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ABSTRACT

Accurate mapping of urban subsurface is essential for managing urban underground infrastructure and
preventing excavation accidents. Ground-penetrating radar (GPR) is a non-destructive test method that has
been used extensively to locate underground utilities. However, existing approaches are not able to retrieve
detailed underground utility information (e.g., material and dimensions) from GPR scans. This research
aims to automatically detect and characterize buried utilities with location, dimension, and material by
processing GPR scans. To achieve this aim, a method for inverting GPR data based on deep learning has
been developed to directly reconstruct the permittivity maps of cross-sectional profiles of subsurface
structure from the corresponding GPR scans. A large number of synthetic GPR scans with ground-truth
permittivity labels were generated to train the inversion network. The experiment results indicated that the
proposed method achieved a Mean Absolute Error of 0.53, a Structural Similarity Index Measure of 0.91,
and an R’ of 0.96.

1 INTRODUCTION

The National Academy of Engineering (NAE) has identified “restore and improve urban infrastructure” as
a grand engineering challenge and acknowledged that “mapping and labeling buried infrastructure” is a
prerequisite for improving it and helping avoid damaging it (NAE 2019). A vast network of pipes, cables
and conduits are buried in urban subsurface with unknown locations (Talmaki and Kamat 2014). The
records of the buried infrastructure are often unavailable, incomplete, and inaccurate (Thomas et al. 2009),
causing an endless litany of incidents. The 12794 significant pipeline incidents that occurred in the United
States from 2002 to 2021 resulted in 276 fatalities, 1147 injuries, and over 10 billion in property damage
(PHMSA 2021). About 40% of the incidents were related to poor locating practices (Metje et al. 2015).
Therefore, there is a critical need to map and label the underground utility features.

Traditionally, the utility owners marked the utility location with spray paint or flags to avoid pipeline
accidents (Su et al. 2013). However, this method always cannot accurately point out the precise utility
position but only an approximate range, and the mark could be damaged along time. To address this issue,
Ground-penetrating radar (GPR) has been used in underground utility detection and characterization (Li et
al. 2016). GPR is a non-destructive testing method that utilizes the different electromagnetic properties of
underground materials to detect object regions by emitting high-frequency electromagnetic waves (Sterling
et al. 2009). Cylindrical underground utilities are typically recognized as hyperbolas in GPR scans. In recent
years, there has been an increasing interest in developing hyperbola detection methods from GPR scans to
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position the underground utility (Li et al. 2015). The GPR scan has also been used to measure quantitative
information about buried utilities such as shape and size (Pasolli et al. 2009; Singh and Nene 2013).

Despite the great potential of GPR for underground utility detection, existing hyperbolic approaches
are difficult to recognize the size and material of a buried utility. Size and material information can be used
to infer the types of buried underground utilities. The lack of such information could give rise to greater
concerns in urban excavation projects. The deep neural network has been widely used in many areas of
research and achieve promising results. To address this limitation, this paper proposed a novel approach to
urban underground mapping through deep learning based on the inversion of GPR data. The proposed
method can detect the position of a buried utility and get detailed information about its material and size.
The following section provides an overview of existing GPR data processing approaches.

2 LITERATURE REVIEW

Urban underground utility mapping is an essential but challenging task, with an increasing number of
underground infrastructures. Traditionally, metal detectors are frequently used to locate pipelines buried in
construction sites with high accuracy (Bruschini 2000; Das 2006). However, the detection and clearance of
metal detectors depend heavily on the use of manual methods which is labor and time-consuming. On the
other hand, the use of PVC pipes has grown considerably in recent years (Folkman 2014), so the
conventional detection method becomes unsuited. Researchers have proposed many trenchless technologies
to precisely locate underground infrastructure and find out their size and location. Ground-penetrating radar
(GPR) has played an important role in underground utility detection as it can be used to detect metallic and
non-metallic objects (Liu et al. 2021). For example, GPR has been used to detect and reconstruct survivable
void space in disaster rubbles (Hu et al. 2019; Hu et al. 2022). Some researchers used the relationship
between GPR hyperbole parameters in radargram and geometrical characteristics of cylindrical objects
(horizontal and perpendicular position, radius) to locate the underground utilities (Ahmadi and Fathianpour
2017; Rajiv et al. 2017).

Yang et al. (2014) proposed a method that extracts the hyperbola from the image to compute the
position and diameter of the pipeline using a hyperbolic asymptote. It is suitable for processing GPR data
in real-time. Sagnard and Tarel (2016) proposed a matching model based on a semi-automatic hyperbola
detection algorithm with no preliminary training period to reconstruct the parameters of underground
targets, thus mitigating the tedious training process. Rohman and Nishimoto (2021) applied pattern
matching techniques in three shapes of infrastructures: circle, square, and triangle, extending the available
environments. Although the above algorithms could detect thin pipes or strips in the soil, they still need the
user’s help due to the diversity of hyperbola signatures as GPR images contain lots of noises. Furthermore,
users need to define various threshold values for the matched template to suit different target detection
areas. There is still enormous room for improvement in positioning precision for these hyperbola-based
template matching methods for these reasons.

With the advancement of computer vision, convolutional neural network (CNN) has become dominant
in various computer vision tasks, such as material classification (Hu and Li 2022), affordance segmentation
(Hu et al. 2020), and object detection and segmentation (Westwanska and Respondek 2019, 2020).
Moreover, many researchers have developed deep learning based methods for detecting and characterizing
underground infrastructure. Feng et al. (2020) proposed DepthNet extracts and denoises the hyperbola
features in B-scan data to predict the dielectric to determine the depth of targets. Hou et al. (2021) developed
the Mask Scoring R-CNN (MS R-CNN) to segment and analyze hyperbolic signatures of subsurface targets
in GPR scans. Yamaguchi et al. (2021) combined a 3-D convolutional neural network and Kirchhoff
migration searched for the box-by-box radar image and extracted the peaks of the hyperbola. Thus, they
claim that their algorithm could provide a clear 3-D pipe map in a reasonable calculation time. All of the
above research focused on determining the size and position of subsurface utilities, but little attention was
paid to the material of the pipeline. The material of underground utilities has a great impact on the
excavation work, as engineers could make a specific plan according to different pipelines under the target
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area to perform safe and efficient excavation work. However, this point has been overlooked by most
existing studies of subsurface mapping.

Some researchers noticed the importance of underground infrastructure materials these days.
Permittivity reconstruction is useful for this process. Qin et al. (2021) presented a probabilistic inversion
method using a sliding window and Markov chain Monte Carlo simulation with Bayesian inference based
on the relative permittivity and electric conductivity values from GPR waveform data. Liu et al. (2021)
proposed a DNN architecture that uses the fuse characteristics of several aligned traces on B-Scan data to
reconstruct the permittivity map of tunnel linings. Ji et al. (2021) utilized a temporal compression operation
and a global feature encoder to reconstruct permittivity images from GPR data at different central
frequencies. The main drawback of the above research is the ignorance of the dielectric parameters in
different underground layers. Specifically, the time-domain radargram was directly aligned with the spatial-
domain subsurface permittivity map, which could cause a depth gap between prediction and ground truth.
Moreover, it was assumed that the environmental context was relatively homogenous in these studies,
compromising its applicability in the real world. To address these limitations, Hu et al.(2022) applied a
neural network with an encoder-decoder structure to directly reconstruct the permittivity maps of collapsed
structures in the aftermath of disasters. However, the generalizability of this method in referring subsurface
pipes remains unexplored. Our study aims to address these knowledge gaps.

3 METHODOLOGY

Figure 1 presents the architecture of the proposed network. The proposed deep learning network is adapted
from the DeepLabv3+ architecture (Chen et al. 2018). The encoder-decoder structure is integrated with
Atrous Spatial Pyramid Pooling (ASPP) module to encode multi-scale contextual information.
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Figure 1: Overview of the methodology.

The backbone encoder is built based on the ResNet50 network. The obtained feature maps are fed into
the ASPP module to extract multi-scale features using multiple parallel filters with different dilated rates.
This process can improve inversion accuracy with the ability to account for different object scales. The
ASPP module contains a 1x1 convolution layer, three 3x3 convolution layers, and global average pooling.
The sampling rate of the four convolution layers is 1, 6, 12, and 18, respectively. The batch normalization
and ReLU activation layer are added followed by each convolution layer and pooling layer. The output of
a single layer from the ASPP module is 256 channels. The five layers are concatenated together with 1280
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channels. Subsequently, a 1x1 convolution with 256 output channels is applied to the concatenated layer to
obtain a high-level feature map. At the decoder, upsampling and convolutions are performed to enlarge the
feature map and obtain the final prediction. Each of the low-level features extracted from Resnet blocks
would be passed to one 1x1 convolutional layer followed by batch normalization layer, ReLU activation
layer, and dropout. Then these processed features are integrated into the corresponding high-level features
in the decoder. The designs of the Resnet50 backbone and decoder are elaborated below.

Encoder: The ResNet50 backbone contains 5 stages (He et al. 2016) The first stage consists of one
convolution layer with kernel size 7x7, one batch normalization layer, one ReL U activation layer, and one
max-pooling layer. This stage is mainly used to process the input data. The spatial dimension of the output
from stage 1 is 64 with a channel number of 64. The following four stages are ResNet residual blocks with
a block number of 3, 4, 6, and 3, respectively. Each block contains three convolutional layers, one batch
normalization, and one ReLU activation layer. In each stage, the output channel would double and the size
of the feature map reduced to half from stage 2 to stage 5.

Decoder: The low-level features obtained from the ResNet block 2 of the backbone module is passed
into one 1x1 convolutional layer followed by one batch normalization layer and one Relu activation layer.
At the same time, the high-level features obtained from the 1x1 convolution with 256 output channels in
the encoder are up-sampled through bilinear interpolation whose scale factor is 4. The two feature maps are
concatenated together to utilize low-level features. The concatenated feature map is fed into one 3 x 3
convolutional layer followed by one batch normalization layer and one Relu activation layer. Sequentially,
the output is applied in the bilinear interpolation up-sample layer followed by one 3x3 convolutional layer
and another up-sample layer. The intermediary feature map would be further passed into three 3x3
convolutional layer blocks and one 1x1 convolutional layer block. Finally, the predicted permittivity map
is generated with the same size as the original radargram after up-sampling by 2.

4 DATA PREPARATION

4.1 Simulation Parameters

In this study, numerical simulation is used to generate synthetic GPR scans as it is nearly impossible to get
a ground-truth permittivity map for real GPR data. Collecting an abundance of real GPR data is very time-
consuming and requires a great deal of work. And also the material of the natural subgrade is always
heterogeneous and unpredictable. In addition, the dielectric properties of these materials would vary with
temperature and humidity. Building permittivity maps based on real scenes would be very difficult.
Furthermore, the simulation can generate a large number of synthetic GPR scans along with ground-truth
permittivity labels generated to train the deep learning network. The gprMax (Warren et al. 2016) simulator
is adopted to generate synthetic GPR scans, which is a well-accepted GPR simulator.

To reflect a realistic underground pipe system, the simulated subsurface scenarios refer to the design
standard of urban roads and underground utilities. The typical flexible pavement in urban areas is used as
the subsurface background, which consists of surface, base course, subbase course, and subgrade layer.
Table 1 shows the thickness range of each layer.

Table 1: Depth parameters of the background (TDOT 2021).

Road layer Thickness (cm)
Surface 10-18

Base course 13-30

Subbase course 13-30

Subgrade layer The rest

The five most common buried utilities under urban sidewalks are selected that are gas pipe, sewer pipe,
water pipe, electrical wire, and optical cable. The material of these buried utilizes could be PVC, concrete,
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or iron. In addition, the size, depth, and installation requirements are also different. Table 2 shows the radius
and depth range of the five types of buried utilities. Moreover, there are clearance requirements for these
pipes according to their functionalities.

Table 2: Underground pipelines spatial setting (ASME 2016).

Inside Outside

Utility lines radius (cm)  radius (cm) Depth (cm) Remark

Gas lines (1.14) (1.15) 61 below The 30.5 cm Vertlgal qlearance from
water and sewer pipelines

Elpctncal N/A (2.5) 61 below The 30.5 cm Veﬂlqal qlearance from

wire water and sewer pipelines

Water lines (1.28) (3.30) 91.4 below The 45.7_ cm vertical clearance from
sewage lines

Sewage lines  (3,19) (5,20) 61-91 4 below  Lne 437 cm vertical clearance from
water lines

Optical cable  N/A (1.2) 305 below The 30.5 cm vertical clearance from

water and sewer pipelines

Table 3 shows the relative permittivity ranges of different objects that are used to generate underground
pipelines and road structures. The relative permittivity values are uniformly randomized given the range
for each object.

Table 3: Permittivity values of different materials.

Object Permittivity

PVC 3-5 (Hilario et al. 2019)
Concrete 5-10

Clay 5-40

Asphalt 4.5-6 (Zhao et al. 2018)
Flexible road base 8-12 (Zhao et al. 2018)
Gravel subgrade 8-15 (Zhao et al. 2018)

Iron 1.4-1.6 (Alsharahi et al. 2016)

Depth(m)

00 05 10 1.5 20 25 00 05 10 15 20 25
Distance(m) Distance(m)

Figure 2: Examples of simulated permittivity map of subsurface with underground utilities. The color bar
value and the different colors indicate the dielectric constant values.
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Figure 2 presents two examples of simulated subsurface road layers with buried pipelines. Note that
relative permittivity for the subgrade layer increases with increasing depth to account for density and water
content variation.

The gprMax frequency used in this study is 350MHz, which is well accepted for GPR simulation. The
350 MHz antenna has a penetration depth of up to 10 meters. Therefore, the penetration depth of 350 MHz
is suitable for subsurface mapping in the context of urban pavement. Each simulated permittivity map has
256 traces, and the total length is 2.56m. The depth of simulated models is set to 3.1m.

4.2 Data Preprocess

The simulated permittivity maps are in the spatial depth domain, which needs to be further converted into
a time domain. Equation (1) gives the converting step, where t represents the two-way travel time in ns, d
is depth in meters, ¢ stands for the dielectric constant, and C is the speed of light (3 x 108m/s).

2d

t = - VE (D)
The gprMax simulation spatial step is 1 cm, and the time window is 2.35865e-11s. The number of
iterations is set as 3000, which is equivalent to a travel time of 70.76 ns. Time-zero correction is applied to
eliminate the influence of the slight variations in the initiation time of the receiver and transmitter. The
time-corrected radargram has an iteration of 2600 which is 61.32 ns. It is known that the amplitude of the
transmitted signal diminishes as it gets deeper into the ground. This attenuation can make it difficult to
recognize targets from GPR data, which could also affect the performance of network training. Therefore,
an exponential gain was used to compensate for signal attenuation. Figure 3 shows two examples of the

subsurface permittivity map and corresponding radargrams in the time-depth domain.

0

N [y
o [=]

Time(ns)
w
o

0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 2.5
Distance(m) Distance(m)

20

Time(ns)
w
o

40 =

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
Distance(m) Distance(m)

Figure 3: The down-sampled time-corrected radargram and permittivity map. The color bar value and the
different colors indicate the dielectric constant values.
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5 EXPERIMENT AND RESULTS

5.1 Implementation Details

The deep learning model was trained on a workstation with a 2.2 GHz Intel Xeon 10 Core CPU, 64 GB,
and NVIDIA Quadro P5000 GPU using torch library on top of the PyTorch platform. The network was
trained with an SGD optimizer (Bottou 2010) with a learning rate of 0.002. The learning rate decays with
a factor of 0.5 using the ReduceLROnPlateau function in PyTorch with max mode and patience of 20. The
batch size is set to 32. A total of 15,614 pairs of radargrams with ground-truth permittivity maps were
generated to train the network. The dataset was randomly split into a training set (90%), and a validation
set (10%).

5.2 Evaluation Metric

In this study, R?, SSIM and MAE are used to evaluate the performance of the proposed deep learning
inversion network. R? is used to measure the amount of variance in the predictions explained by the model,
which is defined in Equation (2), where x; represents the prediction value in the permittivity map, y;
represents the actual value in the original data, y represents the mean of all the actual values.

_ SSR _ ¥(xi—)*
©SST T X(vi- )2

R? 2
The image Structure Similarity (SSIM) calculates the structural similarities of different sliding windows

in their corresponding positions between the original permittivity map and the predicted permittivity map.
In Equation (3), x and y are the predicted map and original permittivity map, respectively (Yan et al. 2020).

@By By + €1)(200y 0wy +C2)

SSIM(y, x|w) =

3)

(@3 + ©% +Cl)(a£,y +03, +C3)

where C; and C, are two constants. w,, is a sliding window in y, @,, represents the average of w,,, Uf,y
is the variance of wy, and g, ,,_denotes the covariance of w, and wy. The variable w,, @y and o,, have
yWx x

the same meaning in the x .
The Mean Absolute Error (MAE) denotes the average of all absolute errors which is calculated as
Equation (4).

n .
MAE = Yie1 ab:l(xl Yi) (4)

5.3 Results

The following two figures show the training performance of the proposed network and the prediction results
of the model. Figure 4 shows the variation of the three metrics R?, SSIM, and MAE epochs during the
training process. It is evident from the plot that the three metrics converge quickly and stably. As the epochs
increase, the SSIM and R?increase while the MAE decreases on both training and validation datasets. The
best performance achieved on the validation dataset for R?, SSIM and MAE are 0.96, 0.91, and 0.53,
respectively, indicating the effectiveness of the proposed model.

Figure 5 presents two example inversion results. The predicted permittivity values in the prediction are
in good agreement with the ground-truth permittivity map. The prediction permittivity map can be used to
identify the subsurface structures, as well as recognize the location, size, and materials of buried utilities.
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Figure 4: The R?, SSIM, and MAE over epochs during training. (a) R?; (b) SSIM; and (c) MAE
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Figure 5: Example inversion results. The color bar value and the different colors indicate the dielectric
constant values.

6 CONCLUSIONS AND FUTURE WORKS

Subsurface mapping has been an urging task for urban construction to decrease the excavation accident as
well as build the foundation for a smart city. The overall goal of this research is to develop an algorithm for
the detection and characterization of underground utilities from GPR scans. A novel encoder-decoder
network was developed to directly reconstruct permittivity maps from GPR scans. To alleviate the issue of
limited data, numerical simulation was adopted to generate synthetic GPR scans with corresponding
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permittivity maps. The data preparation follows the regulation and standards to reflect realistic scenarios,
facilitating the applicability of trained inversion networks in the real world. The developed method achieved
an R’ of 0.96, an SSIM of 0.91, and an MAE of 0.53 on the validation set of the synthetic dataset. The
promising results highlight the potential of the proposed method in urban subsurface mapping.

The generalizability of these results is subject to certain limitations. First, this work only considered a
relatively ideal subsurface environment without rocks and tree roots. In the future, more realistic data need
to be generated for more robust performance in the real world. The realistic data can be generated by
simulating the subsurface model with a realistic environment, such as adding stone and tree roots. Second,
the inversion model was trained using the synthetic data only, compromising its performance in real-world
applications. Augmenting synthetic GPR data with realistic signal characteristics is an interesting research
direction to be explored. Third, while the proposed method achieves promising results in subsurface
permittivity map reconstruction, the type of buried utilities is not analyzed in this work. In the future, it
would be very useful to identify the type of underground utilities.
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