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Abstract

Underground pipeline strikes, a pressing problem due to inaccurate subsurface data, are addressed in this
paper with a pipeline detection and localization framework. First, abundant radargrams are generated to
relieve radargram data shortage by simulating Ground Penetrating Radar (GPR) scans along the urban
roadway and enhancing their realism with Generative Adversarial Network (GAN) technique. Second, a
deep learning network is designed to directly reconstruct permittivity maps from radargrams for accurate
pipeline detection and characterization, instead of detecting pipeline features within the radargram. Third,
Simultaneous Localization and Mapping (SLAM) is employed for GPR position estimation, enabling
precise georegistration of pipelines. The proposed method attains an R-squared (R?) value of 0.957 in
permittivity map reconstruction and 96.2% precision in pipeline detection. Additionally, it provides
satisfactory performance with a deviation of 1.71% in depth and 20.44% in diameter for the detected
pipelines. Real-world experiments validate the effectiveness of the proposed framework, highlighting its
potential to prevent excavation accidents, reduce project delays, and offer significant benefits to utility
companies, contractors, and urban planners.

Keywords: Underground Infrastructures; Detection and Mapping; Radargrams; Deep Learning;
Ground Penetrating Radar.

1. Introduction

Utility strikes by excavation have been a persistent problem in the US [1]. The Pipeline and
Hazardous Material Safety Administration (PHMSA) reported that there are 640 pipeline incidents, 14
fatalities, and 57 injuries every year on average from 2002 to 2021. These damages have a significant
economic impact on the U.S., with an estimated $30 billion in annual societal costs [2]. Incomplete,
inaccurate, and missing [3—6] subsurface pipeline information is one of the main reasons causing utility
strike accidents during excavations. Therefore, it's crucial to construct a subsurface utility map with
precise location and dimension information.

GPR has been utilized extensively in the field of locating underground utilities as a non-destructive
technology (NDT) [7]. Pipelines and other cylindrical subsurface items are frequently identified in
radargrams as hyperbola characteristics. As a result, by identifying and examining hyperbola signs,
pipeline size and position information can be approximated [8,9]. Some handcrafted algorithms have been
developed to detect and segment hyperbola features in the radargram to obtain pipeline information. For
example, Yang et al. [10] proposed a hyperbola extracting method to analyze the pipeline information
using the hyperbolic asymptote. Rohman and Nishimoto [11] presented a pattern-matching technique for
pipelines with different shapes, such as triangles, squares, and circles, to find the location of pipelines.
However, the underground conditions are generally complex and heterogeneous. Consequently, the
aforementioned methods often struggle to produce reliable results in real-world scenarios and adapt to
various subsurface variations. With the rapid development of computer vision techniques, many deep
learning-based methods have been developed to detect and characterize underground utilities in more
complex scenes. For example, Yamaguchi et al. [12] proposed a combination model of a 3D
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convolutional neural network with Kirchhoff migration to detect hyperbola box-by-box in the GPR
radargram. Hou et al. [13] proposed a Mask Scoring R-CNN (MS R-CNN) model to detect, segment, and
analyze the hyperbola features. However, two main drawbacks exist in these studies. First, their
performance is significantly impacted by the quality of hyperbolic features. In urban areas, underground
pipelines often appear clustered, causing radar signal interference. This can lead to inaccurate or fuzzy
hyperbolas, substantially hindering these approaches. Second, they mainly focused on detecting the
hyperbolic features while paid less attention to the geo-registration of underground pipelines. Given geo-
registration’s importance, some methods have been developed to register detected pipelines within a
spatial referencing system. For example, Li et al. [7] proposed a hybrid method for underground utility
detection and localization by fusing GPR and GPS data. However, GPS signals could be significantly
attenuated in urban areas, resulting in inaccurate localization.

The overall goal of this study is to introduce an integrated framework for detecting and geo-
registering subsurface pipelines by integrating GPR and camera data. First, a deep learning-driven GPR
radargram inversion model is designed to reconstruct permittivity maps of road cross-sections, enabling
the retrieval of information about road base layer as well as the location and dimensions of buried
pipelines. Second, SLAM is employed to localize the GPR, allowing for the geo-registration of identified
pipelines. The remainder of this paper is organized as follows. Section 2 reviews related works on
subsurface object detection. Section 3 describes the proposed system's research methodology, which
includes aboveground map reconstruction and underground pipeline detection. Section 4 provides an
overview of the implementation, findings, and field case studies. Finally, Section 5 summarizes the
research conclusions and discusses potential future research directions.

2. Literature Review

GPR has been extensively applied in subsurface objects detection fields, and it has been testified as an
efficient technique for locating subsurface targets in many civilian applications, such as bridge deck
inspection [14—16], void detection under rubbles [17-19] and subsurface utility detection [20-22]. For
example, Porsani et al [23] utilized GPR to map existing infrastructures along the construction site to
orient the subway tunnel. Metwaly [20] performed a survey along an urban asphalt road to detect all kinds
of pipelines using GPR, highlighting the importance of carrying out surveys before excavation activities.
Coster et al. [24] improved the GPR-based detection of pipelines and leaks in water distribution networks.
All these studies demonstrated the great potential of GPR in detecting and reconstructing subsurface
objects.

As computing power has advanced, many researchers have developed algorithms to automate the
processing of GPR signals, which can be categorized into hyperbola detection and radargram inversion.
Hyperbola detection methods analyze radargram features to determine the size and location of subsurface
objects [25-28]. Numerous studies are progressing in tandem with the advancements in hyperbola
detection methods. Wang et al. [29] proposed a template-based method to detect rebar apex and fit it in
radargrams using partial differential equations. Terrasse et al. [30] detected the position of gas pipelines
with GPR acquisitions using a dictionary of theoretical pipe signatures. Sagnard et al. [28] developed an
algorithm that is not restrictive to the hyperbola pattern base on the template-matching and LS hyperbola
fitting technique. Aided by computer vision techniques, many Deep Neural Network (DNN)-based
hyperbola detection methods have also been developed. applied a column connection clustering (C3)
algorithm to separate the regions of interest (ROI), and then identify hyperbola signatures from these
ROlIs. Yuan et al. [31] introduced a drop-flow algorithm that mimics the movement of raindrops to detect
and decompose hyperbola signals from underground pipelines. Liu et al. [32] proposed an automatic
detection and localization method via deep learning and migration, in which a Single Shot Multibox
Detector (SSD) is utilized to extract regions of hyperbola in radargrams. Permittivity reconstruction-based
methods focus on reconstructing the permittivity map of underground scenes to detect the targets. Some
researchers have proposed Al-based methods for permittivity reconstruction to detect underground
objects. For example, Qin et al. [33] presented a probabilistic inversion model based on Markov chain
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Monte Carlo (MCMC) to estimate the grouting layer thickness with its relative permittivity and electric
conductivity. Liu et al. [34] proposed an end-to-end DNN framework to invert the dielectric properties of
tunnel linings. Ji et al. [35] proposed a Permittivity Inversion Network (PINet) to utilize the time
compression operation so that the position, rough shape, and permittivity of targets can be reconstructed.

Based on the development of subsurface object detection methods, many recent studies have also
developed methods to obtain the 3D position of subsurface pipelines. For instance, a mobile robot is
combined with a GPR [36] to perform underground utility mapping. The robot localizes itself using GPS
so that the buried pipelines could be further localized, while this process could be hugely affected by the
GPS signal amplitude. To address this issue, other researchers proposed methods that are less restricted
by environments. Li et al. [37] proposed a pipeline mapping method based on the J-linkage method and
maximum likelihood estimation (MLE) and successfully reconstructed the 3D map of buried pipelines
with great results. However, their methods are limited to detecting pipelines buried in a homogeneous
medium with a priorly known radio wave propagation velocity. Feng et al. [38] presented a 3D imaging
migration system that synchronizes the GPR pose with GPR scans to reconstruct and visualize the
subsurface pipelines. They considered the outputs of visual inertial fusion (VIF) as the pose of the GPR
device while not considering the calibration between GPR and the camera coordinate system. Addressing
these limitations, our study harmonizes the coordinate systems of GPR and the camera, subsequently
integrating the reconstructed permittivity and aboveground maps. This process facilitates the development
of a comprehensive pipeline localization model, trained on diverse road cross-section data.

3. Methodology

Figure 1 illustrates the architecture of the proposed framework for underground pipeline detection and
geo-registration. The framework consists of two modules: the Subsurface Pipeline Detection Module
(SPDM) and the Localization and Aboveground Reconstruction Module (LARM). Addressing the
shortage of labeled real GPR data in the SPDM, a substantial number of GPR radargrams are generated
by simulating GPR scans on synthetic urban roadways. These simulations come with ground-truth
permittivity maps, a topic explored in our previous research [39]. Additionally, GAN technique is
employed to reduce discrepancies between simulated and real radargrams, thereby enhancing the
simulated radargrams’ realism. The paired radargrams and permittivity maps serve as the training dataset
for the inversion network. For the LARM, SLAM is employed to reconstruct the aboveground map and
determine the GPR position. The subsurface map, predicted by the trained GPR inversion model, can then
integrate with the reconstructed aboveground map based on their relative positions. Consequently, the
detected pipelines can be geo-registered. Each module is described in further detail in the subsequent
sections.
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Figure 1: System architecture overview.

3.1 Pipeline Detection

Figure 2 presents an overview of the proposed subsurface pipeline detection framework, which
consists of three stages. In the first stage, simulated road cross-sections containing a pipeline system are
created to generate a large number of synthetic radargrams, accompanied by ground-truth permittivity
labels. In the second stage, GAN is employed to augment simulated radargrams with realistic signal
features. Finally, the inversion network is trained to directly invert GPR radargrams to produce
permittivity maps using the augmented radargrams and associated permittivity labels. Each stage is
detailed below.

I Step1: Data generation = - Step2: Radargram Augmentation = Step3: GPR inversion |

Serve as data labels

Pavement cross-sections

1356 03 gsizm
Residual layers with =
concatenative conv.
Feature pyramid netwark

Radargrams = Skip connections

GANILLA GAN

Figure 2: Subsurface mapping methodology overview.

3.1.1 Data Generation

Obtaining cross-section permittivity maps and GPR scans of underground pipelines in natural settings
is challenging due to the unpredictability of permittivity values within soil layers. Factors such as density
and humidity can significantly impact soil permittivity, making the creation of a precise permittivity map
difficult in practice. To address this, our research generates abundant synthetic GPR radargrams alongside
their corresponding permittivity maps, which are then used for training the inversion model. The gprMax
[40] simulator is utilized to perform the synthetic radargram generation.

To simulate a more realistic underground cross-section with pipelines, this study investigated multiple
design standards related to urban road design and subsurface pipe regulations. The common flexible
urban pavement usually contains four layers: surface layer, base course, subbase course, and subgrade
layer. Table 1 presents each layer’s thickness of urban pavement.

Table 1: Variations in thickness across different pavement layers [41].

Road layer Thickness (cm)
Surface 10-18

Base course 13-30

Subbase course 13-30
Subgrade layer The rest

Urbanization has led to an increased demand for subsurface infrastructure installations, including gas
pipelines, sewer lines, water pipes, electrical cables, and optical fibers. Varied pipeline types may have
different criteria for material, size, depth, and installation. Furthermore, due to their various
functionalities, many pipeline types require specified interval spacings. These factors were considered
when generating simulated urban road cross-sections. Table 2 presents the settings for various buried
pipelines.
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Table 2: Spatial setting requirements of underground pipelines [42].

Inside radius

Outside radius

Utility lines (cm) (cm) Depth (cm) Remark

Gas lines (1.14) (1.15) 61 below 30.5 cm Ver‘flcal’ clearance from water
and sewer pipelines

Electrical wire ~ N/A 2.5) 61 below 30.5 cm Vert'lcalh clearance from water
and sewer pipelines

Water lines (1.28) (3.30) 91.4 below ;llfl e7S cm vertical clearance from sewage

Sewage lines  (3,19) (5,20) 61-91.4 below ﬁi 'e7s em vertical clearance from water

Optical cable N/A (12) 30.5 below 30.5 cm vertical clearance from water

and sewer pipelines

Road layers and pipelines can be made of various materials, and the same type of pipeline might be
constructed from different materials. Therefore, when creating synthetic permittivity maps, considering a
broad spectrum of materials is essential. Table 3 shows the permittivity value range for different

materials.

Table 3: Permittivity values of different materials.

Object Permittivity
PVC 3-57143]
Concrete 5-10

Clay 5-40
Asphalt 4.5[44]
Flexible road base 8-12 [44]
Gravel subgrade 8-15 [44]
Iron 1.4-1.6 [45]

Based on the above physical setting parameters range, this study constructed a large number of
simulated cross-sections with buried pipelines. The size, depth, spatial setting, permittivity of the
pipelines, and thickness of each road layer in these cross-sections are randomly set within the related
value range in Tables 1, 2 and 3. This study set the relative permittivity increases along with the depth
increases considering the density and water content variation in the subgrade layer. Figure 3 shows three
examples of the constructed urban road cross-sections with subsurface pipelines where different colors
represent different relative permittivity values.
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Figure 3: Permittivity map of pavement cross-section with subsurface pipelines.

The 350 MHz GPR antenna can penetrate up to 10 meters while still delivering enough resolution,
which is sufficient for typical subsurface pipeline identification in urban areas. Due to this, 350 MHz was
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chosen as the gprMax frequency for this study. There are 256 traces in each simulated permittivity map
with a length of 2.56m. The depth of the synthetic cross-section is set to 3.1m.

The simulated cross-sections with pipelines are fed into the gprMax simulator to simulate
corresponding radargrams. Each permittivity map in the spatial domain needs to be transformed into the
time domain in order to construct the necessary labels for these radargrams. Equation 1 elaborates on the

conversion process.
t=2e (1)

Where t denotes the roundtrip time in ns, d means depth in meters, e is the permittivity value, and C is
light speed which is 3 x 108m/s.

The depth is incremented by 0.01 m in the gprMax. The total iteration number is 3000 and the time
window is set to 2.35865¢-11s, in this way the roundtrip time equals 70.76 ns. Moreover, time-zero
correction is utilized to obtain an accurate signal propagation time between transmitting and receiving
antennas, which helps correct the detected depth of objects. In this study, the time-zero corrected iteration
number is 2600 which equals 61.32 ns of travel time.

Inevitably, the GPR signal weakens as penetration depth increases. To counteract this attenuation, we
incorporate an exponential gain during signal processing, thereby amplifying the diminished reflected
signals from deeper substrates. This enhancement of subsurface object signals amplifies their visibility,
thereby bolstering the efficacy of the predictive model. Figure 4 presents two cases of the generated
radargram and related permittivity map. These paired images are further used to train the inversion
network.
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Figure 4: Examples of synthetic radargram and its corresponding permittivity map in time domain.
3.1.2 Data Augmentation

Although simulation could generate paired datasets for model training, a noticeable disparity exists
between synthetic and real GPR scans. Training the reconstruction model only relying on the clear, low-
noise, synthetic radargrams could hinder the model’s practical applications. Thus, GANILLA GAN [46]
is applied to enhance the realism of the generated GPR scans.

Figure 5 illustrates the architecture of the generator network and the generator-discriminator model.
This network comprises two pairs of generator-discriminator models, wherein the generators and
discriminators operate independently. The primary objective is to refine synthetic radargrams into
realistic ones. In the composite model 1, generator Gz, 4 generates synthetic radargrams from real
radargram input, while discriminator D4 aims to distinguish between real and fake radargrams. In
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composite model 2, generator G, 4 refines synthetic radargrams to enhance realism, and discriminator Dg
contributes to increasing their realism. Upon applying these two composite models, synthetic radargrams
are refined into realistic radargrams with high fidelity.

The discriminator network utilized in the GANILLA GAN is a 70x70 PatchGAN [47]. This network
consists of four consecutive blocks, each containing one convolutional layer and one instance-
normalization layer. The first block contains 64 filters, with the number doubling in each subsequent
block. Additionally, there is a convolution layer with one filter followed by a sigmoid activation layer.
The discriminator enables differentiation between real and fake radargrams generated by the network. The
generator contains both a downsampling and an upsampling stage. The downsampling stage starts with a
7x7 convolutional layer, followed by an instance norm layer, ReLU, and max-pooling layer.
Subsequently, four layers follow, each containing two residual blocks. Each residual block starts with a
3%3 convolutional layer followed by an instance norm layer. Then, another set of 3X3 convolutional
layers and normalization layers are added. The output from these two sets of layers is concatenated with
the residual block's input. Finally, the concatenated tensor is fed into a 3X3 convolutional layer. The
upsampling stage contains one 1X1 convolutional layer followed by four consecutive upsample and
summation layers. Moreover, low-level features extracted by the downsampling stage are concatenated to
the summation layers before the upsampling through a long skip connection. Finally, two consecutive
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Figure 5: Structure of GANILLA GAN network applied in GPR radargram augmentation.

The employed GAN model incorporates two types of loss functions. Adversarial losses ensure that
radargrams generated by the generator closely resemble the distribution of real radargrams. Cycle
consistency losses serve to prevent generators (G) and discriminators (D) from producing conflicting
outcomes; that is, images generated by the two generators can be transformed back to their original state.
In the context of our research, minimizing the adversarial loss associated with transforming radargrams
from the synthetic domain to the real domain is of paramount importance. The optimal generator can be
identified with loss in Equation 2 through this iterative training process.

Gaop = arg minmax Lsay (Gazp, Dp, A, B) (2)
Gazp DB

Where L4y (Gazp, Dg, 4, B) is the objective function of mapping synthetic radargram to real radargram,
which equals to E,p,, . )[logDg(b)] + Eqp,,.0a) [log (1 - DB(GAZB(a)))]
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3.1.3 GPR Inversion Network

This research proposes a deep learning-based radargram inversion method for directly reconstructing
the underground permittivity maps based on radargrams. The model structure is displayed in Figure 6.
The presented network which is adapted from DeepLabv3+ architecture contains an encoder and a
decoder. Integrating Atrous Spatial Pyramid Pooling (ASPP) with this encoder-decoder structure enables
multi-scale contextual features in the GPR radargram to be detected. The augmented radargram data is
passed to the encoder which contains a ResNet50-based backbone and an ASPP module. The spatial size
of the original radargram data is reduced to 8X8 from 256256 while the dimensions turn to 256 in the
encoder part. These processed feature maps provide different scale object information for the decoder. At
the decoder, each of the extracted low-level features is combined with the high-level features extracted by
the decoder. The predicted permittivity maps with 256256 spatial sizes are generated after a series of
upsampling. The structure of the encoder and decoder are elaborated below.
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Figure 6: GPR inversion network architecture.

Encoder: The adapted ResNet50 backbone contains one 7X7 convolutional layer, one pooling layer,
and four ResNet residual block groups with block numbers of 1, 2, 3, and 4 respectively. In each stage,
the spatial size of feature maps would be reduced to half and the channel number would double. At the
same time, the convolutional layer and the first two ResNet block groups extract low-level features and
pass them into the decoder. The results of the whole backbone with a spatial size of §X8 are fed into
ASPP followed. There are five layers in the ASPP module, one 1X1 convolutional layer, three 3x3
convolutional layers, and one average pooling layer. The sampling rates of these four convolutional layers
are 1, 6, 12, and 18 respectively. The results of these five layers are concatenated and output a feature
map with 1028 channels. This outcome is then passed into a 1 X1 convolutional layer.

Decoder: The decoder part is mainly used to recover the spatial size of feature maps and combine the
low-level features with the high-level features. There are four upsample layers interpolated in this section
with different scale factors. Moreover, there are three 3X3 convolutional layers utilized to extract high-
level features integrated with low-level features. The outputs of these convolutional layers with 28
channels are then passed into one 1X1 convolutional layer. Finally, the predicted permittivity maps with
1X256%256 are generated after upsampling by 2. For better representation, we visualized all the predicted
gray-scale permittivity maps to colormap using the matplotlib library of Python.
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3.2 GPR Localization and Aboveground Reconstruction

To map the subsurface pipelines in the 3D environment, an aboveground autonomous localizing and
mapping method is integrated into this mapping system. The above-ground 3D reconstruction map is
combined with the subsurface pipelines map and adjusted for their relative positions. In this way, an
integrated 3D pipeline library is generated.
3.2.1 Aboveground SLAM

For the SLAM part, the RTAB-Map SLAM [48] method is adopted in this research, which is a graph-
based SLAM technique. The structure of the map consists of nodes and links. Odometry nodes publish
odometry information to estimate robot poses. The short-time memory (STM) module is used to create
nodes to memorize the odometry and RGB-D images and calculate other information. To limit the
working memory (WM) size and reduce the time to update the graph, a weighting mechanism is used to
determine which nodes in WM are transferred to long-term memory (LTM). Nodes in the LTM can be
brought back to WM when a loop closure is detected. Links are used to store transformation information
between two nodes. The neighbor and loop closure links are used as constraints for graph optimization
and odometry drift reduction. The Bag of Words approach is used for loop closure detection. The visual
features extracted from local feature descriptors such as Oriented FAST and rotated BRIEF (ORB) are
quantized to a vocabulary for fast comparison. The outputs of the SLAM are the vehicle pose and the 3D
reconstructed map.
3.2.2 GPR and Camera Coordinate System Calibration

Figure 7 shows the sensing suite design and calibration settings. A GPR and a binocular camera are
mounted on a tricycle together, where the camera is used for obtaining the position of the GPR and
reconstructing the aboveground map.

PC : Camera

Sensing suite

Marker

@ Survey trajectory

Figure 7: Sensing suite design and calibration setting.

To detect the relative position between GPR and camera origin, a checkerboard-based calibration
procedure is performed before collecting data in real sites. As shown in Figure 8, in the experimental
setup, a 4 X 4 Aruco checkerboard is put up on the ground, which is used to calculate the relative position
of GPR origin and camera origin. Firstly, the center of the GPR is considered as its origin so that its
coordinate in the checkerboard coordinate system is easy to measure. Secondly, a marker detection
algorithm transforming the camera coordinate system to the marker coordinate system is applied to the
image data collected by the camera. Equations (3)-(4) illustrate the transformation principle.

(Tem) 0 =M 3)
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Where O is the camera coordinate system. M is the marker coordinate system which is coincidental with
the world coordinate system. T, is a transformation matrix from the camera coordinate system to the
marker coordinate system. R is the rotation matrix while the t is the translation matrix.

This approach allows for the determination of camera poses and their origin coordinates in the marker
coordinate system. By aligning the camera and GPR to the same coordinate system, their relative
positions can be computed. This, in turn, aids in pinpointing the GPR location on the reconstructed
aboveground map, enabling the geo-registration of detected subsurface pipelines.

4. Experiment and Results

4.1 GPR Radargram Augmentation with GAN

4.1.1 Implementation

The GAN network was trained on a Linux workstation equipped with one NVIDIA RTX A5000 GPU
using PyTorch. The initial learning rate for the Adam optimizer is 0.00002. After 50 epochs, the learning
rate starts to linearly decay to zero. The real GPR data are collected by GSSI 350 MHz GPR. To provide
noise features for the training, 705 real radargram images which all contain 256 traces were used. In the
meantime, 705 synthetic radargrams are randomly selected from 20867 images. The batch size of the
training is set to 1. This training stops after 100 epochs.
4.1.2 Evaluation Metrics

To quantitatively evaluate the performance of the data augmentation process, three matrics including
Frechet Inception Distance (FID), Structural Similarity Index Method (SSIM), and Mean Square Error
(MSE) are compared between different sets of radargrams.

_ (2pxty + C1)(20x0y+C7)
SSIMEY) = Gzs iz vco @ +o3 +er)

Where i, and p,, are the local, oy and o,, are the standard deviations for the radargram input and
augmented radargram respectively. C; and C, are two constants.
The MSE measures the average of the square of the errors between two images.

MSE =——YM_ ¥%_,[§(n,m) — g(n,m)]? ©)

Where g(n, m) and g(n, m) denotes two images respectively.
FID compares the distribution of generated radargrams with the distribution of the real radargram set.

1
FID(K,R) = llug — prlls + Tr(Zx + Zgp — 2(ZxZR)2) (7
Where K and R denote a different set of images, ug and pg are the mean feature vectors of K and R
respectively, Xy and Xy are their corresponding covariance matrices. Note ||-||3 is the Euclidean norm
operator and Tr(-) is the trace operator here.
4.1.3 Augmented Results
Some examples of augmented radargrams using GAN are shown in Figure 8. As the training dataset
contains real data from [49] and self-collected data on real site, the GAN model learned two different
features, which increased its generalizability.

()
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Figure 8: Synthetic and augmented GPR radargram.

Table 4 presented below demonstrates the performance of the proposed GAN model in enhancing
synthetic radargrams. Three evaluation metrics are compared across different combinations of radargram
sets. The Real set comprises 705 actual radargram images, while the Fake set consists of 705 randomly
chosen synthetic radargrams. Corresponding augmented radargrams for these synthetic images are
included in the Augmented set.

Table 4: Data augmentation performance.

Matrix Real and Fake  Real and Augmented Fake and Augmented
FID 365.098 65.952 352.540

SSIM 0.218 0.266 0.463

MSE 85.522 81.886 71.289

The FID scores represent the degree of similarity between different radargram distributions, where
lower values imply greater resemblance. Among the sets, the Real and Augmented image set exhibited
the lowest FID score (65.952), signifying its superior approximation to the real images compared to the
other sets. The SSIM index quantifies the perceptual similarity between two images, with values ranging
from -1 to 1. Higher SSIM values denote enhanced structural and visual similarity. The Fake and
Augmented set recorded the highest SSIM value (0.463), which is expected given that images in these
sets correspond to each other. Furthermore, compared to the Real and Fake set, the Real and Enhanced set
showed a higher SSIM index, indicating that the augmented radargrams had more realistic qualities. The
MSE metric calculates the average squared differences between the pixel intensities of the corresponding
images, with lower values suggesting improved agreement between the compared images. The Real and
Augmented set demonstrated a lower MSE value than the Real and Fake set, indicating that the average
pixel intensity difference was smaller in the former set.



364
365
366
367
368

369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386

387
388
389
390

391

392
393

394
395
396
397
398
399

400
401
402
403
404

405

406
407

408

The findings indicate that by incorporating signal noise from actual radargrams, we can enhance the
authenticity of augmented radargrams. As a result, these augmented radargrams mirror real ones more
closely. Utilizing these realistic radargrams to train the inversion network bolsters its performance,
providing greater robustness and generalizability in practical scenarios. This ensures the network's
reliability and effectiveness.

4.2 GPR inversion

4.2.1 Implementation

The inversion model was developed on a Linux workstation featuring a 100 GB CPU and one
NVIDIA RTX A5000 GPU, using the PyTorch liabrary. The dataset contains 20867 pairs of augmented
GPR radargrams and corresponding permittivity maps, which contains two random sets, a training set
(80%) and a validation set (20%). PyTorch's ReduceLROnPlateau function was utilized, starting with a
learning rate of 0.02, subject to a decay factor of 0.5, and processed in batches of 32. To minimize
overfitting, we implemented an early stopping mechanism during training. This involved using the
training set to refine the model and the validation set to test it. If the validation loss failed to decrease for
10 consecutive epochs, the training ceased and the best-performing model was saved.
4.2.2 Evaluation Metrics

To quantitatively evaluate the performance of the trained inversion network, there are four evaluation
matrices, i.e., R squared (R?), SSIM, Mean Absolute Error (MAE), and confusion matrix were utilized in
this study. R? which is also known as the coefficient of determination, measures the distance between the
reconstructed results and its ground truth. It is detailed in Equation 8, where x; means the predicted
permittivity value, y; represents the ground truth permittivity value, ¥ is the mean of true values.

2 _ SSR _ B(xi=¥)?
TSST T Y- 92 (8)

The SSIM measures the similarity between the predicted and true permittivity map [50]. In Equation
(9), x is the predicted permittivity map while y is the original permittivity map.

QRBy@x + C1)(200 w0y +C2)

SSIM (y, x|w) =

)

(@3 + @F +C1)(05,), +05, +C2)
Where w,, means a sliding window in the same original permittivity map, @, is the average of w,, af)y is
the variance of w,, Oyw, Means the covariance of w, and wy. C; and C, are two constants. wy, Wy

andg,, mean the same in x .
The MAE represents the average vertical distance between the permittivity value of each pixel in the
predicted and original permittivity map. The calculation is shown in Equation (10).

MAE = w (10)

Equations 11-13 defined three metrics to further measure the performance of the model. Recall means

the ratio of correct positive detections to the total positive examples, precision denotes the ratio of correct

positive detections to the total predicted positives, the accuracy is the ratio of correctly detected examples
to the total examples.

TP

Recall = TP (11)
.. TP
Precision = TPeFP) (12)
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Accuracy = ———
Y = TP+FP+TN+FN

(13)
Where TP represents a true positive which is the number of correctly detected pipelines, FP means a false
positive which is the number of incorrectly detected pipelines, TN is a true negative which is the number
of detected negative pipelines, FN represents a false negative which is the number of fails detected
negative pipelines.

Equation 14-15 shows the definition of predicted error and deviation, where ground truth means the
original value, prediction means the predicted value.

error = abs(ground truth — prediction) (14)

.. abs(ground truth—prediction
deviation = @ P )

x 100% (15)

ground truth

4.2.3 Inversion Results

This section detailed the results of GPR inversion. Figure 9 shows the variation of three evaluation
matrixes along with the training epochs growing on both synthetic radargrams and augmented
radargrams. It is easy to see the trend that the SSIM and R? grows while the MAE decreases as the epochs
increase. The plots indicate that the inversion model quickly converges and becomes stable at around 70
epochs.
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Figure 9: Variance of SSIM, R?, MAE during the training on validation set.
Table 5 below shows the model performance on synthetic and augmented radargrams. Note that
synthetic and augmented radargrams share the same permittivity map labels.
Table 5: Model performance on both synthetic and augmented data after 100 epochs training

Metric SSIM R? MAE
Synthetic 09153 0.96096 0.4825
Augmented 0.9150 0.95697 0.48852

The following analysis and testing would base on the model trained on the augmented dataset as it is
expected to performs better in real scenes. To quantitatively evaluate the performance of the model
trained on augmented radargrams in detecting and characterizing pipelines, 100 reconstructed permittivity
maps which contain 388 pipelines are randomly selected from the validation dataset. Table 6 shows the
detection results: 304 pipelines are successfully detected while 84 pipelines are miss detected among 388
pipelines. This indicates that the network achieves satisfactory results with a precision of 96.2% and an
accuracy of 76%.

Table 6: Confusion matrix results of model trained on augmented data

Confusion Matrix Observed Value
True Positive (TP) 304

False Negative (FN) 84

False Positive (FP) 12

Precision 0.962

Recall 0.784




442

443
444
445
446
447
448
449
450
451
452
453

454
455
456
457
458
459
460
461

Accuracy 0.76

Furthermore, We evaluated the model's performance by measuring the depth and diameter of 304
pipelines. Pipeline depth was determined from the vertex depth of the reconstructed pipeline, while
diameter was assessed using the horizontal width of the reconstructed pipeline in the predicted
permittivity map. As Table 7 details, the model excelled in depth prediction, with an average error of 1.77
cm and deviation of 1.71%. Diameter prediction showed an average error of 3.20 cm and deviation of
20.44%. Depth prediction was strongly influenced by the accuracy of the reconstructed soil permittivity,
as this affects signal transmission time, hence reflecting depth. Meanwhile, the precision of diameter
prediction relied on accurate pipeline permittivity value detection. Smaller pipelines proved more
challenging for permittivity prediction, resulting in less accurate diameter predictions with around 20%
deviation.

Table 7: Performance of pipeline diameter and depth prediction
Average error (cm)  Average deviation (%) SD of average error  SD of average deviation
Depth 1.77 1.71 2.31 2.35
Diameter 3.20 20.44 3.20 26.80
Note: SD is the standard deviation.

Figure 10 below presents examples of inversion results on the radargrams augmented by GANILLA
GAN. Each row in Figure 10 shows one example of the prediction result using the trained model. The
first column in the plot presents the augmented radargrams, and the rest columns show their related
ground truth and predicted permittivity maps in the time and depth domain respectively. As indicated in
the figure, the predicted permittivity map is in good agreement with the ground-truth permittivity map,
which shows the robust applicability of the proposed inversion model.
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Figure 10: Examples of inversion model predictions results.

4.3 Subsurface Mapping Case study

To determine the performance of the proposed model in real scenes, the open-source radargram
dataset created by [49] is adapted due to the availability of subsurface cross-sections. The experimental
pit from the IFSTTAR geographical test site is a transversal trench filled with Gneiss 14/20 gravel. The
overall length of this gravel region is 5 m and its density is around 1.8t/m3. The radargram data used for
testing is collected by GSSI 350 MHz GPR. Figure 11 shows nine PVC tubes with a 0.1 m diameter
buried in three depths separately, 0.8 m, 1.4 m, and 2.0 m. In addition, a concrete pipe with a diameter of
0.5m is buried 2m below the ground. The pink in the background means the Gneiss 14/20 gravels. Two
cross-sections with pipelines are selected for evaluation as highlighted in the red bounding boxes in the
figure.
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475 Figure 11: Cross-section of the real scene test case. (Adapted from [49])

476 The first case contains one PVC tube with a 0.1 m diameter buried in 0.9 m and another two same-
477  size tubes buried in 1.5 m with an interval of around 1.0 m. The second case is the cross-section

478  containing the concrete pipeline. Figure 12 shows the results of the two cases.
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480 Figure 12: Prediction results of the real scene radargrams. Note: (a) denotes results related to the case
481 1, and (b) represents results related to case 2. The orange dots denote the real pipelines.

482 The result indicate that all the buried pipelines are successfully detected in both cases. However, there
483  is approximately 0.4 m discrepancy in the depth of the detected pipeline in each case. The shape of the
484

reconstructed pipelines appears deformed. These inaccuracies, including errors in depth prediction, radius
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prediction and shape deformation, can be attributed to imprecisions in the predicted permittivity values.
Several factors contributed to this: First, although the proposed model possesses the ability to discern
road base layers, the training data consists of simulated multi-layer data, whereas the case study is
conducted on a single-layer site. Second, the model's training dataset lacks labeled real data, limiting the
model's applicability in real-world scenarios. The limited real data used for GAN training also impacts the
performance of the trained GAN model. These factors influence the accuracy of predicted permittivity
values when the trained inversion model is directly applied to real sites, leading to a deviation between
the reconstructed permittivity map in the depth domain and the original cross-section.

4.4 Integrated Mapping Case Study

The proposed system was field-deployed, with data collected near the Tickle College of Engineering
at the University of Tennessee. Figure 13 shows the route of GPR survey.
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Figure 13: Test route displayed in Google Maps.

A GSSI GPR equipped with 350 MHz antennas was utilized in the field test. Concerning the
collection parameters, the acquisition time window was set to 70 ns, and the wheel encoder was
configured at 100 pulses per meter, resulting in a trace spacing of 0.01 m. Approximately 80 meters of
GPR radargrams were collected along the test route. Additionally, a ZED camera was employed in the
experiment to capture environmental data. After processing with the RTAB-Map SLAM model, the
aboveground environment was successfully reconstructed, as demonstrated in Figure 14. The results
accurately reconstructed the road and its surroundings, highlighting the proposed system's ability to
generate timely outdoor aboveground maps. Concurrently, the collected GPR radargrams were input into
the proposed inversion model to determine the location and size of buried pipelines at the site. Four
sample detection results, including the real GPR radargram and its corresponding detected subsurface
map, are also presented in Figure 14. These results showcase the proposed model's capability to detect
and localize buried pipelines in real-world scenarios.
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Figure 14: Pipeline geo-registration process.

5. Conclusions

The growing need to prevent excavation accidents, primarily caused by a lack of accurate pipeline
information, has led to the development of subsurface pipeline mapping methods that geo-registers buried
pipelines in a 3D environment. This study proposes a CNN-based GPR inversion model to directly
reconstruct permittivity maps, enabling the extraction of size and location information of pipelines.
Simultaneously, detected pipelines are geo-registered in the reconstructed aboveground map using
vSLAM. A wealth of synthetic radargrams and corresponding permittivity map labels are generated for
training the inversion network. Additionally, the GANILLA GAN network is employed to enhance the
realism of synthetic GPR scans. The inversion model, based on an encoder-decoder structure, is trained
on augmented radargrams and their corresponding labels, demonstrating high accuracy. In particular,
training results on augmented data yield an SSIM of 0.915, R20f 0.957, and MAE of 0.488. The trained
model is numerically evaluated on 100 randomly selected radargrams, revealing the proposed model's
performance in detecting pipelines with a precision of 96.2%, recall of 78.4%, and accuracy of 76%.
Furthermore, the reconstruction accuracy for size and depth is assessed, with an average buried depth
reconstruction error of 1.77 cm (deviation of 1.71%) and an average diameter error of 3.2 cm (deviation
0f 20.44%). These results indicate excellent performance in predicting pipe location and size for
simulated cases. In this study, the proposed GPR inversion model is evaluated in a field case, and the
capacity of the proposed system to construct an integrated pipeline map is demonstrated in another field
case.

While our GPR inversion model exhibits high accuracy when predicting pipeline size and depth in
synthetic radargrams, it tends to present larger discrepancies in real-world cases. These discrepancies can
be attributed to several factors. The first is the inherent simplicity of the current inversion model, which
may not fully account for the complexity of real-world conditions. The second factor is the unpredictable
noise in real-scenario radargrams, which can lead to less accurate predictions. Lastly, the limited number
of real radargrams available for GAN training may affect the model's performance in diverse, real-world
situations. To address these challenges, several avenues of future research are suggested. Improving the
robustness of the training network can help the model better handle the noise and unpredictability of real-
world data. Enlarging the dataset and collecting more real-world radargrams could enhance the model's
generalization capability, improving its accuracy across various scenarios. Furthermore, the inversion
network could be expanded to analyze additional subsurface conditions. For instance, it could be adapted
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to investigate pavement structures, allowing for a more comprehensive understanding of subsurface
conditions. Lastly, improvements in the SLAM algorithm and location calibration technique could
enhance the geo-registration process. By increasing the precision of the SLAM algorithm and refining the
location calibration method, the system could provide more accurate localization of detected subsurface
objects. These enhancements would result in a more robust and versatile tool for urban infrastructure
management and planning.
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