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ARTICLE INFO ABSTRACT

Keywords: Alterations in subcortical brain structure volumes have been found to be associated with several neurodegen-

Subcortical brain volume erative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified

;;'Ote;“rll.e numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to
etabolites

identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain struc-
ture volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as in-
strument variables to identify potentially causal associations between an exposure and an outcome. The exposure
data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites, and 103 mi-
crobial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including
accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six me-
tabolites were found to have a significant association with subcortical structure volumes, with nine proteins and
five metabolites replicated using independent exposure data. We found causal associations between accumbens
volume and plasma protease cl inhibitor as well as strong association between putamen volume and Agouti
signaling protein. Among metabolites, urate had the strongest association with thalamic volume. No significant
associations were detected between the microbial genera and subcortical brain structure volumes. We also
observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic re-
ticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to
the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and
psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical
brain structure volumes.

Mendelian randomization
Neurological disorders

1. Introduction

Variations and dysfunctions of subcortical brain structures have been
associated with numerous neurological and neuropsychiatric disorders
such as Parkinson’s disease, different types of dementia, insomnia,
schizophrenia, autism spectrum disorder (ASD), depression and post-
traumatic stress disorder (PTSD) (Bohnen and Albin, 2011; Nir et al.,
2013; Voineskos, 2015; van Rooij et al., 2018; Zhao et al., 2017; Ema-
mian etal., 2021; Wang et al., 2021). These brain structures are involved
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in various functions such as mood processing, sensory investigations,
cognitive control, memory, etc. Changes in these structures in in-
dividuals with psychiatric and neurological disorders could explain the
phenotypic changes and symptoms observed and could be used as bio-
markers to identify individuals at risk for developing the disorders
(Voineskos, 2015; Zhao et al., 2017; Emamian et al., 2021). However, it
is largely unknown what molecular and biochemical processes may in-
fluence disease-related changes and how abnormalities of specific
subcortical structures influence different traits and in subcortical brain
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structures. Understanding the relationship between brain volume and
structure and neurological disease would help us better determine the
underlying pathophysiological pathways. Such analysis could also be
important in clinical practice, providing biomarkers that could be useful
in disease diagnosis and patient management as well as helping to
identify treatment targets for the various disorders associated with ab-
normalities in subcortical brain structure.

Recent large-scale multicenter studies such as the Enhancing Neuro
Imaging Genetics through Meta-Analysis (ENIGMA) and UK Biobank
(UKB) have put together neuroimaging and genomic data from tens of
thousands of individuals and performed genome-wide association
studies. This has led to the identification of genetic variants that are
associated with subcortical brain structure volumes (Hibar et al., 2015;
Satizabal et al., 2019; Thompson et al., 2020). These studies have been
followed by transcriptomic and epigenomic analysis to identify genes
and epigenetic markers associated with regional brain volumes (Zhao
et al., 2021; Barbu et al., 2022; Jia et al., 2021). However, studies
seeking to identify associations between regional brain volumes and
other biomarkers such as proteins, metabolites and the microbiome are
limited.

Here, we seek to address this gap, exploring the role of the proteome,
metabolome, and microbiome in mediating brain structure changes
which could lead to neurological disease. Proteins are the final product
of gene expression and are an important intermediary phenotype that
can provide insight into the cellular processes and functions that influ-
ence human biology and disease pathophysiology (Geyer et al., 2016).
On the other hand, metabolites are small molecules that are a product
and intermediates of cellular metabolism and play a pivotal role in
cellular and physiological processes (Nath et al.,, 2017; Miles and
Calder, 2015). The observed levels of such metabolites in biofluids can
elucidate these processes. Finally, the human microbiota plays an
important role in the fermentation of non-digestible substrates as well as
providing protection against foreign pathogens (Gilbert et al., 2018;
Valdes et al., 2018). A number of studies have found that changes in the
level of different proteins, metabolites and the composition of the gut
microbiome are associated with different metabolic, immunological as
well as neurological disorders (Yang et al., 2021; Mofrad et al., 2022;
Sabatine et al., 2005; Vijay and Valdes, 2022). The importance of the
level of different metabolites such as glucose, lactate and pyruvate in the
cerebrospinal fluid (CSF) is well known and they are established bio-
markers to study inflammation and malignancies in the brain (Zhang
and Natowicz, 2013). Numerous studies have been performed to
determine metabolic biomarkers of neurological diseases such as Alz-
heimers Disease and most of the results indicate changes in biochemical
pathways related to the energy metabolism, amino acids linked to the
glucogenic and ketogenic energy metabolism among others (Quintero
Escobar et al., 2021). The gut-brain axis (GBA), which consists of bidi-
rectional communication between the central and the enteric nervous
system is heavily influenced by the gut microbiota (Carabotti et al.,
2015), establishing the importance of the microbiome in neurological
functions and disorders. Experimental studies and systematic analyzes
have shown that changes in gut microbiota exert significant effects on
CNS and immune cells (change in immune response, altered synapse
formation and disrupted maintenance of the CNS), and have been
associated to various disorders such as Multiple Sclerosis, Alzheimers,
Parkinsons and Autism among others (Park and Kim, 2021).

Although the levels of these biomarkers in the body (especially me-
tabolites and gut microbiome) are heavily influenced by environmental
factors such as diet, medication and lifestyle (Rothschild et al., 2018;
Maier and Typas, 2017; Bermingham et al., 2021; Nicholson et al.,
2011), twin and family-based studies show that genetics also play an
important role and they are highly heritable (Hagenbeek et al., 2020;
Goodrich et al., 2016, 2014). With advancements in profiling methods,
large-scale studies can measure the levels of thousands of proteins and
the various metabolites circulating in the blood and identify genetic
variants which influence the level of these biomarkers (Geyer et al.,
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2016; Shin et al., 2014; Sun et al., 2018). Genome-wide association
studies have also been performed to identify genetic variants that are
associated with the composition of various bacterial taxa in the gut
microbiome (Kurilshikov et al.,, 2021). With results from these
multi-omic studies at hand, there is the opportunity to investigate po-
tential causal associations between such biological markers and
subcortical brain structure volumes, using a two-sample Mendelian
randomization (MR) approach.

MR analysis is a genetic epidemiological method that can help to
determine putative causal associations between an exposure and an
outcome using genetic variants as instrument variables (Emdin et al.,
2017; Sanderson et al., 2022). The method is conceptually similar to a
randomized controlled trial which is based on the idea that the in-
dividuals receiving the treatment/drug (the instrument variable) are
assigned randomly to the different groups (Hariton and Locascio, 2018).
Similarly, in MR studies, the SNPs are randomized by nature, assigned to
offspring before birth and are not confounded by any environmental
factor - thus satisfying the requirement of a randomized trial (Sanderson
etal., 2022; Swanson et al., 2017). This method is very powerful and can
use the vast number of publicly available results of GWAS to identify
causal associations between different exposures and outcomes. Indeed,
studies undertaking this approach have identified causal associations
between proteins and disorders such as depression, anorexia, ASD, and
many others (Yang et al., 2021; Wingo et al., 2021; Yang et al., 2022a,
2022b). MR studies have also uncovered associations between the gut
microbiome and autoimmune and cardiovascular disorders (Xu et al.,
2022; Zhang et al., 2022). MR studies for brain structures have also
found causal associations between subcortical brain structure and
neurological conditions like schizophrenia, anorexia, depression, and
other disorders (Wootton et al., 2022; Walton et al., 2019; Shen et al.,
2020; Wu et al., 2021). However, so far, no studies have examined as-
sociations between the different biomarkers and metrics of subcortical
brain structures.

In this study, we sought to better understand the mechanisms and
mediators that lead to the observed associations between brain struc-
tures and neurological and neuropsychiatric disease. In a systems
biology approach, we integrated multi omic data with GWAS for
subcortical brain volumes and employed a two-sample MR approach to
ask if proteome, metabolome, and microbiome could be causally asso-
ciated with volume of different subcortical brain structures. The central
hypothesis of our study was that specific genetic variants influence
subcortical brain volumes by altering levels of different biomarkers from
the proteome, metabolome, or microbiome.

2. Methods
2.1. Ethics statement

Only publicly available deidentified summary data was used in this
study.

2.2. Study design and datasets

We applied a two-sample MR analysis to determine and identify
causal associations between three multi-omic datasets (plasma prote-
ome; metabolome; microbiome) and seven different subcortical brain
structure volumes (accumbens, amygdala, caudate, hippocampus, pal-
lidum, putamen, and thalamus) using genetic variants as instrument
variables. Fig. 1 shows the overall design of the analysis. The basic
principle of MR is that SNPs (genetic instruments), which are signifi-
cantly associated with modifiable exposure, would be causally associ-
ated with the exposure-related outcome. Three important assumptions
are required for a valid genetic instrument and MR analysis. First, the
instrument must be causally related to the exposure. Second, it must be
independent of any confounders; and, finally, it should only be associ-
ated with the outcome through the exposure. In our current study, the
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Selection Criteria

* Association : p-value < 1x10-°

* LD clumping: r2 <0.01

* Proxy SNPs (r2> 0.8) used
when missing in outcome

* Plasma Proteins : 2994
(GWAS N: 3301, EUR)

¢ 237 Blood Metabolites
(GWAS N: 7824, EUR)

* 103 Gut Microbial Genus
(GWAS N: 18,340, Trans)

* Primary MR Analysis
IVW Method

* Secondary Analysis
Heterogeneity test
Sensitivity test
pleiotropy analysis

* Bi-directional MR

GWAS of seven
Subcortical Brain
structures (N = 31,000
European Individuals)

Fig. 1. Study overview and design for MR analysis. SNP information for exposures and outcomes were extracted from GWAS summary statistics for each feature. B2
is the causal association of interest (Effect of Biomarkers on seven different subcortical brain structure volumes), estimated using B2 =B1/B3. B1 and B3 are the direct
associations of the genetic variants on the exposure (biomarkers) and outcomes (subcortical structures) obtained from the GWAS studies. We also assume that the

SNP instrument selected acts on the outcome only through exposure and not through any confounders. IVW: Inverse Variance Weighted.

genetic instruments for the different exposures were obtained from
large-scale GWAS studies for each of the different omic datasets (infor-
mation on these studies is shown in Supplementary Table 1). Overall,
we obtained GWAS data on 2994 plasma proteins, 237 blood metabo-
lites and 103 microbial genera (Shin et al., 2014; Sun et al., 2018;
Kurilshikov et al., 2021). Our outcome dataset included the GWAS
summary statistics for the seven subcortical brain structure volumes
(adjusted for intracranial volume) obtained from the ENIGMA con-
sortium (Hibar et al., 2015). All participants in all cohorts in the
different GWAS studies gave written informed consent and the sites
involved obtained approval from local research ethics committees or
Institutional Review Boards.

2.3. Selection of genetic instruments

The first step to performing MR analysis is the selection of instrument
variables. We used a threshold of nominal significance (P < 1 x 10 ) to
select SNPs from the GWAS summary statistics for each of the exposure
variables. Ideally, genome-wide SNPs (P < 5 x 107%) are used for MR
analysis but a relatively relaxed threshold for the genetic instruments
has been previously used in MR investigations when there were no or
only a few genome wide SNPs available (Yang et al., 2022a, 2022b; Choi
et al.,, 2019; Sanna et al., 2019). To select independent SNPs, we per-
formed LD clumping using PLINK2 with an 72 threshold of 0.01 within a
500 kb window using the 1000 Genomes European dataset as the
reference panel (Auton et al., 2015). The next steps of the analysis were
performed using the TwoSampleMR package in R (Hemani et al., 2018).
Once the independent SNPs were selected, we harmonized the exposure
and outcome datasets to match the effect alleles, obtained the SNP ef-
fects and corresponding standard errors, and removed ambiguous SNPs
with intermediate allele frequencies. In cases where a SNP was not
available in the outcome dataset, a proxy SNPs with high LD with main
SNP was used (LD at r* > 0.8) for the analysis. No overlap was present
between the outcome data and the reference LD data used. We then
evaluated the instrument strength of each of the exposures by estimating
the proportion of variance explained by the SNPs (R?) and the F-statistic
for each of the variables (Brion et al., 2013). Typically, an F statistic >10
is considered sufficiently informative for MR analysis (Burgess et al.,
2013). We extracted a range of seven to 84 SNPs for the proteome data
with an average R? of 21 % and the minimum F statistic was 20.56. The

number of SNPs for the metabolites ranged from three to 241 with an
average RZ of 13.1 % and a minimum F statistic of 20.52. Finally, for the
various microbial genera we extracted 3 to 22, with an average R? of 3.2
% and the lowest F-statistic of 20.46.The number of instrument vari-
ables, R? and F-statistics for each individual biomarker is shown in
Additional file 1.

2.4. Two sample MR analysis and statistical validation

We used the inverse variance weighted (IVW) method of MR analysis
to estimate the association between the different exposures and out-
comes. The method provides a high-power estimate and assumes that all
the genetic instruments used for the analysis are valid. Significant as-
sociations of protein, metabolites and microbiomes with the different
subcortical brain structures were identified after adjusting for multiple
testing using the Benjamini-Hochberg false discovery rate (FDR)
threshold of 0.05. We then performed downstream validation using
other methods of MR estimation, heterogeneity analysis and pleiotropy
analysis for the significant associations. Two methods - the weighted
median method and MR-Egger method - were adopted as alternate
methods to evaluate the robustness of causality and detect pleiotropy.
These methods are useful to validate the results of the MR analysis in
case we use SNPs that do not satisfy the assumptions for the analysis. The
weighted median method provides a consistent estimate if less than 50
% of the SNPs were invalid instruments (Bowden et al., 2016) and the
MR-Egger method was useful when up to 100 % of the SNPs came from
invalid instruments (Bowden et al., 2015). Cochran’s Q test was per-
formed to test for heterogeneity, and pleiotropy was tested by per-
forming an MR-Egger Intercept test and a leave-one out analysis. We
used the Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MR-PRESSO) method to test for horizontal pleiotropy and
detect any outliers in our analysis (Verbanck et al., 2018). Briefly the
method performs a global test for pleiotropy and if significant the outlier
SNPs are reported, which can then be removed, and the analysis is
repeated without them. The directionality test to validate whether the
genetic instruments were acting on the outcome through the exposure
was tested using the MR Steiger directionality test, which calculates the
variance explained in the exposure and the outcome by the instru-
menting SNPs, and tests if the variance in the outcome is less than the
exposure (Hemani et al., 2017). We also performed reverse MR analysis
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with the subcortical brain structure volume as exposure and the bio-
markers as outcomes. This allows us to evaluate if there were any
feedback loops between the brain structures and biomarker levels which
could lead to false positive results. We used the same thresholds to select
the genetic instruments from the GWAS studies of the subcortical
structures and used the IVW method to estimate the association.

2.5. Replication analysis

To validate the significant associations identified in our analysis, we
obtained independent exposure data for the different biomarkers. For
our replication tests we used proteome data from a study of 5368 Eu-
ropean individuals (Gudjonsson et al., 2022) and metabolome data from
a study of 8871 European individuals (Chen et al., 2023). We then used
the same thresholds for instrument selection as described above and
performed MR-IVW analysis to test whether the associations are signif-
icant in an independent analysis.

2.6. Functional enrichment analysis

Functional enrichment analysis was performed using the gProfiler
tool (Raudvere et al., 2019). We tested for enrichment across different
gene ontology terms, KEGG and reactome pathway databases, protein
complexes and human phenotype ontology databases. A Bonferroni
threshold was used to correct for multiple testing for all pathways tested.
The pathway and enrichment analysis for metabolites was performed
using the MetaboAnalyst platform (Pang et al., 2021).

3. Results

3.1. Investigating the causal association between proteome and
subcortical brain structures

Using two sample MR analysis, we tested for potentially causal as-
sociations between 2994 proteins and seven subcortical brain volumes
(Additional file 2). Eleven proteins showed significant causal association
with one of the subcortical brain structures as shown in Fig. 2 and

Neurolmage 284 (2023) 120466

Supplementary Table 2. Agouti Signaling Protein (ASIP) had the
strongest association with putamen volume, with increase in the protein
expression resulting in decrease in putamen volume (Beta: 28, p-value:
1.2 x 10*8). Plasma protease C1 inhibitor (SERPING1) and Secreto-
globin family 1C member 1 (SCGB1C1) were both found to be causally
associated with accumbens volume, with the increase in expression of
these proteins being associated with increase in the volume of accum-
bens (Beta: 6.3-9.7, p-value: 3 x 107°-6.9 x 1077). Increase in Gran-
zyme A (GZMA) levels was found to be significantly associated with
increase in amygdala volume (Beta: 17, p-value: 1.43x10-5). Two
proteins had a significant causal association with caudate volume. In-
crease in Thioredoxin domain containing protein 12 (TXNDC12) levels
was associated with increase in caudate volume (Beta: 11.7, p-value: 2.3
X 10_6), whereas Transmembrane protease serine 11D (TMPRSS11D)
had a negative association (Beta: -26.8, p-value: 7.1 x 1077). For the
hippocampus, we found four proteins significantly associated and all of
them had a negative association with volume of hippocampus. These
included Copine-1 (CPNE1), Cardiotrophin-1 (CTF1), Selenoprotein S
(VIMP) and Protein CEI (C50rf38) (Beta: -21.2 to -25.9, p-value: 4.9 x
1075 - 9.8 x 1077). Finally, we found that increases in Chymotrypsin-
ogen B (CTRB1) were significantly associated with decrease in the vol-
ume of thalamus (Beta: -23.9, p-value: 1.4 x 107°). No proteins were
found to be significantly associated with pallidum volume after multiple
testing corrections.

Interestingly, we observed that certain proteins such as SERPING1,
CTRB1 and ASIP where nominally associated (p< 0.05) with other
subcortical brain structures as well in similar direction as their primary
associations (Supplementary Fig. 1).

3.2. Investigating causal association between metabolome and subcortical
brain structures

We proceeded to test for potentially causal association between
metabolites and subcortical brain structure (Additional file 3). We found
six metabolites to be significantly associated with one of the subcortical
brain structure volumes (Supplementary Table 3 and Fig. 3). Among
these, two metabolites had a causal association with amygdala volume.

SERPING1.4479.14.2 1 e
Accumbens
SCGB1C1.5960.49.3 1 ——
Amygdala GZMA.3440.7.2 1 F—e—
TXNDC12.4815.25.3 1 ——
Caudate
TMPRSS11D.6547.83.34 p——o—]
VIMP.11286.78.34 F——o—
CTF1.13732.79.31 pb—o—
Hippocampus
e 5 CPNE1.5346.24.3 —e—
C50rf38.6378.2.3 1 —e—
Putamen ASIP.5676.54.34 p——o—]
Thalamus CTRB1.5671.1.31 p———e—
-40 -20 0 20
Effect Size

Fig. 2. Significant causal associations between plasma proteins and subcortical brain structure volumes as uncovered via MR analysis. The Proteins were the ex-
posures and the subcortical structures’ volume as outcomes. The associations were significant after FDR corrections for multiple testing.



P.R. Jain et al.

Amygdala

Caudate

Thalamus

uridine - ——
arachidonate - Fed
mannose - ——

N-acetylornithine fof

1-arachidonoylglycerophosphocholine -

Neurolmage 284 (2023) 120466

urate 4 —e——

]
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Effect Size

Fig. 3. Significant causal associations between metabolites and subcortical brain structure volumes as uncovered via MR analysis. The metabolites were the ex-
posures and the subcortical structures’ volume as outcomes. The associations were significant after FDR corrections for multiple testing.

These included uridine levels which had a positive association (Beta:
255.9, p-value: 1.44><10’4) and Arachidonate which had a negative
association with amygdala volume (Beta: -110.4, p-value: 2.54x10™%).
We also found three metabolites significantly associated with thalamus
volume which were Urate (Beta: -458.7, p-value: 3.7 x 10~°), 1-arachi-
donoyl-GPC (Beta: 269.7, p-value: 1.1 x 10~%) and N-acetylornithine
(Beta: 72.4, p-value: 5.6 x 10’4). Increase in mannose levels was found
to be causally associated with increase in caudate volume (Beta: 244.7,
p-value: 5.5 x 107°). We also observed that Uridine, N-acetylornithine
and 1-arachidonoyl-GPC were nominally associated (p < 0.05) with
other subcortical structures as well (supplementary Fig. 2).

3.3. Investigating causal association between microbiome and subcortical
brain structures

Here, we pursued MR analysis between 103 microbial genera as
exposure and subcortical structure as outcome. Although our analysis
did not reveal any significant associations after multiple testing cor-
rections (Additional file 4), 28 associations were found to be nominally
significant (p < 0.05) (Supplementary Figs. 3 and 4) between

Table 1

microbiome and brain volume. The strongest association was observed
for Erysipelatoclostridium and Amygdala volume (Beta: 29, p-value: 1.1
x 1073).

3.4. Heterogeneity, sensitivity and pleiotropy analyzes

To determine the robustness and the validity of our results, we per-
formed downstream statistical analysis to further increase the confi-
dence in the observed associations. For all the significant associations
identified in the primary analysis, we repeated the MR analysis using
other methods such as the weighted median method and the MR-Egger
method. We found that the associations were largely consistent with
effects in the same direction and a significant p-value for the proteins
(Supplementary Table 4). The MR-Egger estimate between the me-
tabolites and subcortical brain volumes was found to be non-significant
(Supplementary Table 5). We then determined if there was any het-
erogeneity in the genetic instruments used by calculating the Cochran’s
Q statistic and found little to no evidence of heterogeneity (p-value:
0.094-0.99) for all proteins and metabolites (Table 1A and B). Following
this, we tested for pleiotropy of SNPs between exposure and outcome

Statistical validation of MR results. The table shows the results of heterogeneity and pleiotropy tests performed for all biomarkers that had significant association with
subcortical volume. Table 1A shows the results for proteins and 1B shows the results for the metabolites. Q refers to Cochran’s Q estimate for the heterogeneity test; DF
is the degree of freedom. The Int refers to the MR-Egger intercept for the pleiotropy test and SE is the standard error of the Intercept.

The last 2 columns represent the test-statistic and the p-value of the global test performed using MR-PRESSO.

Biomarker ID (Exposure) Region (Outcome) Heterogeneity Test Pleiotropy test MR-PRESSO

Q Q_DF p-val Int SE p-val Int p-val

(1A) Proteins
SCGB1C1.5960.49.3 Accumbens 7.12 16 0.971 -0.12 0.88 0.893 8.05 0.977
SERPING1.4479.14.2 Accumbens 43.59 35 0.151 0.12 0.63 0.852 47.12 0.182
GZMA.3440.7.2 Amygdala 21.54 26 0.714 -0.45 2.26 0.841 23.35 0.729
TMPRSS11D.6547.83.3 Caudate 58.99 46 0.095 2.85 2.78 0.311 61.2 0.131
TXNDC12.4815.25.3 Caudate 87.65 80 0.261 -2.37 1.63 0.15 90.4 0.269
C50rf38.6378.2.3 Hippocampus 41.42 43 0.540 0.11 1.82 0.952 43.7 0.559
CPNE1.5346.24.3 Hippocampus 28.60 24 0.236 1.62 2.46 0.516 323 0.245
CTF1.13732.79.3 Hippocampus 34.77 28 0.177 -1.97 2.60 0.454 36.5 0.214
VIMP.11286.78.3 Hippocampus 24.13 28 0.675 -0.30 2.17 0.891 26.9 0.647
ASIP.5676.54.3 Putamen 55.63 49 0.239 3.79 1.97 0.061 67.18 0.086
CTRB1.5671.1.3 Thalamus 21.99 40 0.991 1.57 2.47 0.528 22.96 0.995
(1B) Metabolites

Uridine Amygdala 11.90 21 0.942 1.1 2.26 0.634 12.98 0.955
Arachidonate Amygdala 20.25 28 0.855 0.41 1.01 0.686 20.83 0.934
Mannose Caudate 32.76 30 0.333 4.71 2.81 0.104 35.46 0.329
Urate Thalamus 23.63 27 0.650 -1.64 3.29 0.623 25.73 0.656
1-arachidonoyl-GPC Thalamus 25.42 22 0.277 -0.28 2.64 0.915 19.84 0.816
N-acetylornithine Thalamus 18.74 25 0.809 3.78 2.27 0.109 13.04 0.961
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using the Egger intercept test and leave one out analysis. We found no
evidence of pleiotropy (Egger Intercept p-value: 0.06-0.95) and leave
one out analysis showed that removing any SNP did not greatly affect
the association (Table 1 and additional file 5). Additionally, the MR-
PRESSO test showed that there was no horizontal pleiotropy in the ge-
netic instruments (global test p > 0.05) used and thus no outliers were
present in the analysis (Table 1). One of the assumptions of MR is that
the instruments influence the exposure first and then the outcome
through the exposure. To evaluate this, we used the MR-Steiger test
which calculates the variance explained in the exposure and the
outcome by the instrumenting SNPs, and tests if the variance in the
outcome is less than the exposure. The test showed that for all the
proteins and metabolites that had significant associations with subcor-
tical volume, the variance of the genetic instruments in the exposure is
always greater than the outcome - thus validating the assumption of MR
(Supplementary Tables 6 and 7).

3.5. Reverse Mendelian randomization analysis

We performed the MR analysis with the subcortical brain structure
volumes as exposure and the significantly associated biomarkers as
outcomes. The results showed that for all proteins except C50rf38, there
was no reverse causation observed in our analysis (Table 2A), thus
indicating the causal effects of the proteins on the subcortical brain
volume were statistically robust and not false positives. No reverse as-
sociation was found between subcortical brain volume and the six me-
tabolites as well (Table 2B).

3.6. Replication analysis

We validated our significant biomarker — subcortical structure vol-
ume associations using independent exposure data (Gudjonsson et al.,
2022; Chen et al., 2023) and performed MR-IVW analysis. The results
showed that nine proteins (out of the ten tested — one was not available
in the dataset) (Table 3A) and five (out of six) metabolites (Table 3B)
were associated (FDR p-value < 0.05) with the subcortical brain struc-
ture volume, thus providing additional confirmations for our findings.

3.7. Functional enrichment analysis
Analysis of the associated proteins using the g:Profiler platform

revealed significant enrichment for various Gene Ontology terms after
adjusting for multiple testing (Fig. 4 and Supplementary Table 8).

Table 2
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Table 3

Replication Analysis. The table shows the results of MR analyzes using inde-
pendent exposure data for the significant (A) proteins and (B) metabolites and
subcortical brain structure volume as outcomes. The Adj_P column refers to FDR
corrected p-value for the associations. (*) indicates significant after multiple
testing correction.

Exposure Outcome Beta SE P value Adj_P
(3A) Proteins

SERPING1 Accumbens 4.79 0.76 3.27E-10 1.63E-
09*

GZMA Amygdala 11.632 4.58 0.01487 0.01652*

TMPRSS11D Caudate -38.07 8.47 6.95E-06 1.39E-
05*

TXNDC12 Caudate 11.89 2.38 6.17E-07 2.05E-
06*

C50rf38 Hippocampus  -21.94 5.27 3.10E-05 5.17E-
05*

CPNE1 Hippocampus -17.66 3.75 2.54E-06 6.34E-
06*

CTF1 Hippocampus -24.02 6.63 2.91E-04 4.16E-
04*

VIMP Hippocampus -6.25 10.99 0.56970 0.56970

ASIP Putamen -32.17 3.85 6.83E-17 6.83E-
16*

CTRB1 Thalamus 10.79 3.83 0.00483 6.04E-
03*

(3B) Metabolites

Uridine Amygdala 21.45 8.19 0.01277 0.01533*

Arachidonate Amygdala -13.542 4.44 0.004277  0.00641*

Mannose Caudate 37.32 10.23 2.63E-04 7.9E-04*

1-Arachinoyl- Thalamus 30.46 7.12 1.90E-05 1.1E-04*

GPC
N- Thalamus 2.97 6.71 0.65824 0.65824
Acetylornithine
urate Thalamus -44.60 12.69  4.39E-04 8.8E-04*

These included molecular functions such as endopeptidase activity,
peptidase activity and hydrolase activity. We also observed significant
enrichment for biological processes such as proteolysis, regulation of the
endoplasmic reticulum apoptotic signaling pathway and negative
regulation of DNA binding. Most of the proteins were enriched in the
extracellular regions of the human system. No significant enrichment
was observed for the metabolites across all metabolic pathways.

4. Discussion

Here, pursuing a systems biology, multi-omic approach, we sought to

Reverse MR analysis. The table shows the results of MR analysis with the subcortical brain structures as exposure and the biomarkers that were significant in the
primary analysis as the outcomes. Table 2A shows the results for proteins and 2B shows the results for the metabolites. N SNPs is the number of genetic instruments

used for the analysis.

Exposure Outcome N SNPs Beta SE P value
(2A) Proteins
Accumbens SCGB1C1.5960.49.3 7 5.84E-05 0.00143 0.967
Accumbens SERPING1.4479.14.2 7 0.0024 0.00175 0.159
Amygdala GZMA.3440.7.2 17 0.0001 0.00048 0.795
Caudate TMPRSS11D.6547.83.3 24 0.00018 0.00021 0.377
Caudate TXNDC12.4815.25.3 24 -0.00026 0.00023 0.268
Hippocampus C50rf38.6378.2.3 18 -0.00066 0.00025 0.008
Hippocampus CPNE1.5346.24.3 18 -0.00126 0.00119 0.288
Hippocampus CTF1.13732.79.3 18 -0.00022 0.00025 0.369
Hippocampus VIMP.11286.78.3 18 -0.00019 0.00025 0.435
Putamen ASIP.5676.54.3 28 -0.00014 0.00017 0.410
Thalamus CTRB1.5671.1.3 28 0.00005 0.00015 0.743
(2B) Metabolites
Amygdala Uridine 6 -3E-06 7.28E-05 0.967
Amygdala Arachidonate 6 7.84E-05 0.0001 0.437
Caudate Mannose 8 -8.23E-05 4.21E-05 0.051
Thalamus Urate 12 -7.89E-06 1.69E-05 0.641
Thalamus 1-arachidonoyl-GPC 12 -4.13E-05 3.73E-05 0.267
Thalamus N-acetylornithine 12 -3.60E-05 5.05E-05 0.475
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Fig. 4. Enrichment analysis of proteins using the g:Profiler tool. The rectangles correspond to the various enriched Gene Ontology terms and the proteins associated

with each term are shown in ellipses.

provide insights into the mechanisms and mediators that underlie
known associations of brain structures and neuropsychiatric disease. To
do this, we performed a two-sample MR analysis to identify potentially
causal associations between the genetically predicted levels of different
biomarkers (plasma proteome, blood metabolome and gut microbiome)
and the volumes of seven subcortical brain structures. Analyzing avail-
able summary statistics from large-scale GWAS, we identified eleven
proteins and six metabolites to have a significant causal association with
at least one subcortical structure after correcting for multiple testing.
Replication analysis using large independent exposure datasets revealed
significant associations for nine proteins and five metabolites. Hetero-
geneity and pleiotropy analysis showed low to no deviation from null
thus validating our associations as truly significant. Bi-directional MR
analysis for the significant associations showed no reverse causation for
any proteins or metabolites except one (C50rf38, which is an unknown
protein). Finally, enrichment analysis of the associated proteins showed
significant enrichment for proteolytic processes including endopepti-
dase, peptidase, and hydrolase activities. No significant causal associa-
tions were observed between different bacterial genera in the gut
microbiome and subcortical brain structures.

The molecular functions and the roles of the different proteins
identified in this analysis as causally associated with subcortical brain
volumes point to various pathways and mechanisms that could also help
explain the relationship between subcortical structures and neuropsy-
chiatric disorders. For example, SERPING1, which is a Plasma Protease
inhibitor is a glycosylated protein involved in the regulation of the
complement cascade and has been previously found to be associated
with influencing frontal cortical thickness (Stelzer et al., 2016; Allswede
et al., 2018). The complement system itself has been implicated in
depression, schizophrenia, and other neurodegenerative disorders as
well (Yi et al., 2019; Druart and Le Magueresse, 2019). The nucleus
accumbens has been an important brain region for regulating behaviors
related to schizophrenia, depression and addiction (Xu et al., 2020;
Forns-Nadal et al., 2017) and our results indicate that this regulation
could be driven by levels of SERPING1, which is causally associated with
accumbens volume. Similar relationships can also be observed for many
of our identified proteins. GZMA, which is a serine protease involved in

pyroptosis (Lieberman, 2010), is also found to have a lower expression
in patients with major depressive disorder (MDD) compared to healthy
controls (Sun et al., 2022). Patients with MDD also tend to have
decreased amygdala volume (Hamilton et al., 2008) which, based on our
results, could be driven by GZMA. Another interesting example is that of
TXNDC12, which is a member of the thioredoxin (Trx) superfamily. The
Trx system is an antioxidant system that is important in maintaining
sulfhydryl homeostasis protecting against oxidative stress (Arodin et al.,
2014). Studies have pointed to the role of Trx-mediated oxidative stress
in Parkinson’s disease-associated dopaminergic neuron degeneration,
thus indicating that this protein might be an important regulator of the
dopamine reward system (Garcia-Garcia et al., 2012; Liu et al., Feb.
2021). The caudate which is part of the striatum and connected to the
substantia nigra is heavily involved in the reward system where the
dopaminergic neurons are produced (Driscoll et al., 2022). Changes in
caudate volume have been found to be associated with disorders such as
anorexia and Parkinsons disease (Gupta et al., 2022; Pitcher et al.,
2012). The results of our analysis suggest that TXNDC12 could be a
potential mediator of these associations and could thus be used as a
potential target for diagnosis and treatment.

Some of the proteins we identified had an established role in brain
development (Park et al., 2012; Peng et al., 2017; Solovyev, 2015). For
example, the proteins we found causally associated with hippocampus
volume (in both discovery and replication) were Copine-1 and
Cardiotrophin-1. Copine 1 is a calcium dependent phospholipid binding
protein and plays a role in neuronal progenitor cell differentiation and
induces neurite outgrowth (Park et al., 2012). Similar to Copine-1,
Cardiotrophin-1 is also involved in the differentiation of neuronal
stem cells via a protein kinase dependent signaling pathway (Peng et al.,
2017).

Apart from these proteins, we also identified six metabolites that
were causally associated with subcortical brain volume. Previous studies
have shown that these metabolites have an important role in the func-
tioning of the central nervous system and are also associated with
different neurological disorders involved in various functions such as
antioxidation and neuro-inflammatory responses. Antioxidants act
directly to scavenge oxidizing radicals and regenerate oxidized
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biomolecules in organisms to protect the brain from oxidative stress
(Lee et al., 2020). Uric acid and uridine which we found associated with
subcortical structure volume are considered key antioxidants in humans
(Becker, 1993). Interestingly high level of uric acid has been associated
with increased risk of disorders such as ASD and ADHD (Page and
Coleman, 2000; Sutin et al., 2014). Both of these disorders are also
associated with reduced thalamic volume (Tamura et al., 2010; Xia
et al., 2012). The association could be potentially explained by higher
levels of uric acid as seen in our results. Additionally, both uric acid and
uridine are implicated in the development of Lesch-Nyhan syndrome
which is a congenital disorder that affects brain structure and behavior
of the affected individuals (Jinnah, 2009). Other metabolites such as
mannose and arachidonate which were identified in our study have also
been found to be associated with disorders like anxiety and depression in
mouse model systems (Xu et al., 2021; Larrieu and Layé, 2018; Yu et al.,
2021).

We also observed that certain proteins and metabolites such as
SERPING1, ASIP, CTRB1 and 1-arachidonoyl-GPC that were signifi-
cantly associated with a specific subcortical structure were also nomi-
nally associated (p < 0.05) with other structures as well. This could
indicate that these biomarkers are important in functioning of different
subcortical brain structures and additional analysis with larger sample
sizes could lead to stronger and increased number of associations.

No significant associations were obtained between microbiome and
the subcortical brain structures, but several nominal associations were
observed. This could be due the larger impact of environment on
microbiome levels and potentially a larger study that captures greater
level significant genomic variations associated with microbiome is
needed. We should also note that the microbiome GWAS study used is
based on a trans-ancestry sample while the brain volume GWAS studies
are only European and hence there could be a loss of power in the MR
analysis.

There are certain limitations of this study. First, there were very few
or no genome-wide significant SNPs to be used as instrument variables
for many biomarkers in the MR analysis. To address this, we used a more
exploratory threshold of 1e-05 for selecting genetic instruments, like
previously done in multiple previous studies (Zhang et al., 2022;
Wootton et al., 2022; Choi et al., 2019; Sanna et al., 2019). We evaluated
the strength for these genetic instruments using different statistical
methods and found that they were valid for MR analysis. Second, the
proteins and metabolites were quantified in the plasma for the GWAS
analysis, which is a natural choice for biomarker-focused applications
considering its convenience; however, we do not know whether these
biomarkers would have had similar levels in specific brain regions,
because of the existence of the blood-brain-barrier. To address this, we
checked for the expression and presence of the different proteins and
metabolites in the CNS. We found that most of them are highly expressed
in different parts of the brain (Uhlén et al., 2015) and play an important
role in its development and function (Supplementary Table 9). We
would also like to point out that, we performed an MR study and iden-
tified several statistically causal risk factors associated with the
subcortical brain volume, but these findings need further biological
validation using experimental verification in cells and model systems.
Based on statistical analysis, our study points to the most reliable targets
for downstream investment, analysis and experimental validation and
provides novel insights into the physiology of brain structures.

In conclusion, we identified several proteins and metabolites that are
causally associated with the volume of subcortical brain structures. Our
study highlighted the role of proteolytic and anti-oxidative components
in the development and functioning of the brain. The biomarkers we
identified could mediate the relationship between subcortical structures
and different neurological and neuropsychiatric disorders. The results of
these analysis highlight the importance of plasma proteins and metab-
olites as potential biomarkers and could help in early detection of
neurological disorders and even subcortical changes. Future analysis
could examine other characteristics of the brain such as neuronal
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activity, gray matter volume, and white matter connectivity which could
further improve our understanding of the functioning of the central
nervous system and its association to disease. The results of this study
not only provide novel insight for understanding subcortical brain
structure, but also help in uncovering potential diagnostic markers and
drug targets for the many disorders that are associated with changes in
brain structures.
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