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Abstract 7 

Underground pipeline strikes, a pressing problem due to inaccurate subsurface data, are addressed in this 8 
paper with a pipeline detection and localization framework. First, abundant radargrams are generated to 9 
relieve radargram data shortage by simulating Ground Penetrating Radar (GPR) scans along the urban 10 
roadway and enhancing their realism with Generative Adversarial Network (GAN) technique. Second, a 11 

deep learning network is designed to directly reconstruct permittivity maps from radargrams for accurate 12 
pipeline detection and characterization, instead of detecting pipeline features within the radargram. Third, 13 
Simultaneous Localization and Mapping (SLAM) is employed for GPR position estimation, enabling 14 
precise georegistration of pipelines. The proposed method attains an R­squared (R2) value of 0.957 in 15 
permittivity map reconstruction and 96.2% precision in pipeline detection. Additionally, it provides 16 
satisfactory performance with a deviation of 1.71% in depth and 20.44% in diameter for the detected 17 
pipelines. Real­world experiments validate the effectiveness of the proposed framework, highlighting its 18 
potential to prevent excavation accidents, reduce project delays, and offer significant benefits to utility 19 
companies, contractors, and urban planners. 20 
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1. Introduction 23 

Utility strikes by excavation have been a persistent problem in the US [1]. The Pipeline and 24 
Hazardous Material Safety Administration (PHMSA) reported that there are 640 pipeline incidents, 14 25 
fatalities, and 57 injuries every year on average from 2002 to 2021. These damages have a significant 26 
economic impact on the U.S., with an estimated $30 billion in annual societal costs [2]. Incomplete, 27 
inaccurate, and missing [3–6] subsurface pipeline information is one of the main reasons causing utility 28 
strike accidents during excavations. Therefore, it's crucial to construct a subsurface utility map with 29 
precise location and dimension information. 30 

GPR has been utilized extensively in the field of locating underground utilities as a non­destructive 31 
technology (NDT) [7]. Pipelines and other cylindrical subsurface items are frequently identified in 32 
radargrams as hyperbola characteristics. As a result, by identifying and examining hyperbola signs, 33 
pipeline size and position information can be approximated [8,9]. Some handcrafted algorithms have been 34 
developed to detect and segment hyperbola features in the radargram to obtain pipeline information. For 35 
example, Yang et al. [10] proposed a hyperbola extracting method to analyze the pipeline information 36 
using the hyperbolic asymptote. Rohman and Nishimoto [11] presented a pattern­matching technique for 37 
pipelines with different shapes, such as triangles, squares, and circles, to find the location of pipelines.  38 
However, the underground conditions are generally complex and heterogeneous. Consequently, the 39 
aforementioned methods often struggle to produce reliable results in real­world scenarios and adapt to 40 
various subsurface variations. With the rapid development of computer vision techniques, many deep 41 
learning­based methods have been developed to detect and characterize underground utilities in more 42 
complex scenes. For example, Yamaguchi et al. [12] proposed a combination model of a 3D 43 



convolutional neural network with Kirchhoff migration to detect hyperbola box­by­box in the GPR 44 
radargram. Hou et al. [13] proposed a Mask Scoring R­CNN (MS R­CNN) model to detect, segment, and 45 
analyze the hyperbola features. However, two main drawbacks exist in these studies. First, their 46 
performance is significantly impacted by the quality of hyperbolic features. In urban areas, underground 47 
pipelines often appear clustered, causing radar signal interference. This can lead to inaccurate or fuzzy 48 
hyperbolas, substantially hindering these approaches. Second, they mainly focused on detecting the 49 
hyperbolic features while paid less attention to the geo­registration of underground pipelines. Given geo­50 
registration’s importance, some methods have been developed to register detected pipelines within a 51 
spatial referencing system. For example, Li et al. [7] proposed a hybrid method for underground utility 52 
detection and localization by fusing GPR and GPS data. However, GPS signals could be significantly 53 
attenuated in urban areas, resulting in inaccurate localization. 54 

The overall goal of this study is to introduce an integrated framework for detecting and geo­55 
registering subsurface pipelines by integrating GPR and camera data. First, a deep learning­driven GPR 56 
radargram inversion model is designed to reconstruct permittivity maps of road cross­sections, enabling 57 
the retrieval of information about road base layer as well as the location and dimensions of buried 58 
pipelines. Second, SLAM is employed to localize the GPR, allowing for the geo­registration of identified 59 
pipelines. The remainder of this paper is organized as follows. Section 2 reviews related works on 60 
subsurface object detection. Section 3 describes the proposed system's research methodology, which 61 
includes aboveground map reconstruction and underground pipeline detection. Section 4 provides an 62 
overview of the implementation, findings, and field case studies. Finally, Section 5 summarizes the 63 
research conclusions and discusses potential future research directions. 64 

2. Literature Review 65 

GPR has been extensively applied in subsurface objects detection fields, and it has been testified as an 66 
efficient technique for locating subsurface targets in many civilian applications, such as bridge deck 67 
inspection [14–16], void detection under rubbles [17–19] and subsurface utility detection [20–22]. For 68 
example, Porsani et al [23] utilized GPR to map existing infrastructures along the construction site to 69 
orient the subway tunnel. Metwaly [20] performed a survey along an urban asphalt road to detect all kinds 70 
of pipelines using GPR, highlighting the importance of carrying out surveys before excavation activities. 71 
Coster et al. [24] improved the GPR­based detection of pipelines and leaks in water distribution networks. 72 
All these studies demonstrated the great potential of GPR in detecting and reconstructing subsurface 73 
objects.  74 

As computing power has advanced, many researchers have developed algorithms to automate the 75 
processing of GPR signals, which can be categorized into hyperbola detection and radargram inversion. 76 
Hyperbola detection methods analyze radargram features to determine the size and location of subsurface 77 
objects [25–28]. Numerous studies are progressing in tandem with the advancements in hyperbola 78 
detection methods. Wang et al. [29] proposed a template­based method to detect rebar apex and fit it in 79 
radargrams using partial differential equations. Terrasse et al. [30] detected the position of gas pipelines 80 
with GPR acquisitions using a dictionary of theoretical pipe signatures. Sagnard et al. [28]  developed an 81 
algorithm that is not restrictive to the hyperbola pattern base on the template­matching and LS hyperbola 82 
fitting technique. Aided by computer vision techniques, many Deep Neural Network (DNN)­based 83 
hyperbola detection methods have also been developed. applied a column connection clustering (C3) 84 
algorithm to separate the regions of interest (ROI), and then identify hyperbola signatures from these 85 
ROIs. Yuan et al. [31] introduced a drop­flow algorithm that mimics the movement of raindrops to detect 86 
and decompose hyperbola signals from underground pipelines. Liu et al. [32] proposed an automatic 87 
detection and localization method via deep learning and migration, in which a Single Shot Multibox 88 
Detector (SSD) is utilized to extract regions of hyperbola in radargrams. Permittivity reconstruction­based 89 
methods focus on reconstructing the permittivity map of underground scenes to detect the targets. Some 90 
researchers have proposed AI­based methods for permittivity reconstruction to detect underground 91 
objects.  For example, Qin et al. [33] presented a probabilistic inversion model based on Markov chain 92 



Monte Carlo (MCMC) to estimate the grouting layer thickness with its relative permittivity and electric 93 
conductivity. Liu et al. [34] proposed an end­to­end DNN framework to invert the dielectric properties of 94 
tunnel linings. Ji et al. [35] proposed a Permittivity Inversion Network (PINet) to utilize the time 95 
compression operation so that the position, rough shape, and permittivity of targets can be reconstructed.  96 

Based on the development of subsurface object detection methods, many recent studies have also 97 
developed methods to obtain the 3D position of subsurface pipelines. For instance, a mobile robot is 98 
combined with a GPR [36] to perform underground utility mapping. The robot localizes itself using GPS 99 
so that the buried pipelines could be further localized, while this process could be hugely affected by the 100 
GPS signal amplitude. To address this issue, other researchers proposed methods that are less restricted 101 
by environments. Li et al. [37] proposed a pipeline mapping method based on the J­linkage method and 102 
maximum likelihood estimation (MLE) and successfully reconstructed the 3D map of buried pipelines 103 
with great results. However, their methods are limited to detecting pipelines buried in a homogeneous 104 
medium with a priorly known radio wave propagation velocity. Feng et al. [38] presented a 3D imaging 105 
migration system that synchronizes the GPR pose with GPR scans to reconstruct and visualize the 106 
subsurface pipelines. They considered the outputs of visual inertial fusion (VIF) as the pose of the GPR 107 
device while not considering the calibration between GPR and the camera coordinate system. Addressing 108 
these limitations, our study harmonizes the coordinate systems of GPR and the camera, subsequently 109 
integrating the reconstructed permittivity and aboveground maps. This process facilitates the development 110 
of a comprehensive pipeline localization model, trained on diverse road cross­section data. 111 

3. Methodology 112 

Figure 1 illustrates the architecture of the proposed framework for underground pipeline detection and 113 
geo­registration. The framework consists of two modules: the Subsurface Pipeline Detection Module 114 
(SPDM) and the Localization and Aboveground Reconstruction Module (LARM). Addressing the 115 
shortage of labeled real GPR data in the SPDM, a substantial number of GPR radargrams are generated 116 
by simulating GPR scans on synthetic urban roadways. These simulations come with ground­truth 117 
permittivity maps, a topic explored in our previous research [39]. Additionally, GAN technique is 118 
employed to reduce discrepancies between simulated and real radargrams, thereby enhancing the 119 
simulated radargrams’ realism. The paired radargrams and permittivity maps serve as the training dataset 120 
for the inversion network. For the LARM, SLAM is employed to reconstruct the aboveground map and 121 
determine the GPR position. The subsurface map, predicted by the trained GPR inversion model, can then 122 
integrate with the reconstructed aboveground map based on their relative positions. Consequently, the 123 
detected pipelines can be geo­registered. Each module is described in further detail in the subsequent 124 
sections. 125 

  126 



Figure 1: System architecture overview. 127 

3.1 Pipeline Detection 128 
Figure 2 presents an overview of the proposed subsurface pipeline detection framework, which 129 

consists of three stages. In the first stage, simulated road cross­sections containing a pipeline system are 130 
created  to generate a large number of synthetic radargrams, accompanied by ground­truth permittivity 131 
labels. In the second stage, GAN is employed to augment simulated radargrams with realistic signal 132 
features. Finally, the inversion network is trained to directly invert GPR radargrams to produce 133 
permittivity maps using the augmented radargrams and associated permittivity labels. Each stage is 134 
detailed below. 135 

 136 
Figure 2: Subsurface mapping methodology overview. 137 

 138 

3.1.1 Data Generation 139 
Obtaining cross­section permittivity maps and GPR scans of underground pipelines in natural settings 140 

is challenging due to the unpredictability of permittivity values within soil layers. Factors such as density 141 
and humidity can significantly impact soil permittivity, making the creation of a precise permittivity map 142 
difficult in practice. To address this, our research generates abundant synthetic GPR radargrams alongside 143 
their corresponding permittivity maps, which are then used for training the inversion model. The gprMax 144 
[40] simulator is utilized to perform the synthetic radargram generation. 145 

To simulate a more realistic underground cross­section with pipelines, this study investigated multiple 146 
design standards related to urban road design and subsurface pipe regulations. The common flexible 147 
urban pavement usually contains four layers: surface layer, base course, subbase course, and subgrade 148 
layer. Table 1 presents each layer’s thickness of urban pavement.  149 

Table 1:  Variations in thickness across different pavement layers [41]. 150 

Road layer   Thickness (cm) 
Surface    10­18 
Base course   13­30 
Subbase course   13­30 
Subgrade layer   The rest 

 151 
Urbanization has led to an increased demand for subsurface infrastructure installations, including gas 152 

pipelines, sewer lines, water pipes, electrical cables, and optical fibers. Varied pipeline types may have 153 
different criteria for material, size, depth, and installation. Furthermore, due to their various 154 
functionalities, many pipeline types require specified interval spacings. These factors were considered 155 
when generating simulated urban road cross­sections. Table 2 presents the settings for various buried 156 
pipelines. 157 



Table 2: Spatial setting requirements of underground pipelines [42].  158 

Utility lines   Inside radius 
(cm)  

Outside radius 
(cm)   Depth (cm)   Remark   

Gas lines   (1,14)   (1,15)   61 below   30.5 cm vertical clearance from water 
and sewer pipelines  

Electrical wire   N/A   (2,5)   61 below   30.5 cm vertical clearance from water 
and sewer pipelines  

Water lines   (1,28)   (3,30)   91.4 below   45.7 cm vertical clearance from sewage 
lines  

Sewage lines   (3,19)   (5,20)   61­91.4 below   45.7 cm vertical clearance from water 
lines  

Optical cable   N/A  (1,2)  30.5 below   30.5 cm vertical clearance from water 
and sewer pipelines  

 159 
Road layers and pipelines can be made of various materials, and the same type of pipeline might be 160 

constructed from different materials. Therefore, when creating synthetic permittivity maps, considering a 161 
broad spectrum of materials is essential. Table 3 shows the permittivity value range for different 162 
materials.   163 

Table 3: Permittivity values of different materials.  164 

Object    Permittivity   
PVC   3­5 [43] 
Concrete    5­10  
Clay    5­40  
Asphalt    4.5[44] 
Flexible road base   8­12 [44] 
Gravel subgrade   8­15 [44] 
Iron   1.4­1.6 [45] 

 165 
Based on the above physical setting parameters range, this study constructed a large number of 166 

simulated cross­sections with buried pipelines. The size, depth, spatial setting, permittivity of the 167 
pipelines, and thickness of each road layer in these cross­sections are randomly set within the related 168 
value range in Tables 1 , 2 and 3. This study set the relative permittivity increases along with the depth 169 
increases considering the density and water content variation in the subgrade layer. Figure 3 shows three 170 
examples of the constructed urban road cross­sections with subsurface pipelines where different colors 171 
represent different relative permittivity values. 172 

 173 
Figure 3: Permittivity map of pavement cross­section with subsurface pipelines. 174 

The 350 MHz GPR antenna can penetrate up to 10 meters while still delivering enough resolution, 175 
which is sufficient for typical subsurface pipeline identification in urban areas. Due to this, 350 MHz was 176 



chosen as the gprMax frequency for this study. There are 256 traces in each simulated permittivity map 177 
with a length of 2.56m. The depth of the synthetic cross­section is set to 3.1m. 178 

The simulated cross­sections with pipelines are fed into the gprMax simulator to simulate 179 
corresponding radargrams. Each permittivity map in the spatial domain needs to be transformed into the 180 
time domain in order to construct the necessary labels for these radargrams. Equation 1 elaborates on the 181 
conversion process. 182 

  t =  
2d

C
√ε  (1) 183 

Where t denotes the roundtrip time in ns, d means depth in meters, e is the permittivity value, and C is 184 
light speed which is 3 × 108m/s. 185 

The depth is incremented by 0.01 m in the gprMax. The total iteration number is 3000 and the time 186 
window is set to 2.35865e­11s, in this way the roundtrip time equals 70.76 ns. Moreover, time­zero 187 
correction is utilized to obtain an accurate signal propagation time between transmitting and receiving 188 
antennas, which helps correct the detected depth of objects. In this study, the time­zero corrected iteration 189 
number is 2600 which equals 61.32 ns of travel time.  190 

Inevitably, the GPR signal weakens as penetration depth increases. To counteract this attenuation, we 191 
incorporate an exponential gain during signal processing, thereby amplifying the diminished reflected 192 
signals from deeper substrates. This enhancement of subsurface object signals amplifies their visibility, 193 
thereby bolstering the efficacy of the predictive model. Figure 4 presents two cases of the generated 194 
radargram and related permittivity map. These paired images are further used to train the inversion 195 
network. 196 

 197 
Figure 4: Examples of synthetic radargram and its corresponding permittivity map in time domain. 198 

3.1.2 Data Augmentation 199 
Although simulation could generate paired datasets for model training, a noticeable disparity exists 200 

between synthetic and real GPR scans. Training the reconstruction model only relying on the clear, low­201 
noise, synthetic radargrams could hinder the model’s practical applications. Thus, GANILLA GAN [46] 202 
is applied to enhance the realism of the generated GPR scans. 203 

Figure 5 illustrates the architecture of the generator network and the generator­discriminator model. 204 
This network comprises two pairs of generator­discriminator models, wherein the generators and 205 
discriminators operate independently. The primary objective is to refine synthetic radargrams into 206 
realistic ones. In the composite model 1, generator 𝐺𝐵2𝐴 generates synthetic radargrams from real 207 
radargram input, while discriminator 𝐷𝐴 aims to distinguish between real and fake radargrams. In 208 



composite model 2, generator 𝐺𝐵2𝐴 refines synthetic radargrams to enhance realism, and discriminator 𝐷𝐵 209 
contributes to increasing their realism. Upon applying these two composite models, synthetic radargrams 210 
are refined into realistic radargrams with high fidelity. 211 

The discriminator network utilized in the GANILLA GAN is a 70×70 PatchGAN [47]. This network 212 
consists of four consecutive blocks, each containing one convolutional layer and one instance­213 
normalization layer. The first block contains 64 filters, with the number doubling in each subsequent 214 
block. Additionally, there is a convolution layer with one filter followed by a sigmoid activation layer. 215 
The discriminator enables differentiation between real and fake radargrams generated by the network. The 216 
generator contains both a downsampling and an upsampling stage. The downsampling stage starts with a  217 
7×7 convolutional layer, followed by an instance norm layer, ReLU, and max­pooling layer. 218 
Subsequently,  four layers follow, each containing two residual blocks. Each residual block starts with a 219 
3×3 convolutional layer followed by an instance norm layer. Then, another set of 3×3 convolutional 220 
layers and normalization layers are added.  The output from these two sets of layers is concatenated with 221 
the residual block's input. Finally, the concatenated tensor is fed into a 3×3 convolutional layer. The 222 
upsampling stage contains one 1×1 convolutional layer followed by four consecutive upsample and 223 
summation layers. Moreover, low­level features extracted by the downsampling stage are concatenated to 224 
the summation layers before the upsampling through a long skip connection. Finally, two consecutive 225 
convolutional layers output the augmented radargram. 226 

 227 
Figure 5: Structure of GANILLA GAN network applied in GPR radargram augmentation. 228 

The employed GAN model incorporates two types of loss functions. Adversarial losses ensure that 229 
radargrams generated by the generator closely resemble the distribution of real radargrams. Cycle 230 
consistency losses serve to prevent generators (G) and discriminators (D) from producing conflicting 231 
outcomes; that is, images generated by the two generators can be transformed back to their original state. 232 
In the context of our research, minimizing the adversarial loss associated with transforming radargrams 233 
from the synthetic domain to the real domain is of paramount importance. The optimal generator can be 234 
identified with loss in Equation 2 through this iterative training process. 235 

𝐺𝐴2𝐵
∗ =  arg min

𝐺𝐴2𝐵

max
𝐷𝐵

ℒ𝐺𝐴𝑁(𝐺𝐴2𝐵, 𝐷𝐵 , 𝐴, 𝐵)                            (2) 236 

Where ℒ𝐺𝐴𝑁(𝐺𝐴2𝐵 , 𝐷𝐵 , 𝐴, 𝐵) is the objective function of mapping synthetic radargram to real radargram, 237 

which equals to  𝔼𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)[𝑙𝑜𝑔𝐷𝐵(𝑏)] + 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎) [log (1 − 𝐷𝐵(𝐺𝐴2𝐵(𝑎)))]  238 



 239 

3.1.3 GPR Inversion Network 240 
This research proposes a deep learning­based radargram inversion method for directly reconstructing 241 

the underground permittivity maps based on radargrams. The model structure is displayed in Figure 6. 242 
The presented network which is adapted from DeepLabv3+ architecture contains an encoder and a 243 
decoder. Integrating Atrous Spatial Pyramid Pooling (ASPP) with this encoder­decoder structure enables 244 
multi­scale contextual features in the GPR radargram to be detected. The augmented radargram data is 245 
passed to the encoder which contains a ResNet50­based backbone and an ASPP module. The spatial size 246 
of the original radargram data is reduced to 8×8 from 256×256 while the dimensions turn to 256 in the 247 
encoder part. These processed feature maps provide different scale object information for the decoder.  At 248 
the decoder, each of the extracted low­level features is combined with the high­level features extracted by 249 
the decoder. The predicted permittivity maps with 256×256 spatial sizes are generated after a series of 250 
upsampling. The structure of the encoder and decoder are elaborated below. 251 

 252 

Figure 6: GPR inversion network architecture. 253 

Encoder: The adapted ResNet50 backbone contains one 7×7 convolutional layer, one pooling layer, 254 
and four ResNet residual block groups with block numbers of 1, 2, 3, and 4 respectively. In each stage, 255 
the spatial size of feature maps would be reduced to half and the channel number would double. At the 256 
same time, the convolutional layer and the first two ResNet block groups extract low­level features and 257 
pass them into the decoder. The results of the whole backbone with a spatial size of 8×8 are fed into 258 
ASPP followed. There are five layers in the ASPP module, one 1×1 convolutional layer, three 3×3 259 
convolutional layers, and one average pooling layer. The sampling rates of these four convolutional layers 260 
are 1, 6, 12, and 18 respectively. The results of these five layers are concatenated and output a feature 261 
map with 1028 channels. This outcome is then passed into a 1×1 convolutional layer. 262 

Decoder: The decoder part is mainly used to recover the spatial size of feature maps and combine the 263 
low­level features with the high­level features. There are four upsample layers interpolated in this section 264 
with different scale factors. Moreover, there are three 3×3 convolutional layers utilized to extract high­265 
level features integrated with low­level features. The outputs of these convolutional layers with 28 266 
channels are then passed into one 1×1 convolutional layer. Finally, the predicted permittivity maps with 267 
1×256×256 are generated after upsampling by 2. For better representation, we visualized all the predicted 268 
gray­scale permittivity maps to colormap using the matplotlib library of Python. 269 



3.2 GPR Localization and Aboveground Reconstruction 270 
To map the subsurface pipelines in the 3D environment, an aboveground autonomous localizing and 271 

mapping method is integrated into this mapping system. The above­ground 3D reconstruction map is 272 
combined with the subsurface pipelines map and adjusted for their relative positions. In this way, an 273 
integrated 3D pipeline library is generated. 274 

3.2.1 Aboveground SLAM 275 
For the SLAM part, the RTAB­Map SLAM [48] method is adopted in this research, which is a graph­276 

based SLAM technique. The structure of the map consists of nodes and links. Odometry nodes publish 277 
odometry information to estimate robot poses. The short­time memory (STM) module is used to create 278 
nodes to memorize the odometry and RGB­D images and calculate other information. To limit the 279 
working memory (WM) size and reduce the time to update the graph, a weighting mechanism is used to 280 
determine which nodes in WM are transferred to long­term memory (LTM). Nodes in the LTM can be 281 
brought back to WM when a loop closure is detected. Links are used to store transformation information 282 
between two nodes. The neighbor and loop closure links are used as constraints for graph optimization 283 
and odometry drift reduction. The Bag of Words approach is used for loop closure detection. The visual 284 
features extracted from local feature descriptors such as Oriented FAST and rotated BRIEF (ORB) are 285 
quantized to a vocabulary for fast comparison. The outputs of the SLAM are the vehicle pose and the 3D 286 
reconstructed map.  287 

3.2.2 GPR and Camera Coordinate System Calibration 288 
Figure 7 shows the sensing suite design and calibration settings. A GPR and a binocular camera are 289 

mounted on a tricycle together, where the camera is used for obtaining the position of the GPR and 290 
reconstructing the aboveground map.  291 

 292 

Figure 7: Sensing suite design and calibration setting. 293 

To detect the relative position between GPR and camera origin, a checkerboard­based calibration 294 
procedure is performed before collecting data in real sites.  As shown in Figure 8, in the experimental 295 
setup, a 4 × 4 Aruco checkerboard is put up on the ground, which is used to calculate the relative position 296 
of GPR origin and camera origin. Firstly, the center of the GPR is considered as its origin so that its 297 
coordinate in the checkerboard coordinate system is easy to measure. Secondly, a marker detection 298 
algorithm transforming the camera coordinate system to the marker coordinate system is applied to the 299 
image data collected by the camera. Equations (3)­(4) illustrate the transformation principle. 300 

 301 
(𝐓cm)−1𝐎 = 𝐌           (3) 302 

 303 



𝐓cm =  [

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

] =  [
𝐑 𝐭

𝟎𝟏×𝟑 1
]       (4) 304 

 305 
Where O is the camera coordinate system. M is the marker coordinate system which is coincidental with 306 
the world coordinate system. 𝐓cm  is a transformation matrix from the camera coordinate system to the 307 
marker coordinate system. R is the rotation matrix while the t is the translation matrix. 308 

This approach allows for the determination of camera poses and their origin coordinates in the marker 309 
coordinate system. By aligning the camera and GPR to the same coordinate system, their relative 310 
positions can be computed. This, in turn, aids in pinpointing the GPR location on the reconstructed 311 
aboveground map, enabling the geo­registration of detected subsurface pipelines. 312 

4. Experiment and Results 313 

4.1 GPR Radargram Augmentation with GAN 314 

4.1.1 Implementation  315 
The GAN network was trained on a Linux workstation equipped with one NVIDIA RTX A5000 GPU 316 

using PyTorch. The initial learning rate for the Adam optimizer is 0.00002. After 50 epochs, the learning 317 
rate starts to linearly decay to zero. The real GPR data are collected by GSSI 350 MHz GPR. To provide 318 
noise features for the training, 705 real radargram images which all contain 256 traces were used. In the 319 
meantime, 705 synthetic radargrams are randomly selected from 20867 images. The batch size of the 320 
training is set to 1. This training stops after 100 epochs.  321 

4.1.2 Evaluation Metrics 322 
To quantitatively evaluate the performance of the data augmentation process, three matrics including 323 

Frechet Inception Distance (FID), Structural Similarity Index Method (SSIM), and Mean Square Error 324 
(MSE) are compared between different sets of radargrams. 325 

  𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝜎𝑦+𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2  +𝐶1)(𝜎𝑥
2 +𝜎𝑦

2 +𝐶2)
  (5) 326 

Where 𝜇𝑥 and 𝜇𝑦 are the local,  𝜎𝑥 and 𝜎𝑦 are the standard deviations for the radargram input and 327 

augmented radargram respectively. 𝐶1 and 𝐶2 are two constants. 328 
The MSE measures the average of the square of the errors between two images.  329 

  𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝑔̂(𝑛, 𝑚) − 𝑔(𝑛, 𝑚)]2𝑁

𝑚=1
𝑀
𝑛=0   (6) 330 

Where 𝑔̂(𝑛, 𝑚) and 𝑔(𝑛, 𝑚) denotes two images respectively. 331 
FID compares the distribution of generated radargrams with the distribution of the real radargram set. 332 

  𝐹𝐼𝐷(𝐾, 𝑅) =   ‖𝜇𝐾 −  𝜇𝑅‖2
2  +  𝑇𝑟(𝛴𝐾  + 𝛴𝑅  −  2(𝛴𝐾𝛴𝑅)

1

2)  (7) 333 
Where K and R denote a different set of images, 𝜇𝐾 and 𝜇𝑅 are the mean feature vectors of K and R 334 
respectively, 𝛴𝐾  and  𝛴𝑅 are their corresponding covariance matrices. Note ‖⋅‖2

2 is the Euclidean norm 335 
operator and Tr(⋅) is the trace operator here. 336 

4.1.3 Augmented Results 337 
Some examples of augmented radargrams using GAN are shown in Figure 8. As the training dataset 338 

contains real data from [49] and self­collected data on real site, the GAN model learned two different 339 
features, which increased its generalizability.  340 

 341 



 342 
Figure 8: Synthetic and augmented GPR radargram. 343 

 344 
Table 4 presented below demonstrates the performance of the proposed GAN model in enhancing 345 

synthetic radargrams. Three evaluation metrics are compared across different combinations of radargram 346 
sets. The Real set comprises 705 actual radargram images, while the Fake set consists of 705 randomly 347 
chosen synthetic radargrams. Corresponding augmented radargrams for these synthetic images are 348 
included in the Augmented set.  349 

Table 4: Data augmentation performance.  350 

Matrix   Real and Fake  Real and Augmented   Fake and Augmented 
FID   365.098   65.952  352.540 
SSIM   0.218  0.266   0.463  
MSE  85.522  81.886  71.289  

 351 
The FID scores represent the degree of similarity between different radargram distributions, where 352 

lower values imply greater resemblance. Among the sets, the Real and Augmented image set exhibited 353 
the lowest FID score (65.952), signifying its superior approximation to the real images compared to the 354 
other sets. The SSIM index quantifies the perceptual similarity between two images, with values ranging 355 
from ­1 to 1. Higher SSIM values denote enhanced structural and visual similarity. The Fake and 356 
Augmented set recorded the highest SSIM value (0.463), which is expected given that images in these 357 
sets correspond to each other. Furthermore, compared to the Real and Fake set, the Real and Enhanced set 358 
showed a higher SSIM index, indicating that the augmented radargrams had more realistic qualities. The 359 
MSE metric calculates the average squared differences between the pixel intensities of the corresponding 360 
images, with lower values suggesting improved agreement between the compared images. The Real and 361 
Augmented set demonstrated a lower MSE value than the Real and Fake set, indicating that the average 362 
pixel intensity difference was smaller in the former set. 363 



The findings indicate that by incorporating signal noise from actual radargrams, we can enhance the 364 
authenticity of augmented radargrams. As a result, these augmented radargrams mirror real ones more 365 
closely. Utilizing these realistic radargrams to train the inversion network bolsters its performance, 366 
providing greater robustness and generalizability in practical scenarios. This ensures the network's 367 
reliability and effectiveness. 368 

4.2 GPR inversion 369 

4.2.1 Implementation  370 
The inversion model was developed on a Linux workstation featuring a 100 GB CPU and one 371 

NVIDIA RTX A5000 GPU,  using the PyTorch liabrary. The dataset contains 20867 pairs of augmented 372 
GPR radargrams and corresponding permittivity maps, which contains two random sets, a training set 373 
(80%) and a validation set (20%). PyTorch's ReduceLROnPlateau function was utilized, starting with a 374 
learning rate of 0.02, subject to a decay factor of 0.5, and processed in batches of 32. To minimize 375 
overfitting, we implemented an early stopping mechanism during training. This involved using the 376 
training set to refine the model and the validation set to test it. If the validation loss failed to decrease for 377 
10 consecutive epochs, the training ceased and the best­performing model was saved. 378 

4.2.2 Evaluation Metrics 379 
To quantitatively evaluate the performance of the trained inversion network, there are four evaluation 380 

matrices, i.e., R squared (𝑅2), SSIM, Mean Absolute Error (MAE), and confusion matrix were utilized in 381 
this study. 𝑅2 which is also known as the coefficient of determination, measures the distance between the 382 
reconstructed results and its ground truth. It is detailed in Equation 8, where 𝑥𝑖 means the predicted 383 
permittivity value, 𝑦𝑖 represents the ground truth permittivity value, 𝑦 is the mean of true values. 384 
 385 

  𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
 =

∑(𝑥𝑖− 𝑦̅)2

∑(𝑦𝑖− 𝑦̅)2  (8) 386 

 387 
The SSIM measures the similarity between the predicted and true permittivity map [50]. In Equation 388 

(9), x is the predicted permittivity map while y is the original permittivity map.  389 
 390 

  𝑆𝑆𝐼𝑀(𝑦, 𝑥|𝜔) =
(2𝜔̅𝑦𝜔̅𝑥 + 𝐶1)(2𝜎𝜔𝑦𝜔𝑥+𝐶2)

(𝜔̅𝑦
2  + 𝜔̅𝑥

2 +𝐶1)(𝜎𝜔𝑦
2  +𝜎𝜔𝑥

2  +𝐶2)
  (9) 391 

 392 
Where 𝜔𝑦 means a sliding window in the same original permittivity map, 𝜔𝑦 is the average of 𝜔𝑦, 𝜎𝜔𝑦

2  is 393 

the  variance  of 𝜔𝑦 , 𝜎𝜔𝑦𝜔𝑥
 means  the  covariance  of 𝜔𝑦  and 𝜔𝑥 . 𝐶1  and 𝐶2  are  two  constants. 𝜔𝑥 , 𝜔𝑥 394 

and𝜎𝜔𝑥
 mean the same in 𝑥 .   395 

The MAE represents the average vertical distance between the permittivity value of each pixel in the 396 
predicted and original permittivity map. The calculation is shown in Equation (10). 397 

 398 

  𝑀𝐴𝐸 =
∑ 𝑎𝑏𝑠(𝑥𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
  (10) 399 

Equations 11­13 defined three metrics to further measure the performance of the model. Recall means 400 
the ratio of correct positive detections to the total positive examples, precision denotes the ratio of correct 401 
positive detections to the total predicted positives, the accuracy is the ratio of correctly detected examples 402 
to the total examples. 403 
 404 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (11) 405 

 406 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (12) 407 

 408 



  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (13) 409 

 410 
Where TP represents a true positive which is the number of correctly detected pipelines, FP means a false 411 
positive which is the number of incorrectly detected pipelines, TN is a true negative which is the number 412 
of detected negative pipelines, FN represents a false negative which is the number of fails detected 413 
negative pipelines.  414 
Equation 14­15 shows the definition of predicted error and deviation, where ground truth means the 415 
original value, prediction means the predicted value. 416 

 417 
  𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)  (14) 418 

 419 

  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑎𝑏𝑠(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
× 100%  (15) 420 

 421 

4.2.3 Inversion Results 422 
This section detailed the results of GPR inversion. Figure 9 shows the variation of three evaluation 423 

matrixes along with the training epochs growing on both synthetic radargrams and augmented 424 
radargrams. It is easy to see the trend that the SSIM and 𝑅2 grows while the MAE decreases as the epochs 425 
increase. The plots indicate that the inversion model quickly converges and becomes stable at around 70 426 
epochs.  427 

 428 

Figure 9: Variance of SSIM, 𝑅2, MAE during the training on validation set. 429 
Table 5 below shows the model performance on synthetic and augmented radargrams. Note that 430 

synthetic and augmented radargrams share the same permittivity map labels.  431 
Table 5: Model performance on both synthetic and augmented data after 100 epochs training 432 

Metric  SSIM  𝑅2  MAE 
Synthetic  0.9153  0.96096  0.4825 
Augmented  0.9150  0.95697  0.48852 

 433 

The following analysis and testing would base on the model trained on the augmented dataset as it is 434 
expected to performs better in real scenes. To quantitatively evaluate the performance of the model 435 
trained on augmented radargrams in detecting and characterizing pipelines, 100 reconstructed permittivity 436 
maps which contain 388 pipelines are randomly selected from the validation dataset. Table 6 shows the 437 
detection results: 304 pipelines are successfully detected while 84 pipelines are miss detected among 388 438 
pipelines. This indicates that the network achieves satisfactory results with a precision of 96.2% and an 439 
accuracy of 76%. 440 

Table 6: Confusion matrix results of model trained on augmented data 441 
Confusion Matrix  Observed Value 
True Positive (TP)  304 
False Negative (FN)  84 
False Positive (FP)  12 
Precision  0.962 
Recall  0.784 



Accuracy  0.76 
 442 

Furthermore, We evaluated the model's performance by measuring the depth and diameter of 304 443 
pipelines. Pipeline depth was determined from the vertex depth of the reconstructed pipeline, while 444 
diameter was assessed using the horizontal width of the reconstructed pipeline in the predicted 445 
permittivity map. As Table 7 details, the model excelled in depth prediction, with an average error of 1.77 446 
cm and deviation of 1.71%. Diameter prediction showed an average error of 3.20 cm and deviation of 447 
20.44%. Depth prediction was strongly influenced by the accuracy of the reconstructed soil permittivity, 448 
as this affects signal transmission time, hence reflecting depth. Meanwhile, the precision of diameter 449 
prediction relied on accurate pipeline permittivity value detection. Smaller pipelines proved more 450 
challenging for permittivity prediction, resulting in less accurate diameter predictions with around 20% 451 
deviation. 452 

Table 7: Performance of pipeline diameter and depth prediction 453 
  Average error (cm)  Average deviation (%)  SD of average error  SD of average deviation 
Depth   1.77  1.71  2.31  2.35 
Diameter  3.20  20.44  3.20  26.80 

Note: SD is the standard deviation. 454 
 455 

Figure 10 below presents examples of inversion results on the radargrams augmented by GANILLA 456 
GAN. Each row in Figure 10 shows one example of the prediction result using the trained model. The 457 
first column in the plot presents the augmented radargrams, and the rest columns show their related 458 
ground truth and predicted permittivity maps in the time and depth domain respectively. As indicated in 459 
the figure, the predicted permittivity map is in good agreement with the ground­truth permittivity map, 460 
which shows the robust applicability of the proposed inversion model. 461 



 462 

Figure 10: Examples of inversion model predictions results. 463 

4.3 Subsurface Mapping Case study 464 
To determine the performance of the proposed model in real scenes, the open­source radargram 465 

dataset created by [49] is adapted due to the availability of subsurface cross­sections. The experimental 466 
pit from the IFSTTAR geographical test site is a transversal trench filled with Gneiss 14/20 gravel. The 467 
overall length of this gravel region is 5 m and its density is around 1.8t/m3. The radargram data used for 468 
testing is collected by GSSI 350 MHz GPR. Figure 11 shows nine PVC tubes with a 0.1 m diameter 469 
buried in three depths separately, 0.8 m, 1.4 m, and 2.0 m. In addition, a concrete pipe with a diameter of 470 
0.5m is buried 2m below the ground. The pink in the background means the Gneiss 14/20 gravels. Two 471 
cross­sections with pipelines are selected for evaluation as highlighted in the red bounding boxes in the 472 
figure.   473 



  474 

Figure 11: Cross­section of the real scene test case. (Adapted from [49]) 475 
The first case contains one PVC tube with a 0.1 m diameter buried in 0.9 m and another two same­476 

size tubes buried in 1.5 m with an interval of around 1.0 m. The second case is the cross­section 477 
containing the concrete pipeline. Figure 12 shows the results of the two cases. 478 

  479 

Figure 12: Prediction results of the real scene radargrams. Note: (a) denotes results related to the case 480 
1, and (b) represents results related to case 2. The orange dots denote the real pipelines.  481 

The result indicate that all the buried pipelines are successfully detected in both cases. However, there 482 
is approximately 0.4 m discrepancy in the depth of the detected pipeline in each case. The shape of the 483 
reconstructed pipelines appears deformed. These inaccuracies, including errors in depth prediction, radius 484 



prediction and shape deformation, can be attributed to imprecisions in the predicted permittivity values. 485 
Several factors contributed to this: First, although the proposed model possesses the ability to discern 486 
road base layers, the training data consists of simulated multi­layer data, whereas the case study is 487 
conducted on a single­layer site. Second, the model's training dataset lacks labeled real data, limiting the 488 
model's applicability in real­world scenarios. The limited real data used for GAN training also impacts the 489 
performance of the trained GAN model. These factors influence the accuracy of  predicted permittivity 490 
values when the trained inversion model is directly applied to real sites, leading to a deviation between 491 
the reconstructed permittivity map in the depth domain and the original cross­section.  492 

4.4 Integrated Mapping Case Study 493 
 The proposed system was field­deployed, with data collected near the Tickle College of Engineering 494 

at the University of Tennessee. Figure 13 shows the route of GPR survey. 495 
 496 

 497 
Figure 13: Test route displayed in Google Maps. 498 

A GSSI GPR equipped with 350 MHz antennas was utilized in the field test. Concerning the 499 
collection parameters, the acquisition time window was set to 70 ns, and the wheel encoder was 500 
configured at 100 pulses per meter, resulting in a trace spacing of 0.01 m. Approximately 80 meters of 501 
GPR radargrams were collected along the test route. Additionally, a ZED camera was employed in the 502 
experiment to capture environmental data. After processing with the RTAB­Map SLAM model, the 503 
aboveground environment was successfully reconstructed, as demonstrated in Figure 14. The results 504 
accurately reconstructed the road and its surroundings, highlighting the proposed system's ability to 505 
generate timely outdoor aboveground maps. Concurrently, the collected GPR radargrams were input into 506 
the proposed inversion model to determine the location and size of buried pipelines at the site. Four 507 
sample detection results, including the real GPR radargram and its corresponding detected subsurface 508 
map, are also presented in Figure 14. These results showcase the proposed model's capability to detect 509 
and localize buried pipelines in real­world scenarios. 510 



  511 
Figure 14: Pipeline geo­registration process. 512 

5. Conclusions  513 

The growing need to prevent excavation accidents, primarily caused by a lack of accurate pipeline 514 
information, has led to the development of subsurface pipeline mapping methods that geo­registers buried 515 
pipelines in a 3D environment. This study proposes a CNN­based GPR inversion model to directly 516 
reconstruct permittivity maps, enabling the extraction of size and location information of pipelines. 517 
Simultaneously, detected pipelines are geo­registered in the reconstructed aboveground map using 518 
vSLAM. A wealth of synthetic radargrams and corresponding permittivity map labels are generated for 519 
training the inversion network. Additionally, the GANILLA GAN network is employed to enhance the 520 
realism of synthetic GPR scans. The inversion model, based on an encoder­decoder structure, is trained 521 
on augmented radargrams and their corresponding labels, demonstrating high accuracy. In particular, 522 
training results on augmented data yield an SSIM of 0.915, 𝑅2of 0.957, and MAE of 0.488. The trained 523 
model is numerically evaluated on 100 randomly selected radargrams, revealing the proposed model's 524 
performance in detecting pipelines with a precision of 96.2%, recall of 78.4%, and accuracy of 76%. 525 
Furthermore, the reconstruction accuracy for size and depth is assessed, with an average buried depth 526 
reconstruction error of 1.77 cm (deviation of 1.71%) and an average diameter error of 3.2 cm (deviation 527 
of 20.44%). These results indicate excellent performance in predicting pipe location and size for 528 
simulated cases. In this study, the proposed GPR inversion model is evaluated in a field case, and the 529 
capacity of the proposed system to construct an integrated pipeline map is demonstrated in another field 530 
case. 531 

While our GPR inversion model exhibits high accuracy when predicting pipeline size and depth in 532 
synthetic radargrams, it tends to present larger discrepancies in real­world cases. These discrepancies can 533 
be attributed to several factors. The first is the inherent simplicity of the current inversion model, which 534 
may not fully account for the complexity of real­world conditions. The second factor is the unpredictable 535 
noise in real­scenario radargrams, which can lead to less accurate predictions. Lastly, the limited number 536 
of real radargrams available for GAN training may affect the model's performance in diverse, real­world 537 
situations. To address these challenges, several avenues of future research are suggested. Improving the 538 
robustness of the training network can help the model better handle the noise and unpredictability of real­539 
world data. Enlarging the dataset and collecting more real­world radargrams could enhance the model's 540 
generalization capability, improving its accuracy across various scenarios. Furthermore, the inversion 541 
network could be expanded to analyze additional subsurface conditions. For instance, it could be adapted 542 



to investigate pavement structures, allowing for a more comprehensive understanding of subsurface 543 
conditions. Lastly, improvements in the SLAM algorithm and location calibration technique could 544 
enhance the geo­registration process. By increasing the precision of the SLAM algorithm and refining the 545 
location calibration method, the system could provide more accurate localization of detected subsurface 546 
objects. These enhancements would result in a more robust and versatile tool for urban infrastructure 547 
management and planning. 548 
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