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ABSTRACT 

Accurate mapping  of  urban  subsurface  is  essential  for  managing  urban  underground  infrastructure  and 
preventing excavation accidents. Ground­penetrating radar (GPR) is a non­destructive test method that has 
been used extensively to locate underground utilities. However, existing approaches are not able to retrieve 
detailed underground utility information (e.g., material and dimensions) from GPR scans. This research 
aims  to automatically detect  and characterize buried utilities  with  location, dimension,  and material  by 
processing GPR scans. To achieve this aim, a method for inverting GPR data based on deep learning has 
been  developed  to  directly  reconstruct  the  permittivity  maps  of  cross­sectional  profiles  of  subsurface 
structure from the corresponding GPR scans. A large number of synthetic GPR scans with ground­truth 
permittivity labels were generated to train the inversion network. The experiment results indicated that the 
proposed method achieved a Mean Absolute Error of 0.53, a Structural Similarity Index Measure of 0.91, 
and an R2 of 0.96. 

1  INTRODUCTION 

The National Academy of Engineering (NAE) has identified “restore and improve urban infrastructure” as 
a grand engineering challenge and acknowledged that “mapping and labeling buried infrastructure” is a 
prerequisite for improving it and helping avoid damaging it (NAE 2019). A vast network of pipes, cables 
and  conduits  are  buried  in  urban  subsurface  with  unknown  locations  (Talmaki  and  Kamat  2014).  The 
records of the buried infrastructure are often unavailable, incomplete, and inaccurate (Thomas et al. 2009), 
causing an endless litany of incidents. The 12794 significant pipeline incidents that occurred in the United 
States from 2002 to 2021 resulted in 276 fatalities, 1147 injuries, and over 10 billion in property damage 
(PHMSA 2021). About 40% of the incidents were related to poor locating practices (Metje et al. 2015). 
Therefore, there is a critical need to map and label the underground utility features.  

Traditionally, the utility owners marked the utility location with spray paint or flags to avoid pipeline 
accidents  (Su et  al.  2013). However,  this method always  cannot accurately point out  the precise utility 
position but only an approximate range, and the mark could be damaged along time. To address this issue, 
Ground­penetrating radar (GPR) has been used in underground utility detection and characterization (Li et 
al. 2016). GPR is a non­destructive testing method that utilizes the different electromagnetic properties of 
underground materials to detect object regions by emitting high­frequency electromagnetic waves (Sterling 
et al. 2009). Cylindrical underground utilities are typically recognized as hyperbolas in GPR scans. In recent 
years, there has been an increasing interest in developing hyperbola detection methods from GPR scans to 
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position the underground utility (Li et al. 2015). The GPR scan has also been used to measure quantitative 
information about buried utilities such as shape and size (Pasolli et al. 2009; Singh and Nene 2013).  

Despite the great potential of GPR for underground utility detection, existing hyperbolic approaches 
are difficult to recognize the size and material of a buried utility. Size and material information can be used 
to infer the types of buried underground utilities. The lack of such information could give rise to greater 
concerns in urban excavation projects. The deep neural network has been widely used in many areas of 
research and achieve promising results. To address this limitation, this paper proposed a novel approach to 
urban underground mapping  through deep  learning based on  the  inversion of GPR data. The proposed 
method can detect the position of a buried utility and get detailed information about its material and size. 
The following section provides an overview of existing GPR data processing approaches.  

2  LITERATURE REVIEW 

Urban  underground  utility  mapping  is  an  essential  but  challenging  task,  with  an  increasing  number  of 
underground infrastructures. Traditionally, metal detectors are frequently used to locate pipelines buried in 
construction sites with high accuracy (Bruschini 2000; Das 2006). However, the detection and clearance of 
metal detectors depend heavily on the use of manual methods which is labor and time­consuming. On the 
other  hand,  the  use  of  PVC  pipes  has  grown  considerably  in  recent  years  (Folkman  2014),  so  the 
conventional detection method becomes unsuited. Researchers have proposed many trenchless technologies 
to precisely locate underground infrastructure and find out their size and location. Ground­penetrating radar 
(GPR) has played an important role in underground utility detection as it can be used to detect metallic and 
non­metallic objects (Liu et al. 2021). For example, GPR has been used to detect and reconstruct survivable 
void space  in disaster  rubbles  (Hu et al. 2019; Hu et al. 2022). Some researchers used  the relationship 
between  GPR  hyperbole  parameters  in  radargram and  geometrical  characteristics  of  cylindrical  objects 
(horizontal and perpendicular position, radius) to locate the underground utilities (Ahmadi and Fathianpour 
2017; Rajiv et al. 2017). 

Yang  et  al.  (2014)  proposed  a  method  that  extracts  the  hyperbola  from  the  image  to  compute  the 
position and diameter of the pipeline using a hyperbolic asymptote. It is suitable for processing GPR data 
in real­time. Sagnard and Tarel (2016) proposed a matching model based on a semi­automatic hyperbola 
detection  algorithm  with  no  preliminary  training  period  to  reconstruct  the  parameters  of  underground 
targets,  thus  mitigating  the  tedious  training  process.  Rohman  and  Nishimoto  (2021)  applied  pattern 
matching techniques in three shapes of infrastructures: circle, square, and triangle, extending the available 
environments. Although the above algorithms could detect thin pipes or strips in the soil, they still need the 
user’s help due to the diversity of hyperbola signatures as GPR images contain lots of noises. Furthermore, 
users need to define various  threshold values for the matched  template to  suit different target detection 
areas. There is still enormous room for improvement in positioning precision for these hyperbola­based 
template matching methods for these reasons.  

With the advancement of computer vision, convolutional neural network (CNN) has become dominant 
in various computer vision tasks, such as material classification (Hu and Li 2022), affordance segmentation 
(Hu  et  al.  2020),  and  object  detection  and  segmentation  (Westwańska and Respondek 2019, 2020). 
Moreover, many researchers have developed deep learning based methods for detecting and characterizing 
underground  infrastructure.  Feng  et  al.  (2020)  proposed  DepthNet  extracts  and  denoises  the  hyperbola 
features in B­scan data to predict the dielectric to determine the depth of targets. Hou et al. (2021) developed 
the Mask Scoring R­CNN (MS R­CNN) to segment and analyze hyperbolic signatures of subsurface targets 
in  GPR  scans.  Yamaguchi  et  al.  (2021)  combined  a  3­D  convolutional  neural  network  and  Kirchhoff 
migration searched for the box­by­box radar image and extracted the peaks of the hyperbola. Thus, they 
claim that their algorithm could provide a clear 3­D pipe map in a reasonable calculation time. All of the 
above research focused on determining the size and position of subsurface utilities, but little attention was 
paid  to  the  material  of  the  pipeline.  The  material  of  underground  utilities  has  a  great  impact  on  the 
excavation work, as engineers could make a specific plan according to different pipelines under the target 
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area  to  perform  safe  and  efficient  excavation  work. However,  this  point  has  been  overlooked  by  most 
existing studies of subsurface mapping. 

Some  researchers  noticed  the  importance  of  underground  infrastructure  materials  these  days. 
Permittivity reconstruction is useful for this process. Qin et al. (2021) presented a probabilistic inversion 
method using a sliding window and Markov chain Monte Carlo simulation with Bayesian inference based 
on the relative permittivity and electric conductivity values from GPR waveform data. Liu et al. (2021) 
proposed a DNN architecture that uses the fuse characteristics of several aligned traces on B­Scan data to 
reconstruct the permittivity map of tunnel linings. Ji et al. (2021) utilized a temporal compression operation 
and  a  global  feature  encoder  to  reconstruct  permittivity  images  from  GPR  data  at  different  central 
frequencies.  The main  drawback  of  the  above  research  is  the  ignorance of  the dielectric  parameters  in 
different underground layers. Specifically, the time­domain radargram was directly aligned with the spatial­
domain subsurface permittivity map, which could cause a depth gap between prediction and ground truth. 
Moreover,  it  was  assumed  that  the  environmental  context  was  relatively  homogenous  in  these  studies, 
compromising its applicability in  the real world. To address these limitations, Hu et al.(2022) applied a 
neural network with an encoder­decoder structure to directly reconstruct the permittivity maps of collapsed 
structures in the aftermath of disasters. However, the generalizability of this method in referring subsurface 
pipes remains unexplored.  Our study aims to address these knowledge gaps. 

3  METHODOLOGY 

Figure 1 presents the architecture of the proposed network. The proposed deep learning network is adapted 
from the DeepLabv3+ architecture (Chen et al. 2018). The encoder­decoder structure  is  integrated with 
Atrous Spatial Pyramid Pooling (ASPP) module to encode multi­scale contextual information.  

 
Figure 1: Overview of the methodology. 

The backbone encoder is built based on the ResNet50 network. The obtained feature maps are fed into 
the ASPP module to extract multi­scale features using multiple parallel filters with different dilated rates. 
This process can improve inversion accuracy with the ability to account for different object scales. The 
ASPP module contains a 1×1 convolution layer, three 3×3 convolution layers, and global average pooling. 
The sampling rate of the four convolution layers is 1, 6, 12, and 18, respectively. The batch normalization 
and ReLU activation layer are added followed by each convolution layer and pooling layer. The output of 
a single layer from the ASPP module is 256 channels. The five layers are concatenated together with 1280 

       

ResNet 0

 onv

   
 ooling

ResNet 

block 

1

ResNet 

block 

2

ResNet 

block 

 

ResNet 

block 

 

 onv 1 1

 onv    

rate  

 onv    

rate 12

 onv    

rate 1 

 mage 

pooling

A   

 utput

 onv

1 1

       

 psamle

by   

(2  ,  )

 onv

1 1

 onv

   

(  ,  )(  ,12 ) ( 12, 2) (102 ,1 ) (20  , )
(102 , ) (2  , )

 psamle

by 2 

(1,12 ) (2 ,12 ) (192,12 ) (192,  ) (2  ,  ) (2  , 2) (2  , 2)(1,2  )

Radargram

 rediction

Note  n (A, ), Ameans channel number while  means feature map si e

 onv

   

 psamle

by 2 

 onv

   

  

 psamle

by 2 



Wang, Hu, Li, and Cai  
 

 

channels. Subsequently, a 1×1 convolution with 256 output channels is applied to the concatenated layer to 
obtain a high­level feature map. At the decoder, upsampling and convolutions are performed to enlarge the 
feature map and obtain the final prediction. Each of the low­level features extracted from Resnet blocks 
would be passed to one 1×1 convolutional layer followed by batch normalization layer, ReLU activation 
layer, and dropout. Then these processed features are integrated into the corresponding high­level features 
in the decoder. The designs of the Resnet50 backbone and decoder are elaborated below.  

Encoder: The ResNet50 backbone contains 5 stages (He et al. 2016) The first stage consists of one 
convolution layer with kernel size 7×7, one batch normalization layer, one ReLU activation layer, and one 
max­pooling layer. This stage is mainly used to process the input data. The spatial dimension of the output 
from stage 1 is 64 with a channel number of 64. The following four stages are ResNet residual blocks with 
a block number of 3, 4, 6, and 3, respectively. Each block contains three convolutional layers, one batch 
normalization, and one ReLU activation layer. In each stage, the output channel would double and the size 
of the feature map reduced to half from stage 2 to stage 5.  

Decoder: The low­level features obtained from the ResNet block 2 of the backbone module is passed 
into one 1×1 convolutional layer followed by one batch normalization layer and one Relu activation layer. 
At the same time, the high­level features obtained from the 1×1 convolution with 256 output channels in 
the encoder are up­sampled through bilinear interpolation whose scale factor is 4. The two feature maps are 
concatenated  together  to utilize  low­level  features. The concatenated  feature map  is  fed  into one 3  × 3 
convolutional layer followed by one batch normalization layer and one Relu activation layer. Sequentially, 
the output is applied in the bilinear interpolation up­sample layer followed by one 3×3 convolutional layer 
and  another  up­sample  layer.  The  intermediary  feature  map  would  be  further  passed  into  three  3×3 
convolutional layer blocks and one 1×1 convolutional layer block. Finally, the predicted permittivity map 
is generated with the same size as the original radargram after up­sampling by 2. 

4  DATA PREPARATION 

4.1  Simulation Parameters 

In this study, numerical simulation is used to generate synthetic GPR scans as it is nearly impossible to get 
a ground­truth permittivity map for real GPR data. Collecting an abundance of real GPR data is very time­
consuming  and  requires  a  great  deal  of  work.  And  also  the  material  of  the  natural  subgrade  is  always 
heterogeneous and unpredictable. In addition, the dielectric properties of these materials would vary with 
temperature  and  humidity.  Building  permittivity  maps  based  on  real  scenes  would  be  very  difficult. 
Furthermore, the simulation can generate a large number of synthetic GPR scans along with ground­truth 
permittivity labels generated to train the deep learning network. The gprMax (Warren et al. 2016) simulator 
is adopted to generate synthetic GPR scans, which is a well­accepted GPR simulator.  

To reflect a realistic underground pipe system, the simulated subsurface scenarios refer to the design 
standard of urban roads and underground utilities. The typical flexible pavement in urban areas is used as 
the subsurface background, which consists of surface, base course, subbase course, and subgrade layer. 
Table 1 shows the thickness range of each layer.  

Table 1: Depth parameters of the background (TDOT 2021). 

Road layer   Thickness (cm) 
Surface    10­18 
Base course   13­30 
Subbase course   13­30 
Subgrade layer   The rest 

 
The five most common buried utilities under urban sidewalks are selected that are gas pipe, sewer pipe, 

water pipe, electrical wire, and optical cable. The material of these buried utilizes could be PVC, concrete, 
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or iron. In addition, the size, depth, and installation requirements are also different. Table 2 shows the radius 
and depth range of the five types of buried utilities. Moreover, there are clearance requirements for these 
pipes according to their functionalities.   

Table 2: Underground pipelines spatial setting (ASME 2016).  

Utility lines   Inside 
radius (cm)  

Outside 
radius (cm)   Depth (cm)   Remark   

Gas lines   (1,14)   (1,15)   61 below   The 30.5 cm vertical clearance from 
water and sewer pipelines  

Electrical 
wire   N/A   (2,5)   61 below   The 30.5 cm vertical clearance from 

water and sewer pipelines  

Water lines   (1,28)   (3,30)   91.4 below   The 45.7 cm vertical clearance from 
sewage lines  

Sewage lines   (3,19)   (5,20)   61­91.4 below   The 45.7 cm vertical clearance from 
water lines  

Optical cable   N/A  (1,2)  30.5 below   The 30.5 cm vertical clearance from 
water and sewer pipelines  

 
Table 3 shows the relative permittivity ranges of different objects that are used to generate underground 

pipelines and road structures. The relative permittivity values are uniformly randomized given the range 
for each object. 

 Table 3: Permittivity values of different materials.  

Object    Permittivity   
PVC   3­5 (Hilario et al. 2019) 
Concrete    5­10  
Clay    5­40  
Asphalt    4.5­6 (Zhao et al. 2018) 
Flexible road base   8­12 (Zhao et al. 2018) 
Gravel subgrade   8­15 (Zhao et al. 2018) 
Iron   1.4­1.6 (Alsharahi et al. 2016) 

 

 
Figure 2: Examples of simulated permittivity map of subsurface with underground utilities. The color bar 
value and the different colors indicate the dielectric constant values. 
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Figure 2 presents two examples of simulated subsurface road layers with buried pipelines. Note that 
relative permittivity for the subgrade layer increases with increasing depth to account for density and water 
content variation.  

The gprMax frequency used in this study is 350MHz, which is well accepted for GPR simulation. The 
350 MHz antenna has a penetration depth of up to 10 meters. Therefore, the penetration depth of 350 MHz 
is suitable for subsurface mapping in the context of urban pavement. Each simulated permittivity map has 
256 traces, and the total length is 2.56m. The depth of simulated models is set to 3.1m.  

4.2  Data Preprocess 

The simulated permittivity maps are in the spatial depth domain, which needs to be further converted into 
a time domain. Equation (1) gives the converting step, where t represents the two­way travel time in ns, d 
is depth in meters,  stands for the dielectric constant, and C is the speed of light (3 × 108𝑚/𝑠). 
 
  𝑡 =  

2𝑑

𝐶
√𝜀  (1) 

 
The gprMax simulation spatial  step  is 1 cm, and  the  time window  is 2.35865e­11s. The number of 

iterations is set as 3000, which is equivalent to a travel time of 70.76 ns. Time­zero correction is applied to 
eliminate the influence of the slight variations  in the initiation time of the receiver and transmitter. The 
time­corrected radargram has an iteration of 2600 which is 61.32 ns. It is known that the amplitude of the 
transmitted signal diminishes as it gets deeper into the ground. This attenuation can make it difficult  to 
recognize targets from GPR data, which could also affect the performance of network training. Therefore, 
an exponential gain was used to compensate for signal attenuation. Figure 3 shows two examples of the 
subsurface permittivity map and corresponding radargrams in the time­depth domain.  

 
Figure 3: The down­sampled time­corrected radargram and permittivity map. The color bar value and the 
different colors indicate the dielectric constant values. 
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5  EXPERIMENT AND RESULTS 

5.1  Implementation Details 

The deep learning model was trained on a workstation with a 2.2 GHz Intel Xeon 10 Core CPU, 64 GB, 
and NVIDIA Quadro P5000 GPU using torch library on top of  the PyTorch platform. The network was 
trained with an SGD optimizer (Bottou 2010) with a learning rate of 0.002. The learning rate decays with 
a factor of 0.5 using the ReduceLROnPlateau function in PyTorch with max mode and patience of 20. The 
batch size  is  set  to 32. A total of 15,614 pairs of  radargrams with ground­truth permittivity maps were 
generated to train the network. The dataset was randomly split into a training set (90%), and a validation 
set (10%). 

5.2  Evaluation Metric 

In  this  study, 𝑅2, SSIM and MAE are used  to  evaluate  the performance of  the proposed deep  learning 
inversion network. 𝑅2 is used to measure the amount of variance in the predictions explained by the model, 
which  is  defined  in  Equation  (2),  where 𝑥𝑖  represents  the  prediction  value  in  the  permittivity  map, 𝑦𝑖 
represents the actual value in the original data, 𝑦̅ represents the mean of all the actual values. 
 
  𝑅2 =

𝑆𝑆𝑅

𝑆𝑆𝑇
 =

∑(𝑥𝑖− 𝑦̅)2

∑(𝑦𝑖− 𝑦̅)2  (2) 
 

The image Structure Similarity (SSIM) calculates the structural similarities of different sliding windows 
in their corresponding positions between the original permittivity map and the predicted permittivity map. 
In Equation (3), x and y are the predicted map and original permittivity map, respectively (Yan et al. 2020).  
 

  𝑆𝑆𝐼𝑀(𝑦, 𝑥|𝜔) =
(2𝜔̅𝑦𝜔̅𝑥 + 𝐶1)(2𝜎𝜔𝑦𝜔𝑥+𝐶2)

(𝜔̅𝑦
2  + 𝜔̅𝑥

2 +𝐶1)(𝜎𝜔𝑦
2  +𝜎𝜔𝑥

2  +𝐶2)
  (3) 

 
where 𝐶1 and 𝐶2 are two constants. 𝜔𝑦 is a sliding window in y, 𝜔̅𝑦 represents the average of 𝜔𝑦, 𝜎𝜔𝑦

2  
is the variance of 𝜔𝑦 and 𝜎𝜔𝑦𝜔𝑥

 denotes the covariance of 𝜔𝑦 and 𝜔𝑥. The variable 𝜔𝑥, 𝜔̅𝑥 and 𝜎𝜔𝑥
 have 

the same meaning in the 𝑥 .   
The Mean Absolute Error  (MAE) denotes  the  average of  all  absolute  errors which  is  calculated  as 

Equation (4). 
 

  𝑀𝐴𝐸 =
∑ 𝑎𝑏𝑠(𝑥𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
  (4) 

5.3  Results 

The following two figures show the training performance of the proposed network and the prediction results 
of the model. Figure 4 shows  the variation of the  three metrics 𝑅2, SSIM, and MAE epochs during  the 
training process. It is evident from the plot that the three metrics converge quickly and stably. As the epochs 
increase, the SSIM and 𝑅2increase while the MAE decreases on both training and validation datasets. The 
best  performance  achieved  on  the  validation  dataset  for 𝑅2,  SSIM  and  MAE  are  0.96,  0.91,  and  0.53, 
respectively, indicating the effectiveness of the proposed model. 

Figure 5 presents two example inversion results. The predicted permittivity values in the prediction are 
in good agreement with the ground­truth permittivity map. The prediction permittivity map can be used to 
identify the subsurface structures, as well as recognize the location, size, and materials of buried utilities.  
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Figure 4: The 𝑅2, SSIM, and MAE over epochs during training. (a) 𝑅2; (b) SSIM; and (c) MAE 

 
Figure 5: Example  inversion  results. The color bar value and  the different colors  indicate  the dielectric 
constant values. 

6  CONCLUSIONS AND FUTURE WORKS 

Subsurface mapping has been an urging task for urban construction to decrease the excavation accident as 
well as build the foundation for a smart city. The overall goal of this research is to develop an algorithm for 
the  detection  and  characterization  of  underground  utilities  from  GPR  scans.  A  novel  encoder­decoder 
network was developed to directly reconstruct permittivity maps from GPR scans. To alleviate the issue of 
limited  data,  numerical  simulation  was  adopted  to  generate  synthetic  GPR  scans  with  corresponding 
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permittivity maps. The data preparation follows the regulation and standards to reflect realistic scenarios, 
facilitating the applicability of trained inversion networks in the real world. The developed method achieved 
an R2 of 0.96, an SSIM of 0.91, and an MAE of 0.53 on the validation set of  the synthetic dataset. The 
promising results highlight the potential of the proposed method in urban subsurface mapping.  

The generalizability of these results is subject to certain limitations. First, this work only considered a 
relatively ideal subsurface environment without rocks and tree roots. In the future, more realistic data need 
to  be  generated  for more  robust performance  in  the  real  world.  The  realistic  data  can  be  generated  by 
simulating the subsurface model with a realistic environment, such as adding stone and tree roots. Second, 
the inversion model was trained using the synthetic data only, compromising its performance in real­world 
applications. Augmenting synthetic GPR data with realistic signal characteristics is an interesting research 
direction  to  be  explored.  Third,  while  the  proposed  method  achieves  promising  results  in  subsurface 
permittivity map reconstruction, the type of buried utilities is not analyzed in this work.  In the future, it 
would be very useful to identify the type of underground utilities. 
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