenumbers are unstable. The distance in which the red triangles persist into the blue
region tells us that for these Rayleigh numbers, the small wavenumbers (which produce
the deep convection cells) are only slightly unstable, and not enough to overpower
the instabilities coming from the large wavenumbers which produce the shallow cells.
For Rayleigh numbers well above these regions in the phase space, where larger and
smaller wavenumbers can interact and our analytical tools are ineffective, shallow-to-deep
convection takes place.
The phase space shown in figure 7 ties our theory, the stability analyses and numerical

simulations together nicely. Marginal stability predicts the Rayleigh numbers needed
for the onset of convection, and the wavenumbers associated with the unstable modes
ultimately dictate the flow configuration for Rayleigh numbers near their corresponding
critical value. This is represented in the phase diagram by the region between the solid and
dashed lines where the marginal stability curves can effectively determine the behaviour
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Figure 7. Phase space with different types of convection noted. Solid black lines denote the Ram values for
marginal stability, and dashed lines mark the Ram values where both large and small wavenumbers become
unstable. Fixed parameters: Da = 1.0 × 10−4, Prm = 0.7, εT = 0.7, α = 1.0, Δt = 2.5 × 10−4.

of convection. The shift in the unstable wavenumbers occurs where the solid and dashed
lines come together, noting the shift in convection, that can accurately be determined
by our theory. The numerical simulations agree with results from the stability analyses
and theory for Rayleigh numbers around the onset of convection. Further, the numerics
allow for a more comprehensive understanding of superposed fluid–porous convection
with higher Rayleigh numbers.

6. Conclusions

Based on the framework developed in McCurdy et al. (2019), we proposed a
coarse-grained model to predict the critical depth ratio needed for the transition from
deep to shallow convection, and we observed the formula is increasingly accurate in
the limit of Da → 0. The previous stability analyses and the new transition theory,
when viewed in tandem with these novel numerical simulations, provide a more
complete view into the phenomenon of convection in superposed fluid–porous media
systems.
The coarse-grained model presented was formed under the assumption that heuristically,

the shift between deep convection and shallow convection takes place when the Rayleigh
numbers of the fluid and porous regions are equivalent in some sense. In the physically
relevant small-Darcy-number regime, we deduced appropriate boundary conditions for
the uncoupled regions to determine their critical Rayleigh numbers, and as a result, we
saw that the formula became more accurate in the small-Darcy limit of Da → 0.
To explore the extensive parameter regime outside the limitations of our model, we

outlined a numerical scheme to simulate the full nonlinear system. The main contributions
were with the decoupling and time-lagging of nonlinear terms; these adjustments to
the system allow for linear, decoupled, sequential solvers to be used in approximating
solutions.
With our simulations, we verified results from our coarse-grained model and

previous stability analyses, namely with deep and shallow convection. However, we
additionally observed a type of convection not able to be predicted by marginal stability,
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shallow-to-deep convection. This kind of convection presents an exciting new direction
of work, as there is potential to investigate the dynamic reorganization of the flow.
Additionally, the numerical simulations provide opportunities to explore less structured
domains, perhaps with more complex interfaces (Allen 1984; Han & Wang 2016),
boundaries that evolve in time (Zhang & Libchaber 2000; Moore 2017; Quaife &
Moore 2018; Chiu, Moore & Quaife 2020; Mac Huang & Moore 2022) or with some
permeable membrane developing between the regions (Sorribes et al. 2019; Eastham et al.
2020).
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Appendix

We present data from related papers that observed a transition from deep convection to
shallow convection as the depth ratio is altered. Each of the papers we consider uses
a two-domain approach in modelling the system (so that the interface conditions can
be explicitly enforced), and they each use a linear equation of state for the Boussinesq
approximation. There are a variety of approaches taken in each work, from analytical
methods to numerical simulations to experiments. Table 3 references the approach taken
in each paper, and we expand on the analytical approaches here: Chen & Chen (1988),
McKay (1998), Straughan (2002), Hirata et al. (2007) and Yin et al. (2013) each use
linear stability theory, Hill & Straughan (2009) and McCurdy et al. (2019) use nonlinear
stability arguments and Han et al. (2020) investigate this bifurcation using centre manifold
reduction theory.
Table 3 shows the marked improvements in predicting the critical depth ratio d̂∗ using

our theory from (3.5) compared with predictions made using the old model. Despite
several works operating under different assumptions about the system – like different
governing equations (e.g. Darcy–Brinkman in lieu of Darcy), assuming the porous
medium has a high porosity or using a non-Newtonian fluid – we find our new model
produces an accurate prediction for the critical depth ratio.
Our formula in (3.5) can be rearranged to solve for the critical εT or Da values, and two

works, Yin et al. (2013) and Han et al. (2020), note how the transition from deep to shallow
convection is affected by changing these parameters. Table 4 shows our prediction for the
critical values of these parameters alongside their true values. We once again find better
agreement between the true values and predictions made with the new model compared
with our old formula.
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