

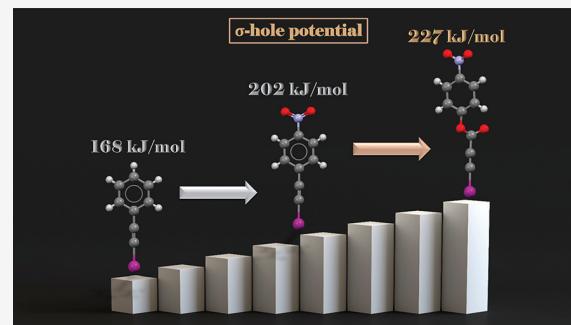
“Triply Activated” Phenyl 3-Iodopropiolates: Halogen-Bond Donors with Remarkable σ -Hole Potentials

Published as part of a *Crystal Growth and Design* virtual special issue in Celebration of the Career of Roger Davey

Vinu V. Panikkattu, Adam S. Huber, Abhijeet S. Sinha, Boris B. Averkiev, and Christer B. Aakeröy*

Cite This: *Cryst. Growth Des.* 2022, 22, 1538–1542

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

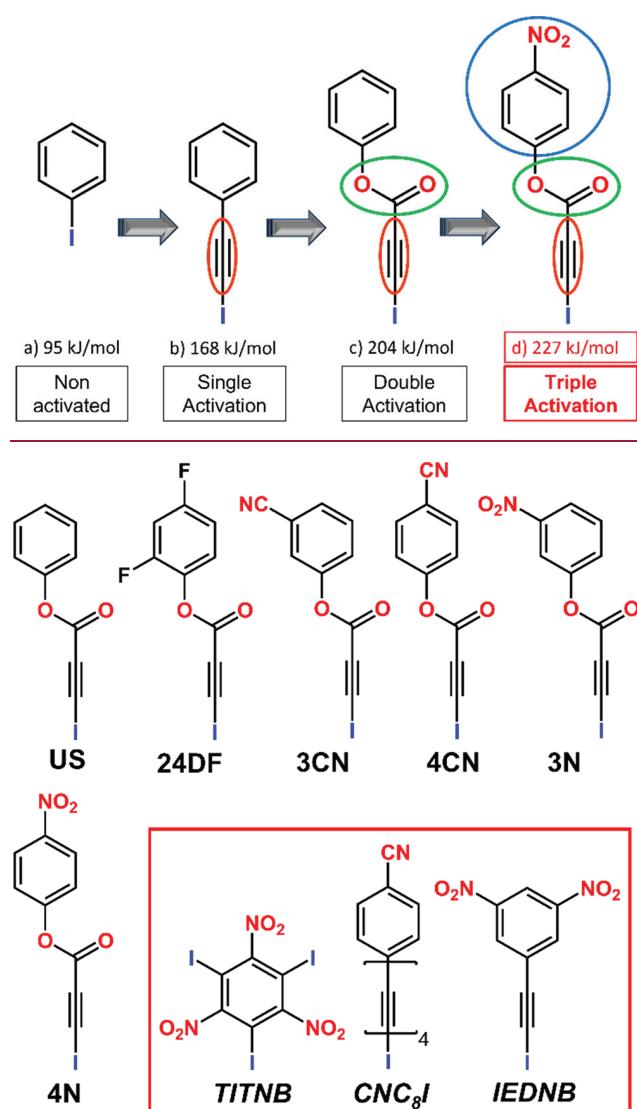
ABSTRACT: The ability of halogen-bond donors to form strong and directional intermolecular interactions remains integral to their prospects of becoming reliable synthetic tools for the bottom-up assembly of functional materials. An activation strategy involving three different electron-withdrawing groups in parallel, was employed in order to develop new halogen-bond donors possessing some of the highest σ -hole potentials reported to date.

The ability to design and assemble functional materials possessing specific supramolecular architectures requires an effective toolkit comprising a range of reliable noncovalent interactions (NCI). While hydrogen bonds have been the most commonly used NCI in supramolecular chemistry,² the emergence of versatile σ -hole interactions,⁴ primarily halogen bonds,⁶ have provided new and exciting opportunities for more complex orthogonal design strategies in the realm of crystal engineering. σ -Hole interactions, resulting from an attraction between an electron-deficient σ -hole on a halogen atom, and an electron-rich region on a Lewis base, can offer high directionality and tunability, which make them well-suited for the directed assembly of desired and robust supramolecular architectures.⁷ These properties have provided a foundation for halogen-bond-based structural chemistry with applications in a wide range of fields, from catalysis,^{8,9} luminescence,¹⁰ nonlinear optics,^{11,12} energetics,¹³ gels,¹⁴ and polymers,¹⁵ to molecular recognition,¹⁶ self-assembly,^{17,18} and drug discovery.¹⁹ The strength of the halogen bond is directly related to the magnitude of the σ -hole, for which molecular electrostatic potentials are frequently used as a yardstick.^{20,21} Stronger halogen bonds lead to synthon robustness, which means that we need access to an extensive library of molecules possessing large σ -hole potentials in order to impart supramolecular synthetic reliability.

Several strategies have been described in the literature for designing molecules capable of forming strong halogen bonds. Typically, this is accomplished by “activation” of the halogen-bond donor by adding an electron withdrawing group (EWG) to the molecular backbone, which reduces the electron density

at the σ -hole, thereby strengthening the resulting halogen bond.¹ Attaching the halogen atom to a benzene ring through an sp-hybridized carbon atom which further polarizes and enhances the σ -hole is a second strategy that has been employed.²² There are also a few reports where both an sp-hybridized carbon atom and an EWG have been used together in “doubly-activated” halogen-bond donors.^{5,23,24} In the work presented herein, we now describe a class of molecules, combining the electron withdrawing ability of an sp-hybridized carbon atom with two different electron withdrawing moieties in parallel to produce a “triply activated” σ -hole, possessing among the highest σ -hole potentials reported in the literature to date. **Scheme 1** illustrates our approach showing how the σ -hole potential on an iodine atom in iodobenzene (95 kJ/mol) can be enhanced systematically by first introducing an sp-hybridized carbon atom (168 kJ/mol), then by adding an electron withdrawing ester group between the C≡C and the aromatic ring (204 kJ/mol), and finally by adding an EWG to the aromatic backbone to give a triply activated halogen-bond donor (227 kJ/mol).

With this strategy, we developed our target library (**Figure 1**) consisting of the doubly activated unsubstituted parent


Received: December 8, 2021

Revised: January 21, 2022

Published: January 27, 2022

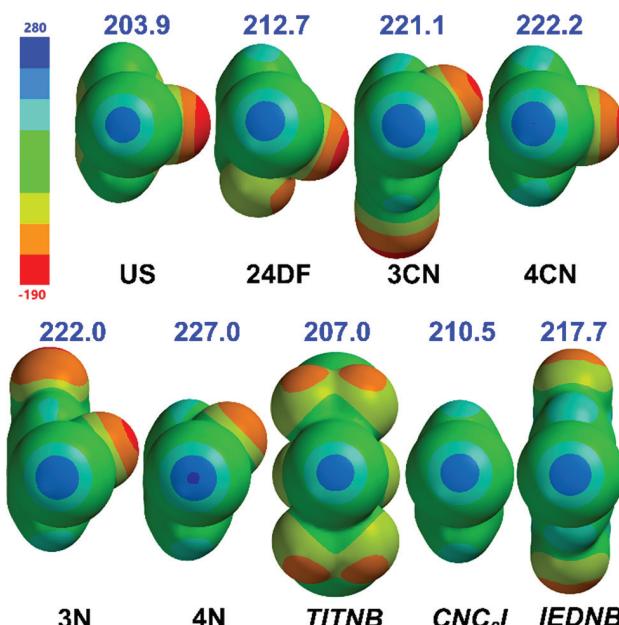
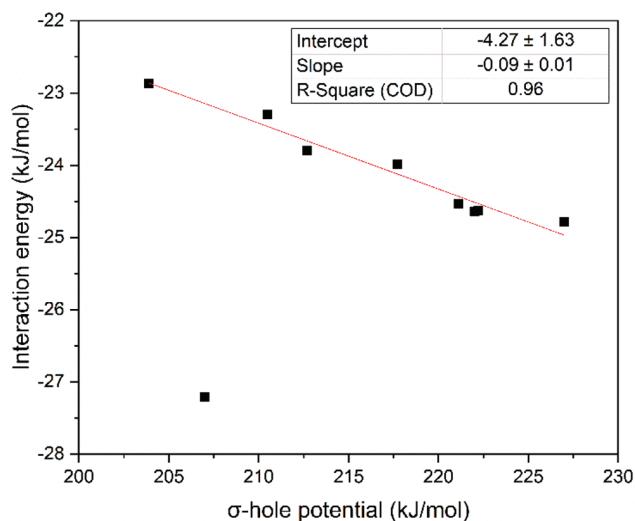

Scheme 1. (a–d) Strategy Employed in Creating Triply Activated XB Donors, Showing the σ -hole Potentials on the Iodine Atom Computed Using DFT at the B3LYP/6-311+ +G Level of Theory at iso = 0.002**

Figure 1. Library of target molecules explored in this study, along with the benchmark molecules (red box) from literature TITNB,¹ CNC₈I,³ and IEDNB.⁵

molecule (**US**) as a benchmark, along with five triply activated esters: 2,4-difluoro (**24DF**), 3-cyano (**3CN**), 4-cyano (**4CN**), 3-nitro (**3N**), and 4-nitro (**4N**). The σ -hole potential of 227 kJ/mol for **4N** far exceeds those reported for other strong halogen-bond donors such as 1,3,5-triiodo-2,4,6-trinitrobenzene (**TITNB**, 207.0 kJ/mol),¹ or doubly activated 4-(iodoocta-1,3,5,7-tetrayn-1-yl)benzonitrile (**CNC₈I**, 208.4 kJ/mol),^{3,24} and 1-(iodoethynyl)-3,5-dinitrobenzene (**IEDNB**, 217.7 kJ/mol).⁵ These known molecules have also been included as benchmark comparisons.

In order to assess the effect of different EWGs on the σ -hole of the iodine atom, molecular electrostatic potential surface maps were generated for all molecules at the B3LYP/6-311+ +G** level of theory at iso = 0.002 (Figure 2). As expected, the doubly activated **US** has the lowest σ -hole potential, and **4N** has the highest. The cyano (**3CN**, **4CN**) and nitro (**3N**,

Figure 2. MEP surfaces computed at the B3LYP/6-311+ +G** level of theory at iso = 0.002 showing the σ -hole potential (top, in kJ/mol) on the iodine atoms of targets and benchmark compounds TITNB,¹ CNC₈I,³ and IEDNB⁵ explored in this study.


4N) targets have a higher σ -hole potential than all of the benchmark molecules. Cyano-substituted positional isomers **3CN** and **4CN** seem to have a negligible positional influence on the σ -hole potential, whereas this effect is much more enhanced with nitro substituents, where para-substituted **4N** has a σ -hole potential 5 kJ/mol higher than its meta-substituted positional isomer **3N**. Overall, the σ -hole potential observed on the iodine atoms increase in the order **US** > **TITNB** > **CNC₈I** > **24DF** > **IEDNB** > **3CN** > **3N** > **4CN** > **4N**.

In order to assess if the σ -hole potential translates into halogen-bond strength, counterpoise (CP) corrected interaction energy (IE) calculations were carried out on all targets and ammonia as a model acceptor, at the MP2/6-311+ +G** level of theory. The resulting I...NH₃ halogen-bond distances and the associated % reduction in their combined van der Waals radii²⁵ are summarized in Table 1.

Table 1. σ -Hole Potential Computed at B3LYP/6-311+ +G** at iso = 0.002 and Counterpoise Corrected Interaction Energies and Halogen-Bond Distances for Dimers with Ammonia Computed at MP2/6-311+ +G**

target	σ -hole potential	interaction energy	calculated XB distance	
	kJ/mol	kJ/mol	Å	% vdW reduction
US	203.9	-22.9	3.0	14.3
24DF	212.7	-23.8	3.0	14.6
3CN	221.1	-24.5	3.0	14.8
4CN	222.2	-24.6	3.0	14.8
3N	222.0	-24.6	3.0	14.8
4N	227.0	-24.8	3.0	14.9
TITNB ¹	207.0	-27.2	2.9	16.9
CNC ₈ I ³	210.5	-23.3	3.0	14.5
IEDNB ⁵	217.7	-24.0	3.0	14.6

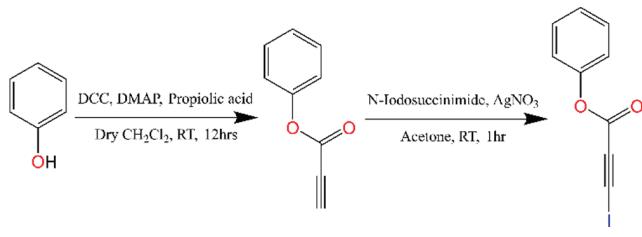

The results show that **US**, which has the smallest σ -hole potential, has the lowest IE with ammonia at -22.87 kJ/mol , while **4N** with the highest σ -hole potential has the highest IE with ammonia at -24.78 kJ/mol . While **TITNB** shows an unusually large computed IE compared to its σ -hole potential, a feature previously observed when it was compared to **IEDNB**,¹ all the other targets and benchmark molecules follow the trend of a higher σ -hole potential resulting in a stronger interaction with ammonia (Figure 3), as reflected by its computed XB distance and % vdw reduction, Table 1.

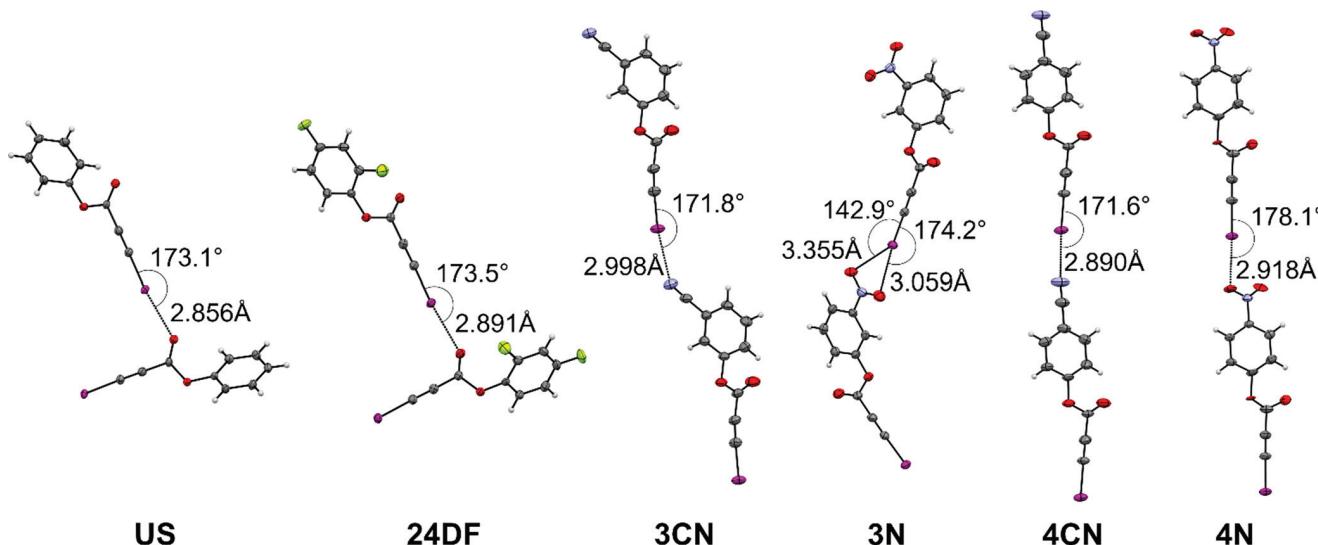
Figure 3. Plot of σ -hole potentials for target and benchmark molecules explored in this study versus their CP corrected IEs with a model acceptor ammonia. The **TITNB** outlier is excluded from the line of best fit. IE computed at MP2/6-311++G** and σ -hole potential computed at B3LYP/6-311G++G** at iso = 0.002.

All the targets in this study were synthesized using modified versions of previously reported procedures (Scheme 2).^{26,27}

Scheme 2. Pathway Used to Synthesize Targets

The first step involves a Steglich esterification,²⁸ where the corresponding phenol is first dissolved in dry CH_2Cl_2 and cooled in ice, to which propionic acid is first added, followed by a mixture of *N,N*'-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP) dissolved in dry CH_2Cl_2 and stirred at room temperature (RT) to give the corresponding phenyl propiolate intermediate. This is then reacted with *N*-iodosuccinimide (NIS) in the presence of a catalytic amount of AgNO_3 in acetone at RT to give the corresponding phenyl 3-iodopropiolate. Detailed synthetic procedures and characterization data are outlined in the Supporting Information.

Before the crystal structures of the targets are examined, it is informative to consider which intermolecular interactions are possible and plausible. Each compound brings a single


halogen-bond donor, the triply activated iodine atom, but there are multiple options for acceptor sites. First, the carbonyl oxygen atom of the ester group, which is common to all targets, can act as a XB acceptor, but there is possible competition from the EWGs present on the aromatic ring, $-\text{CN}$, or $-\text{NO}_2$, respectively, in four of the targets (**3CN**, **4CN**, **3N**, **4N**). In addition to these directional halogen bonds, it is expected that $\pi-\pi$ stacking would also be present in all six crystal structures.

In the crystal structure of the double-activated **US**, which has only one major bond donor and accepting sites, the expected $\text{I}\cdots\text{O}=\text{C}$ XB is observed, $2.856(2) \text{ \AA}$ with a $173.13(8)^\circ$ $\text{C}-\text{I}\cdots\text{O}$ XB bond angle (Figure 4, Table 2). The addition of two fluorine atoms to the aromatic backbone, **24DF**, increases the σ -hole potential but does not add any competing XB acceptors. Consequently, the main XB is an $\text{I}\cdots\text{O}=\text{C}$; $2.891(2) \text{ \AA}$ and $173.51(11)^\circ$.

The addition of cyano (**3CN**, **4CN**) and nitro (**3N**, **4N**) groups to the molecular backbone brings potential competitors to the $\text{C}=\text{O}$ acceptor, and in the crystal structure of **3CN**, the main interaction involves a halogen bond to the $\text{C}\equiv\text{N}$ moiety, $r(\text{I}\cdots\text{N}) 2.998(3) \text{ \AA}$ and $\theta(\text{C}-\text{I}\cdots\text{N}) 171.76(10)^\circ$. The same XB is found in the structure of **4CN**, $r(\text{I}\cdots\text{N}) 2.890(7) \text{ \AA}$ and $\theta(\text{C}-\text{I}\cdots\text{N}) 171.6(3)^\circ$.

In the crystal structure of **3N**, there is a bifurcated $\text{I}\cdots\text{O}/\text{O}$ XB to both oxygen atoms of the nitro group, $r(\text{I}\cdots\text{O}(14)) 3.355(3) \text{ \AA}$ and $\theta(\text{C}-\text{I}\cdots\text{O}(14)) 142.87(9)^\circ$ and $r(\text{I}\cdots\text{O}(15)) 3.059(3) \text{ \AA}$ and $\theta(\text{C}-\text{I}\cdots\text{O}(15)) 174.21(9)^\circ$ respectively. This suggests that a “supramolecular chelating effect” associated with two weaker interactions to the nitro group is preferred to a single interaction with the $\text{C}=\text{O}$ moiety of the ester group. In contrast, in the crystal structure of the **4N** target, which displayed the largest positive σ -hole potential, there is a single $\text{I}\cdots\text{O}$ XB to one oxygen atom of the nitro group, $r(\text{I}\cdots\text{O}) 2.918(4) \text{ \AA}$ and $\theta(\text{C}-\text{I}\cdots\text{O}) 178.05(18)^\circ$. The % vdw reductions in these XBs are given in Table 2, but they do not correlate with the changing σ -hole potential, which may be explained by the fact that the XB acceptor moieties are different across this series, spanning from $\text{C}=\text{O}$ to $-\text{CN}$ and $-\text{NO}_2$.

In summary, in this work, we have explored a new “triple activation” strategy, where combining three different EWGs in parallel to activate a halogen atom resulted in targets with exceptional σ -hole potentials that are among the highest observed to date in the literature. Even higher than molecules like **CNC₈I**²⁴ which combine multiple of the same EWGs (four $\text{C}\equiv\text{C}$ in succession) but result in a lower σ -hole potential. All the triply activated targets showed a comparable or higher % reduction in the XB vdw radii with equal or more linear XB angles when matched against the three literature benchmark molecules. This strategy also produced compounds possessing excellent thermal stability compared to **TITNB**²⁹ and **CNC₈I**²⁴ owing to the versatility of varying the nature and position of the three different EWGs. An excellent correlation between increasing σ -hole potentials and increasing IE with ammonia was obtained, confirming that calculated σ -hole potentials can be used as a suitable guideline for estimating the resulting halogen-bond strengths of yet to be synthesized halogen-bond donors. This “triple activation” can be broadly applied to any σ -hole interaction and provides a versatile tool to a chemist designing functional materials to dial-in desired properties toward a wide range of applications. In the next phase of this project, we will cocrystallize these targets with different

Figure 4. Primary halogen bonds in the crystal structures of five “truly activated” XB donors. The unsubstituted parent (**US**) is included for comparison.

Table 2. σ -Hole Potential Computed at B3LYP/6-311+ +G** at iso = 0.002 and XB Distances and Angles from Crystal Structures

target	σ -hole potential	experimental XB distance		XB angle
	kJ/mol	Å	% vdW reduction	
US	203.9	2.86	18.4	173.1
24DF	212.7	2.89	17.4	173.5
3CN	221.1	3.00	15.1	171.8
4CN	222.2	2.89	18.1	171.6
3N	222.0	3.06	12.6	174.2
		3.36	4.1	142.9
4N	227.0	2.92	16.6	178.1
TITNB ¹	207.0	3.14	10.3	165.5
CNC ₈ I ³	210.5	2.89	18.2	178.5
IEDNB ⁵	217.7	3.06	12.6	168.2

coformers, in order to establish their effectiveness and reliability in crystal engineering and supramolecular synthesis.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.cgd.1c01450>.

Synthetic procedures, theoretical calculations, spectral data, and crystallographic information table ([PDF](#))

Accession Codes

CCDC 2121642–2121646 and 2121648 (US, 24DF, 3CN, 4CN, 3N, and 4N) contain the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Author

Christer B. Aakeröy – Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States;

✉ orcid.org/0000-0002-8947-2068; Email: aakeroy@ksu.edu

Authors

Vinu V. Panikkattu – Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States;
 ↗ orcid.org/0000-0001-7498-3722
 Adam S. Huber – Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
 Abhijeet S. Sinha – Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States;
 ↗ orcid.org/0000-0001-5610-2848
 Boris B. Averkiev – Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.cgd.1c01450>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors would like to acknowledge the NOTICXE fellowship which partially funded V.V.P. We also acknowledge the NSF-MRI Grant CHE-2018414, which was used to purchase the single-crystal X-ray diffractometer and associated software employed in this study.

■ REFERENCES

- (1) Goud, N. R.; Bolton, O.; Burgess, E. C.; Matzger, A. J. Unprecedented Size of the σ -Holes on 1,3,5-Triodo-2,4,6-trinitrobenzene Begets Unprecedented Intermolecular Interactions. *Cryst. Growth Des.* **2016**, *16* (3), 1765–1771.
- (2) Desiraju, G. R. Reflections on the Hydrogen Bond in Crystal Engineering. *Cryst. Growth Des.* **2011**, *11* (4), 896–898.
- (3) Pigulski, B.; Gulia, N.; Męcik, P.; Wieczorek, R.; Arendt, A.; Szafert, S. Crystal Engineering of 1-Halopolyyynes by End-Group Manipulation. *Cryst. Growth Des.* **2019**, *19* (11), 6542–6551.
- (4) Politzer, P.; Murray, J. S.; Clark, T.; Resnati, G. The σ -hole revisited. *Phys. Chem. Chem. Phys.* **2017**, *19* (48), 32166–32178.
- (5) Aakeröy, C. B.; Wijethunga, T. K.; Desper, J.; Đaković, M. Crystal Engineering with Iodoethynylnitrobenzenes: A Group of

Highly Effective Halogen-Bond Donors. *Cryst. Growth Des.* **2015**, *15* (8), 3853–3861.

(6) Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances. *Acc. Chem. Res.* **2013**, *46* (11), 2686–2695.

(7) Bhattarai, S.; Sutradhar, D.; Chandra, A. K. Tuning of halogen-bond strength: Comparative role of basicity and strength of σ -hole. *J. Mol. Struct.* **2021**, *1223*, 129239.

(8) Sutar, R. L.; Huber, S. M. Catalysis of Organic Reactions through Halogen Bonding. *ACS. Catalysis* **2019**, *9* (10), 9622–9639.

(9) Szell, P. M. J.; Zablotny, S.; Bryce, D. L. Halogen bonding as a supramolecular dynamics catalyst. *Nat. Commun.* **2019**, *10* (1), 916.

(10) Bhowal, R.; Biswas, S.; Adiyeri Saseendran, D. P.; Koner, A. L.; Chopra, D. Tuning the solid-state emission by co-crystallization through σ - and π -hole directed intermolecular interactions. *CrystEngComm* **2019**, *21* (12), 1940–1947.

(11) Medved, M.; Iglesias-Reguant, A.; Reis, H.; Góra, R. W.; Luis, J. M.; Zalešný, R. Partitioning of interaction-induced nonlinear optical properties of molecular complexes. II. Halogen-bonded systems. *Phys. Chem. Chem. Phys.* **2020**, *22* (7), 4225–4234.

(12) Cariati, E.; Forni, A.; Biella, S.; Metrangolo, P.; Meyer, F.; Resnati, G.; Righetto, S.; Tordin, E.; Ugo, R. Tuning second-order NLO responses through halogen bonding. *Chem. Commun.* **2007**, No. 25, 2590–2592.

(13) Đunović, A. B.; Veljković, D. Ž. Halogen bonds as a tool in the design of high energetic materials: evidence from crystal structures and quantum chemical calculations. *CrystEngComm* **2021**, *23* (39), 6915–6922.

(14) Meazza, L.; Foster, J. A.; Fucke, K.; Metrangolo, P.; Resnati, G.; Steed, J. W. Halogen-bonding-triggered supramolecular gel formation. *Nat. Chem.* **2013**, *5* (1), 42–47.

(15) Berger, G.; Soubhye, J.; Meyer, F. Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. *Polym. Chem.* **2015**, *6* (19), 3559–3580.

(16) Berger, G.; Frangville, P.; Meyer, F. Halogen bonding for molecular recognition: new developments in materials and biological sciences. *Chem. Commun.* **2020**, *56* (37), 4970–4981.

(17) Saccone, M.; Cavallo, G.; Metrangolo, P.; Pace, A.; Pibiri, I.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bond directionality translates tecton geometry into self-assembled architecture geometry. *CrystEngComm* **2013**, *15* (16), 3102–3105.

(18) Houbenov, N.; Milani, R.; Poutanen, M.; Haataja, J.; Dichiariante, V.; Sainio, J.; Ruokolainen, J.; Resnati, G.; Metrangolo, P.; Ikkala, O. Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale. *Nat. Commun.* **2014**, *5* (1), 4043.

(19) Heidrich, J.; Sperl, L. E.; Boeckler, F. M. Embracing the Diversity of Halogen Bonding Motifs in Fragment-Based Drug Discovery—Construction of a Diversity-Optimized Halogen-Enriched Fragment Library. *Front. Chem.* **2019**, *7*, 9.

(20) Clark, T. σ -Holes. *WIREs Computational Molecular Science* **2013**, *3* (1), 13–20.

(21) Perera, M. D.; Desper, J.; Sinha, A. S.; Aakeröy, C. B. Impact and importance of electrostatic potential calculations for predicting structural patterns of hydrogen and halogen bonding. *CrystEngComm* **2016**, *18* (44), 8631–8636.

(22) Perkins, C.; Libri, S.; Adams, H.; Brammer, L. Diiodoacetylene: compact, strong ditopic halogen bond donor. *CrystEngComm* **2012**, *14* (9), 3033–3038.

(23) Carlucci, L.; Gavezzotti, A. A quantitative measure of halogen bond activation in cocrystallization. *Phys. Chem. Chem. Phys.* **2017**, *19* (28), 18383–18388.

(24) Pigulski, B.; Gulia, N.; Szafert, S. Synthesis of Long, Palladium End-Capped Polyynes through the Use of Asymmetric 1-Iodopolyynes. *Chem.—Eur. J.* **2015**, *21* (49), 17769–17778.

(25) Bondi, A. van der Waals Volumes and Radii. *The. J. Phys. Chem.* **1964**, *68* (3), 441–451.

(26) Hofmeister, H.; Annen, K.; Laurent, H.; Wiechert, R. A Novel Entry to 17α -Bromo- and 17α -Iodoethynyl Steroids. *Angewandte Chemie International Edition in English* **1984**, *23* (9), 727–729.

(27) Balas, L.; Jousseaume, B.; Langwost, B. Improved preparation of aliphatic propynoic esters. *Tetrahedron Lett.* **1989**, *30* (34), 4525–4526.

(28) Höfle, G.; Steglich, W.; Vorbrüggen, H. 4-Dialkylaminopyridines as Highly Active Acylation Catalysts. [New synthetic method (25)]. *Angewandte Chemie International Edition in English* **1978**, *17* (8), 569–583.

(29) Landenberger, K. B.; Bolton, O.; Matzger, A. J. Energetic–Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and Divergent Sensitivity Modifications via Cocrystallization. *J. Am. Chem. Soc.* **2015**, *137* (15), 5074–5079.

Recommended by ACS

Giant Supramolecular Synthons via Cyclic Halogen···Halogen Contacts in Substituted *o*-Xylenes

Nanditha G. Nair, Mahesh Hariharan, *et al.*

MARCH 29, 2022

CRYSTAL GROWTH & DESIGN

READ

Benzo[b]thiophene Fusion Enhances Local Borepin Aromaticity in Polycyclic Heteroaromatic Compounds

Reid E. Messersmith, John D. Tovar, *et al.*

NOVEMBER 14, 2017

THE JOURNAL OF ORGANIC CHEMISTRY

READ

Crystal Engineering of 1-Halopolyyne by End-Group Manipulation

Bartłomiej Pigulski, Sławomir Szafert, *et al.*

SEPTEMBER 18, 2019

CRYSTAL GROWTH & DESIGN

READ

As-Heteropentacenes: An Experimental and Computational Study on a Novel Class of Heteroacenes

Hiroaki Imoto, Kensuke Naka, *et al.*

SEPTEMBER 12, 2018

ORGANIC LETTERS

READ

Get More Suggestions >