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Ensemble-based change detection can improve map accuracies by combining information from multiple datasets.
There is a growing literature investigating ensemble inputs and applications for forest disturbance detection and
mapping. However, few studies have evaluated ensemble methods other than Random Forest classifiers, which
rely on uninterpretable “black box” algorithms with hundreds of parameters. Additionally, most ensemble-based
disturbance maps do not utilize independently and systematically collected field-based forest inventory mea-
surements. Here, we compared three approaches for combining change detection results generated from multi-
spectral Landsat time series with forest inventory measurements to map forest harvest events at an annual time
step. We found that seven-parameter degenerate decision tree ensembles performed at least as well as 500-tree
Random Forest ensembles trained and tested on the same LandTrendr segmentation results and both supervised
decision tree methods consistently outperformed the top-performing voting approach (majority). Comparisons
with an existing national forest disturbance dataset indicated notable improvements in accuracy that demon-
strate the value of developing locally calibrated, process-specific disturbance datasets like the harvest event maps
developed in this study. Furthermore, by using multi-date forest inventory measurements, we are able to
establish a lower bound of 30% basal area removal on detectable harvests, providing biophysical context for our
harvest event maps. Our results suggest that simple interpretable decision trees applied to multi-spectral tem-
poral segmentation outputs can be as effective as more complex machine learning approaches for characterizing
forest harvest events ranging from partial clearing to clear cuts, with important implications for locally accurate
mapping of forest harvests and other types of disturbances.

1. Introduction the spatial and temporal variation in forest harvest patterns and rates at

local to regional scales is essential for understanding the impacts of

Whether for resource management, climate mitigation, or ecosystem
management, policy makers and forest managers require accurate in-
formation describing patterns and rates of forest disturbances (Pickett
and White, 2013). In most mesic temperate forests, including the forests
that dominate the northeastern United States, timber harvesting is the
dominant disturbance (Canham et al., 2013; Masek et al., 2011). Harvest
regimes are strongly influenced by biophysical factors, including forest
type and productivity (Canham et al., 2013) in combination with socio-
economic factors, such as markets, policies, ownership, and population
density (Kittredge et al., 2017; Thompson et al., 2017). Thus, mapping
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changing harvest regimes on forest structure, composition, and
productivity.

Open access to satellite imagery from the Landsat and Copernicus
programs has led to significant advances in automated change detection
approaches (Hansen and Loveland, 2012; Hemati et al., 2021; Kennedy
et al., 2014; Woodcock et al., 2020; Zhu, 2017). Forest disturbance
detection has been at the forefront of many of these advances (Banskota
et al., 2014; Wulder et al., 2012) and remains the most common appli-
cation of Landsat time series analysis (Hemati et al., 2021). However,
forest disturbance maps can vary significantly in their ability to
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characterize different disturbance processes (Cohen et al., 2017; Hansen
et al., 2013) and best practices for detecting and mapping complex non-
stand-replacing disturbances like partial harvests, thinning, and degra-
dation continue to evolve (e.g., Chen et al., 2021; Coops et al., 2020;
Koltunov et al., 2020; Thomas et al., 2021; Tortini et al., 2019; Ye et al.,
2021).

With greater access to imagery, algorithms, and computing re-
sources, there has been an increased emphasis on using ensemble ap-
proaches to characterize forest disturbances including forest harvest
events (e.g., Cohen et al., 2018; Healey et al., 2018). Ensemble ap-
proaches combine the outputs of different classifiers to improve the
performance of a single classifier (Polikar, 2006). These approaches can
vary in complexity from simple rules like voting strategies (e.g., Friedl
and Brodley, 1997) to secondary classification, also known as “stacking”
or “stacked generalization,” using machine learning methods (Healey
et al., 2018; Wolpert, 1992).

Random Forest (RF) approaches are widely used for a variety of
remote sensing applications (Belgiu and Dragut, 2016) and have become
a standard choice for forest disturbance mapping ensembles (e.g., Cohen
et al., 2020, 2018; De Marzo et al., 2021; Healey et al., 2018; Schultz
et al., 2016; Wang et al., 2019). While RF algorithms have proven
effective, their complexity can render them an uninterpretable “black
box” that can be difficult to scale across datasets and processing plat-
forms. Furthermore, most studies default to RF classification with 500
trees as recommended by Belgiu and Dragut (2016), focusing primarily
on refinements to feature inputs and training datasets for improving
model performance.

Few studies have evaluated more parsimonious methods for gener-
ating disturbance ensembles and their findings have been inconclusive.
For example, in comparing RF with voting approaches, Hislop et al.,
(2019) found that lower error rates could be achieved through re-
finements to RF training data and feature inputs, however, majority
voting strategies achieved comparable performance in some cases.
Healey et al. (2018) considered simple logistic regression as an alter-
native to RF and found that a regression-based multi-algorithm change
detection ensemble outperformed individual algorithms, though RF
consistently achieved lower balanced omission and commission. These
results suggest that machine learning approaches like RF may not
necessarily be the best choice for building a change detection ensemble,
and rigorous comparisons of simpler alternatives can yield important
insights for applied use cases.

In this study, we evaluate the choice of change detection ensemble
methods for mapping forest harvest events and address the tradeoffs
between model complexity and accuracy. We specifically compared
three different approaches for generating maps of potential harvest
events: (1) voting strategies, (2) a standard 500-tree RF classifier, and
(3) a degenerate decision tree (DDT) ensemble. These approaches were
selected to represent tradeoffs between expressiveness (i.e., ability to
effectively characterize complex phenomena), scalability, and inter-
pretability. We apply these approaches to multi-spectral Landsat tem-
poral segmentation results produced using the LandTrendr algorithm
(Kennedy et al., 2018, 2010), a well-established temporal segmentation
approach (Kennedy et al., 2010; Pasquarella et al., 2022). We used field-
based forest inventory plot measurements to train supervised decision
tree models, cross-validated the relative performance of different
ensemble approaches, and estimated a lower bound on the level of
partial harvesting (in terms of both absolute and percent basal area
removal) that can be most accurately detected. We also compared
ensemble results with an external reference dataset collected using the
TimeSync photo-interpretation protocol (Cohen et al., 2010) and an
existing disturbance detection ensemble product being generated as part
of the Landscape Change Monitoring System (LCMS) project (Housman
et al., 2021). Although our use case focuses on improved mapping of
timber harvests in the industrial woodlands of the northeastern United
States, we expect our findings will be more broadly relevant to future
work on ensemble-based change detection, and the methods considered
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here can be adapted to other landscapes, change processes, satellites,
and temporal segmentation methods.

2. Study area

Our study area is the state of Maine in the northeastern United States
(Fig. 1). Maine is the largest state in New England at 91,600 km?
(comparable in size to the country of Portugal) and is the most forested
state in the country by proportion of land area (89%). The forests of
Maine span an ecological transition from spruce- and fir-dominated
boreal forests in the north and west to northern hardwood forests
dominated by beech, maple, birch, in the south and east (Duveneck
et al., 2015). Forest composition is largely dictated by previous land use
and the regional climate gradient, which transitions from cold and
snowy in the north (min/max average temperature: Jan —17/-6, July
13/25 °C with 90 cm/yr precipitation) to comparatively mild in the
south (min/max average temperature: Jan —10/0, July 15/26 °C with
140 cm/yr precipitation).

Maine is unique among forested regions in that it is largely owned by
private entities, including corporations (59%) and family ownerships
(32%) (Butler, 2017; Oswalt et al., 2019). Prior to the 1990 s, Maine’s
private corporate timberlands were largely owned by vertically inte-
grated firms and harvest regimes were dominated by clearcutting (Sader
et al., 2003). Ownerships have since transitioned to investor-driven
financial owners, who often have shorter term investor horizons and
altered harvest regimes (Chudy and Cubbage, 2020). These ownership
transitions combined with legacies of widespread spruce-budworm
outbreaks (Fraver et al., 2007), a policy-mandated shift to partial har-
vesting (Belair and Ducey, 2018; Canham et al., 2013), and a natural
regime characterized by small-scale gap dynamics (Lorimer, 1977,
Seymour et al., 2002) has resulted in fragmented and frequently
disturbed forests. Thus, understanding impacts of changing ownership
and policy on industrial forest landscapes requires accurate harvest
mapping on decadal time scales. There is a long history of Landsat-based
harvest mapping for the state of Maine (Jin and Sader, 2006, 2005;
Sader et al., 2003; Sader and Legaard, 2008; Wilson and Sader, 2002)
However, the majority of this work was conducted prior to widespread
availability of imagery and cloud-based computing resources, resulting
in new opportunities to use maturing time series analysis approaches for
detection of harvest events at an annual time step across the entire state.

3. Methods
3.1. LandTrendr temporal segmentation

We used the LandTrendr temporal segmentation approach (Kennedy
et al., 2018, 2010) to generate inputs for our harvest event detection
ensembles. LandTrendr is a time series analysis algorithm that charac-
terizes the per-pixel spectral trajectories using piece-wise linear models
(Kennedy et al., 2010; Pasquarella et al., 2022). The algorithm has been
implemented natively in Google Earth Engine (GEE) (Kennedy et al.,
2018), making it a common choice for cloud-based change detection
workflows (Pasquarella et al., 2022). We applied LandTrendr to annual
medoid composites of all high-quality Landsat 5, 7 and 8 Collection 1
Surface Reflectance observations acquired between June 20 and
September 20 (Northern Hemisphere growing season) for the years
1985-2020 using the parameters shown in Table 1.

Initial segmentation results were generated separately for three
SWIR-based indices, (1) the Normalized Burn Ratio (NBR), (2) the
Normalized Difference Moisture Index (NDMI), and (3) Tasseled Cap
Wetness (TCW). These indices are sensitive to removal of forest cover
and are often used for forest disturbance detection (e.g., Cohen et al.,
2010; Collins and Woodcock, 1996; Franklin et al., 2000; Healey et al.,
2006; Wilson and Sader, 2002). Though we expect NBR, NDMI, and
TCW values to be highly correlated (Fiorella and Ripple, 1995; Jin and
Sader, 2005), we also expect differences in their calculation to
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Fig. 1. Forestlands in the state of Maine, northeastern United States. Forests of different ownership types shown in shades of green, non-forest land cover in black
(sources: US National Land Cover Dataset, 2019; James W. Sewall Company, 2018). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 1

LandTrendr parameters used in this study.
Parameter Value
maxSegments 8
spikeThreshold 0.9
vertexCountOvershoot 3
preventOneYearRecovery true
recoveryThreshold 0.75
pvalThreshold 0.05
bestModelProportion 0.75
minObservationsNeeded 6

complement each other and improve harvest detection performance
when combined in an ensemble approach (Cohen et al., 2018).
LandTrendr outputs include a series of segments, which correspond
to relatively stable periods, and vertices, which were identified as in-
flection points along a spectral trajectory and are indicative of potential
changes in surface conditions (Pasquarella et al., 2022). LandTrendr

segments can be processed in a number of ways to produce maps of
potential change events, i.e., extracting only the segment with the
greatest magnitude of change over a specified time period (e.g., Senf and
Seidl, 2020) or using year-to-year changes in fitted values to indicate
cover or condition change (e.g., Cohen et al., 2020, 2018). We consid-
ered all loss segments, i.e., those with spectral changes in the direction of
decreased vegetation cover, as potential disturbance events. To differ-
entiate harvests from longer-duration disturbances such as those related
to drought or forest insect damage, we removed segments greater than
two years in duration, leaving only short-term events (less than or equal
to two years in duration) that are more likely associated with harvesting.

Because harvest events tend to be larger patch-based disturbances, a
minimum mapping unit (mmu) is typically applied to LandTrendr re-
sults as a post-processing step (e.g., Cohen et al., 2018; Kennedy et al.,
2018). We instead treated the mmu as a feature so that mmu thresholds
could be learned rather than set a priori. We used the number of adjacent
pixels with segments that began in the same year to estimate harvest
patch size, hereafter referred to as mmu. We also extracted the spectral
magnitude of change (mag), which provides an indication of harvest
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intensity. To better match Landsat-based inputs with the scale of FIA
plots and account for uncertainty in GPS coordinates, which can be on
the order of 5 to 10 m (McRoberts et al., 2018; Strunk et al., 2019), mag
and mmu features for each spectral index (NBR, NDMI and TCW) were
smoothed to produce mean mag and max mmu for a 3 x 3 pixel (90 x 90
m) kernel (see Pasquarella, 2022 for archived GEE JavaScript
workflow).

3.2. Forest inventory and analysis (FIA) measurements

We used all available FIA field plot measurements collected in the
state of Maine between 1999 and 2019 to train and cross-validate our
harvest detection ensembles. FIA plots in the northeastern U.S. are
typically measured every 5 to 7 years (Gillespie, 1999; McRoberts et al.,
2005; Tinkham et al., 2018) and we had access to true plot locations
through a memorandum of understanding between the USFS and Har-
vard University (MOU #09MU11242305123). Our Maine FIA dataset
consisted of 13,299 measurements (i.e., unique space-time coordinates)
recorded for 3,265 plots (i.e., unique spatial locations), and of these, we
analyzed the 3,220 FIA plots that had been remeasured at least once and
our final dataset included 10,034 pairs of sequential FIA measurements.

FIA surveys record individual trees as being alive, dead, or removed
in a given measurement cycle. We aggregated tree-level measurements
of diameter at breast height and mortality and removal designations to
plot-scale estimates of total basal area removed (m2) as a proxy for
harvest intensity. We also calculate percent basal area removal by
dividing the total basal area removed between measurements by the
basal area of living trees at the time of the first measurement as a relative
measure of change (Healey et al., 2006; Tao et al., 2019). Of the 10,034
FIA measurement pairs, 1,711 recorded basal area removal (harvest).

To integrate the Landsat-based and FIA datasets, we queried the
LandTrendr results for all years between the first and second FIA mea-
surement years to determine if a potential harvest event was detected
between measurements (Fig. 2). The resulting dataset included a record
for each FIA remeasurement with plot information from each
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measurement pair (m, and my,) as well as the LandTrendr mag and mmu
features for each of the three spectral indices we considered. This dataset
served as the basis for all ensemble experiments and for the FIA-based
cross-validation.

3.3. Ensemble approaches

We compared three ensemble approaches for producing forest har-
vest maps from multi-spectral LandTrendr segmentation results and FIA-
based basal area removal estimates, specifically (1) voting schemes, (2)
a 500-tree RF classification, and (3) a seven-parameter DDT ensemble.

3.3.1. Voting strategies

Voting schemes target a specific level of agreement across inputs,
and the voting strategies used in this study did not consider the spectral
or spatial properties of disturbance, only whether or not a disturbance
event was detected. Of the methods tested in this study, voting has the
distinct advantage of not requiring training data and has a high degree of
interpretability but low expressive power. We tested three voting
schemes: (1) one of three (any), where a detected change in any of the
spectral indices during the FIA remeasurement period was considered a
change, (2) two of three (majority), where detected changes in two of the
three indices was required, and (3) three of three (all), where a change
must be detected in all three indices. Though more complex weighting
schemes could be applied, we assigned equal weights to all spectral
indices.

3.3.2. Random forest (RF)

Random Forest approaches rely on an ensemble of many decision
trees to estimate threshold-based splits for various subsets of feature
inputs. For classification tasks, these splits are typically chosen to
minimize the Gini impurity, a metric that quantifies class separability.
The number of fitted parameters scales with both the number of trees in
the ensemble as well as the number of input features, making RF clas-
sifiers less interpretable and more difficult to apply over large spatial

(@] (@)
s o o
(@) O (@) (@) time
5-year revisit cycle (vears)
FIAm, FIAm,
Total Live Basal Area m, Total Basal Area Removed m,
Percent Basal Area Removed m,
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g By
P4 i time OnN
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Fig. 2. Matching FIA plot re-measurements with annual LandTrendr results. The same process was used with annual LCMS products.
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extents where hundreds of trees are used to classify each pixel.

We used the scikit-learn (version 0.24.1) implementation of RF
(Pedregosa, 2011) for our comparisons and set the number of trees to
500 following numerous other studies (Cohen et al., 2018; De Marzo
et al., 2021; Healey et al., 2018; Hislop et al., 2019; Wang et al., 2019).
Because we wanted to test a generic use case, we used default settings
with no further hyperparameter tuning. Models were trained using bi-
nary detectable harvest labels based on FIA measurements with the same
LandTrendr features used for voting and DDT approaches.

3.3.3. Degenerate decision trees (DDT) ensemble

We also evaluated a degenerate decision trees (DDT) ensemble as an
alternative to RF classification. Degenerate trees are a subclass of binary
trees where each decision node has only a single parent node. Like RF
classifiers, the DDT ensemble is a supervised approach; however, DDT
ensembles can be optimized using any number of metrics, are less sen-
sitive to class imbalances, and trained models have fewer parameters.
Our DDT models include two decision nodes (mag and mmu) for each of
the three spectral indices considered plus an additional threshold on the
number of votes across indices for a total of seven fitted parameters
(c1-¢7 Fig. 3).

Although there are a number of ways decision tree parameters could
be optimized including Bayesian inference (i.e., multi-armed bandit
problem models), simulated annealing, and genetic strategies (Brady,
1985; Katehakis and Veinott, 1987; Kirkpatrick et al., 1983), we
implemented the DDT ensemble as a grid search using standard Python
and Numpy operations (Harris et al., 2020) This implementation
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requires explicit specification of parameter values for the grid search.
We selected a step size of 0.01 in NBR and NDMI ratios and 0.001 in
TCW reflectance. For mmu thresholds, we used a step size of five con-
nected Landsat pixels, which translates to about a one-acre change in
patch size, a standard minimum area for commercial timber harvest. The
final vote count threshold (cy; Fig. 3) can vary between one and three
votes at the final decision node.

The F1 score, which is the harmonic mean of precision and recall, is
commonly used in binary classification (Chinchor, 1992; Lipton et al.,
2014). We selected the F1 score as the accuracy metric for optimizing
the DDT classification since it is invariant to changes in true negative
count and therefore useful for characterizing performance for positive
labels in highly imbalanced datasets (Sokolova and Lapalme, 2009). All
possible combinations of mag, mmu, and voting thresholds were tested
to determine the set of parameters that gave the highest harvest classi-
fication accuracy. We provide an example of our DDT implementation at
github.com/valpasq/lt-ensemble, including a Python notebook with
example functions for running a sweep over series of thresholds and
determining optimal thresholds for each feature as well as a Google
Earth Engine script for applying thresholds to LandTrendr results (Pas-
quarella, 2022).

3.4. Assessment
3.4.1. Identifying a harvest detection threshold

To characterize performance over a range of harvest intensities, we
trained and tested ensemble models using a series of different basal area

harvest

harvest harvest

NO

HARVEST

Fig. 3. Degenerate decision trees ensemble architecture consisting of seven trainable thresholds (constants, c;—c;) on spectral (mag) and spatial (mmu) parameters

for individual spectral indices and across indices (votes).
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removal thresholds for determining what is considered a detectable
harvest event. If an FIA remeasurement indicated basal area removal
greater than the specified threshold, it was considered a detectable
harvest in the training/test set for that threshold; otherwise, it was
considered a non-detectable harvest (even though some basal area may
have been removed). This allowed us to estimate the influence of
varying biophysically-based definitions of harvest on our results and
determine the threshold that best represents a detectable harvest in
terms of percent basal area removal.

3.4.2. K-fold Cross-validation using FIA reference data

We used our FIA remeasurement dataset to perform a three-fold cross
validation replicated ten times for a total of 30 folds. Train-test splits
were kept consistent across models to facilitate direct comparison of
cross-validation results. For supervised decision tree approaches, we
present both training and testing results. For DDT, the training score is
the best F1 score achieved across all possible combinations of parameter
values, while for RF, this score is calculated by applying a trained model
to its own training set. Large differences between these training and
testing scores provide an indicator of potential overfitting.

3.4.3. External validation using TimeSync reference data

A second validation dataset was used to assess how well trained
models generalized to interpretations based on using a different
disturbance labeling protocol. We used TimeSync interpretations
collected as part of another effort to model change processes in the
northeastern US and Canada (Kilbride, 2018). Points were initially
selected using a simple random sample. The TimeSync approach for
reference data collection (Cohen et al., 2010) was used to identify seg-
ments and vertices and label change processes based on time series vi-
sualizations and assisted with historical high-resolution imagery
available in Google Earth.

From the full reference dataset of 3,436 TimeSync pixels and in-
terpretations, we extracted 1,294 unique spatial locations within our
Maine study area. Interpretations for these locations included 634
events labeled harvest. We also combined TimeSync vertices labeled
harvest, mechanical, hydrology, wind, debris, and “other” into a more
general fast loss class following (Housman et al., 2021) for comparisons
with LCMS products, which do not distinguish between harvests and
other fast loss events.

3.4.4. Comparisons with LCMS products

As a final point of comparison, we used an existing national-scale
forest disturbance dataset from the Landscape Change Monitoring Sys-
tem (LCMS) project (Lister et al., 2020) as a benchmark, with gains in
performance relative to this readily available dataset suggesting devel-
opment of local-scale ensembles is worthwhile. In contrast to the ap-
proaches tested in this study, which are all single-algorithm, single-
sensor, multi-spectral ensembles, LCMS products employ a multi-sensor,
multi-algorithm stacked generalization approach (Cohen et al., 2018;
Healey et al., 2018; Housman et al., 2021). We acquired the full time
series of annual LCMS change maps (v2020-5) from 1985 to 2020 from
the FSGeodata Clearinghouse (USDA Forest Service, 2021). The LCMS
annual change products include several change categories, specifically
fast loss, slow loss, and gain (Housman et al., 2021). We focus on the fast
loss results, which includes changes attributed to fire, harvest, me-
chanical, wind/ice, hydrology, debris, and other processes. We assessed
the LCMS dataset using the same FIA and TimeSync datasets used to
assess other ensemble methods tested in this study. Because harvest is a
subset of the fast loss category mapped by LCMS, we expected to see
higher rates of commission than omission due to detection of other types
of disturbances for sites where no detectable harvest was observed in the
reference datasets.
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4. Results
4.1. Cross-validated performance as a function of basal area removal

The highest F1 scores were generally achieved when harvest was
defined using a 30% basal area removal threshold, with the exception of
the any votes model, which had the highest F1 score at 20% removal.
The consistency in optimal basal area removal threshold for defining a
detectable harvest event across approaches suggests that the 30%
removal threshold is a physically meaningful definition of change.
Repeating this analysis using total instead of percent basal area
removed, we found 5 m? to be the optimal threshold for defining a
detectable harvest. This correlates well with percentage-based findings,
as usually about one-third of stand volume is removed in commercial
and pre-commercial thinning operations (Sader et al., 2003) and the
average plot-level live basal area for our dataset was about 16 m?.

In the case of the degenerate trees approach, we are able to associate
these lower bounds on detectable forest harvest with a set of thresholds
on input feature values and vote counts. For the full model at a 30%
basal area removal thresholds were estimated as follows: spectral
magnitude (mag) thresholds of 0.10, 0.00, and 0.03 and minimum
mapping unit (mmu) thresholds of 5 pixels, 20 pixels, and 10 pixels for
NBR, NDMI, and TCW, respectively, and a one-vote threshold across the
three indices considered. These thresholds can be directly applied to
temporal segmentation results and compared across studies, making the
DDT approach inherently more interpretable than an RF that relies on
threshold estimates across hundreds of trees (see Fig. 3 for DDT
structure).

4.2. Cross-validated performance at 30% removal threshold

The RF and DDT models consistently outperformed voting ap-
proaches when validated against the FIA remeasurement dataset
(Table 2). Of the three voting ensembles, the majority strategy had the
best performance in terms of F1 score (M = 0.68, SD = 0.02; Table 2) and
achieved the most balanced omission/commission. The any index
strategy had the lowest F1 scores (M = 0.54, SD = 0.01), largest errors of
commission, and lowest errors of omission across all approaches. The all
indices strategy was unsurprisingly the most conservative of the voting
strategies, with relatively low errors of commission but the high rates of
omission (Table 2).

Of the two supervised decision tree methods, the F1 scores for the
cross-validated RF model (M = 0.71, SD = 0.02) were within one per-
centage point (0.01) of DDT models trained and tested on the same splits

Table 2

Model comparisons for FIA dataset using a 30% basal area removal threshold to
define a detectable harvest event. Mean and standard deviation are reported for
cross-validated results. The mean number of FIA measurements at this threshold
was 708 (SD = 18) for harvest and 5980 (SD = 39) for no harvest.

Ensemble approach F1 Omission Commission
Error Error
Voting Any index 0.54 0.22 (0.02) 0.59 (0.01)
(0.01)
Two 0.68 0.33 (0.02) 0.31 (0.02)
indices (0.02)
All indices 0.65 0.47 (0.02) 0.18 (0.02)
(0.02)
Degenerate decision Full model  0.73 0.30 0.24
trees (DDT) Testing 0.72 0.32 (0.02) 0.23 (0.03)
ensemble /3) (0.02)
Training 0.74 0.31 (0.01) 0.21 (0.01)
@) (0.01)
Random Forest (RF) Testing 0.71 0.37 (0.02) 0.21 (0.02)
(/) (0.02)
Training 0.87 0.23 (0.01) 0.00 (0.00)
C/3) (0.01)

LCMS Fast loss 0.60 0.54 0.13
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(M =0.72, SD = 0.02), with the DDT approach exhibiting slightly better
performance particularly in terms of lower omission. The RF models
tended to have higher omission but lower commission. The difference in
the performance of the RF between testing (M = 0.71, SD = 0.02) and
training (M = 0.87, SD = 0.01) plus complete lack of commission indi-
cate the model is likely overfitting to the training dataset. The DDT
approach achieved more balanced training and testing F1 scores
(Table 2), suggesting that the reduced number of fitted parameters en-
ables comparable performance without overfitting. Additionally, the
mean and median F1 scores across the DDT testing subsets were
equivalent (0.72) and very comparable to the training F1 score for the
full model (0.73; Table 2).

As would be expected, harvests removing a greater percentage of
basal area are more detectable and omission generally decreased with
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increasing percent basal area removal (Fig. 4). Commission tended to be
highest at basal area removal percentages between 0% and the 30%
threshold used to define harvest events during training, which can be
attributed to events that are correctly identified as removals but labeled
non-harvests at this threshold. The LCMS and all indices voting ap-
proaches tended to be the most conservative, with higher omission but
lower commission.

4.3. Assessment using TimeSync reference dataset

Performance for all ensemble approaches was poorer when validated
against the TimeSync dataset. The highest F1 score among voting stra-
tegies for the harvest category was achieved by the three-index voting
strategy (0.54), though this all-index strategy only slightly outperforms
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Fig. 4. Cross-validation using FIA remeasurements by percent basal area removal bins using a 30% threshold to define a detectable harvest (red dotted line). Correct
labels (true positives and true negatives) are shown in black, omission errors in blue, and commission errors in orange, with gray areas indicating the range of
variability over cross-validation splits. Total number of FIA remeasurements in each basal area removal bin is shown at the top of each bar. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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the majority strategy (0.53). Using the more general fast loss category,
F1 scores improved for the any and two-index strategies but decreased
slightly for the three indices strategy due to an increase in omission
error. The two indices combination had the highest F1 score across all
voting approach and label combinations (0.56), though omission and
commission errors for voting ensembles were generally much higher and
less balanced than for the supervised decision tree approaches (Table 6).

The RF and DDT approaches performed similarly on the TimeSync
harvest labels (F1 scores of 0.64 and 0.63, respectively), with the RF
producing lower errors of commission but higher errors of omission
(Table 6). The difference in performance among the decision trees
methods was more apparent using the fast loss category, with the DDT
achieving an F1 score of 0.67 and the RF again achieving a score of 0.63.
The LCMS products had the lowest errors of commission on the Time-
Sync reference dataset; however, omission was greater than 50% for
both harvest and the aggregated fast loss categories (0.54 and 0.57,
respectively). In all cases, the fast loss aggregation resulted in a slightly
higher rate of omission and lower rate of commission, which is logical
given the broader number of categories that constitute a change under
this broader definition.

4.4. Mapped results

To provide spatial context for our results, we scaled the majority
voting and DDT ensembles using GEE (Pasquarella, 2022). Visual com-
parisons of these mapped results indicated that these methods produce
similar spatial patterns to the LCMS stacked generalization model
(Fig. 6). However, fast loss predictions from the LCMS dataset tended to
be more conservative than the ensemble approaches tested here, with
relatively low commission errors, but very high (>50%) errors of
omission (Tables 2 and 3). Although it might be assumed that national
LCMS products would be better suited for detecting higher-intensity
stand-replacing disturbances, higher rates of omission were observed
across all percent basal area removal categories in the FIA-based anal-
ysis (Fig. 4). Comparisons with the categorical harvest interpretations in
the TimeSync assessments also indicate greater errors of omission
(Fig. 5), suggesting that using fast loss classifications from the LCMS
dataset to represent potential harvest events would have resulted in
underestimation of affected areas with important implications for
management and policy assessments.

5. Discussion

Accurate mapping of forest disturbance events is essential for
assessing the past, present, and future impacts of forest management. In
the industrial timberlands of Maine, harvest tends to be the most com-
mon type of forest disturbance, as evidenced by the dominant portion of
harvest and mechanical disturbances in the TimeSync dataset (Fig. 5).
The ensemble approaches tested here effectively apply a secondary
classification to attribute harvesting events to a disturbance product. By
running LandTrendr multiple times using different spectral indices, we
initially detect a large set of possible disturbance events, decreasing

Table 3

International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103561

potential for omission errors while increasing commission errors. We
then use ensemble methods to further refine LandTrendr commission
errors by performing a secondary classification.

By combining multi-spectral LandTrendr temporal segmentation
results, we were able to map potential harvest events with F1 scores of
up to 0.73 based on forest inventory measurements and 0.64 based on
visual interpretations (Tables 2 and 3). Though majority voting tended
to exhibit the best performance of the three voting approaches, all voting
schemes were consistently outperformed by supervised decision tree
approaches (Tables 2 and 3), confirming the value of training data for
generating more accurate harvest maps. Using forest inventory data on
basal area removals for training and validation, we are able to define a
lower bound of 30% on a detectable harvest in terms of percent basal
area removed, which is comparable to a lower bound of 20% basal area
removal characterized by Tortini et al. (2015) in the Michigan Upper
Peninsula. Harvest detection accuracy tended to increase with higher
proportions of basal area removed (Fig. 4) suggesting that fine-tuning
spectral and spatial thresholds may be less critical in regions and time
periods where production forestry systems are dominated by clear-
cutting regimes (e.g., Cohen et al., 2002; Liu et al., 2004) compared
with mixed-ownership landscapes dominated by partial harvests (e.g.,
Jarron et al., 2016). We also note that mean omission error for the all
indices voting ensemble was 0.22 for the FIA cross-validation, 0.21 for
the TimeSync harvest category, and 0.20 for the TimeSync fast loss
category, suggesting an ~ 80% upper bound on LandTrendr’s ability to
characterize harvest events from annual time series of Landsat obser-
vations. These baseline omission errors could be further reduced by
including results from other temporal segmentation approaches that
utilize a higher frequency of observations and may be more sensitive to
low-magnitude changes not detected in annual growing season com-
posites (e.g., Verbesselt et al., 2010; Zhu and Woodcock, 2014), though
at the cost of additional computational overhead. Detection of partial
harvest events could also be improved using higher-resolution imagery,
e.g., Sentinel-2 time series; however, the Landsat record is uniquely
suited for mapping harvest events on the sorts of decadal time scales of
interest in this study.

In comparing supervised ensembling approaches, we found that a
three-tree, seven-parameter DDT model achieved comparable harvest
detection performance to a 500-tree RF with more consistent perfor-
mance between training and testing datasets, indicating the simpler
model does not overfit and is better able to generalize to unseen ex-
amples (Table 5). ML algorithms like RF have become the norm in
disturbance mapping. In contrast to this conventional wisdom, our
analysis shows simpler decision trees can be just as accurate, more
interpretable, and straightforward to apply. A 500-tree RF may take only
seconds to train, but applying hundreds of decision trees at scale can
become a very memory- and storage-intensive operation, requiring
additional resources beyond those initially required to generate tem-
poral segmentation or other change detection results. As an intermediate
option, a grid search optimization strategy allowed us to exhaustively
investigate decision tree parameter spaces and output optimized
thresholds for individual input features as a single human-readable list.

Comparisons of ensemble approach results for 30% basal area removal threshold and TimeSync interpretations. TimeSync labels were grouped to produce two binary
comparisons for assessment: harvest (harvest versus all other categories) and fast loss (fire, harvest, mechanical, wind/ice, hydrology, debris, and “other” versus all

other categories).

Ensemble approach TimeSync harvest TimeSync fast loss
F1 Omission Commission F1 Omission Commission

Voting Any index 0.47 0.20 0.66 0.52 0.21 0.62

Two indices 0.53 0.33 0.55 0.56 0.36 0.50

All indices 0.54 0.51 0.40 0.53 0.55 0.35
Decision trees Degenerate decision trees (DDT) 0.64 0.26 0.43 0.67 0.29 0.37

Random Forest (RF) 0.63 0.33 0.39 0.63 0.39 0.35
LCMS 0.57 0.54 0.23 0.57 0.57 0.16
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Fig. 5. Comparison of errors by TimeSync category for voting, degenerate decision trees, Random Forest, and an existing fast loss change product (LCMS) using a
30% threshold to define a detectable harvest. Fire, harvest, mechanical, wind/ice, hydrology, debris, and “other” are considered fast loss and growth/recovery,
spectral decline, stable, and structural decline are considered not fast loss. Total number of interpretations for each category is shown at the top of each bar.

These thresholds can then be applied using Boolean logic, meaning small
custom decision tree models can be trivially re-implemented in different
programming languages and software environments with minimal
computational overhead. In contrast, transferring saved models pro-
duced by different implementations of RF (e.g., the RandomForest and
ranger packages for the R programming language, Scikit-learn, Tensor-
Flow, GEE) to other platforms can be difficult or impossible (Abadi et al.,
2015; Wright and Ziegler, 2015) and our findings indicate this extra
effort may not be justified by a notable difference in performance.
With increasing availability of national and global change detection
datasets, researchers interested in analyzing disturbance patterns and
processes must choose between working with or adapting existing
datasets or developing custom datasets more tailored to their needs like
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those generated in this study. Our results suggest that improvements in
detection accuracy relative to the more general-purpose national-scale
LCMS disturbance detection ensemble justifies the development of
custom ensemble models for detecting harvest events. Furthermore,
given other precedents for implementing a series of regionally-trained
RF models to improve sensitivity to local conditions over large extents
(e.g., Hermosilla et al., 2022), it should similarly be feasible to take a
regional or other locally-gridded approach to tuning and scaling DDT
models to new areas. Simple decision tree approaches can be extended to
characterize multiple disturbance agents by building binary classifica-
tions for each agent. Rather than rely on large models to generalize from
large feature sets, the DDT approach facilitates development of smaller,
more interpretable ensemble models that can easily be tuned and
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Fig. 6. Annual harvest detection results for 2009 through 2012 and year of most recent detection for the full time series (1986-2019) for voting, degenerate decision
trees and existing LCMS dataset (stacked generalization approach). Results shown for a 5 km x 5 km site centered on a site along the northwestern boundary of

Baxter State Park, Maine, USA (46.1171° N, —69.10205° W).
compared across disturbance types.
6. Conclusions

Counter to conventional wisdom, this study demonstrated that
accurately mapping forest harvest events does not necessarily require
advanced machine learning approaches like RF. We found that a seven-
parameter degenerate decision tree (DDT) ensemble exhibited compa-
rable performance to a 500-tree RF for ensemble-based harvest classi-
fication. In the common situation where high-quality training data like
the forest inventory measurements used in this study are not available,
our results suggest majority voting can also produce acceptable results
based on multi-spectral change detection outputs alone. Given that
models with fewer parameters are more interpretable and easier to apply
at scale, we conclude that more parsimonious approaches can be pref-
erable. As an additional benefit of our approach, we establish a bio-
physical interpretation of the forest harvest maps generated in this
study, determining that using Landsat time series and a LandTrendr
change detection approach, we most accurately detected harvests where
at least 30% or around 5 m? of total basal area was removed. Overall,
our findings indicate that simple ensemble models can be suitable al-
ternatives to commonly used RF approaches, supporting their continued
use as well as further exploration of best practices for ensemble-based
mapping of forest disturbances including forest harvest events.
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