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A B S T R A C T   

Alterations in subcortical brain structure volumes have been found to be associated with several neurodegen
erative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified 
numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to 
identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain struc
ture volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as in
strument variables to identify potentially causal associations between an exposure and an outcome. The exposure 
data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites, and 103 mi
crobial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including 
accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six me
tabolites were found to have a significant association with subcortical structure volumes, with nine proteins and 
five metabolites replicated using independent exposure data. We found causal associations between accumbens 
volume and plasma protease c1 inhibitor as well as strong association between putamen volume and Agouti 
signaling protein. Among metabolites, urate had the strongest association with thalamic volume. No significant 
associations were detected between the microbial genera and subcortical brain structure volumes. We also 
observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic re
ticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to 
the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and 
psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical 
brain structure volumes.   

1. Introduction 

Variations and dysfunctions of subcortical brain structures have been 
associated with numerous neurological and neuropsychiatric disorders 
such as Parkinson’s disease, different types of dementia, insomnia, 
schizophrenia, autism spectrum disorder (ASD), depression and post- 
traumatic stress disorder (PTSD) (Bohnen and Albin, 2011; Nir et al., 
2013; Voineskos, 2015; van Rooij et al., 2018; Zhao et al., 2017; Ema
mian et al., 2021; Wang et al., 2021). These brain structures are involved 

in various functions such as mood processing, sensory investigations, 
cognitive control, memory, etc. Changes in these structures in in
dividuals with psychiatric and neurological disorders could explain the 
phenotypic changes and symptoms observed and could be used as bio
markers to identify individuals at risk for developing the disorders 
(Voineskos, 2015; Zhao et al., 2017; Emamian et al., 2021). However, it 
is largely unknown what molecular and biochemical processes may in
fluence disease-related changes and how abnormalities of specific 
subcortical structures influence different traits and in subcortical brain 
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structures. Understanding the relationship between brain volume and 
structure and neurological disease would help us better determine the 
underlying pathophysiological pathways. Such analysis could also be 
important in clinical practice, providing biomarkers that could be useful 
in disease diagnosis and patient management as well as helping to 
identify treatment targets for the various disorders associated with ab
normalities in subcortical brain structure. 

Recent large-scale multicenter studies such as the Enhancing Neuro 
Imaging Genetics through Meta-Analysis (ENIGMA) and UK Biobank 
(UKB) have put together neuroimaging and genomic data from tens of 
thousands of individuals and performed genome-wide association 
studies. This has led to the identification of genetic variants that are 
associated with subcortical brain structure volumes (Hibar et al., 2015; 
Satizabal et al., 2019; Thompson et al., 2020). These studies have been 
followed by transcriptomic and epigenomic analysis to identify genes 
and epigenetic markers associated with regional brain volumes (Zhao 
et al., 2021; Barbu et al., 2022; Jia et al., 2021). However, studies 
seeking to identify associations between regional brain volumes and 
other biomarkers such as proteins, metabolites and the microbiome are 
limited. 

Here, we seek to address this gap, exploring the role of the proteome, 
metabolome, and microbiome in mediating brain structure changes 
which could lead to neurological disease. Proteins are the final product 
of gene expression and are an important intermediary phenotype that 
can provide insight into the cellular processes and functions that influ
ence human biology and disease pathophysiology (Geyer et al., 2016). 
On the other hand, metabolites are small molecules that are a product 
and intermediates of cellular metabolism and play a pivotal role in 
cellular and physiological processes (Nath et al., 2017; Miles and 
Calder, 2015). The observed levels of such metabolites in biofluids can 
elucidate these processes. Finally, the human microbiota plays an 
important role in the fermentation of non-digestible substrates as well as 
providing protection against foreign pathogens (Gilbert et al., 2018; 
Valdes et al., 2018). A number of studies have found that changes in the 
level of different proteins, metabolites and the composition of the gut 
microbiome are associated with different metabolic, immunological as 
well as neurological disorders (Yang et al., 2021; Mofrad et al., 2022; 
Sabatine et al., 2005; Vijay and Valdes, 2022). The importance of the 
level of different metabolites such as glucose, lactate and pyruvate in the 
cerebrospinal fluid (CSF) is well known and they are established bio
markers to study inflammation and malignancies in the brain (Zhang 
and Natowicz, 2013). Numerous studies have been performed to 
determine metabolic biomarkers of neurological diseases such as Alz
heimers Disease and most of the results indicate changes in biochemical 
pathways related to the energy metabolism, amino acids linked to the 
glucogenic and ketogenic energy metabolism among others (Quintero 
Escobar et al., 2021). The gut-brain axis (GBA), which consists of bidi
rectional communication between the central and the enteric nervous 
system is heavily influenced by the gut microbiota (Carabotti et al., 
2015), establishing the importance of the microbiome in neurological 
functions and disorders. Experimental studies and systematic analyzes 
have shown that changes in gut microbiota exert significant effects on 
CNS and immune cells (change in immune response, altered synapse 
formation and disrupted maintenance of the CNS), and have been 
associated to various disorders such as Multiple Sclerosis, Alzheimers, 
Parkinsons and Autism among others (Park and Kim, 2021). 

Although the levels of these biomarkers in the body (especially me
tabolites and gut microbiome) are heavily influenced by environmental 
factors such as diet, medication and lifestyle (Rothschild et al., 2018; 
Maier and Typas, 2017; Bermingham et al., 2021; Nicholson et al., 
2011), twin and family-based studies show that genetics also play an 
important role and they are highly heritable (Hagenbeek et al., 2020; 
Goodrich et al., 2016, 2014). With advancements in profiling methods, 
large-scale studies can measure the levels of thousands of proteins and 
the various metabolites circulating in the blood and identify genetic 
variants which influence the level of these biomarkers (Geyer et al., 

2016; Shin et al., 2014; Sun et al., 2018). Genome-wide association 
studies have also been performed to identify genetic variants that are 
associated with the composition of various bacterial taxa in the gut 
microbiome (Kurilshikov et al., 2021). With results from these 
multi-omic studies at hand, there is the opportunity to investigate po
tential causal associations between such biological markers and 
subcortical brain structure volumes, using a two-sample Mendelian 
randomization (MR) approach. 

MR analysis is a genetic epidemiological method that can help to 
determine putative causal associations between an exposure and an 
outcome using genetic variants as instrument variables (Emdin et al., 
2017; Sanderson et al., 2022). The method is conceptually similar to a 
randomized controlled trial which is based on the idea that the in
dividuals receiving the treatment/drug (the instrument variable) are 
assigned randomly to the different groups (Hariton and Locascio, 2018). 
Similarly, in MR studies, the SNPs are randomized by nature, assigned to 
offspring before birth and are not confounded by any environmental 
factor - thus satisfying the requirement of a randomized trial (Sanderson 
et al., 2022; Swanson et al., 2017). This method is very powerful and can 
use the vast number of publicly available results of GWAS to identify 
causal associations between different exposures and outcomes. Indeed, 
studies undertaking this approach have identified causal associations 
between proteins and disorders such as depression, anorexia, ASD, and 
many others (Yang et al., 2021; Wingo et al., 2021; Yang et al., 2022a, 
2022b). MR studies have also uncovered associations between the gut 
microbiome and autoimmune and cardiovascular disorders (Xu et al., 
2022; Zhang et al., 2022). MR studies for brain structures have also 
found causal associations between subcortical brain structure and 
neurological conditions like schizophrenia, anorexia, depression, and 
other disorders (Wootton et al., 2022; Walton et al., 2019; Shen et al., 
2020; Wu et al., 2021). However, so far, no studies have examined as
sociations between the different biomarkers and metrics of subcortical 
brain structures. 

In this study, we sought to better understand the mechanisms and 
mediators that lead to the observed associations between brain struc
tures and neurological and neuropsychiatric disease. In a systems 
biology approach, we integrated multi omic data with GWAS for 
subcortical brain volumes and employed a two-sample MR approach to 
ask if proteome, metabolome, and microbiome could be causally asso
ciated with volume of different subcortical brain structures. The central 
hypothesis of our study was that specific genetic variants influence 
subcortical brain volumes by altering levels of different biomarkers from 
the proteome, metabolome, or microbiome. 

2. Methods 

2.1. Ethics statement 

Only publicly available deidentified summary data was used in this 
study. 

2.2. Study design and datasets 

We applied a two-sample MR analysis to determine and identify 
causal associations between three multi-omic datasets (plasma prote
ome; metabolome; microbiome) and seven different subcortical brain 
structure volumes (accumbens, amygdala, caudate, hippocampus, pal
lidum, putamen, and thalamus) using genetic variants as instrument 
variables. Fig. 1 shows the overall design of the analysis. The basic 
principle of MR is that SNPs (genetic instruments), which are signifi
cantly associated with modifiable exposure, would be causally associ
ated with the exposure-related outcome. Three important assumptions 
are required for a valid genetic instrument and MR analysis. First, the 
instrument must be causally related to the exposure. Second, it must be 
independent of any confounders; and, finally, it should only be associ
ated with the outcome through the exposure. In our current study, the 
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genetic instruments for the different exposures were obtained from 
large-scale GWAS studies for each of the different omic datasets (infor
mation on these studies is shown in Supplementary Table 1). Overall, 
we obtained GWAS data on 2994 plasma proteins, 237 blood metabo
lites and 103 microbial genera (Shin et al., 2014; Sun et al., 2018; 
Kurilshikov et al., 2021). Our outcome dataset included the GWAS 
summary statistics for the seven subcortical brain structure volumes 
(adjusted for intracranial volume) obtained from the ENIGMA con
sortium (Hibar et al., 2015). All participants in all cohorts in the 
different GWAS studies gave written informed consent and the sites 
involved obtained approval from local research ethics committees or 
Institutional Review Boards. 

2.3. Selection of genetic instruments 

The first step to performing MR analysis is the selection of instrument 
variables. We used a threshold of nominal significance (P < 1 × 10−5) to 
select SNPs from the GWAS summary statistics for each of the exposure 
variables. Ideally, genome-wide SNPs (P < 5 × 10−8) are used for MR 
analysis but a relatively relaxed threshold for the genetic instruments 
has been previously used in MR investigations when there were no or 
only a few genome wide SNPs available (Yang et al., 2022a, 2022b; Choi 
et al., 2019; Sanna et al., 2019). To select independent SNPs, we per
formed LD clumping using PLINK2 with an r2 threshold of 0.01 within a 
500 kb window using the 1000 Genomes European dataset as the 
reference panel (Auton et al., 2015). The next steps of the analysis were 
performed using the TwoSampleMR package in R (Hemani et al., 2018). 
Once the independent SNPs were selected, we harmonized the exposure 
and outcome datasets to match the effect alleles, obtained the SNP ef
fects and corresponding standard errors, and removed ambiguous SNPs 
with intermediate allele frequencies. In cases where a SNP was not 
available in the outcome dataset, a proxy SNPs with high LD with main 
SNP was used (LD at r2 > 0.8) for the analysis. No overlap was present 
between the outcome data and the reference LD data used. We then 
evaluated the instrument strength of each of the exposures by estimating 
the proportion of variance explained by the SNPs (R2) and the F-statistic 
for each of the variables (Brion et al., 2013). Typically, an F statistic >10 
is considered sufficiently informative for MR analysis (Burgess et al., 
2013). We extracted a range of seven to 84 SNPs for the proteome data 
with an average R2 of 21 % and the minimum F statistic was 20.56. The 

number of SNPs for the metabolites ranged from three to 241 with an 
average R2 of 13.1 % and a minimum F statistic of 20.52. Finally, for the 
various microbial genera we extracted 3 to 22, with an average R2 of 3.2 
% and the lowest F-statistic of 20.46.The number of instrument vari
ables, R2 and F-statistics for each individual biomarker is shown in 
Additional file 1. 

2.4. Two sample MR analysis and statistical validation 

We used the inverse variance weighted (IVW) method of MR analysis 
to estimate the association between the different exposures and out
comes. The method provides a high-power estimate and assumes that all 
the genetic instruments used for the analysis are valid. Significant as
sociations of protein, metabolites and microbiomes with the different 
subcortical brain structures were identified after adjusting for multiple 
testing using the Benjamini-Hochberg false discovery rate (FDR) 
threshold of 0.05. We then performed downstream validation using 
other methods of MR estimation, heterogeneity analysis and pleiotropy 
analysis for the significant associations. Two methods - the weighted 
median method and MR-Egger method - were adopted as alternate 
methods to evaluate the robustness of causality and detect pleiotropy. 
These methods are useful to validate the results of the MR analysis in 
case we use SNPs that do not satisfy the assumptions for the analysis. The 
weighted median method provides a consistent estimate if less than 50 
% of the SNPs were invalid instruments (Bowden et al., 2016) and the 
MR-Egger method was useful when up to 100 % of the SNPs came from 
invalid instruments (Bowden et al., 2015). Cochran’s Q test was per
formed to test for heterogeneity, and pleiotropy was tested by per
forming an MR-Egger Intercept test and a leave-one out analysis. We 
used the Mendelian Randomization Pleiotropy RESidual Sum and 
Outlier (MR-PRESSO) method to test for horizontal pleiotropy and 
detect any outliers in our analysis (Verbanck et al., 2018). Briefly the 
method performs a global test for pleiotropy and if significant the outlier 
SNPs are reported, which can then be removed, and the analysis is 
repeated without them. The directionality test to validate whether the 
genetic instruments were acting on the outcome through the exposure 
was tested using the MR Steiger directionality test, which calculates the 
variance explained in the exposure and the outcome by the instru
menting SNPs, and tests if the variance in the outcome is less than the 
exposure (Hemani et al., 2017). We also performed reverse MR analysis 

Fig. 1. Study overview and design for MR analysis. SNP information for exposures and outcomes were extracted from GWAS summary statistics for each feature. B2 
is the causal association of interest (Effect of Biomarkers on seven different subcortical brain structure volumes), estimated using B2 =B1/B3. B1 and B3 are the direct 
associations of the genetic variants on the exposure (biomarkers) and outcomes (subcortical structures) obtained from the GWAS studies. We also assume that the 
SNP instrument selected acts on the outcome only through exposure and not through any confounders. IVW: Inverse Variance Weighted. 
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with the subcortical brain structure volume as exposure and the bio
markers as outcomes. This allows us to evaluate if there were any 
feedback loops between the brain structures and biomarker levels which 
could lead to false positive results. We used the same thresholds to select 
the genetic instruments from the GWAS studies of the subcortical 
structures and used the IVW method to estimate the association. 

2.5. Replication analysis 

To validate the significant associations identified in our analysis, we 
obtained independent exposure data for the different biomarkers. For 
our replication tests we used proteome data from a study of 5368 Eu
ropean individuals (Gudjonsson et al., 2022) and metabolome data from 
a study of 8871 European individuals (Chen et al., 2023). We then used 
the same thresholds for instrument selection as described above and 
performed MR-IVW analysis to test whether the associations are signif
icant in an independent analysis. 

2.6. Functional enrichment analysis 

Functional enrichment analysis was performed using the gProfiler 
tool (Raudvere et al., 2019). We tested for enrichment across different 
gene ontology terms, KEGG and reactome pathway databases, protein 
complexes and human phenotype ontology databases. A Bonferroni 
threshold was used to correct for multiple testing for all pathways tested. 
The pathway and enrichment analysis for metabolites was performed 
using the MetaboAnalyst platform (Pang et al., 2021). 

3. Results 

3.1. Investigating the causal association between proteome and 
subcortical brain structures 

Using two sample MR analysis, we tested for potentially causal as
sociations between 2994 proteins and seven subcortical brain volumes 
(Additional file 2). Eleven proteins showed significant causal association 
with one of the subcortical brain structures as shown in Fig. 2 and 

Supplementary Table 2. Agouti Signaling Protein (ASIP) had the 
strongest association with putamen volume, with increase in the protein 
expression resulting in decrease in putamen volume (Beta: 28, p-value: 
1.2 × 10−8). Plasma protease C1 inhibitor (SERPING1) and Secreto
globin family 1C member 1 (SCGB1C1) were both found to be causally 
associated with accumbens volume, with the increase in expression of 
these proteins being associated with increase in the volume of accum
bens (Beta: 6.3–9.7, p-value: 3 × 10−5 - 6.9 × 10−7). Increase in Gran
zyme A (GZMA) levels was found to be significantly associated with 
increase in amygdala volume (Beta: 17, p-value: 1.43×10–5). Two 
proteins had a significant causal association with caudate volume. In
crease in Thioredoxin domain containing protein 12 (TXNDC12) levels 
was associated with increase in caudate volume (Beta: 11.7, p-value: 2.3 
× 10−6), whereas Transmembrane protease serine 11D (TMPRSS11D) 
had a negative association (Beta: -26.8, p-value: 7.1 × 10−7). For the 
hippocampus, we found four proteins significantly associated and all of 
them had a negative association with volume of hippocampus. These 
included Copine-1 (CPNE1), Cardiotrophin-1 (CTF1), Selenoprotein S 
(VIMP) and Protein CEI (C5orf38) (Beta: -21.2 to -25.9, p-value: 4.9 ×
10−5 - 9.8 × 10−7). Finally, we found that increases in Chymotrypsin
ogen B (CTRB1) were significantly associated with decrease in the vol
ume of thalamus (Beta: -23.9, p-value: 1.4 × 10−5). No proteins were 
found to be significantly associated with pallidum volume after multiple 
testing corrections. 

Interestingly, we observed that certain proteins such as SERPING1, 
CTRB1 and ASIP where nominally associated (p< 0.05) with other 
subcortical brain structures as well in similar direction as their primary 
associations (Supplementary Fig. 1). 

3.2. Investigating causal association between metabolome and subcortical 
brain structures 

We proceeded to test for potentially causal association between 
metabolites and subcortical brain structure (Additional file 3). We found 
six metabolites to be significantly associated with one of the subcortical 
brain structure volumes (Supplementary Table 3 and Fig. 3). Among 
these, two metabolites had a causal association with amygdala volume. 

Fig. 2. Significant causal associations between plasma proteins and subcortical brain structure volumes as uncovered via MR analysis. The Proteins were the ex
posures and the subcortical structures’ volume as outcomes. The associations were significant after FDR corrections for multiple testing. 
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These included uridine levels which had a positive association (Beta: 
255.9, p-value: 1.44×10−4) and Arachidonate which had a negative 
association with amygdala volume (Beta: -110.4, p-value: 2.54×10−4). 
We also found three metabolites significantly associated with thalamus 
volume which were Urate (Beta: -458.7, p-value: 3.7 × 10−5), 1-arachi
donoyl-GPC (Beta: 269.7, p-value: 1.1 × 10−4) and N-acetylornithine 
(Beta: 72.4, p-value: 5.6 × 10−4). Increase in mannose levels was found 
to be causally associated with increase in caudate volume (Beta: 244.7, 
p-value: 5.5 × 10−5). We also observed that Uridine, N-acetylornithine 
and 1-arachidonoyl-GPC were nominally associated (p < 0.05) with 
other subcortical structures as well (supplementary Fig. 2). 

3.3. Investigating causal association between microbiome and subcortical 
brain structures 

Here, we pursued MR analysis between 103 microbial genera as 
exposure and subcortical structure as outcome. Although our analysis 
did not reveal any significant associations after multiple testing cor
rections (Additional file 4), 28 associations were found to be nominally 
significant (p < 0.05) (Supplementary Figs. 3 and 4) between 

microbiome and brain volume. The strongest association was observed 
for Erysipelatoclostridium and Amygdala volume (Beta: 29, p-value: 1.1 
× 10−3). 

3.4. Heterogeneity, sensitivity and pleiotropy analyzes 

To determine the robustness and the validity of our results, we per
formed downstream statistical analysis to further increase the confi
dence in the observed associations. For all the significant associations 
identified in the primary analysis, we repeated the MR analysis using 
other methods such as the weighted median method and the MR-Egger 
method. We found that the associations were largely consistent with 
effects in the same direction and a significant p-value for the proteins 
(Supplementary Table 4). The MR-Egger estimate between the me
tabolites and subcortical brain volumes was found to be non-significant 
(Supplementary Table 5). We then determined if there was any het
erogeneity in the genetic instruments used by calculating the Cochran’s 
Q statistic and found little to no evidence of heterogeneity (p-value: 
0.094–0.99) for all proteins and metabolites (Table 1A and B). Following 
this, we tested for pleiotropy of SNPs between exposure and outcome 

Fig. 3. Significant causal associations between metabolites and subcortical brain structure volumes as uncovered via MR analysis. The metabolites were the ex
posures and the subcortical structures’ volume as outcomes. The associations were significant after FDR corrections for multiple testing. 

Table 1 
Statistical validation of MR results. The table shows the results of heterogeneity and pleiotropy tests performed for all biomarkers that had significant association with 
subcortical volume. Table 1A shows the results for proteins and 1B shows the results for the metabolites. Q refers to Cochran’s Q estimate for the heterogeneity test; DF 
is the degree of freedom. The Int refers to the MR-Egger intercept for the pleiotropy test and SE is the standard error of the Intercept. 
The last 2 columns represent the test-statistic and the p-value of the global test performed using MR-PRESSO.  

Biomarker ID (Exposure) Region (Outcome) Heterogeneity Test Pleiotropy test MR-PRESSO 

Q Q_DF p-val Int SE p-val Int p-val 

(1A) Proteins 
SCGB1C1.5960.49.3 Accumbens 7.12 16 0.971 -0.12 0.88 0.893 8.05 0.977 
SERPING1.4479.14.2 Accumbens 43.59 35 0.151 0.12 0.63 0.852 47.12 0.182 
GZMA.3440.7.2 Amygdala 21.54 26 0.714 -0.45 2.26 0.841 23.35 0.729 
TMPRSS11D.6547.83.3 Caudate 58.99 46 0.095 2.85 2.78 0.311 61.2 0.131 
TXNDC12.4815.25.3 Caudate 87.65 80 0.261 -2.37 1.63 0.15 90.4 0.269 
C5orf38.6378.2.3 Hippocampus 41.42 43 0.540 0.11 1.82 0.952 43.7 0.559 
CPNE1.5346.24.3 Hippocampus 28.60 24 0.236 1.62 2.46 0.516 32.3 0.245 
CTF1.13732.79.3 Hippocampus 34.77 28 0.177 -1.97 2.60 0.454 36.5 0.214 
VIMP.11286.78.3 Hippocampus 24.13 28 0.675 -0.30 2.17 0.891 26.9 0.647 
ASIP.5676.54.3 Putamen 55.63 49 0.239 3.79 1.97 0.061 67.18 0.086 
CTRB1.5671.1.3 Thalamus 21.99 40 0.991 1.57 2.47 0.528 22.96 0.995 

(1B) Metabolites 
Uridine Amygdala 11.90 21 0.942 1.1 2.26 0.634 12.98 0.955 
Arachidonate Amygdala 20.25 28 0.855 0.41 1.01 0.686 20.83 0.934 
Mannose Caudate 32.76 30 0.333 4.71 2.81 0.104 35.46 0.329 
Urate Thalamus 23.63 27 0.650 -1.64 3.29 0.623 25.73 0.656 
1-arachidonoyl-GPC Thalamus 25.42 22 0.277 -0.28 2.64 0.915 19.84 0.816 
N-acetylornithine Thalamus 18.74 25 0.809 3.78 2.27 0.109 13.04 0.961  
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using the Egger intercept test and leave one out analysis. We found no 
evidence of pleiotropy (Egger Intercept p-value: 0.06–0.95) and leave 
one out analysis showed that removing any SNP did not greatly affect 
the association (Table 1 and additional file 5). Additionally, the MR- 
PRESSO test showed that there was no horizontal pleiotropy in the ge
netic instruments (global test p > 0.05) used and thus no outliers were 
present in the analysis (Table 1). One of the assumptions of MR is that 
the instruments influence the exposure first and then the outcome 
through the exposure. To evaluate this, we used the MR-Steiger test 
which calculates the variance explained in the exposure and the 
outcome by the instrumenting SNPs, and tests if the variance in the 
outcome is less than the exposure. The test showed that for all the 
proteins and metabolites that had significant associations with subcor
tical volume, the variance of the genetic instruments in the exposure is 
always greater than the outcome - thus validating the assumption of MR 
(Supplementary Tables 6 and 7). 

3.5. Reverse Mendelian randomization analysis 

We performed the MR analysis with the subcortical brain structure 
volumes as exposure and the significantly associated biomarkers as 
outcomes. The results showed that for all proteins except C5orf38, there 
was no reverse causation observed in our analysis (Table 2A), thus 
indicating the causal effects of the proteins on the subcortical brain 
volume were statistically robust and not false positives. No reverse as
sociation was found between subcortical brain volume and the six me
tabolites as well (Table 2B). 

3.6. Replication analysis 

We validated our significant biomarker – subcortical structure vol
ume associations using independent exposure data (Gudjonsson et al., 
2022; Chen et al., 2023) and performed MR-IVW analysis. The results 
showed that nine proteins (out of the ten tested – one was not available 
in the dataset) (Table 3A) and five (out of six) metabolites (Table 3B) 
were associated (FDR p-value < 0.05) with the subcortical brain struc
ture volume, thus providing additional confirmations for our findings. 

3.7. Functional enrichment analysis 

Analysis of the associated proteins using the g:Profiler platform 
revealed significant enrichment for various Gene Ontology terms after 
adjusting for multiple testing (Fig. 4 and Supplementary Table 8). 

These included molecular functions such as endopeptidase activity, 
peptidase activity and hydrolase activity. We also observed significant 
enrichment for biological processes such as proteolysis, regulation of the 
endoplasmic reticulum apoptotic signaling pathway and negative 
regulation of DNA binding. Most of the proteins were enriched in the 
extracellular regions of the human system. No significant enrichment 
was observed for the metabolites across all metabolic pathways. 

4. Discussion 

Here, pursuing a systems biology, multi-omic approach, we sought to 

Table 2 
Reverse MR analysis. The table shows the results of MR analysis with the subcortical brain structures as exposure and the biomarkers that were significant in the 
primary analysis as the outcomes. Table 2A shows the results for proteins and 2B shows the results for the metabolites. N SNPs is the number of genetic instruments 
used for the analysis.  

Exposure Outcome N SNPs Beta SE P value 

(2A) Proteins 
Accumbens SCGB1C1.5960.49.3 7 5.84E-05 0.00143 0.967 
Accumbens SERPING1.4479.14.2 7 0.0024 0.00175 0.159 
Amygdala GZMA.3440.7.2 17 0.0001 0.00048 0.795 
Caudate TMPRSS11D.6547.83.3 24 0.00018 0.00021 0.377 
Caudate TXNDC12.4815.25.3 24 -0.00026 0.00023 0.268 
Hippocampus C5orf38.6378.2.3 18 -0.00066 0.00025 0.008 
Hippocampus CPNE1.5346.24.3 18 -0.00126 0.00119 0.288 
Hippocampus CTF1.13732.79.3 18 -0.00022 0.00025 0.369 
Hippocampus VIMP.11286.78.3 18 -0.00019 0.00025 0.435 
Putamen ASIP.5676.54.3 28 -0.00014 0.00017 0.410 
Thalamus CTRB1.5671.1.3 28 0.00005 0.00015 0.743 

(2B) Metabolites 
Amygdala Uridine 6 -3E-06 7.28E-05 0.967 
Amygdala Arachidonate 6 7.84E-05 0.0001 0.437 
Caudate Mannose 8 -8.23E-05 4.21E-05 0.051 
Thalamus Urate 12 -7.89E-06 1.69E-05 0.641 
Thalamus 1-arachidonoyl-GPC 12 -4.13E-05 3.73E-05 0.267 
Thalamus N-acetylornithine 12 -3.60E-05 5.05E-05 0.475  

Table 3 
Replication Analysis. The table shows the results of MR analyzes using inde
pendent exposure data for the significant (A) proteins and (B) metabolites and 
subcortical brain structure volume as outcomes. The Adj_P column refers to FDR 
corrected p-value for the associations. (*) indicates significant after multiple 
testing correction.  

Exposure Outcome Beta SE P value Adj_P 

(3A) Proteins 
SERPING1 Accumbens 4.79 0.76 3.27E-10 1.63E- 

09* 
GZMA Amygdala 11.632 4.58 0.01487 0.01652* 
TMPRSS11D Caudate -38.07 8.47 6.95E-06 1.39E- 

05* 
TXNDC12 Caudate 11.89 2.38 6.17E-07 2.05E- 

06* 
C5orf38 Hippocampus -21.94 5.27 3.10E-05 5.17E- 

05* 
CPNE1 Hippocampus -17.66 3.75 2.54E-06 6.34E- 

06* 
CTF1 Hippocampus -24.02 6.63 2.91E-04 4.16E- 

04* 
VIMP Hippocampus -6.25 10.99 0.56970 0.56970 
ASIP Putamen -32.17 3.85 6.83E-17 6.83E- 

16* 
CTRB1 Thalamus 10.79 3.83 0.00483 6.04E- 

03* 
(3B) Metabolites 

Uridine Amygdala 21.45 8.19 0.01277 0.01533* 
Arachidonate Amygdala -13.542 4.44 0.004277 0.00641* 
Mannose Caudate 37.32 10.23 2.63E-04 7.9E-04* 
1-Arachinoyl- 

GPC 
Thalamus 30.46 7.12 1.90E-05 1.1E-04* 

N- 
Acetylornithine 

Thalamus 2.97 6.71 0.65824 0.65824 

urate Thalamus -44.60 12.69 4.39E-04 8.8E-04*  
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provide insights into the mechanisms and mediators that underlie 
known associations of brain structures and neuropsychiatric disease. To 
do this, we performed a two-sample MR analysis to identify potentially 
causal associations between the genetically predicted levels of different 
biomarkers (plasma proteome, blood metabolome and gut microbiome) 
and the volumes of seven subcortical brain structures. Analyzing avail
able summary statistics from large-scale GWAS, we identified eleven 
proteins and six metabolites to have a significant causal association with 
at least one subcortical structure after correcting for multiple testing. 
Replication analysis using large independent exposure datasets revealed 
significant associations for nine proteins and five metabolites. Hetero
geneity and pleiotropy analysis showed low to no deviation from null 
thus validating our associations as truly significant. Bi-directional MR 
analysis for the significant associations showed no reverse causation for 
any proteins or metabolites except one (C5orf38, which is an unknown 
protein). Finally, enrichment analysis of the associated proteins showed 
significant enrichment for proteolytic processes including endopepti
dase, peptidase, and hydrolase activities. No significant causal associa
tions were observed between different bacterial genera in the gut 
microbiome and subcortical brain structures. 

The molecular functions and the roles of the different proteins 
identified in this analysis as causally associated with subcortical brain 
volumes point to various pathways and mechanisms that could also help 
explain the relationship between subcortical structures and neuropsy
chiatric disorders. For example, SERPING1, which is a Plasma Protease 
inhibitor is a glycosylated protein involved in the regulation of the 
complement cascade and has been previously found to be associated 
with influencing frontal cortical thickness (Stelzer et al., 2016; Allswede 
et al., 2018). The complement system itself has been implicated in 
depression, schizophrenia, and other neurodegenerative disorders as 
well (Yi et al., 2019; Druart and Le Magueresse, 2019). The nucleus 
accumbens has been an important brain region for regulating behaviors 
related to schizophrenia, depression and addiction (Xu et al., 2020; 
Forns-Nadal et al., 2017) and our results indicate that this regulation 
could be driven by levels of SERPING1, which is causally associated with 
accumbens volume. Similar relationships can also be observed for many 
of our identified proteins. GZMA, which is a serine protease involved in 

pyroptosis (Lieberman, 2010), is also found to have a lower expression 
in patients with major depressive disorder (MDD) compared to healthy 
controls (Sun et al., 2022). Patients with MDD also tend to have 
decreased amygdala volume (Hamilton et al., 2008) which, based on our 
results, could be driven by GZMA. Another interesting example is that of 
TXNDC12, which is a member of the thioredoxin (Trx) superfamily. The 
Trx system is an antioxidant system that is important in maintaining 
sulfhydryl homeostasis protecting against oxidative stress (Arodin et al., 
2014). Studies have pointed to the role of Trx-mediated oxidative stress 
in Parkinson’s disease-associated dopaminergic neuron degeneration, 
thus indicating that this protein might be an important regulator of the 
dopamine reward system (Garcia-Garcia et al., 2012; Liu et al., Feb. 
2021). The caudate which is part of the striatum and connected to the 
substantia nigra is heavily involved in the reward system where the 
dopaminergic neurons are produced (Driscoll et al., 2022). Changes in 
caudate volume have been found to be associated with disorders such as 
anorexia and Parkinsons disease (Gupta et al., 2022; Pitcher et al., 
2012). The results of our analysis suggest that TXNDC12 could be a 
potential mediator of these associations and could thus be used as a 
potential target for diagnosis and treatment. 

Some of the proteins we identified had an established role in brain 
development (Park et al., 2012; Peng et al., 2017; Solovyev, 2015). For 
example, the proteins we found causally associated with hippocampus 
volume (in both discovery and replication) were Copine-1 and 
Cardiotrophin-1. Copine 1 is a calcium dependent phospholipid binding 
protein and plays a role in neuronal progenitor cell differentiation and 
induces neurite outgrowth (Park et al., 2012). Similar to Copine-1, 
Cardiotrophin-1 is also involved in the differentiation of neuronal 
stem cells via a protein kinase dependent signaling pathway (Peng et al., 
2017). 

Apart from these proteins, we also identified six metabolites that 
were causally associated with subcortical brain volume. Previous studies 
have shown that these metabolites have an important role in the func
tioning of the central nervous system and are also associated with 
different neurological disorders involved in various functions such as 
antioxidation and neuro-inflammatory responses. Antioxidants act 
directly to scavenge oxidizing radicals and regenerate oxidized 

Fig. 4. Enrichment analysis of proteins using the g:Profiler tool. The rectangles correspond to the various enriched Gene Ontology terms and the proteins associated 
with each term are shown in ellipses. 
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biomolecules in organisms to protect the brain from oxidative stress 
(Lee et al., 2020). Uric acid and uridine which we found associated with 
subcortical structure volume are considered key antioxidants in humans 
(Becker, 1993). Interestingly high level of uric acid has been associated 
with increased risk of disorders such as ASD and ADHD (Page and 
Coleman, 2000; Sutin et al., 2014). Both of these disorders are also 
associated with reduced thalamic volume (Tamura et al., 2010; Xia 
et al., 2012). The association could be potentially explained by higher 
levels of uric acid as seen in our results. Additionally, both uric acid and 
uridine are implicated in the development of Lesch-Nyhan syndrome 
which is a congenital disorder that affects brain structure and behavior 
of the affected individuals (Jinnah, 2009). Other metabolites such as 
mannose and arachidonate which were identified in our study have also 
been found to be associated with disorders like anxiety and depression in 
mouse model systems (Xu et al., 2021; Larrieu and Layé, 2018; Yu et al., 
2021). 

We also observed that certain proteins and metabolites such as 
SERPING1, ASIP, CTRB1 and 1-arachidonoyl-GPC that were signifi
cantly associated with a specific subcortical structure were also nomi
nally associated (p < 0.05) with other structures as well. This could 
indicate that these biomarkers are important in functioning of different 
subcortical brain structures and additional analysis with larger sample 
sizes could lead to stronger and increased number of associations. 

No significant associations were obtained between microbiome and 
the subcortical brain structures, but several nominal associations were 
observed. This could be due the larger impact of environment on 
microbiome levels and potentially a larger study that captures greater 
level significant genomic variations associated with microbiome is 
needed. We should also note that the microbiome GWAS study used is 
based on a trans-ancestry sample while the brain volume GWAS studies 
are only European and hence there could be a loss of power in the MR 
analysis. 

There are certain limitations of this study. First, there were very few 
or no genome-wide significant SNPs to be used as instrument variables 
for many biomarkers in the MR analysis. To address this, we used a more 
exploratory threshold of 1e-05 for selecting genetic instruments, like 
previously done in multiple previous studies (Zhang et al., 2022; 
Wootton et al., 2022; Choi et al., 2019; Sanna et al., 2019). We evaluated 
the strength for these genetic instruments using different statistical 
methods and found that they were valid for MR analysis. Second, the 
proteins and metabolites were quantified in the plasma for the GWAS 
analysis, which is a natural choice for biomarker-focused applications 
considering its convenience; however, we do not know whether these 
biomarkers would have had similar levels in specific brain regions, 
because of the existence of the blood-brain-barrier. To address this, we 
checked for the expression and presence of the different proteins and 
metabolites in the CNS. We found that most of them are highly expressed 
in different parts of the brain (Uhlén et al., 2015) and play an important 
role in its development and function (Supplementary Table 9). We 
would also like to point out that, we performed an MR study and iden
tified several statistically causal risk factors associated with the 
subcortical brain volume, but these findings need further biological 
validation using experimental verification in cells and model systems. 
Based on statistical analysis, our study points to the most reliable targets 
for downstream investment, analysis and experimental validation and 
provides novel insights into the physiology of brain structures. 

In conclusion, we identified several proteins and metabolites that are 
causally associated with the volume of subcortical brain structures. Our 
study highlighted the role of proteolytic and anti-oxidative components 
in the development and functioning of the brain. The biomarkers we 
identified could mediate the relationship between subcortical structures 
and different neurological and neuropsychiatric disorders. The results of 
these analysis highlight the importance of plasma proteins and metab
olites as potential biomarkers and could help in early detection of 
neurological disorders and even subcortical changes. Future analysis 
could examine other characteristics of the brain such as neuronal 

activity, gray matter volume, and white matter connectivity which could 
further improve our understanding of the functioning of the central 
nervous system and its association to disease. The results of this study 
not only provide novel insight for understanding subcortical brain 
structure, but also help in uncovering potential diagnostic markers and 
drug targets for the many disorders that are associated with changes in 
brain structures. 
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