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PheWAS and cross-disorder
analysis reveal genetic
architecture, pleiotropic loci and
phenotypic correlations across
11 autoimmune disorders
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Introduction: Autoimmune disorders (ADs) are a group of about 80 disorders
that occur when self-attacking autoantibodies are produced due to failure in the
self-tolerance mechanisms. ADs are polygenic disorders and associations with
genes both in the human leukocyte antigen (HLA) region and outside of it have
been described. Previous studies have shown that they are highly comorbid with
shared genetic risk factors, while epidemiological studies revealed associations
between various lifestyle and health-related phenotypes and ADs.

Methods: Here, for the first time, we performed a comparative polygenic risk
score (PRS) - Phenome Wide Association Study (PheWAS) for 11 different ADs
(Juvenile Idiopathic Arthritis, Primary Sclerosing Cholangitis, Celiac Disease,
Multiple Sclerosis, Rheumatoid Arthritis, Psoriasis, Myasthenia Gravis, Type 1
Diabetes, Systemic Lupus Erythematosus, Vitiligo Late Onset, Vitiligo Early
Onset) and 3,254 phenotypes available in the UK Biobank that include a wide
range of socio-demographic, lifestyle and health-related outcomes. Additionally,
we investigated the genetic relationships of the studied ADs, calculating their
genetic correlation and conducting cross-disorder GWAS meta-analyses for the
observed AD clusters.

Results: In total, we identified 508 phenotypes significantly associated with at
least one AD PRS. 272 phenotypes were significantly associated after excluding
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variants in the HLA region from the PRS estimation. Through genetic correlation
and genetic factor analyses, we identified four genetic factors that run across
studied ADs. Cross-trait meta-analyses within each factor revealed pleiotropic
genome-wide significant loci.

Discussion: Overall, our study confirms the association of different factors with
genetic susceptibility for ADs and reveals novel observations that need to be

further explored.
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1 Introduction

Autoimmune disorders (ADs) are a group of about 80 (1)
disorders that occur when self-attacking autoantibodies are
produced due to failure in the self-tolerance mechanisms (2). The
estimated overall prevalence is 3% in the United States (3), and
recent studies report an increasing trend (4-6). Additionally, ADs
are often comorbid and cluster within families (7, 8). The majority
of ADs are polygenic and previous studies revealed associations
with genes in the human leukocyte antigen (HLA) region (9, 10).
However, multiple additional associations with genes outside of the
HLA are found with various ADs, and many times they are
implicated in more than one disorder (10). The genetic
correlation across multiple ADs has not been fully explored (11,
12). So far, cross-disorder GWAS meta-analyses have only focused
on a few ADs, usually three to seven at a time (12-15), while others
have only focused on pairwise meta-analyses (16, 17). Given the
wide comorbidities observed in epidemiological studies and the
evidence for sharing common genetic background across multiple
ADs, a systematic large-scale analysis is warranted.

In ADs, like other complex disorders, environmental factors are
also involved in disease development along with genetic
predisposition. Multiple studies have reported associations
between viral infections and specific autoimmune diseases (18).
For instance, a recent study (19) is suggesting that infection of
Epstein-Barr virus could be the leading cause of Multiple Sclerosis.
Additional associations between ADs and environmental factors
such as smoking, and UV exposure have also been reported (20, 21).
Epidemiological studies have reported a high comorbidity across
different ADs (8) as well as links to other traits, including psychotic
disorders (22), allergies (23), and obesity (24).

Given the complex genetic background of ADs, Polygenic Risk
Scores (PRS) which are an estimate of an individual’s genetic
predisposition for a trait, are an important tool to help
understand disease correlations. They are usually calculated as the
total of the risk alleles an individual carries, weighted by their effect
sizes as measured in a previous genome-wide association study
(GWAS) (25). This genetic risk can then become the basis of a
Phenome-wide association study (PheWAS), with a goal to explore
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whether risk variants identified by a GWAS or disease PRS are
associated with a wide variety of phenotypes (26). Biobanks that
combine genetic data with Electronic Health Records (EHR) are
essential for the PheWAS approach, as they are the source of the
phenotypes used in the analysis (27). Since the PheWAS is a
hypothesis-free analysis, it can be used to generate new
hypotheses about novel associations that might have not been
uncovered through hypothesis-driven approaches.

Here, for the first time, using summary statistics data of 11
different ADs and genetic and phenotypic data from the UK
Biobank, we performed a PRS-PheWAS, interrogating
associations of AD PRS with a wide range of socio-demographic,
lifestyle, and health related phenotypes. Additionally, we
investigated the genetic relationships across the studied ADs and
conducted cross-trait GWAS meta-analyses for the identified AD
sub-groups. Our findings present an overview of the phenotypic
and genetic architecture and relationships of ADs.

2 Methods
2.1 Study population

The UK Biobank is a large-scale, population-based, prospective
cohort that recruited between 2006 and 2010 over 500,000 participants
from the UK aged 40-69 years old. The participants provided blood,
urine, and saliva samples for biochemical tests and genotyping, as well
as self-reported information which was then linked to their health-
related records. The phenotypic and genetic data we used in this study
were obtained from UK Biobank under application number #61553.

The initial UK Biobank dataset included 488,377 individuals
genotyped on the Affymetrix UK BILEVE Axiom array or the
Affymetrix UK Biobank Axiom array. We performed standard
quality control on individuals and genetic markers (info>=0.9,
maf>=0.01, geno<=0.02, hwe >= 10°°) with PLINK 1.9 (28). Initially,
participants with withdrawn consent, sex mismatch, sex aneuploidy,
self-reported non-white British ancestry, and with kinship coefficient
<0.0625 (third-degree relatedness (29)) were excluded. Additional
Principal Component Analysis (PCA) with 1000 Genomes data as
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reference was performed using TeraPCA (30) to exclude individuals
with non-European ancestry. The final dataset included 330,841
individuals and 7,634,371 SNPs. 53.98% of the selected participants
are females, the average age is 56.8 (sd=8) years. Table SI provides a
breakdown of the participants’ age and the percentage of the selected
autoimmune diagnoses present in the UK Biobank.

2.2 PRS-pheWAS

2.2.1 Polygenic Risk Scores

Publicly available and in-house GWAS summary statistics for
11 ADs performed on datasets of European ancestry and no UK
Biobank participants were collected. For the PRS calculations we
used PRSice2 (31). The independent SNPs with p-values<10~, after
clumping using a window of 500kb and an r* threshold of 0.1, were
included in the PRS calculations and the score was yielded as the
weighted, standardized sum of the effect (score-std option).
Additionally, we normalized the PRS for age, sex, genotyping
batch, and the first ten PCs. We repeated the PRS calculations
excluding the extended HLA region (hgl9, chr6 25-33 Mb). Table 1
shows the studied autoimmune datasets and the number of SNPs
included in the PRS calculations. PRS performance was evaluated
using Nagelkerke’s pseudo-R2 metric for each AD. We used the AD
summary statistics as the base and UK Biobank participants as the
target data. We defined the individuals with the ICD10 code
diagnosis for the studied AD as cases, and the UK Biobank
individuals with no reported ICD10 diagnoses were defined as
controls. Age, sex, genotyping batch and first ten PCs were
included as covariates.

2.2.2 Phenotypes
We included 3,254 phenotypes from UK Biobank that were
assigned to seven broad categories: Biomarkers, Cognition and

TABLE 1 Autoimmune Disease datasets used in this study.

10.3389/fimmu.2023.1147573

Mental Health, Disease Diagnoses, Health and Medical History,
Physical Measures, Lifestyle, and Sociodemographics. Specifically
for the Disease Diagnoses category, we included only the ICD10
codes and used the R PheWAS tool (32) to map similar diagnoses
into one phecode. The breakdown of data fields in each category is
shown in the Supplementary Materials (Figures S1, S2).

2.2.3 PheWAS

For the PheWAS analyses, we used the tool PHESANT (33) to
test the association of each disease PRS with each UK Biobank
outcome. PHESANT, which is described in detail in (33), is
commonly used in PheWAS analyses and automatically removes
the instances with missing values from the UK Biobank Data-
Codings. Age, sex, the first 10 principal components to correct for
population stratification, and the genotyping batch were included as
covariates in all regression models. To account for multiple testing,
we used the R function p.adjust to calculate the FDR adjusted p-
values and set the significance threshold at pFDR<0.05.

2.3 Cross-Disorder GWAS Meta-analysis

Pairwise genetic correlation analyses were performed for all 11
ADs after removing the extended HLA region (hgl9, chr6 25-33
Mb) using LDSC (34). Only SNPs present in the HapMap3
reference panel were included in analyses and we used
precalculated LD scores from 1000 Genomes European data.
Datasets with less than 200,000 SNPs overlap with the LDSC
reference data or heritability z-score <1.5 [as defined in (35)],
were excluded from downstream analyses, namely CEL, PSO, and
JIA datasets were removed.

To further explore the architecture and correlations of the
studied disorders, we performed exploratory factor analysis (EFA)
on the genetic correlation matrix using the R tool GenomicSEM

Autoimmune Abbreviation Cases Controls
Disorder

Rheumatoid Arthritis RA 14,361 43,923
Systemic Lupus Erythematosus SLE 4,036 6,959
Vitiligo Late Onset VITL 1,467 19,156
Vitiligo Early Onset VITE 704 9,031
Type 1 Diabetes T1D 9,358 15,705
Primary Sclerosing Cholangitis PSC 2,871 12,019
Psoriasis PSO 2,997 9,183
Multiple Sclerosis MS 9,772 17,376
Celiac Disease* CEL 12,041 12,228
Juvenile Idiopathic Arthritis JIA 2,816 13,056
Myasthenia Gravis** MG 1,401 3,508

*We included the summary statistics only from the European ancestry individuals in this study.

SNPs in sumstats SNPs in PRS SNPs in PRS PMID
(no HLA)
8,747,962 309 132 24390342
7,915,251 200 144 26502338
7,552,975 77 49 30674883
8,020,475 84 60 30674883
6,621,966 236 198 32005708
7,891,602 157 50 27992413
161,173 191 121 23143594
472,086 147 86 21833088
139,553 122 100 22057235
122,330 45 5 23603761
5,755,778 21 14 34400559

**For the PRS calculations we used the summary statistics after excluding the UK Biobank samples, while for the rest of the analyses we included the full dataset described in the study.

The number of SNPs in the PRS calculations corresponds to the independent SNPs with p<107°.
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(36). We further used a confirmatory factor analysis (CFA) to
validate our model. For groups of disorders within each of the
factors, we performed a cross-disorder GWAS meta-analysis with
ReACt (37) and corrected for sample overlap between the datasets.
In order to identify potentially pleiotropic SNPs, in each meta-
analysis we estimated the posterior probability (m-value) using
METASOFT (38) to identify SNPs with high m-values (m-
value>0.9) for all studies in the meta-analysis. Then, using the
pleiotropic SNPs, we identified the LD independent regions (r><0.1)
from the index SNPs with p<5x10®. We used the default LD
clumping window (250kb) and mapped into the regions the genes
located no more than 20kb away. As reference for the LD
estimation, we used the European samples from 1000 Genomes.
Additionally, we merged into one overlapping genomic regions
using bedtools (39). All genes that mapped to the identified LD
independent regions for each meta-analysis after clumping, were
submitted to g:Profiler (40) to perform functional enrichment
analysis for Gene Ontology terms (GO : BP, GO : CC, GO : MF,
released 2021-12-15), Reactome (REAC, released 2022-1-3) and
Kyoto Encyclopedia of Genes and Genomes (KEGG FTP, released
2021-12-27). For all experiments we performed the recommended
multiple hypothesis correction (g:SCS) method with the significance
threshold of p = 0.05. We repeated the analysis after excluding the
electronic GO annotations (Inferred from Electronic Annotation
[IEA]) to have higher confidence in the enrichment analysis.

3 Results
3.1 Individual disorder PheWAS

First, we investigated the potential association of AD genetic
risk to other phenotypes, including socioeconomic factors, lifestyle,
biomarkers, disease diagnoses, health history and mental health,
performing PRS-PheWAS. We used the LD-independent SNPs with

Count
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p<10” to calculate PRS for each of the studied ADs in each
individual, and tested the association of the normalized -for age,
sex, the first 10 principal components, and genotyping batch-
autoimmune PRS, with 3,254 phenotypes in 330,841 UK Biobank
samples (Table S1). The PheWAS analysis was adjusted for age, sex,
the first 10 principal components, and genotyping batch. We found
a large number of associations with each disorder which differed
depending on whether the HLA region was included in the analysis
(Figure 1, Table 2, Figures S3, S4 and Tables S2, S3). For SLE PRS
with HLA region included in the analysis, we found the highest
number of associations to different phenotypes (n=263). On the
other hand, analysis for SLE PRS without the HLA region included,
was associated with only 38 phenotypes. Interestingly, for CEL, T1D
and RA, more PRS associations to phenotypes were actually found
when the HLA region was excluded from the calculations. For
Psoriasis, genetic risk was found associated with other phenotypes
only when HLA was included in the genetic risk calculations
(significant association with 79 phenotypes).

In the following, we describe in detail patterns that emerge
across all studied disorders and highlight significant results for
phenotype associations to genetic risk with at least three ADs.

3.1.1 Disease diagnoses

For six of the studied ADs (CEL, RA, MS, SLE, T1D, VITE), we
observed a significant positive association of PRS to the same
disease diagnosis (Table S3). These results indicate a good
predictive power of the respective PRS. We should note that for
PSC, the disease diagnosis phenotype was not available in the
dataset. Additionally, we estimated the Nagelkerke’s pseudo-R2
for all ADs (Table S4).

Celiac disease was found significantly associated with genetic
risk for all 11 ADs that we studied. We observed that higher PRS for
RA, VITE, VITL, JIA and PSO is associated with lower risk for the
“Celiac disease” diagnosis phenotype. On the other hand, higher
PRS for MS, MG, PSC, SLE, T1D and CEL was associated with

Category

W siomarcers

B coanition and Mental Health
[ oisease Diagnoses

|1 Health and medical history
[ urestyle

[ Prysical measures

B sociodemographics

> > > > O > > > > > > > > O & D >
& TS TS L PP TS L E TS L LSS LSS
S TE L L L 7L 5L F§5F 5L 57 7L L
TS §8F §8 §8s8 FFs §Fs5 §8s §8s §§s §8s &
S 5 < 5 5 < 5 S SRy & < 5 < 5 < 5
T g N
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HLA status

FIGURE 1

Number of significant phenotypes associated with autoimmune polygenic risk scores (p<10~°). The different colors represent the general UK Biobank
categories. The "HLA excluded” bar shows the number of significant associations with the phenotypes when HLA was excluded from the AD PRS
calculations. The "HLA included” bar shows the number of significant associations with the phenotypes when HLA was included in the AD PRS
calculations. The "Shared” bar shows the number of significant associations with the phenotypes for both HLA included or excluded AD PRSs.
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TABLE 2 The most significant associations (prpr<0.05) of each AD PRS and the UK Biobank phenotypes.

HLA included HLA excluded
Autoimmune 95% To 95%
: Top phenotype e Pfrd P e Pfdr
Disorder Interval phenotype Interval
617 — 494 — 7.17E-
Celiac Disease Celiac disease 0.650 [0.617 <10-300 Celiac disease 0.536 (04 7
0.683] 0.578] 134
ile Idiopathi -0.407 — Hypothyroidi 0.096 —
Juvenile Idiopathic Celiac disease 0364 | 24E-57 YPOTWTOIESM o111 [ 1.52E-44
Arthritis -0.32] NOS 0.125]
0.452 — 0.352 —
Multiple Sclerosis Multiple sclerosis 0.498 [ 1.58E-97 Multiple sclerosis 0.406 [ 3.89E-46
0.544] 0.460]
X X White blood cell (leukocyte) [-0.033 — Hypothyroidism [0.021 —
Myasth -0.02! 2.76E- . .85E-
yasthenia Gravis count 0.029 -0.026] 76E-59 NOS 0.036 0.051] 7.85E-03
Pri Scl i 0.667 — 0.027 —
rimaty Scerosing Celiac disease 0.699 [ <10-300 | Eosinophill count | 0.03 [ 8.41E-63
Cholangitis 0.731] 0.034]
- - ) [0.336 — -
Psoriasis Psoriasis vulgaris 0.372 0.407] 5.04E-90 no significant outcome
0.288 — 5.09E- Hypothyroidi 0.188 — 1.99E-
Rheumatoid Arthritis Rheumatoid arthritis 0.312 [ ypotayroidism 0.203 [
0.337] 131 NOS 0.218] 156
Systemic L 0.707 — 0.018 —
ystemic Lupus Celiac disease 074 [ <10-300 Cystatin C 0.022 [ 3.44E-37
Erythematosus 0.772] 0.025]
. . [0.286 — Hypothyroidism [0.136 —
T 1 Diabet T 1 diabet 0.323 1.93E-62 0.151 3.63E-82
ype 1abetes ype labetes 0360] NOS 0166]
0.161 — 0.247 —
Vitiligo Early Onset Skin colour 0.168 [ <10-300 Skin colour 0.256 [ <10-300
0.176] 0.262]
-0.143 — E: f ski -0.221 —
Vitiligo Early Onset Ease of skin tanning 0,136 [ <10-300 ase of skin 0215 [ <10-300
-0.13] tanning -0.21]
0.141 — 0.257 —
Vitiligo Late Onset Skin colour 0.149 [ <10-300 Skin colour 0.264 [ <10-300
0.156] 0.272]
-0.129 — E f ski -0.238 —
Vitiligo Late Onset Ease of skin tanning 0123 [ <10-300 ase of skl 0231 [ <10-300
-0.117] tanning -0.225]

The table shows the strongest associated phenotypes with each AD PRS with and without HLA, the beta, the 95% CI and the FDR adjusted p-value.

higher risk with the “Celiac disease” diagnosis in the UK Biobank.
The association with CEL, T1D, PSC, and RA remained significant
even after excluding the HLA, although with an opposite effect
direction for the last one (Figure 2; Table S2).

“Ulcerative colitis” diagnosis was the second digestive phenotype
most commonly found associated with the autoimmune PRS, and high
MS, RAgonray JTA@LAy PSChonina), and CELo1ra) PRS were
associated with higher risk for the diagnosis (Figure 2, Table S2).

In the endocrine diagnoses, most autoimmune PRS were
associated with “Hypothyroidism” followed by “Type 1 diabetes”.
RA, VITE, PSC, SLE, T1D and MG were associated with higher risk
of “Hypothyroidism”, even after HLA was excluded. JIA, VITL, MS
and CEL association with Hypothyroidism was significant only after
HLA was excluded (Figure 2; Table S2).

In dermatologic diagnoses, the autoimmune “Sicca syndrome”
was the most associated phenotype with the autoimmune PRS. We
observed a positive association of the “Sicca syndrome” diagnosis
with SLE, CEL, RA (no-t11.4» MSctiza) PSCiira) and MGra) PRS.
In contrast, there was a negative association with PRS VITE, PSO,
and VITL (Figure 2; Table S2).

Frontiers in Immunology

In the neoplasms category, high PRS for VITL and VITE was
associated with lower risk for skin cancer outcomes, including Non-
Hodgkins lymphoma, other non-epithelial cancer of skin and
melanomas of skin (Figure 2; Table S2).

3.1.2 Cognition and mental health

For PSC and SLE PRS, we found the largest overlap (n=20) of
traits associated in the same direction. These associations
included lower risk for phenotypes such as addictions,
depression, and “low/worse” mental health, while they were
positively associated with phenotypes describing higher
cognitive function (Figure 3; Table S2). For PRS of MS, and
MG, we also found an association with lower risk for phenotypes
describing poor mental health (Figure 3; Table S2). On the
contrary, higher PRS for VITL was associated with phenotypes
describing poor mental health and depression (n=10), and had a
negative association with phenotypes describing cognitive
function (n=4) (Figure 3; Table S2). PSO and VITE associated
with higher risk with phenotypes describing poor mental health
and anxiety (Figure 3; Table S2).
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Sicca syndromeq * * #k *%x * A * K *
Sarcoidosis{ * #*% * #x V oxx *
Psoriasis vulgaris1 *# # % * Tk ox %
Systemic lupus erythematosus * Kk Kx v *
Psoriatic arthropathy{ A *x x A dermatologic
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Systemic sclerosis * Kk *
Dermatitis herpetiformis * K *x
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Ulcerative colitis{ #%* A A v *
Primary biliary cirrhosis v A A *
Diverticulosis{ * * * * R
Diarrhea * Kk KK v CIEFHINS
Regional enteritis1 A Vv A
Noninfectious gastroenteritis A A A
Inguinal hernia *  *x *
Hypothyroidism NOS1 ¥V #% #% A *%* %% %% * V A *%
Type 1 diabetes{* A #*x * * Kk Kk V V *%
Thyrotoxicosis with or without goiter K,k Ak Kk Kk A Kkk Kk Kk A
Graves' disease Kk K kK Kk A kK Kk K v
Type 1 diabetes with ketoacidosis{ * * *x =% Kk Kk Kk
Type 2 diabetes with ophthalmic manifestations{ * x = Kk Kk
Type 1 diabetes with neurological manifestations{ * * Tk Kk endocrine/metabolic
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3 Type 1 diabetes with renal manifestations *  x * Kk =
2 Secondary hypothyroidism o N A 40
g Hypercholesterolemia{ * * * K
=) Exophthalmos * A * 2
g Diabetic retinopathy *  * Kk Hk o
2 Hematuria1 # * % * x V o
& Nephrotic syndrome without mention of glomerulonephritis *  x A *x e s
Other disorders of prostate * % * genitourinary
Non-proliferative glomerulonephritis * A *
Primary thrombocytopenia * K A
Pernicious anemia * A *x
Other anemias Kk Kk Kk ot
Iron deficiency anemias, unspecified or not due to blood loss *h KK *k hematopoietic
Disorders of iron metabolism - # * *
Autoimmune hemolytic anemias{ * *
Candidiasis { * * [ ]
Rheumatoid arthritis{ #* *k V Thk ek A Kk
Polymyalgia Rheumatica1 * A Kk K K A *x
Osteoporosis NOS * Kk Ak A
Ankylosing spondylitis1 * * * musculoskeletal
Unspecified osteomyelitis * *
Hallux valgus (Bunion) Xllw ok
Non-Hodgkins lymphomai A * = * *
Other non-epithelial cancer of skin A xx ok
Melanomas of skin{ v Hke HISSEETE
Large cell lymphoma *  *
Multiple sclerosis {l * * * K * % % | neurological |
Nasal polyps A * Kk Kk *
Bronchiectasis{ * A v *k *
Asthma+ * A *k *  x respiratory
Other alveolar and parietoalveolar pneumonopathy *  x A
Epistaxis or throat hemorrhage * K *
Ectropion or entropion { *  *x * | sense organs
® O wJd o <0 Q 2 < W
- E 3
2025 &=2Cr 25 5%
FIGURE 2
Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Disease Diagnoses UK Biobank category, using the normalized PRS. The
shown phenotypes were significantly associated, after FDR adjustment, with at least three AD PRS irrespectively of the HLA status. The colors of cells
indicate the standardized effect sizes (f) for the regression between AD PRS with HLA and each phenotype. The one star “*" shows the significant
results only with the "HLA included” AD PRS. The two stars “¥s" show the significant associations with both "HLA included or excluded” AD PRS
with the same effect direction. The star and the upper facing triangle A" show the significant associations with both “HLA included or excluded”
AD PRS but with opposite effect directions. The upper facing triangle “A” shows the significant associations only with "HLA excluded” AD PRS that the
effect direction is the same as the color indicates. The down-facing triangle "v" shows the significant associations only with “HLA excluded” AD PRS
that the effect direction is the opposite of what the color indicates. To group the disease diagnoses phenotypes, we used the R PheWAS tool and
collapsed similar ICD-10 codes into one phecode. We used the hclust R function to perform the hierarchical clustering of the autoimmune disorders
shown in the dendrogram using all standardized effect sizes for the disease diagnoses phenotypes.

3.1.3 Lifestyle

In this category the trait “Never eat eggs, dairy, wheat, sugar:
Wheat products” was associated with PRS for ten ADs when HLA
was included in analysis, suggesting susceptibility to food allergies;
VITL, VITE, PSO, JIA, RA are negatively associated with the
phenotype, while PSC, SLE, MG, CEL (irrespectively of HLA) and
TID were positively associated with the phenotype (Figure 4;
Table S2).

Frontiers in Immunology

Again, same as for the previous category of traits, PSC and SLE
PRS had the largest overlap of associated phenotypes (n=20) in the
same effect direction. They were negatively associated with
phenotypes related to dietary habits (higher intake of dried fruit,
salad/raw vegetable, non-oily fish), cannabis usage, exercise,
smoking status (Figure 4; Table S2).

Additionally, VITL and VITE PRS (irrespectively of HLA) were
positively associated with darker skin color, and negatively
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Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Cognition and Mental Health UK Biobank category, using the normalized
PRS. The shown phenotypes were significantly associated, after FDR adjustment, with at least three AD PRS irrespectively of the HLA status. The
colors of cells indicate the standardized effect sizes () for the regression between AD PRS with HLA and each phenotype. The one star “¥" shows
the significant results only with the "HLA included” AD PRS. The upper facing triangle “A” shows the significant associations only with "HLA excluded”
AD PRS that the effect direction is the same as the color indicates. To group the phenotypes, we used the categories provided by the UK Biobank.
We used the hclust R function to perform the hierarchical clustering of the autoimmune disorders showing in the dendrogram using all standardized

effect sizes for the Cognition and Mental Health phenotypes.

associated with higher risk of “ease of skin tanning”, “childhood

» o«

sunburn occasions”, “use of sun/uv protection” and “facial aging”
(Figure 4; Table S2). We observed the opposite associations between
PSC and SLE PRS and these sun exposure phenotypes (Figure 4;

Table S2).

3.1.4 Health and medical history

In this category the self-reported phenotype “Diagnosed with
coeliac disease or gluten sensitivity” was significantly associated
with 11 autoimmune PRS (Figure S5; Table S2). We observed a
positive association with PSC, SLE, T1D, CEL, MG, and a negative
association with RA, JIA, VITL, VITE, PSO, these results are
consistent with similar phenotypes, such as the “Celiac disease”
diagnosis and the “Never eat eggs, dairy, wheat, sugar: Wheat
products” phenotype in the Lifestyle category.

Additionally, high PRS T1D, VITL, and VITE were associated
with lower risk for “Basal cell carcinoma” phenotype under the
Cancer register sub-category. Specifically, for VITE and VITL we
observed a negative association with self-reported basal cell
carcinoma (Figure S5; Table S2).
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We also observed significant associations of autoimmune PRS
with phenotypes in the Sociodemographics (Figure S6), Biomarkers
(Figures S7-S9) and Physical Measures (Figure S10) categories,
without any patterns emerging across disorders. Results are
shown in the supplement.

3.2 AD Genetic Architecture and
Cross-Disorder GWAS Meta-analysis

Driven by the known comorbidity across AD [based on
epidemiological studies (8)] and the overlap in phenotypic
associations with autoimmune PRS that we described above, we
proceeded to perform cross-disorder genetic correlation and GWAS
summary statistics meta-analyses to explore the genetic relationship
and genetic architecture of ADs and identify potentially pleiotropic
loci. Such pleiotropic loci would drive pathophysiology across
multiple ADs.

Initially, we performed analysis for all 11 ADs (Figure S11),
however, given the limited SNP overlap of our datasets for CEL,
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FIGURE 4

Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Lifestyle UK Biobank category, using the normalized PRS. The shown
phenotypes were significantly associated, after FDR adjustment, with at least three AD PRS irrespectively of the HLA status. The colors of cells
indicate the standardized effect sizes () for the regression between AD PRS with HLA and each phenotype. The one star “sc" shows the significant
results only with the "HLA included” AD PRS. The two stars “¥s¢" show the significant associations with both "HLA included or excluded” AD PRS
with the same effect direction. The star and the upper facing triangle "* A" show the significant associations with both “HLA included or excluded”
AD PRS but with opposite effect directions. The upper facing triangle “A” shows the significant associations only with "HLA excluded” AD PRS that the
effect direction is the same as the color indicates. To group the phenotypes, we used the categories provided by the UK Biobank. We used the
hclust R function to perform the hierarchical clustering of the autoimmune disorders shown in the dendrogram using all standardized effect sizes for

the Lifestyle category phenotypes.

PSO and JIA we excluded them from further analyses. After
correction for multiple testing, we observed significant positive
correlations of RA with T1D (rg,0.111.4:0.52), SLE (rgno 111.4:0.51),
and MG (rg,o nra:0.47). VITL and VITE were also significantly
correlated (rg,o nra:0.64). Additional autoimmune correlations
with p<0.05 are shown in Figures 5A, B, including the pairwise
correlations after excluding HLA.

Since the pairwise genetic correlation analysis showed a
complicated correlation pattern among the studied disorders, we
performed exploratory factor analysis (EFA) followed by a
confirmatory factor analysis (CFA) to dissect the AD
relationships. We used the four-factor model identified in EFA
and included the disorders with loadings greater than |0.3| in each
factor. The CFA analysis in GenomicSEM showed a good fit of the
model to the data (x2 (12) =16.1; AIC =64.1; CFI = 0.98; SRMR =
0.07). The first factor included VITE, VITL and MG. MG, RA and
SLE were included in the second factor, while the third factor
consisted of T1D, PSC and MG (with a negative loading). Lastly,
factor four consisted of PSC and MS (Figure 5C).

In the cross-disorder meta-analysis on the first factor, that
includes VITL, VITE and MG, we identified nine significant
pleiotropic (m-value>0.9 in all studies) LD independent regions
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(Table 3); two of them mapping on the Cytotoxic T-Lymphocyte
Associated Protein 4 (CTLA4) - Inducible T Cell Costimulator
(ICOS) and Fli-1 Proto-Oncogene, ETS Transcription Factor
(FLI1) genes, were not significant in the individual GWAS studies
included here. However in the GWAS catalog (41) FLI1 has a
significant association with Vitiligo, when the onset age is not taken
into account (42), and CTLA4 is found associated with different
GWASs (not studied here) for both Myasthenia gravis (43) and
Vitiligo (42). CTLA4 was also significant in the gene-based analysis
(44) of the data we used in this meta-analysis. The gene set
enrichment analysis including the genes in the significant and
pleiotropic regions identified four significantly enriched GO : BP
terms; bone cell development, immune system development,
myeloid cell development, and immune system process
(Figure 6A; Table S5).

When we performed the meta-analysis of MG, RA and SLE, we
identified 17 genome-wide significant pleiotropic loci. Three of
these loci mapping to Protein Tyrosine Phosphatase Receptor Type C
(PTPRC), Interleukin 12 Receptor Subunit Beta 2 (IL12RB2) and
LINCO00824 were not genome-wide significant in the GWAS studies
we analyzed (focusing on European ancestry), however, they were
reported as significant associations in GWAS of higher power that
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were multi-ethnic (Table S6). The gene set enrichment analysis of
genome-wide significant and pleiotropic regions identified 22
significantly enriched terms. Among them, six (DN2 thymocyte
differentiation, regulation of MAP kinase activity, stress granule
assembly, B cell proliferation, side of membrane, GRB7 events in
ERBB2 signaling) were significant even after excluding the IEA GO
terms (see Methods) (Figure 6B; Table S7).

In the meta-analysis of MG, T1D and PSC, we observed seven
pleiotropic and genome-wide significant loci. One of them, found
on chr4:10,709,726-10,726,520 (closest gene Cytokine Dependent
Hematopoietic Cell Linker (CLNK), 23Kb downstream) has not
been previously found to be associated with either of the three

10.3389/fimmu.2023.1147573

disorders (Table S8). The gene-set enrichment analysis identified six
significantly enriched terms after multiple testing correction, with
“RUNX1 and FOXP3 control the development of regulatory T
lymphocytes (Tregs)” and “T cell receptor signaling pathway” as the
two top terms (Table S9). These two were the only significant terms
when we repeated the analysis after excluding the IEA GO terms
(see Methods) (Figure 6C; Table S9).

Finally, for the cross-disorder meta-analysis of PSC and MS, we
identified two genome-wide significant and pleiotropic loci,
mapping to the previously associated Interleukin 2 Receptor
Subunit Alpha (IL2RA) and BTB Domain And CNC Homolog 2
(BACH2) genes (Table S10). The gene-set enrichment analysis
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o \& S| =
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2
MG
MS -0.8
VITE

o
<

.81

-1

|

F i B B
1% 1.0 “0 1’0 1’0
A KA A KA A

045 024 075

FIGURE 5
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Genetic correlation and factor analysis for 8 autoimmune disorders. The figure shows the analyses of the 8 autoimmune disorders with enough
overlap (>200.000 SNPs) with HapMap3 data provided by LDSC after excluding the HLA locus (hgl9, chr6 25-33 Mb). (A) Heatmap of the pairwise
LDSC genome wide genetic correlations of the 8 autoimmune disorders after excluding the SNPs in the HLA region. The red color reflects more
positive correlation coefficients while blue reflects more negative coefficients, and the numbers within each cell are the correlation coefficients. The
correlations with p<0.05 are denoted with one asterisk (*), while two asterisks (**) show the correlations that are significant after Bonferroni
correction. (B) Network representation of the genetic correlation between the autoimmune disorders with p<0.05. The numbers show the
correlation coefficient and the stronger the line color shows a higher coefficient. (C) Path graph of the confirmatory factor model estimated using
the Genomic SEM. Four factors were identified. The factor loadings for each trait are depicted by arrows between the trait and the factor, with the
standardized loading value and the standard error in the parentheses. Correlation between factors is indicated by arrows between them. Residual

variance for each trait is indicated by the two-headed arrow connecting the
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TABLE 3 Genome-wide significant (p<5x10°®) LD independent loci from the VITL-VITE-MG meta-analysis.

Nearest
genes
(<20kb)
hr21:43831955- TMP
159981704 | © r438633359955 UB Aslﬁii 6.09x10" | 131 | 0.03 - 430x10* | rs12482396 | 4.06x10°%° - 3.60x107
chr3:188084682- s , " o
1560946162 188133518 LPP 1.78x10 0.8 | 0.03 - 2.43x10 1513098877 | 2.62x10 - 1.17x10
hr12:111833788-
157137828 | © r112037526 ATXN2 SH2B3 1.70x10"* | 0.82 @ 0.03 - 731x10° | 1510774624 | 8.28x10” - 1.26x10°°
hr18:60007263- 1.09x10°
rs8088891 | © r60029292 TNERSF11A 35110 | 122 0.03 - 9.89x10° - 1.14x10°% 14369774 1’3‘
FGFR1OP
chr6:167370353- GERIO s B B B
151951459 167455629 MIR3939 3.61x10 0.81 003 | rs2247315 = 3.48x10 1s366938 1.14x10 - 9.53x10
RNASET2
hr22:37575469-
1s64547 ¢ r37595156 CIQTNF6 SSTR3  8.14x10™° | 0.82 | 0.03 15229528 2.09x10°® 15229527 1.55x107'% - 7.33x107°
hr3:71426419-
15831071 ‘ r71430389 FOXP1 101x10% 12 0.03 - 211x10° | 1560135207 | 3.14x10° - 3.40x10°
hr2:204694611-
153116513 c r204792732 CTLA4 ICOS 1.42x10"° 119 | 0.03 - 2.25x107 - 5.64x107 - 2.65x10°°
chr11:128589472- o B . 5
1s644515 128617231 FLI1 1.44x10 117 003 - 2.89x10 - 2.89x10 - 1.24x10

The column SNP contains the top SNP in each locus. The columns P, OR and SE correspond to the top SNP in each locus. The autoimmune disorder specific Top SNP column contains the top
genome-wide significant SNP in the locus that was available in the input dataset. The autoimmune disorder specific P column contains the lowest p-value in the locus that was available in the

input dataset.

identified three significant terms, primary adaptive immune
response, primary adaptive immune response involving T cells
and B cells, and interleukin-2 receptor complex. All of them
remained significant even after we excluded the IEA GO terms
(Table S11).

3.3 PheWAS findings shared across ADs in
the same genetic factor

Finally, we explored whether the ADs belonging to each of the
four factors that were identified by EFA, also share associations with
phenotypes detected in the PheWAS. For MG, VITE and VITL
which make up the first identified factor, we detected 29 shared
phenotypes across all three ADs (Figure S12). However, there was
no phenotype with the same effect direction for all three ADs. For
MG, RA and SLE, which make up the second factor, we detected 26
shared phenotypes, across five categories (Figure S13). The
Hypothyroidism disease diagnosis and the health related
phenotype of “other serious medical conditions/disability
diagnosed by doctor”, were the two phenotypes, associated with
all three ADs with the same effect direction, for the same HLA
status. For the ADs of the third factor (PSC, T1D and MG), we
identified 16 shared phenotypes in four categories (Figure S14).
Nine of them had the same effect direction for all three AD for the
same HLA status. Lastly, for factor four (PSC and MS), we identified
76 shared associations, 43 of them had the same effect direction for
both ADs (Figure S15).
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4 Discussion

We report results on the first PRS-PheWAS analysis exploring
the association of genetic risk for 11 autoimmune disorders and
3,254 phenotypes on 330,841 individuals of European ancestry from
the UK Biobank. Additionally, we explored the genetic relationship
between the studied ADs seeking to dissect the genetic architecture
of these highly correlated and often comorbid phenotypes.

We were able to recover previously identified associations
between ADs based on epidemiological or genetic studies. For
instance, a study in a Taiwanese population showed higher risk of
first-degree relatives with Sicca to develop other autoimmune
disorders including SLE, MS, MG, and RA (45); and we also
observed here a positive association between the PRS of these
four ADs and Sicca syndrome outcome. Other autoimmune-
related diagnosis outcomes associated with higher risk for the
studied ADs, included hypothyroidism and Graves disease. A link
between those disorders and RA, Vitiligo, SLE, T1D, CEL, and MG,
is also supported by the literature (46-50). Additionally, as reported
in previous studies (51-53), we also observed a negative association
between Vitiligo risk and skin cancer.

Interestingly, we observed many associations with
environmental and lifestyle factors. Diet and specifically the
consumption of non-wheat products was the outcome that we
found to be associated with the risk for most of the studied ADs
pointing to gluten intolerance and food allergies. We observed a
significant positive association between PSC, SLE, CEL, MG, T1D,
and RA (when HLA was excluded from PRS calculations) and not
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Network plots of the enrichment analysis for the cross-disorder meta-analyses. (A) Results of the significantly enriched terms from the genes
identified in the VITE-VITL-MG meta-analysis. Results are also shown in Supplementary Table 5. (B) Results of the significantly enriched terms (after
excluding the IEA terms) from the genes identified in the SLE-MG-RA meta-analysis. The full results are also shown in the Supplementary Table 7. (C)
Results of the significantly enriched terms from the genes identified in the TID-MG-PSC meta-analysis. The full results are also shown in the
Supplementary Table 9. Enriched gene sets that remained significant after excluding the IEA GO terms are shown in dark green

consuming wheat, while the association was negative for VITE,
VITL, PSO, JIA and RA. We also observed the same pattern of AD
associations with the Celiac disease diagnosis phenotype, which
could be indicative of the connection between gluten intolerance
and Celiac disease. There is prior evidence suggesting that a gluten-
free diet could be beneficial not only for patients with Celiac disease
but also for T1D, RA, MS, autoimmune hepatitis, and PSO (54).
Smoking was another factor that we found significantly
associated with SLE and PSC genetic risk. Indeed, it has been
previously suggested that smoking is associated with higher risk for
double-stranded DNA seropositivity, a marker used for SLE
diagnosis, in SLE patients (55), while for PSC, there is some
evidence to suggest that smoking is associated with lower risk for
developing the disease (56, 57), although not always consistently
supported (58). Interestingly, a previous study found that severe
sunburn incidents and higher tanning ability in women are
associated with higher risk of developing Vitiligo (59), however,
we actually observed the opposite association for Vitiligo genetic
risk, perhaps indicating different behavior towards sun exposure
based on genetic risk. We also observed a negative association
between CEL genetic risk and the weight of the first child. Previous
studies have shown that women with undiagnosed or untreated
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celiac disease have higher risk to deliver a baby with reduced
birthweight (60).

The link between autoimmune disorders and mental health has
been previously described. For instance, exposure to stress-related
disorders was found to be associated with higher risk for ADs (61),
and both positive and negative associations of ADs with psychotic
disorders have been summarized elsewhere (22). In our study, we
observed that risk for VITL and PSO was positively associated with
self-reported outcomes describing poor mental health, which is in
line with previous works (22, 61-63). We also observed that risk for
SLE and PSC was associated with better mental health outcomes.
Epidemiological studies have reported higher psychological distress
in patients with SLE and PSC (61, 64-67). However, in a study
exploring the genetic correlation between immune and psychiatric
related phenotypes using GWAS summary statistics, SLE was found
to be significantly positively correlated only with Schizophrenia and
no other psychiatric phenotypes (68). Additionally, a study using
Mendelian Randomization between SLE and depression showed
SLE genetic variants mildly reduce the odds of depression,
suggesting that the observed association between SLE and
depression might not be attributed to genetic factors (69). Thus,
further analyses could be useful to explore the gap between the
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associations between SLE and mental health phenotypes observed
in epidemiological studies, but not when using genetic data.

Exploring closer the phenotypes that are associated with ADs
belonging to the same genetic factor (as identified by EFA), we
found that for factor three (PSC, T1D and MG) there is a clear
pattern of associations with same direction of effect with
phenotypes belonging in several disease diagnoses, health and
medical history, and lifestyle categories as well as biomarkers. For
two different factors, two and three, we observed the same direction
of association with the Hypothyroidism diagnosis phenotype.
Specifically for the ADs of factor two we detected a positive
association with additional AD diagnoses, which we discussed in
more details earlier here. Interestingly, for disorders in the first
factor (VITE, VITL and MG), we did not observe any phenotype
associated with the same effect direction with all three ADs. This
suggests that although Vitiligo and MG are genetically correlated,
their PRSs are associated with the opposite direction with the
studied phenotypes. The only exception to this was the
association that we observed with the Hypothyroidism disease
diagnosis where VITE and MG PRS show association in the same
direction. On the other hand, for PSC and MS (factor four), we
observed positive associations with other ADs such as Sicca
syndrome, Celiac disease, but not with Hypothyroidsm. Overall,
the shared phenotypes in each factor reveal patterns whose link to
ADs warrants further exploration.

It is well demonstrated that ADs are often comorbid and share
both HLA and non-HLA genetic loci (8-10, 15). In a recent study
(11), where the genetic correlation between 13 (7 of them are also
studied here) autoimmune and inflammatory disorders was also
explored, the authors observed correlations across ADs and similar
patterns to what we also found. Furthermore, we also provide here a
more detailed analysis to understand the genetic architecture of
ADs including EFA to reveal subgroups of disorders and cross-
disorder GWAS to reveal pleiotropic loci that could underlie
multiple disorders and drive comorbidities. Indeed, in line with
the existing notion of shared genetic background across ADs, we
detected numerous genome-wide significant and pleiotropic loci in
each meta-analysis. All except one had already been previously
associated with at least one of the ADs included in the meta-
analysis, or were associated with the traits in studies of different
ancestries or larger sample GWAS which we could not analyze here
because summary statistics data were not available. Importantly, we
identify one novel genome-wide significant and pleiotropic locus in
the meta-analysis of TID-MG-PSC. This is a previously unknown
locus that could play a role in the etiology of all three disorders and
is found 23Kb downstream of CLNK gene that encodes Clnk, an
adapter of the SLP76 family, is involved in the regulation of
immunoreceptor signaling (70).

This study comes with both strengths and limitations. The
PheWAS analysis allowed us to detect significant associations
between AD risk and multiple phenotypes, even after excluding
the HLA region. Additionally, we were able to detect pleiotropic loci
in the autoimmune subgroups that are involved in immune-related
processes as the gene-set enrichment analysis revealed. However,
there are limitations in this study that should be considered when
interpreting the results. For the PRS calculations, although we used
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the largest AD summary statistics data available, there were
differences in power regarding their sample size and number of
SNPs. Also, as the number of UK Biobank participants with AD
diagnoses is limited, we were not able to calculate the optimal p-
value threshold for SNPs to be included in PRS calculations, but
rather set as threshold the p-value 107

In conclusion, in this study we observed ADs PRS to be
associated with multiple health-related and environmental factors,
even after excluding the HLA region, and explored the genetic
relationships of the selected ADs by estimating their genetic
correlation and identifying pleiotropic genetic regions that
underlie genetic risk across multiple ADs. Overall, our analyses
indicate potential factors associated with genetic risk for ADs, some
of which have been reported previously, and novel observations that
need further exploration. These results suggest that the assessment
of additional exposures related to lifestyle, mental and physical
health risks by clinicians, could be beneficial for individuals with
higher risk for autoimmune disorders.
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SUPPLEMENTARY TABLE 1

Demographic information of the 330,841 UK Biobank participants included in
the analysis. The ICD10 Disease Diagnoses category includes the diagnoses
for the autoimmune disorders that are included in this study and were present
in the UK Biobank.

SUPPLEMENTARY TABLE 2

PRS-PheWAS results for association of genetic risk of 11 autoimmune
disorders with 3,254 phenotypes in UK Biobank. Genetic risk scores were
calculated as the weighted standardized sum of the effect of independent
SNPs with p-values<10~° for each disorder. The estimation of the genetic risk
scores was repeated after excluding the extended HLA region (hg19, chr6 25-
33 Mb). Estimates were generated by PHESANT.

SUPPLEMENTARY TABLE 3

Associations of AD PRS with disease diagnosis phenotype for the same
disorder. The table shows the associations of the disease diagnosis
phenotypes and the same AD PRS with and without HLA, only for the ADs
that the same diagnosis was available. For the Vitiligo early and late onset we
used the general Vitiligo diagnosis phenotype that was available in the
UK Biobank.

SUPPLEMENTARY TABLE 4

Nagelkerke's pseudo-R2 values for the studied ADs. The table shows the
Nagelkerke's pseudo-R2 values and the liability scale Nagelkerke's pseudo-
R2, using the population prevalence as listed in the Prevalence column. The
PMID column refers to the studies reporting the prevalence values included in
the analysis.

SUPPLEMENTARY TABLE 5
Significantly enriched gene sets genes identified in the VITL-VITE-MG meta-
analysis. The p.Val column is the adjusted p-value using the suggested g:SCS
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