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ABSTRACT: It is recognized that the atmosphere’s predictability is intrinsically limited by unobservably small uncertain-
ties that are beyond our capability to eliminate. However, there have been discussions in recent years on whether forecast
error grows upscale (small-scale error grows faster and transfers to progressively larger scales) or up-amplitude (grows at
all scales at the same time) when unobservably small-amplitude initial uncertainties are imposed at the large scales and limit
the intrinsic predictability. This study uses large-scale small-amplitude initial uncertainties of two different structures}one
idealized, univariate, and isotropic, the other realistic, multivariate, and flow dependent}to examine the error growth
characteristics in the intrinsic predictability regime associated with a record-breaking rainfall event that happened on
19–20 July 2021 in China. Results indicate upscale error growth characteristics regardless of the structure of the initial
uncertainties: the errors at smaller scales grow fastest first; as the forecasts continue, the wavelengths of the fastest error
growth gradually shift toward larger scales with reduced error growth rates. Therefore, error growth from smaller to
larger scales was more important than the growth directly at the large scales of the initial errors. These upscale error
growth characteristics also depend on the perturbed and examined quantities: if the examined quantity is perturbed,
then its errors grow upscale; if there is no initial uncertainty in the examined quantity, then its errors grow at all scales
at the same time, although its smaller-scale errors still grow faster for the first several hours, suggesting the existence of
the upscale error growth.

SIGNIFICANCE STATEMENT: This study compared the error growth characteristics associated with the atmosphere’s
intrinsic predictability under two different structures of unobservably small-amplitude, large-scale initial uncertainties:
one idealized, univariate, and isotropic, the other realistic, multivariate, and flow dependent. The characteristics of the
errors growing upscale rather than up-amplitude regardless of the initial uncertainties’ structure are apparent. The
large-scale errors do not grow if their initial amplitudes are much bigger than the small-scale errors. This study also
examined how the error growth characteristics will change when the quantity that is used to describe the error growth is
inconsistent with the quantity that contains uncertainty, suggesting the importance of including multivariate, covariant
uncertainties of state variables in atmospheric predictability studies.
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1. Introduction

Intrinsic predictability of the weather, or how long can we
predict the weather accurately given almost perfect knowledge of
the atmospheric processes and almost perfect estimations of the
atmospheric states (Lorenz 1963; Melhauser and Zhang 2012;
Zhang et al. 2019), defines the ultimate limit of our day-to-day
weather forecasts. Studies using simplified turbulence models
suggest the existence of an intrinsic predictability limit depends
on the slope of the background energy spectrum (Lorenz 1969;
Rotunno and Snyder 2008): for a background spectrumobeying a
power law of the form k25/3, like what was observed at the meso-
scale (Nastrom andGage 1985), the theories find limited intrinsic
predictability. On the other hand, some recent studies suggest
other relationships between the slope of the background energy
spectrum and the atmosphere’s intrinsic predictability limit
(Leung et al. 2019; Lloveras et al. 2022).

Zhang et al. (2007) proposed a three-stage upscale error
growth mechanism describing how small-scale small-amplitude
uncertainties limit the intrinsic predictability. In this mechanism,
initial uncertainties that are unobservably small will grow and
saturate at the convective scale with the help of the moist con-
vective processes (first stage), then transfer upscale to the meso-
scale and synoptic scales (second stage) and grow at a slower
speed at synoptic scales (third stage). The upscale transfer of
small-amplitude uncertainties is also observed by many studies
using convection-allowing regional models (Selz and Craig 2015;
Zhang et al. 2016, 2022, hereafter Z22), convection-parameterized
global models (Selz 2019; Selz et al. 2022), or convection-allowing
global models (Judt 2018; Zhang et al. 2019). Other studies
confirm the critical role of moist convective processes in es-
tablishing the mesoscale k25/3 kinetic energy spectrum (Sun
et al. 2017; Selz et al. 2019; Fan et al. 2022) and limiting the in-
trinsic predictability (Hohenegger and Schär 2007a,b; Sun and
Zhang 2016, 2020; Baumgart et al. 2019; Leung et al. 2020).
Detailed analyses using numerical models of different com-
plexities suggest that small-scale initial errors amplify andCorresponding author: Yunji Zhang, yuz31@psu.edu
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saturate the convective (cloud) scale with the help of moist
convective processes and latent heat release, and these errors
grow upscale through gravity wave propagations and geo-
strophic adjustments (e.g., Selz and Craig 2015; Bierdel et al.
2018; Baumgart et al. 2019; Selz et al. 2022) before entering
the third stage of slower and persistent growth associated
with baroclinic instability (Selz and Craig 2015; Judt 2018) or
near-tropopause nonlinear Rossby wave dynamics (Baumgart
et al. 2018, 2019).

On the other hand, there are studies arguing that the small-
amplitude uncertainties are growing up-amplitude at all scales
simultaneously, and the larger-scale uncertainties are there-
fore at least as important as}if not more than}smaller-scale
uncertainties because of larger background energy at larger
scales. Using numerical models of different complexity}
including the two-dimensional barotropic vorticity model in
Lorenz (1969), the surface quasigeostrophic model in Rotunno
and Snyder (2008), the cloud model in Durran and Klemp
(1983), and the Advanced Research version of the Weather
Research and Forecasting (WRF-ARW; Skamarock et al.
2008) Model}several studies suggest that larger-scale errors
cascade downscale, which lead to a more uniform amplifi-
cation of forecast errors at all scales (“up-amplitude”; Durran
and Gingrich 2014; Durran and Weyn 2016; Nielsen and
Schumacher 2016; Weyn and Durran 2017; Lloveras et al.
2022). Weyn and Durran (2019) suggest that the impact of
larger- versus smaller-scale errors, and therefore the relative
role of upscale and up-amplitude mechanism in the overall
error growth processes, is sensitive to synoptic-scale forcing.
Several studies among them reported a uniform growth of
forecast error spectra across all scales, and this type of error
spectra does not contain a peak at or close to the small-scale
error saturation wavelengths as predicted by the homogeneous
turbulence theory in Rotunno and Snyder (2008) but rather flat-
ten out at larger scales (Durran and Gingrich 2014; Weyn and
Durran 2017, 2019; Lloveras et al. 2022). Similar temporal evolu-
tion of the error kinetic energy spectra is also observed in
Judt (2020), different from the findings in Judt (2018), al-
though Rotunno et al. (2023) show that it is an artifact of inap-
propriate wavenumber spectral analyses.

Yet two recent studies show some interesting results re-
garding the forecast error’s upscale growth. In the global con-
vection-parameterized twin-experiments study of Selz et al.
(2022), as they reduce the initial uncertainty from 100% of
the current global model analysis uncertainty to 10% of that,
the spatial scales of the fastest error growth rate during the
first several days change from larger scales to smaller scales,
indicating the change from the practical predictability limit to
the intrinsic predictability limit. When they further reduce the
initial uncertainty to 1% of their original values, the error
growth rate during the first day increases. The change in the
predictability regime is also accompanied by a change in the
error growth characteristics: for the 100% initial uncertainty
forecast, errors at larger scales always grow the fastest; how-
ever, for the 10% and 1% initial uncertainty forecasts, the
fastest error growth scale gradually moves upscale as the
forecasts continue. Z22 also reports similar behavior using
convection-allowing regional ensembles with small-amplitude

initial uncertainties}the fastest error growth occurs at smaller
scales at the beginning and gradually moves upscale as the
forecasts continue, and this behavior is insensitive to the
spatial scale of the initial uncertainties. Furthermore, in
the several experiments of Z22 that imposed large-scale
initial uncertainties derived from the Global Ensemble
Forecast System (GEFS), the forecast errors at larger scales
(.200 km) do not grow for the first several hours, and they
only start to grow once the magnitude of errors at smaller
scales had increased to be comparable to that of larger-scale
errors. It is worth noting that the magnitude of these large-
scale initial uncertainties in Z22 is also one order of magni-
tude smaller than the original uncertainties that GEFS repre-
sents. Based on Zhang et al. (2019) and Selz et al. (2022), this
magnitude of initial uncertainty (10% of current global model
analysis uncertainty) already enters the intrinsic predictability
regime.

However, these studies showing different error growth
mechanisms in the intrinsic predictability regimes should not
be directly compared because of the different characteristics
of the initial uncertainties that they impose:

1) Although three-dimensional numerical models were used,
Durran and Weyn (2016), Weyn and Durran (2017, 2019),
and Lloveras et al. (2022) used a function to generate rela-
tively uniform and isotropic initial uncertainties, while Z22,
among many other similar previous studies, used flow-
dependent initial uncertainties derived from a global
model.

2) Durran and Weyn (2016), Weyn and Durran (2017, 2019),
and Lloveras et al. (2022) only imposed initial uncertainties
on one, thermodynamical variable [Durran and Weyn (2016)
perturbed potential temperature and the other three per-
turbed water vapor mixing ratio], instead of using a set of
multivariate, covariant uncertainties, and they primarily ex-
amined the temporal evolution of errors in kinetic energy.

To fill these gaps, following the experiments conducted in
Z22, this study examines several sets of ensembles imposing
large-scale initial uncertainties with unobservably small am-
plitude and different structures, aiming at the potential impact
of different structures of large-scale initial uncertainties on
the error growth characteristics in the intrinsic predictability
regime. Section 2 introduces the event of interest, the numeri-
cal model and its settings, and the ensemble configurations
with corresponding methods to generate different structures
of initial uncertainties. Section 3 examines the power spectra
of the forecast uncertainties, and section 4 examines the tem-
poral evolutions of the forecast uncertainties in the physical
space. Section 5 includes conclusions and discussion.

2. Methodology

a. Overview of the event

On 19–20 July 2021, devastating rainfall hit Henan Province
in central China. Zhengzhou, the province’s capital city, re-
corded 24-h (1200 UTC 19 July–1200 UTC 20 July) accumu-
lated rainfall of over 600 mm (Fig. 1b) with a peak hourly

J OURNAL OF THE ATMOS PHER I C S C I ENCE S VOLUME 801416

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 11/29/23 04:06 PM UTC



rainfall of 201 mm during 0800–0900 UTC 20 July. This re-
cord-breaking amount of rainfall led to severe flash flooding
in the metropolitan region, costing more than 300 lives.

This rainfall event occurred under uncommon synoptic con-
ditions (Fig. 1a). Typhoon Cempaka and Typhoon In-Fa were
located to the south and southeast of mainland China, respec-
tively. Together with the western Pacific subtropical high,
they transported abundant moisture inland and created a re-
gion of total precipitable water vapor exceeding 60 kg m23

when the southeasterlies were stalled by the mountains. While
this region was generally under or to the west of a 200-hPa
ridge, a persistent midlevel mesoscale convective vortex with
a small low pressure center helped the maintenance of the
rainstorms. It should also be pointed out that while synoptic
conditions and local topography help to build a favorable en-
vironment for convection initiation, development, and organiza-
tion over this region, they do not directly trigger the convection.
A more detailed analysis of the controlling synoptic factors and
physical processes that led to the record-breaking rainfall can be
found in Z22 and references therein.

b. Configurations of the numerical model

All the simulations are conducted using the WRF Model
with its fully compressible, nonhydrostatic ARW dynamical
core, version 4.2 (Skamarock et al. 2019). Three one-way
nested domains with 27-, 9-, and 3-km horizontal grid spac-
ings, respectively, are designed. The outer two domains cover
the primary synoptic weather systems (Fig. 1a), and the inner
3-km domain covers a 900 km 3 900 km region where rainfall
occurred (Fig. 1b). Fifty hybrid pressure–terrain-following
levels are employed with the uppermost level located at 50 hPa.
Physical parameterization schemes include the aerosol-aware
Thompson and Eidhammer (2014) microphysics scheme, the
Rapid Radiative Transfer Model for Global Circulation Models
(RRTMG) longwave and shortwave radiation schemes (Iacono
et al. 2008), the revised MM5 Monin–Obukhov surface layer
scheme (Jiménez et al. 2012), the thermal diffusion land surface

model, the Yonsei University scheme for planetary boundary
layer (PBL) processes (Hong et al. 2006), and the modified
Tiedtke cumulus parameterization scheme (Zhang et al. 2011)
which is only applied in the outermost 27-km domain. This
model configuration can reasonably reproduce the spatial distri-
bution of the overall precipitation with a maximum 24-h accu-
mulation (1200 UTC 19 July–1200 UTC 20 July) of 558 mm
when initialized with the Global Forecast System (GFS) analysis
valid at 0600 UTC 19 July.

c. Experiment design

Six 40-member 30-h ensemble forecasts that are initialized
at 0600 UTC 19 July and end at 1200 UTC 20 July are per-
formed (the analyses in this study will be based on forecast
lead times). Each ensemble’s initial conditions (ICs) are cen-
tered on the 0600 UTC 19 July GFS analysis. All forecasts
share the same lateral boundary conditions (LBCs) generated
using the GFS forecast from 0600 UTC 19 July; the impacts
of the unperturbed LBCs are minimal to the innermost 3-km
domain given the distance between the location of the 3-km
domain and the LBCs (Fig. 1a).

Three ensembles employed realistic, multivariate, flow-
dependent initial uncertainties. The baseline of all six experi-
ments, “REAL,” is the same “LARGE” ensemble in Z22. It
used perturbations derived from the GEFS forecasts, with the
archived GEFS outputs having a horizontal grid spacing of
0.58 3 0.58 (although GEFS runs at a higher grid spacing).
Specifically, the average of the 20 GEFS ICs at 0600 UTC 19 July
2021 was subtracted from these 20 ICs to form 20 perturbations
of potential temperature (T), water vapor mixing ratio (Qv),
and the two horizontal wind components (U and V). Then,
the amplitudes of these perturbations were rescaled by a fac-
tor of 0.1 (i.e., making the uncertainties one order of magni-
tude smaller than current global model accuracies) and added
to the 0600 UTC 19 July GFS analysis to form 20 ICs. The
other 20 ICs of the REAL ensemble were generated similarly
but used the 6-h GEFS forecasts from 0000 UTC 19 July 2021

FIG. 1. (a) Model domain configuration (black rectangles), geopotential height (GPH) at 200 hPa (green contours;
every 20 gpm) and 500 hPa (red contours; every 20 gpm), and column-integrated total precipitable water vapor
(PWV; shaded; in kg m22) from the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation
atmospheric reanalysis (ERA5) valid at 1200 UTC 19 Jul 2021; (b) observed 24-h accumulated rainfall from 1200 UTC
19 Jul to 1200 UTC 20 Jul 2021 within model domain D03 using available surface automatic weather stations from the
China Meteorological Administration (CMA).
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valid at 0600 UTC 19 July 2021. Since Weyn and Durran
(2017, 2019) only added Qv perturbations, the second ensem-
ble forecasts also only added Qv perturbations to the initial
conditions (i.e., all ICs have identical T, U, and V, as well as
other unperturbed variables) and it will be referred to as
“REAL-Q.” As a comparison, the third ensemble forecasts
added U and V perturbations instead, and it will be referred
to as “REAL-UV.” Note that perturbations of REAL’s ICs
are used for REAL-Q’s Qv perturbations and REAL-UV’s U
and V perturbations. Pressure, geopotential, and vertical wind
component were not perturbed, because they are calculated
using other variables during the WRF initializations and their
perturbations are ignored. Because of the small amplitude of
these initial perturbations, the additional imbalances intro-
duced by these perturbations compared with a forecast initial-
ized using unperturbed GFS analysis are very small.

The other three ensembles employed idealized, univari-
ate, isotropic initial uncertainties based on the following
equation described in Weyn and Durran [2017, 2019; their
Eq. (1)]:

d 5 ae2z/H sin 2p
x
L
2 fx

( )[ ]
sin 2p

y
L
2 fy

( )[ ]
,

where d is the perturbations of T, Qv, U, or V, a is the pertur-
bation amplitude, H is the e-folding height scale, L is the hori-
zontal scale of the perturbations, fx and fy are random,
member-specific phase offsets, and x, y, and z are the model-grid
distances in kilometers. We set H to 1 km and L to 600 km
(corresponds to a power spectrum of the perturbations that
peaks at 300 km). The differences between two sets of pertur-
bations are primarily determined by their zonal and meri-
dional phase differences, fx and fy. The three ensembles with
idealized IC perturbations are formed in the same manner as
the three ensembles with realistic IC perturbations: IDEAL’s
ICs contain perturbations of T, Qv, U, and V; IDEAL-Q’s
ICs only contain Qv perturbations; IDEAL-UV’s ICs contain
U and V perturbations. The magnitude constant in Eq. (1) for
Qv perturbations follows Weyn and Durran (2019) and was
set to 1% of the background Qv values (using GFS analysis),
and was set to 0.2 K, 0.4 m s21, and 0.4 m s21 for T, U, and V,
respectively. These values are selected to make the peak values
of the power spectra of their perturbations (at 300 km) compa-
rable to the power spectra values at the same wavelengths for
REAL’s IC perturbations.

Figure 2 shows examples of the structure of the IC pertur-
bations of REAL and IDEAL. IDEAL’s IC perturbations

FIG. 2. Qv perturbation (in g kg21) at the first model level for (a) the first member of REAL and (b) the first
member of IDEAL, (c) vertical distribution of level-average standard deviation for the initial uncertainties of T (in K),
Qv (in g kg21), U (in m s21), and V (in m s21) from the REAL and IDEAL ensembles, and (d) domain-average
ensemble-mean hourly rain (in mm) for the six ensembles.
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have the largest standard deviations occurring at the lowest
model level and decreasing exponentially with increasing height
for all four variables (Fig. 2c). On the other hand, REAL’s
IC perturbations show different vertical characteristics for each
variable, and Qv does not decrease exponentially going upward
(Fig. 2c). Their IC perturbations’ horizontal distributions are
also vastly different (Figs. 2a,b): compared with the more uni-
form pattern in IDEAL’s IC perturbations (Fig. 2b), REAL’s IC
perturbations have more horizontal variability (Fig. 2a).

The probability-matched ensemble mean (Ebert 2001), ar-
ithmetic mean, and standard deviation of the 24-h accumu-
lated rainfall from 1200 UTC 19 July to 1200 UTC 20 July
for the six ensembles is shown in Fig. 3. Apparently, all six
ensembles share a common structure for both their rainfall
forecasts and associated uncertainties, with only minimal
differences in the placement of the maximum values. The arith-
metic means show good correspondence with the probability-
matched means (PMMs) for 100-mm rainfall, but the magnitudes
of the strongest rainfall differ notably between arithmetic
means and PMMs. Combined with large ensemble standard
deviations that exceed 100 mm in the intense rainfall region,
they suggest good consistencies of the intense rainfall region
but large uncertainties in predicting the locations of the most
extreme rainfall. Previous studies suggest that forecast uncer-
tainties beyond 6–8 h are insensitive to the amplitude (when it is
already very small) or the spatial scale of the initial uncertainties
(e.g., Durran and Gingrich 2014; Nielsen and Schumacher 2016;
Weyn and Durran 2017; Z22); it seems that the forecast uncer-
tainty of rainfall forecast in the deterministic forecast sense is
also not sensitive to the structure of the initial uncertainties in
this event.

All power spectra and scale decompositions in this study
are produced using the 1Dk method as suggested by Rotunno

et al. (2023) on the ensemble member perturbations (subtracting
the ensemble mean from each ensemble member at a given
forecast lead time) of the 3-km domain. All vertical levels are
used when calculating the power spectra to better represent
their characteristics over the entire atmosphere.

3. Power spectra of forecast uncertainties

Let us start with examining the power spectra of forecast
uncertainties (“error spectra” hereafter) of different variables
in the ensembles, represented by the 40-member logarithmic-
scale averages of each member’s power spectra of its devia-
tions from the ensemble mean for a certain variable. At 0-h
forecast lead time (Fig. 4a), Qv error spectra of REAL and
REAL-Q show a plateau of error energy at scales larger than
;200 km and error energy decreases when moving toward
smaller scales, while IDEAL and IDEAL-Q show a peak of
error energy at 300 km and error energy decreases when mov-
ing toward either larger or smaller scales (note that the
REAL and IDEAL lines are covered by the REAL-Q and
IDEAL-Q lines, respectively, because they have identical val-
ues), both are consistent with the characteristics of how these
initial uncertainties are generated. On the other hand, the er-
ror spectra of REAL-UV and IDEAL-UV}which do not in-
clude any initial Qv perturbations}are 6–12 orders of
magnitude smaller than the other four experiments.

An hour later, while REAL and REAL-Q (IDEAL and
IDEAL-Q) have identical initial Qv perturbations, REAL-Q
(IDEAL-Q) has smaller Qv error energy than REAL (IDEAL)
at scales roughly smaller than 60 (100) km (Fig. 4b). This differ-
ence suggests that REAL-Q and IDEAL-Q have slightly slower
error growth rate at the small scales during the first hour than
REAL and IDEAL. On the other hand, while there are practi-
cally no initial Qv perturbations in REAL-UV and IDEAL-UV

FIG. 3. (top) Probability-matched mean (PMM), (middle) arithmetic mean, and (bottom) standard deviation (St.D.) of 24-h accumulated
rainfall (unit: mm) from 1200 UTC 19 Jul to 1200 UTC 20 Jul 2021 for the six ensembles.
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(Fig. 4a), their errors at the smallest scales grow rapidly during
the first hour and even exceed the magnitude of the error en-
ergy of REAL-Q and IDEAL-Q at scales smaller than 20 km
and are much closer to the magnitude of the error energy of
REAL and IDEAL (Fig. 4b). These differences in the error
growth rates during the first hour suggests that not consid-
ering initial uncertainties of all atmospheric states may lead
to underestimation of their error growth rate even when
flow-dependent initial uncertainties are applied. We also
find that the error spectra of REAL, REAL-Q, IDEAL,
and IDEAL-Q at wavelengths . 200 km do not grow for
the first hour.

The faster Qv error growth in REAL-UV and IDEAL-UV
than in REAL-Q and IDEAL-Q continues. As of 3 h into the
forecast, the Qv error energy of REAL-UV (IDEAL-UV) re-
mains greater than that of REAL-Q (IDEAL-Q) at scales up to
50 (80) km (Fig. 4c). In general, the error spectra of all six ensem-
bles at small scales have grown more than one order of magnitude
compared with 2 h before, while the error spectra of REAL,
REAL-Q, IDEAL, and IDEAL-Q at wavelengths. 200 km still
grow slowly when comparing Figs. 4b and 4c. The fast error
growth at small scales and the stagnation of error growth at
large scales create a shallow “pit” of lower-magnitude error
spectra from roughly 20 to 200 km in REAL, REAL-Q,
IDEAL, and IDEAL-Q. As the forecast lead time extends,
the gaps between Qv error spectra of the six ensembles dimin-
ish at smaller scales first (i.e., errors at these scales have satu-
rated) when there are still notable differences at larger scales
(Figs. 4d,e), and the differences at larger scales also continue
to decrease until the end of the ensemble forecasts}the dif-
ferences are more than one order of magnitude at forecast
lead time of 6 h (Fig. 4d) and reduce to slightly under one
order of magnitude at 12 h (Fig. 4e) and less than 2 times at
30 h (the end of the ensemble forecasts; Fig. 4f).

The temporal evolutions of Qv error spectra of IDEAL,
IDEAL-Q, and IDEAL-UV notably share many similarities
with those of REAL, REAL-Q, and REAL-UV in Fig. 4. De-
spite very different initial Qv uncertainties (Fig. 4a), Qv error
spectra of REAL and IDEAL are very similar for smaller
scales up to ;20 km after 1 h of forecast, which is also the sit-
uation between REAL-Q and IDEAL-Q, as well as REAL-
UV and IDEAL-UV (Fig. 4b). IDEAL-UV has faster Qv
error growth at small scales than IDEAL-Q, just like REAL-
UV and REAL-Q. IDEAL-UV’s smaller-scale Qv errors also
grow larger than its larger-scale Qv errors, just like REAL-
UV (e.g., Fig. 4c). The similarities suggest that the error
growth mechanisms might be insensitive to the two structures
of initial large-scale uncertainties that are applied in this study
and section 4 will provide examinations of their evolutions in
physical space.

To signify the characteristics of the early error growth stage,
Fig. 5 shows the 0–12-h temporal evolution of Qv error spectra,
as well as the hourly error growth ratio (ratios of error spectra
from consecutive hours), of each of the ensembles. The stagna-
tion of error growth during the first several hours previously
discussed in Fig. 4 is shown more clearly: errors at scales
greater than ;200 km in REAL and REAL-Q grow slowly
for the first several hours when errors at scales smaller than
200 km show rapid growth during this period (Figs. 5a1,b1).
This behavior is not particular to the magnitude of initial un-
certainties of REAL and REAL-Q; similar stagnation occurs
at large scales even if we further reduce the amplitude of the
initial uncertainties by five orders of magnitudes, although the
stagnation lasts for a shorter time as we reduce the amplitude
(figure not shown). There is also a clear error saturation at
small scales as the forecast extends (the decrease at smallest
scales around 6 h is associated with reduced hourly rainfall as
shown in Fig. 2d).

FIG. 4. Qv error spectra of all ensembles at (a) 0-, (b) 1-, (c) 3-, (d) 6-, (e) 12-, and (f) 30-h forecast lead times. The x axis is wavelengths (in km).
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If we disregard the part of the error spectra at the large
scales, the evolution of the error spectra is typical of an up-
scale error growth behavior: the error spectra peak at a
small-scale wavelength that is very close to}but not directly
at}the largest error saturation wavelength, and the error
growth slows down as the errors saturate progressively larger
scales. Unlike Fig. 1a of Rotunno and Snyder (2008), the error
spectra peaks in a real-world NWP model forecast never

coincide with the largest error saturation scale because of the
strong inhomogeneities of small-scale error saturation associ-
ated with convective activities (e.g., Judt 2018; Selz 2019; Selz
et al. 2022; Rotunno et al. 2023). The slowing down of error
growth is even more apparent when looking at the error
growth ratios (Figs. 5a2,b2): from earlier to later hours, the
peaks of the error growth ratios move from smaller to larger
scales with a decreasing magnitude of the peak, meaning that

FIG. 5. Qv’s 0–12-h (first row),(third row) forecast error spectra and (second row),(fourth row) hourly forecast error spectra growth ra-
tio from the (a) REAL, (b) REAL-Q, (c) REAL-UV, (d) IDEAL, (e) IDEAL-Q, and (f) IDEAL-UV ensembles. Blue colors are earlier
hours (shorter forecast lead times), and red colors are later hours (longer forecast lead times). Error spectra start from 0-h forecasts,
whereas hourly growth ratios start from 1-h forecasts. The x axis is wavelengths (in km).
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the scales with the fastest error growth shift from smaller to
larger scales with a slowing down of the fastest error growth
speed as the forecast lead time extends and progressively
larger scales become saturated.

On the other hand, REAL-UV’s Qv error spectra}which
have no uncertainties initially}show slightly different charac-
teristics (Fig. 5c1) that errors grow simultaneously at all
scales, which signifies the up-amplitude error growth charac-
teristics in previous studies. Errors localized in physical space
are broad in spectral space (e.g., Lloveras et al. 2022), which
could have partly contributed to this feature. However, even

from Fig. 5c1, we can still observe that during the first several
hours, error growth at scales of ;10–100 km is much faster
than at scales greater than ;100 km. This is also apparent in
its error growth ratio (Fig. 5c2). Although there is notable error
growth at larger scales, the ratios flatten out at scales greater
than ;300 km and are much lower than the error growth ratios
at smaller scales. Furthermore, the peaks of error growth rates
at smaller scales in REAL-UV’s Qv error spectra (Fig. 5c2) are
similar to those of REAL and REAL-Q (Figs. 5a2,b2) with a
shift toward larger scales and decreasing peak magnitudes as the
forecasts continue, suggesting that the upscale error growth

FIG. 6. As in Fig. 5, but for U error spectra and their hourly growth ratios.
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mechanisms are at least partially responsible for the error
growth processes of Qv in this ensemble at these scales.

When idealized instead of flow-dependent uncertainties are
imposed, they do not fundamentally change the characteristics

of the evolution of the error spectra. There are apparent adjust-
ment processes with error spectra at scales larger than 300 km
decreasing for the first several hours (Figs. 5d1–f1), likely due to
imbalances introduced by ignoring the covariances between the

FIG. 7. As in Fig. 4, but for U error spectra.

FIG. 8. Small-scale (shaded) and large-scale (contoured every 0.25 on a base-10 logarithmic scale) Qv standard deviation (in kg kg21) at the first
model level for the (a) REAL, (b) REAL-Q, (c) REAL-UV, (d) IDEAL, (e) IDEAL-Q, and (f) IDEAL-UV ensembles at 1-h forecast lead time.
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uncertainties of different variables, and therefore, they are
decorrelated. Their error growth ratios, albeit noisier than the
experiments with flow-dependent initial uncertainties, still
show peaks moving toward larger scales with decreasing peak
magnitudes as the forecasts continue (Figs. 5d2–f2) that are
similar to the behaviors of the REAL, REAL-Q, and REAL-
UV ensembles (Figs. 5a2–c2), suggesting that the leading role
of upscale over up-amplitude error growth is insensitive to
the structure of imposed large-scale initial uncertainties in
this event.

The above characteristics of error spectra and error growth
ratios in Figs. 4 and 5 are not just limited to the forecast errors
of Qv alone. Figures 6 and 7 show the error spectra and error
growth ratios for the U wind component for the six ensem-
bles. Again, we see that errors at scales larger than ;200 km
do not grow for the first several hours in REAL and REAL-
UV (Figs. 6a1,c1 and 7a–c), consistent with Qv error spectra
in REAL and REAL-Q (Figs. 4a–c and 5a1,b1); we see that
peaks of error growth ratios shift toward larger scales with de-
creasing magnitudes of the peaks as the forecast lead time ex-
tends, more apparent in REAL and REAL-UV (Figs. 6a2,c2)
and less apparent in IDEAL and IDEAL-UV (Figs. 6d2,f2);
and we see that when there are no initial uncertainties in U,
as in REAL-Q and IDEAL-Q, their U errors grow simulta-
neously at all scales (Figs. 6b1,e1); however, errors at smaller
scales still grow faster for the first several hours (Figs. 6b2,e2).

When comparing the U error spectra of the six ensembles
(Fig. 7), they show characteristics that are generally consistent
with the Qv error spectra (Fig. 4), but it is REAL-Q and
IDEAL-Q that do not have initial perturbations in the exam-
ined variable (U), instead of REAL-UV and IDEAL-UV that
do not have initial Qv perturbations when Qv is examined.
We can see a quick fill-up of error spectra at small scales

during the first hour of forecast when large-scale errors show
larger discrepancies across the experiments (Fig. 7b). REAL
and REAL-UV (as well as IDEAL and IDEAL-UV) have al-
most identical error spectra at scales larger than 200 km at 1-h
lead time with very little error growth at these scales (e.g.,
Figs. 6a,c,d,f), while REAL-UV (IDEAL-UV) has slightly
smaller error spectra at scales smaller than 200 km than
REAL (IDEAL), again confirming that incomplete descrip-
tions of uncertainties in terms of perturbed atmospheric state
variables may lead to underestimated error growth rates. The
smaller-scale U errors become indistinguishable the earliest
as the forecasts continue, followed by larger-scale errors be-
coming progressively closer across the ensembles (Figs. 7c–f).

Based on the analyses of temporal evolutions of error spec-
tra of these six ensembles, it is found that the upscale error
growth may have played a dominant role in this event based
on the error growth characteristics, and its importance is in-
sensitive to the structure of initial large-scale uncertainties. It
also shows that the error growth characteristics of variables
that do not have initial uncertainties (i.e., U error spectra of
REAL-Q and IDEAL-Q and Qv error spectra of REAL-UV
and IDEAL-UV) will show characteristics of up-amplitude
error growth, but their error growth ratios reveal that error
growth at smaller scales and their upscale transfer still likely
dominates their error growth processes. The analyses so far
are performed completely in error-spectrum space, and next,
we will examine their evolutions in physical space.

4. Horizontal and vertical evolutions of forecast
uncertainties at different scales

To complement previous spectrum analyses and provide
more insights into how forecast errors grow, this section

FIG. 9. Temporal evolution (for the first 12 h) of the domain-average standard deviation of (top) Qv (in kg kg21) and (bottom)U (in m s21) at
the (left) small (,50 km), (center) medium (50–200 km), and (right) large (.200 km) scales.
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examines how ensemble spread at different scales evolves in
the physical space. We first calculate the gridwise ensemble
spread (in terms of standard deviation) of different state vari-
ables, then decompose the ensemble spread into three bands
of scales: small scale (,50 km), medium scale (50–200 km),
and large scale (.200 km). The threshold of 200 km is chosen
based on the characteristics that the error spectra of initial un-
certainties of REAL, REAL-Q, and REAL-UV show a rapid
decrease when moving toward smaller scales across ;200 km,
and those of IDEAL, IDEAL-Q, and IDEAL-UV peak at
300 km; the threshold of 50 km is chosen as an intermediate
value between 200 km and the smallest resolvable scale of the
ensembles (6 times the model’s grid spacing, or 18 km here).

The previous spectrum analyses suggest that error growth
at smaller scales during the first several hours is very similar
among the six ensembles. This is supported by Fig. 8, which
shows the small-scale and large-scale Qv spread at the first
model level after one hour of forecast as an example. The
small-scale errors at this time are very similar among the six
ensembles, although the magnitudes of the errors in REAL-Q
and IDEAL-Q (Figs. 8b,e) are smaller than the other four
ensembles, which is consistent with their slightly smaller Qv
error spectra at this time (Fig. 4b). In fact, the temporal evolu-
tion of small-scale errors for all six ensembles are almost par-
allel to each other during the first several hours of forecast
(Fig. 9a). On the other hand, the large-scale errors of REAL-Q
(IDEAL-Q) have very similar structures and magnitudes with

REAL (IDEAL) and strongly resemble their structures of
initial uncertainties (e.g., Fig. 2). Large-scale Qv errors of
REAL-UV and IDEAL-UV show completely different struc-
tures with overall lower values than the other four ensembles.
Yet there are relatively higher values in REAL-UV and
IDEAL-UV collocated with larger small-scale Qv errors
(Figs. 8c,f), consistent with the error spectra analysis (Figs. 5c,f)
that isolated features in the physical space can project to a wide
range of wavenumbers in the spectral space.

To quantify the evolutions of errors that originate from the
initial large-scale uncertainties and serve as baselines of error
evolution at different scales (primarily at the large scale), two
additional “fake-dry” experiments were executed by turning
off the cumulus parameterization scheme and latent heating
associated with the microphysical parameterization scheme of
the REAL and IDEAL ensembles. In this way, the small-
scale error amplification associated with latent heating is elim-
inated, and its upscale transfer is also therefore excluded.
These two “fake-dry” ensembles are denoted as “REAL-
DRY” and “IDEAL-DRY” in Fig. 9. We can see in Fig. 9a
that small-scale Qv error growth in REAL-DRY and IDEAL-
DRY are much slower compared with the other ensemble.
This slow small-scale growth is associated with interactions
between hydrometeors and water vapor within the micro-
physical scheme (that is not turned off). However, since these
interactions have no latent heating and therefore no amplifi-
cation and upscale transfer of the small-scale errors, there are

FIG. 10. Vertical distributions of Qv standard deviation (in kg kg21) at (top) small (,50 km), (middle) medium (50–200 km), and
(bottom) large (.200 km) scales at (from left to right) 0-, 1-, 4-, and 12-h forecast lead times, respectively.
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only limited error growth at the medium scale (Fig. 9b) and
almost no growth at all at the large scale (Fig. 9c) in REAL-
DRY and IDEAL-DRY. This behavior also confirms the in-
ability of the initial large-scale uncertainties in REAL or
IDEAL to amplify.

The similarities and differences of Qv errors at different
scales among the six ensembles also occur at other levels (fig-
ure not shown), as well as their vertical distributions of level
averages (Fig. 10). Despite very different vertical structures
and magnitudes for different experiments at different scales
in their ICs (Figs. 10a,e,i), all six experiments show very simi-
lar vertical structure at the small scales at the 1-h lead time
(Fig. 10b). On the other hand, although vertical structures of
REAL and REAL-Q (IDEAL and IDEAL-Q) are also very
similar at medium and large scales, REAL-UV (IDEAL-UV)
shows a distinctly different vertical structure (Figs. 10f,j).
These characteristics are consistent with what we have seen in the
horizontal distributions of errors at different scales in Fig. 8.

As the forecasts extend, the distributions of errors at small
scales remain similar across the six ensembles (Figs. 10c,d).
On the other hand, as the small-scale errors saturate after
about 3–4 h (e.g., Figs. 4 and 5), they start to transfer to rela-
tively larger scales. At the medium scale, after a 2-h period
of no error growth at the beginning of the forecast (Fig. 9b),
errors across the six ensembles become very similar at 4-h
forecast lead time both horizontally (Fig. 11) and vertically
(Fig. 10g). At the same time, large-scale Qv errors grow very

slowly as shown by the domain-average large-scale Qv stan-
dard deviation and compared with the “fake-dry” baselines
(Fig. 9c), except for REAL-UV and IDEAL-UV. This is con-
sistent with the temporal evolutions of their respective error
spectra at larger scales that almost do not increase for the first
several hours (Figs. 5a,b,d,e). Additionally, the large-scale er-
rors of REAL and REAL-Q (IDEAL and IDEAL-Q) remain
relatively similar to each other (Figs. 10k and 11a,b,d,e) as
well as how they look like three hours earlier (Figs. 10j and
8a,b,d,e), and the magnitude of the large-scale errors remain
largely unchanged if we compare the contours’ values in Figs. 8
and 11. These characteristics suggest that the evolution of the
large-scale errors until this time is primarily advection rather
than amplification.

As the forecast lead time increases, large-scale errors of the
six ensembles also start to become more and more alike both
vertically (Fig. 10l) and horizontally (Fig. 12), despite their
different initial uncertainty structures (Fig. 2) and very differ-
ent earlier evolutions (Figs. 8 and 11). This suggests that the
errors grown from smaller scales to larger scales have con-
cealed the evolution (e.g., primarily advection with little
growth as in the “fake-dry” baselines) of errors originated
from the large scale. Additionally, domain-average large-scale
error growth starts to speed up and deviate from the “fake-dry”
baselines (Fig. 9c). Eventually, after 6–12 h, the errors of the six
ensembles with different structures of initial uncertainties become
qualitatively indistinguishable and impossible to trace back to

FIG. 11. As in Fig. 8, but for medium-scale (shaded) and large-scale (contoured every 0.25 on a base-10 logarithmic scale) at 4-h forecast
lead time.
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their different initial structures (Fig. 12), and their outcomes at
the end of the forecasts in terms of the accumulated rainfall are
also qualitatively identical (Fig. 3).

Many previous studies have extensively examined the phys-
ical processes that are responsible for the growth and upscale
transfer of smaller-scale errors to larger scales (e.g., Selz and
Craig 2015; Bierdel et al. 2018; Baumgart et al. 2019; Selz et al.
2022). They found that moist convection (latent heat release)

is primarily responsible for the amplification and saturation of
errors at small (cloud and convective) scale; gravity wave is
responsible for the outward propagation of the small-scale er-
rors; geostrophic adjustment is responsible for transferring
the propagated small-scale errors to more geostrophic bal-
anced large-scale errors. Here, we examine the power spectra
of horizontal divergence (simply “divergence” hereafter) and
vertical vorticity (simple “vorticity” hereafter) of REAL’s

FIG. 12. As in Fig. 8, but for large-scale at 12-h (shaded) and 30-h (contoured every 0.25 on a base-10 logarithmic scale) forecast lead times.

FIG. 13. (a) Power spectra of logarithmic-scale ensemble averages of horizontal divergence (thick lines) and vertical
vorticity (thin lines) of REAL’s ensemble perturbations at 1-, 3-, 6-, and 12-h lead times and (b) temporal evolutions
of Rossby numbers between horizontal divergence and vertical vorticity calculated using REAL’s perturbations de-
composed into small, medium, and large scales. In (b), thin lines are Rossby numbers of each ensemble member and
thick lines are the average of the ensemble members’ Rossby numbers.
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forecast ensemble perturbations (errors) of wind, as well as
the ratios between the domain averages of these two quanti-
ties [i.e., “Rossby number” defined in Selz and Craig (2015)
and Bierdel et al. (2018)]. Divergence and vorticity represent
the irrotational and nondivergent wind components, respec-
tively, which are not straightforward to derive using the
Helmholtz decomposition on a regional model. These two
quantities can reveal the contributions of moist convection
and geostrophic adjustment to the overall error growth pro-
cesses when calculated using the ensemble perturbations of
wind.

Figure 13a shows that at the beginning (1-h forecast lead
time) divergence of the wind perturbations is greater than the
vorticity at smaller scales and vice versa at larger scales, lead-
ing to large small-scale Rossby number and small medium-
and large-scale Rossby numbers at 1 h in Fig. 13b. However,
smaller-scale vorticity quickly catches up with divergence, while
at larger scales vorticity virtually does not increase for the first
several hours when divergence steadily increases (Fig. 13a), con-
sistent with the stagnation of error growth at these scales. This
suggests that the geostrophic adjustment (vorticity) is becoming
more important than the convective processes (divergence) at
the smaller scales as the forecast extends, leading to decreasing
small-scale Rossby number (Fig. 13b); at the same time,
medium- and large-scale Rossby numbers increase as their
divergence strengthen, although medium-scale Rossby number
also starts to decrease after 3 h as vorticity (and hence geo-
strophic adjustment) strengthen (Fig. 13b). Last, large-scale
Rossby number also starts to decrease after 6–7 h as the result

of increasing geostrophic adjustment. After 12 h, vorticity is
greater than divergence for most wavelengths (Fig. 13a), and
the Rossby numbers at all three scale ranges are smaller than 1
(Fig. 13b). The evolutions of divergence, vorticity, and Rossby
number are generally consistent with the upscale-growth mech-
anisms summarized above that convective activity leads the er-
ror amplification, followed by the geostrophic adjustment that
transfers errors from smaller to larger scales.

The above evolution of Qv errors at different scales also holds
for U, although there are notable differences. Despite vastly dif-
ferent structures in the initial perturbations (Figs. 14a,e,i), all
six ensembles show very similar small-scale U errors at the 1-h
forecast lead time both vertically (Fig. 14b) and horizontally
(Fig. 15). In the meantime, the large-scale errors of REAL
and REAL-UV (IDEAL and IDEAL-UV) also remain similar
(Figs. 14j and 15a,c,d,f) and different from those of REAL-Q
(IDEAL-Q; Figs. 14j and 15b,e). However, the onset of U error
growth at the large scale is earlier than that of Qv and as early
as 2 h after the start of the forecast (Fig. 9f). In fact, at 4-h lead
time, in addition to very similar horizontal and vertical structures
at the medium scale (Figs. 14g and 16), the large-scale errors of
the six ensembles also start to look similar to each other both
vertically (Fig. 14k) and horizontally (Fig. 16), even for the ex-
periments that do not contain U initial uncertainties, such as
REAL-Q (Fig. 16b) compared with REAL (Fig. 16a), and
IDEAL-Q (Fig. 16e) compared with IDEAL (Fig. 16d), espe-
cially at regions collocated with larger medium-scale errors.
The similarity of large-scale U errors at 4-h lead time suggests
that the upscale error transfer in U starts earlier than Qv. This

FIG. 14. As in Fig. 9, but for the vertical distribution of U standard deviations.
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earlier onset of upscale error transfer in U could be associated
with the more direct impact of U and V in triggering and orga-
nizing convection than Qv, and the exact reason deserves fur-
ther investigation.

Based on the analyses and comparisons of errors at differ-
ent scales for the six ensembles, it is clear that the error
growth processes at the small scales at the beginning of the
forecasts are insensitive to the structure of the initial pertur-
bations. The evolutions of the medium- and large-scale errors
confirm the upscale transfer of small-scale errors which lead
to similar structures of medium- and large-scale errors across
the six ensembles. The evolution of the large-scale errors dur-
ing the first several hours}when small- and medium-scale
errors are too small and not comparable to the large-scale
errors}are primarily advection instead of amplification, and
they are eventually overwhelmed by the errors that grow up-
scale from smaller scales.

5. Conclusions and discussion

This study examines the impact of the structure of large-
scale initial uncertainties with unobservably small amplitude
on the intrinsic predictability’s error growth characteristics.
Six convection-allowing ensembles, each with 40 members,
are executed for a record-breaking rainfall event that hap-
pened on 19–20 July 2021 in China, and they are initialized with
different structures of large-scale small-amplitude initial uncer-
tainties: the REAL ensemble adopted initial perturbations

derived from the Global Ensemble Forecast System (GEFS),
which has a grid spacing of 0.583 0.58, but multiplied by a factor
of 0.1, to represent realistic, multivariate, flow-dependent initial
uncertainties; the IDEAL ensemble adopted initial perturba-
tions generated by the same equation that Weyn and Durran
(2017, 2019) used to represent idealized, univariate, isotropic
initial uncertainties; the REAL-Q and REAL-UV ensembles
only include REAL’s initial uncertainties in Qv and U/V, re-
spectively; and the IDEAL-Q and IDEAL-UV ensembles
only include IDEAL’s initial uncertainties in Qv and U/V, re-
spectively. It should be noted that these initial uncertainties
aremuch smaller than current global model analysis uncertain-
ties, and this study examines the error growth characteristics in
the intrinsic predictability regime.

Through both spectrum-space and physical-space analyses,
it is shown that the error growth characteristics in this event
are insensitive to the structure of the imposed large-scale
small-amplitude initial uncertainties of the ensembles. For all
six ensembles, forecast uncertainties always occur at similar
locations with similar magnitude/amplitude at relatively
smaller scales. For the first several hours, small-scale errors
grow at similar locations with similar rates. On the contrary,
large-scale errors grow very little, and further examination
suggests that it is primarily advection rather than amplifica-
tion that controls their evolutions during the first several
hours. As the forecast extends, small-scale errors approach
saturation in all six ensembles and start to transfer upscale;
they overwhelm the errors at progressively larger scales and

FIG. 15. As in Fig. 8, but forU.
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make errors at these scales}for which the structures were dif-
ferent at the beginning}become similar. The error spectra
also show clear upscale error growth characteristics regardless
of the structures of the initial uncertainties: errors grow the
fastest at relatively smaller scales; as the forecasts extend and
errors at smaller scales saturate, the scales at which the errors
grow the fastest gradually shift toward larger scales, accompa-
nied by decreases in the fastest error growth rates.

The results also show that the impact of not including co-
herent uncertainties or not considering the covariances across
the primary atmospheric state variables should not be over-
looked. When an incomplete set of uncertainties are consid-
ered, it is very likely that the error growth rate}primarily at
the smaller scales}will be underestimated. Compared with
REAL and IDEAL which include initial uncertainties of T,
Qv, U, and V, REAL-UV and IDEAL-UV that include U
and V uncertainties show comparable error growth rates at
the beginning, while REAL-Q and IDEAL-Q that include
only Qv uncertainties grow notably slower at the smaller
scales. This could be because perturbations in U and V can
trigger deep convection more easily than Qv perturbations.
U and V perturbations can also directly affect Qv through
advection, while Qv perturbations affect U and V more indi-
rectly through their impact on convective activities. Further-
more, in situations where the perturbed variable and the
examined variable are inconsistent, e.g., where uncertainties
in Qv are imposed but the evolution of forecast errors in ki-
netic energy are investigated, a more up-amplitude evolution

of the error spectra could show up while the error spectra of
the perturbed variable still show an upscale evolution, and
these different behaviors in the error spectra of perturbed
versus unperturbed variables could lead to incomplete conclu-
sions. The broad wavenumber projection of localized features
in the physical space is also reported by Durran et al. (2013)
and Lloveras et al. (2022).

It should be pointed out that the sensitivities (or rather,
insensitivities) of error growth characteristics to small-amplitude
large-scale initial uncertainties in this study are tested in one
case. The amplitudes and the structures of the initial uncer-
tainties applied in this study are likely incapable of fundamen-
tally changing the environmental conditions and hence the
regions where convection initiations are more favored. As
Nielsen and Schumacher (2016) and Weyn and Durran (2019)
pointed out, the sensitivity of forecast error to large- and
small-scale initial uncertainties and associated error growth
mechanisms is determined by the environmental conditions,
primarily synoptic-scale forcing. It is possible that a stronger
sensitivity of forecast error to the structure of the small-amplitude
large-scale initial uncertainties could emerge under a different
situation of synoptic-scale forcing. For example, the large-scale
errors are likely to amplify simultaneously with small-scale
errors under a strong synoptic-scale forcing scenario with
abundant baroclinic instability, and the impact of large-scale
initial uncertainties’ structures, as well as the relative contri-
butions of upscale and up-amplitude error growth processes,
could be different from what was observed in this study. The

FIG. 16. As in Fig. 11, but for U.
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contributions of upscale error growth from smaller scales and
up-amplitude error growth from larger scales can be appro-
ximated using “fake-dry” experiments that eliminate small-
scale error amplification and upscale growth, similar to the
comparisons performed in section 4 of this study. More sys-
tematic evaluations of events covering a broader range of syn-
optic-scale forcing are warranted. Last, specific characteristics
of the error growth processes in this study, such as the under-
estimation of small-scale error growth speed when an incom-
plete set of initial uncertainties is used, and the different onset
times of upscale error transfer for different atmospheric state
variables, also need to be further investigated.
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