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As binary switches, RAS proteins switch to an ON/OFF state during signaling and 

are on a leash under normal conditions. However, in RAS-related diseases such 

as cancer and RASopathies, mutations in the genes that regulate RAS signaling 

or the RAS itself permanently activate the RAS protein. The structural basis of 

this switch is well understood; however, the exact mechanisms by which RAS 

proteins are regulated are less clear. RAS/MAPK syndromes are multisystem 

developmental disorders caused by germline mutations in genes associated with 

the RAS/mitogen-activated protein kinase pathway, impacting 1 in 1,000–2,500 

children. These include a variety of disorders such as Noonan syndrome (NS) 

and NS-related disorders (NSRD), such as cardio facio cutaneous (CFC) 

syndrome, Costello syndrome (CS), and NS with multiple lentigines (NSML, also 

known as LEOPARD syndrome). A frequent manifestation of cardiomyopathy 

(CM) and hypertrophic cardiomyopathy associated with RASopathies suggest 

that RASopathies could be a potential causative factor for CM. However, the 

current supporting evidence is sporadic and unclear. RASopathy-patients also 

display a broad spectrum of congenital heart disease (CHD). More than 15 genes 

encode components of the RAS/MAPK signaling pathway that are essential for 

the cell cycle and play regulatory roles in proliferation, differentiation, growth, 

and metabolism. These genes are linked to the molecular genetic pathogenesis 

of these syndromes. However, genetic heterogeneity for a given syndrome on 

the one hand and alleles for multiple syndromes on the other make 

classification difficult in diagnosing RAS/MAPK-related diseases. Although there 

is some genetic homogeneity in most RASopathies, several RASopathies are 

allelic diseases. This allelism points to the role of critical signaling nodes and 

sheds light on the overlap between these related syndromes. Even though 

considerable progress has been made in understanding the pathophysiology of 

RASopathy with the identification of causal mutations and the functional analysis 

of their pathophysiological consequences, there are still unidentified causal 

genes for many patients diagnosed with RASopathies. 
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Introduction 

Rat Sarcoma Virus, a highly conserved protein, belongs to a class of proteins called small 

GTPase. The three most widely studied RAS genes in humans are HRAS, KRAS, and NRAS, 

named after the Harvey Rat sarcoma virus, Kirsten Rat sarcoma virus, and NRAS, for its 

initial identification in neuroblastoma cells. Since the identification of the RAS protein in 

1982, extensive studies have been conducted to identify the RAS-associated pathway and 
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and cardiac-specific features as well as all other RASopathy- 

associated malformations. This review will discuss only the 

cardiac manifestation in RASopathies associated with Noonan 

syndrome and Neurofibromatosis type 1 (NF1). RASopathy- 

related heart defects include congenital heart disease (CHD), 

hypertrophic cardiomyopathy (HCM) as well as dilated 

cardiomyopathy (DCM). 

its involvement in human disease. RASopathies refer to 

multisystem disorders caused by gene mutations that belong to 

the RAS/MAPK (Mitogen-activated protein kinase) signaling 

pathway. RAS can be either “switched on” or activated by 

incoming signals through growth factors binding to receptor 

tyrosine kinases (RTKs), G-protein-coupled receptors, cytokine 

receptors, and extracellular matrix receptors, or activated by 

mutations in RAS genes, which can lead to the production of 

permanently activated RAS proteins and can cause unintended 

and overactive signaling inside the cell, even in the absence of 

incoming signals. The mitogen-activated protein kinase (MAPK) 

pathway is one of RAS’s critical downstream signaling cascades. 

Activated RAS leads to the phosphorylation of Raf, leading to the 

activation of the MAPK kinases MEK1 and/or MEK2; these, in 

turn, phosphorylate and activate ERK1 and/or ERK2. ERK1 and 

ERK2 are the ultimate effectors which exert their function on 

many downstream molecules in the cytoplasm and nucleus 

(Figure 1). RASopathy disorders include wide range of disorders 

such as neurofibromatosis type 1, Noonan syndrome, Noonan 

syndrome with multiple lentigines, Costello syndrome, cardio- 

facio-cutaneous syndrome, and Legius syndrome (1, 2), exhibiting 

multi-organ dysfunction, including craniofacial dysmorphology, 

cardiac malformation, cutaneous, musculoskeletal, and ocular 

abnormalities,  neurocognitive  impairment,  hypotonia  and 

increased cancer risk (1–3). In Table 1, we summarize the critical 

Noonan syndrome and cardiac 

manifestation 

Noonan syndrome (NS1, OMIM 163950), caused by 

mutation and activation of the genes involved in the RAS- 

MAPK pathway, including PTPN11, SOS1, KRAS, NRAS, RAF1, 

BRAF, RIT1, and LZTR1, is a common developmental disorder 

with an autosomal dominant inheritance. The incidence is 1:1,000–

2,500 live births. Many patients with NS1 indicate cardiovascular 

abnormalities, most commonly in the form of congenital heart 

diseases, such as pulmonary valve stenosis, septal defects, left-

sided lesions, and complex forms with multiple anomalies. The 

most common congenital heart disease (CHD) involves pulmonary 

valve stenosis in 50%–60% of patients, and a small portion 

(6%–10%) indicates an atrial septal defect. The other CHDs, 

such as ventricular septal defect, 
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FIGURE 1 

The activation of RAS/ERK occurs when cell survival signals bind to receptor tyrosine kinases (RTK). Once the RTK intracellular domain is phosphorylated 

following this binding, it triggers a sequence of events that ultimately results in the activation of RAS. NF1 and SPRED 1 act as negative effectors of the 

pathway. The activation of RAS recruits and activates RAF, which is the first MAPK in this pathway. Then, RAF phosphorylates and activates MEK1/2, which 

finally activates ERK1/2 through dual phosphorylation on tyrosine and threonine. ERK1/2 then goes on to activate various substrates downstream like FOS 

and JUN that ultimately leads to transcriptional activation of genes involved in cell proliferation and survival. 
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TABLE 1 Different features of RASopathies, including main features, cardiac-specific features, and critical cardiac features. 

atrioventricular canal defect, and aortic coarctation, are observed 

less frequently in NS1 patients (4–7). The second most prevalent 

cardiovascular anomaly associated with NS1 is HCM, present in 

approximately 20% of patients. Although NS1 is clinically 

heterogeneous and can manifest at any age, 80% of NS-1 HCM 

diagnoses are made early in infancy, and compared to non- 

syndromic types of HCM, NS1-HCM patients have a greater 

degree of ventricular hypertrophy, a higher prevalence, and a 
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RASopathy Main Feature Cardiac specific Feature Critical cardiac feature 

Noonan syndrome 

 
Short stature, webbed neck, low-set 

ears, widely spaced eyes, hypertelorism, 

pectus excavatum/carinatum, 

cryptorchidism, bleeding diathesis, 

lymphatic dysplasia 

Pulmonary stenosis (PS), hypertrophic cardiomyopathy (HCM) 

 
Atrial septal defect (ASD), 

ventricular septal defect (VSD), 

coarctation of the aorta (CoA), 

critical aortic stenosis (AS) 

 

 Gene Mutation Type Mutation Location Function Cardiac Implications 

Noonan syndrome 

 
PTPN11 

 
Missense, splice site 

 
Exon 3, 7, 8, 12, 13 

 
Encodes for SHP-2 protein which regulates 

RAS signaling pathway 

 

Pulmonic stenosis (PS), 

hypertrophic cardiomyopathy 

(HCM), arrhythmias 

SOS1 

 
Missense, frameshift, splice 

site, large deletions 

 

Exon 2, 3, 5, 12, 13, 

16, 17, 18, 19, 20, 21 

 

Encodes for SOS1 protein which activates 

RAS signaling pathway 

 

Pulmonic stenosis (PS), 

hypertrophic cardiomyopathy 

(HCM), cardiomyopathy, septal 

defects 

RAF1 

 
Missense 

 
Exon 7, 12, 14 

 
Encodes for RAF1 protein which activates 

the MEK/ERK signaling pathway 

 

Hypertrophic cardiomyopathy 

(HCM), pulmonary valve stenosis 

(PVS), cardiomyopathy 

KRAS 

 
Missense 

 
Exon 2 

 
Encodes for KRAS protein which regulates 

cell division and differentiation 

Hypertrophic cardiomyopathy 

(HCM) 

RASopathy Main Feature Cardiac specific Feature Critical cardiac feature 

Cardio-facio-cutaneous 

syndrome 

 

Short stature, sparse hair, curly hair, 

prominent forehead, hypertelorism, 

downward slanting palpebral fissures, 

ptosis, hearing loss, intellectual 

disability 

Hypertrophic cardiomyopathy (HCM), pulmonary valve stenosis 

(PVS) 

 

Atrial septal defect (ASD), 

ventricular septal defect (VSD), 

critical pulmonary valve stenosis (c- 

PVS), severe mitral valve disease 

(MVD) 

 Gene Mutation Type Mutation Location Function Cardiac Implications 

Cardio-facio-cutaneous 

syndrome 

 

BRAF 

 
Missense, frameshift, splice 

site, large deletions 

 

Exon 5, 8, 11, 15 

 
Encodes for BRAF protein which activates 

the MEK/ERK signaling pathway 

 

Pulmonic stenosis (PS), 

hypertrophic cardiomyopathy 

(HCM), arrhythmias, 

cardiomyopathy 

RASopathy Main Feature Cardiac specific Feature Critical cardiac feature 

Costello syndrome 

 
Short stature, coarse facies, curly hair, 

loose skin, hypertrophic 

cardiomyopathy, feeding difficulties, 

intellectual disability, neoplasia 

 

Hypertrophic cardiomyopathy (HCM), pulmonic stenosis (PS) 

 
Atrial septal defect (ASD), 

ventricular septal defect (VSD), 

critical pulmonary valve stenosis (c- 

PVS), severe mitral valve disease 

(MVD) 

 Gene Mutation Type Mutation Location Function Cardiac Implications 

Costello syndrome 

 
HRAS 

 
Missense 

 
Exon 2, 3 

 
Encodes for HRAS protein which regulates 

cell division and differentiation 

Hypertrophic cardiomyopathy 

(HCM), tachycardia, arrhythmias 

RASopathy Main Feature Cardiac specific Feature Critical cardiac feature 

Legius syndrome 

 
Café-au-lait macules, lipomas, 

macrocephaly, learning disabilities, 

Noonan-like facies 

None reported 

 
None reported 

 

 Gene Mutation Type Mutation Location Function Cardiac Implications 

Legius syndrome 

 
SPRED1 

 
Missense, frameshift, splice 

site, large deletions 

 

Exon 1, 2, 3, 5, 6, 7, 8, 

9 

 

Encodes for SPRED1 protein which acts as 

a negative regulator of RAS signaling 

pathway 

 

Pulmonic stenosis (PS), 

hypertrophic cardiomyopathy 

(HCM), valvular heart disease 

(VHD) 

RASopathy Main Feature Cardiac specific Feature Critical cardiac feature 

Neurofibromatosis 

Type 1 

 

Café-au-lait macules, neurofibromas, 

Lisch nodules, scoliosis, optic gliomas, 

learning disabilities, skeletal 

abnormalities 

Pulmonary stenosis (PS) 

 
Atrial septal defect (ASD), 

ventricular septal defect (VSD), 

hypertrophic cardiomyopathy 

(HCM) 

 Gene Mutation Type Mutation Location Function Cardiac Implications 

Neurofibromatosis 

Type 1 

 

NF1 

 

Missense, nonsense, 

frameshift, splice site, large 

deletions 

Most commonly 

17q11.2 

 

Encodes for neurofibromin protein which 

acts as a negative regulator of RAS signaling 

pathway 

Hypertrophic cardiomyopathy 

(HCM), pulmonary stenosis (PS), 

congenital heart defects (CHD) 
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more severe pattern of left ventricular outflow tract obstruction 

(LVOTO). A literature survey indicates that a patient’s 

likelihood of NS1-HCM varies significantly according to the 

gene mutated in the RAS-MAPK pathway. A few studies 

suggest an association between DCM and NS1 to some extent, 

where histology/echocardiography showed hypertrophy of 

myocardial fibers with focal interstitial fibrosis with no 

evidence of myocardial disarray. The features were consistent 

with DCM (8–11). 

Noonan syndrome with multiple lentigines (NSML), which is 

also known as LEOPARD syndrome, has the cardiac 

manifestation of pulmonary valve stenosis and hypertrophic 

cardiomyopathy along with brown spots on the skin called 

lentigines, caused by the mutation in one of four genes: BRAF, 

MAP2K1, PTPN11, and RAF1 (12–14). 

genes does not correlate with their frequency or the intensity of 

the phenotypic manifestations but is merely incidental. The most 

common gene implicated in the causation of NS is still PTPN11 

(60%), constituting 52.6% of all mutations detected in Noonan 

patients to date (Figure 2). The second most found mutated 

gene in NS is SOS1(16.4% of patients). Furthermore, RIT1 and 

RAF1 have been found to have a prevalence of 8%, making them 

the third most-involved genes. Therefore, mutations in PTPN11, 

SOS1, RAF1, and RIT1 alone comprise 93% of the mutations 

causing NS. Hence, these genes are included in the first line of 

genetic screening in patients with the NS phenotype. Table 2 

summarizes the genes and domains involved in RASopathies. 

KRAS (2.8%) and NRAS (0.8%) have the lowest incidence among 

all reported cases of Noonan syndrome caused by the RAS 

subfamily of genes involved in the RAS/MAPK pathway, in 

contrast with the RIT1 gene in the same family. Similarly, BRAF 

constitutes 2.3% among RAF family members compared to the 

more prevalent RAF1. Table 1 emphasizes the genes involved in 

different RASopathies and their normal function, mutation type, 

mutation location, and cardiac implications. 

Genes involved in Noonan syndrome 

PTPN11 was found to be the most studied gene in NS 

populations (29 studies vs. 16 studies or fewer for other genes). 

Possible reasons include that PTPN11 was the first gene of the 

RAS/MAPK pathway to be implicated in NS in 2001, while 

KRAS was discovered only five years later, followed by SHP-2. 

Although KRAS was already involved in malignancy disorders 

through various somatic mutations, its interrelation with NS was 

found via germline mutations in 2006 (15). Subsequently, in 

2007, SOS1, RAF1, and MAP2K1 genes were found to be 

implicated in NS (16), after which BRAF (12, 16), NRAS (17), 

and RIT1 (18) (RAS/MAPK kinase genes) were shown to be 

PTPN11 (protein-tyrosine phosphatase, 

nonreceptor-type 11) 

PTPN11 is the most common gene associated with NS and 

accounts for approximately half of all cases. The PTPN11 gene 

(19) has three domains: the more commonly mutated N-amino 

terminal src-homology 2 (N-SH2) and phospho-tyrosine 

phosphatase (PTP) domains, and the C-amino terminal src- 

homology 2 domain (C-SH2) and carboxy-terminal tail (5, 6). involved. Notably, the chronology of discovering the involved 
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FIGURE 2 

The figure represents the information of the genes implicated in NS and associated RASopathies. PTPN11, SOS1 and RAF alone makes up for more than 

90% of the total pathogenic mutations. The data is obtained from the NSEuroNet database. 
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TABLE 2 Common RASopathy-associated mutations. and Cdc25 domains; helical linker (HL) relating PH and REM, 

and the Polyproline region (25, 28). SOS1 is a guanine exchange 

factor (GEF) with a significant role in the RAS/MAPK pathway 

(26, 27) and mainly implicated in NS patients with ectodermal 

defects (25, 28–30) and pulmonic stenosis more than that of 

PTPN1. 

KRAS (kirsten rat sarcoma viral oncogene 

homolog) 

The KRAS (OMIM 190070) gene is mapped to the 12p12 

region and consists of 6 exons coding for the P loop and switch 

I and switch II domains (15). Gain of function mutations in 

KRAS causes approximately 5% of NS cases in the absence of the 

PTPN11 mutations (16, 31). 

NRAS (neuroblastoma RAS viral oncogene 

homolog) 

The NRAS (OMIM 164790) gene locus on 1p13.2 comprises six 

coding exons (32). NRAS mutations are involved in less than 1% of 

NS cases (17). 

RIT1 (Ric-like protein without CAAX motif 1) 

The RIT1 (OMIM 609591) locus on 1q22, consisting of 6 

exons, causes hyperactivation of transcription factor ELK1 in the 

RAS/MAPK cascade. It is present in 9% of NS cases (18). 

Prevalence is seen to mainly coexist with cardiac defects such as 

CHD (94%), HCM (71%), and pulmonic stenosis (65%). This 

finding was subsequently confirmed by Bertola et al., who found 

the exact prevalence (9%), and Gos et al., who found a lower 

mutation rate (3.8%). Those mutation clusters in the G1, Switch 

I, and more frequently in Switch II domains, were proven to 

entail a significant activation of the RAS/MAPK pathway by 

hyper-activating transcription factor ELK1 (33, 34). 

The table presents information about the most frequent recurring changes that 

occur in known RASopathy genes and specifies the protein domain where the 

alteration happens. The selection criteria were based on the clinical outcome 

(phenotype) of the variants. The acronyms used in the table include CFC, 

cardiofaciocutaneous syndrome; CS, Costello syndrome; NS, Noonan syndrome; 

NS-LAH, Noonan syndrome with loose anagen hair; NSLD, Noonan syndrome- 

like disease; NS-ML, Noonan syndrome with multiple lentigines. 

PTPN11 codes for protein SHP-2 which is involved in semilunar 

valvulogenesis, hemopoietic cell differentiation, and mesodermal 

patterning (20–23). SHP-2 also regulates the cell proliferation, 

migration, or differentiation processes during the developmental 

stage (24) and is widely expressed in several tissues, such as the 

heart, muscles, and brain. SHP-2 is a pivotal protein in the RAS/ 

MAPK cascade. PTPN11 mutations were mainly seen in cases 

with pulmonary valve stenosis in NS1 patients (5, 6). 

RAF1 (v-RAF-1 murine leukemia viral 

oncogene homolog 1) 

RAF1 (OMIM 164760) locus on 3p25, consisting of 17 exons, 

codes for protein serine-threonine kinase (35–37) and has three 

conserved regions. Mutations causing failure of autoinhibition of 

this gene lead to activation of the RAS/MAPK cascade, causing 

NS (3%–17% of cases). An association of 80% is found with HCM. 

SOS1 (Son of seven less homologs 1) 

Mutated SOS1 (OMIM 182530) is considered the second-most- 

common genetic aberration associated with NS, causing NS in up 

to 20% of patients with absent PTPN11 mutation (25). Its locus 

is on the 2p22-p21 region, consisting of 23 exons (26, 27) and 

coding for multiple domains containing: regulatory histone-like 

folds domain (HF), Dbl homology domains (DH), and Pleckstrin 

homology domains (PH); catalytic RAS exchanging motif (REM) 

BRAF (V-Raf murine sarcoma viral 

oncogene homolog B1) 

Mutated BRAF (OMIM 164757) locus on 7q34 enhances ERK 

activation (38, 36), causing NS in 1.7%–1.9% of cases. 
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Component Gene Mutation Domain Type 

Phosphatases 

 
PPP1CB p.P49R N-terminus NS 

PTPN11 

 
p.D61G/N/H N-SH2 

 
NS 

 p.Y63C 

p.Q79R/P 

p.N308D/S/T Phosphatase 

 p.Y279C/S NS-ML 

 p.T469M/P 

RAS isoforms 

 
HRAS p.G12S/A/C RAS 

 
CS 

KRAS 

 
p.V14I NS 

 p.P34R/K 

p.I36M 

p.T58I 

p.G60R/S 

p.D153V 

NRAS p.G60E 

MRAS p.G23R/V 

RRAS p.G23dup 

RIT1 

 
p.A57G 

p.F82l/I/V 

p.M90I 

G95A 

Kinases 

 
BRAF 

 
p.Q257R/K CRD CFC 

 p.L597V Kinase 

RAF1 p.S257l/K/P CR2 NS 

MEK1 p.Y130C/N/H Kinase CFC 

 MEK2 p.F57C/I/V/l N-terminus 

GEFs 

 
SOS1 

 
p.M269T/R RHO GEF NS 

 p.R552/G/S/K Allosteric site 

p.E848K RAS GEF 

Ubiquitin 

 
CBL p.Y371H/C/N RING NSLD 

LZTR1 p.G248R Kelch NS 
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NF1 encodes the neurofibromin protein, which belongs to the 

family of GTPase activating proteins (GAPs) and which 

negatively regulates RAS signaling. Neurofibromin also positively 

regulates cyclic adenosine monophosphate (AMP) levels (47, 48). 

Increased cyclic AMP levels have been associated with reduced 

cell growth, likely through interference with multiple mitogenic 

signaling pathways. The most common cardiovascular 

manifestations of NF1 include vasculopathy (49), hypertension 

(50), and other congenital heart defects (51). Sørensen found 

myocardial infarction and cerebrovascular accidents at a younger 

than-expected age in NF1 patients (52). NF1 vasculopathy 

includes segmental hypoplasia of the abdominal aorta and fibro 

cellular intimal proliferation. Both contribute to the luminal 

stenosis (53), aneurysms, the rupturing of which has been known 

to cause catastrophic abdominal and retroperitoneal hemorrhage 

and arteriovenous malformations, and is the second leading 

cause of death in neurofibromatosis patients (54–56). Coronary 

heart disease occurs at a higher-than-expected frequency 

compared with that in the general population, with pulmonary 

artery stenosis representing 25% of these malformations. 

Hypertension is common among female NF1 patients during 

pregnancy (57), and the prevalence increases with age. However, 

it has not been investigated whether NF1-hypertension is just a 

coincidental finding often discovered during medical evaluation 

for other reasons. Based on the previous literature, 10%–15% of 

NF1 patients have CHD (51). Approximately 50% of NF1 

individuals with CHD have PVS. Aortic stenosis, aortic 

coarctation, atrial septal defects (ASD), and ventricular septal 

defects (VSD) are detected less frequently in NF-CHDs (58–60). 

MAP2K1 (mitogen-activated protein 

kinase 1) 

MAP2K1 (OMIM 176872), with a locus on 15q22, comprises 

11 exons encoding the MEK protein, which activates ERK-MAP 

(39). Among NS cases without PTPN11 and SOS1 mutations, 

4.2% are caused by mutated MAP2K1 (40). 

SOS2 (Son of seven less homolog 2) 

Mutation of the homolog of SOS2 (OMIM 601247) locus on 

14q21 causes 4% of Noonan cases, closely associated 

ectodermal defects like SOS1 (41). 

with 

LZTR1 (leucine-zipper-like transcription 

regulator 1) 

The LZTR1 gene (OMIM 600574) mapped on 22q11.21, 

consisting of 21 exons, encodes for a protein of the BTB-ketch 

superfamily, also implicated in neurofibromatosis (42). However, 

it is not associated with the RAS/MAPK pathway (41). 

A2ML1 [a-2-macroglobulin (A2m)-like-1] 

Mutation of A2ML1 (OMIM 610627), mapped on 12p13 with 

35 exons, comprises 1% of Noonan patients negative for other 

significant  genes  (43).  A2ML1 is  a  member  of  the 

a-macroglobulin superfamily, localized in the 12p13 region with 

35 coding exons, and is a protease inhibitor upstream of the 

MAPK pathway (44). Nevertheless, how its mutation affects the 

MAPK pathway requires further explication. 

Genetics of neurofibromatosis type 1 

NF1 is a large and complex gene that carries more than 280 kb of 

genomic DNA, including 57 constitutive exons and other alternatively 

spliced exons (61). Now, over 2,800 different NF1 variants have been 

identified (62). Genetic testing in NF1 is challenging because of the 

large number of possible mutations in this large gene. 

Approximately 5% of patients with NF1 have a complete or near- 

complete deletion of the NF1 gene. These patients display a more 

severe phenotype, including earlier onset, large load of 

neurofibromas, greater likelihood of cognitive deficiency, 

dysmorphic facial features, increased risk of malignancy, and 

connective tissue involvement, with joint laxity, hyperextensible 

skin, and mitral valve prolapse. ADAP2 gene, which has been 

considered as a modifier of NF1, involved in cardiac development, 

is a reliable candidate gene for the occurrence of congenital valve 

defects (63). Additionally, CENTA2 and JJAZ1 are two possible 

candidates for the cardiovascular malformations (64). 

Other genes 

Recently implicated rare variants in NS include RASA2, 

MAP3K8, and SPRY (45). 

Neurofibromatosis type 1 (NF1) and cardiac 

manifestation 

Neurofibromatosis (OMIM 162200) is an autosomal dominant 

genetic disorder caused by a heterozygous mutation of the NF1 

gene located on chromosome 17q11.2. NF1 is a multisystem 

disease impacting the growth and function of various cell types 

and organs. Early-onset cerebrovascular disease, 

pheochromocytomas, and cardiovascular disease frequently cause 

premature death in individuals with NF1. Neurofibromas, the 

characteristic tumors of NF1, impact approximately 1/2000 live 

births (46) and can develop within the heart, obstructing blood 

flow in the heart or major vessels by compression or invasion, 

leading to hemorrhage. Fortunately, these are rare complications. 

Sex dimorphism in RASopathy-induced 

cardiomyopathy in NS and NF1 

The relationship between RASopathies and sex dimorphism is 

controversial, complex, and likely influenced by many factors. 
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Studies have suggested that males with NS may be more likely to 

have more severe cardiac manifestations, including a higher 

incidence of hypertrophic cardiomyopathy and aortic valve 

stenosis, compared to females with NS (3, 35, 65). Similarly, few 

studies indicated that males had a higher incidence of pathogenic 

variants in the RAF1 gene, a less common genetic mutation 

associated with NS (66–69). However, other studies suggested no 

significant sex differences in the prevalence or severity of cardiac 

abnormalities in NS patients (16, 70). A retrospective cohort of 

412 children with NS by Romano et al. found that female 

patients had a higher prevalence of pulmonary valve stenosis and 

a higher incidence of cardiac surgery compared to male patients. 

These female patients also indicated a higher incidence of 

composite cardiovascular events compared to male patients (71). 

There is limited evidence regarding sex differences in cardiac 

manifestations of NF1 (72). But a recent study investigated sex 

differences in cardiac function in NF1 patients with Left 

Ventricular (LV) dysfunction and found that males had 

significantly lower Left ventricular ejection fraction (LV EF) and 

more severe LV dysfunction than females. In addition, males had 

a higher incidence of LV remodeling and a higher risk of sudden 

cardiac death than females (73). Similarly, individuals with NF1 

found that males were more likely to have cardiac abnormalities 

than females and that males had a higher incidence of 

pulmonary stenosis and atrial septal defects (51). On contrary, an 

older study found that females with NF1 may be more likely to 

have cardiac abnormalities than males (58). 

Current observations indicate that there may be some sex 

differences in the prevalence or severity of cardiac manifestations 

in RASopathies. These differences are not always consistent 

across studies and may be influenced by other factors such as 

age, genotype, and environmental factors. Additionally, many 

individuals with RASopathies have a normal cardiac function. 

However, the mechanisms underlying these sex differences are 

not well understood. One possible explanation is the differential 

expression of RAS-MAPK pathway genes in males and females, 

which could affect the development and progression of 

cardiomyopathy in RASopathies. Another possible explanation is 

the influence of sex hormones on cardiac function and 

remodeling, which could interact with the RAS-MAPK pathway 

and contribute to sex differences in RASopathy-induced 

cardiomyopathy. Despite the growing recognition of sex 

differences in RASopathy-induced cardiomyopathy, there is a 

lack of sex-specific guidelines for the diagnosis and management 

of cardiac complications in these disorders. This highlights the 

need  for  further  research  to  understand  the  mechanisms 

RAS-MAPK pathway. The age of onset and clinical penetrance of 

cardiomyopathy differ between NS and NF1. NS typically 

presents in childhood or adolescence, while NF1 may not present 

until adulthood. The penetrance of cardiomyopathy is also 

higher in NS than in NF1. Colquitt et al. in 2014 demonstrated 

that in NS patients severe HCM has an early onset with an 

increased risk of long-term morbidities (74). Later many studies 

confirmed the early onset of HCM (75, 76) as well as pulmonary 

valve stenosis and arterial septal defect in NS patients (77). In 

contrast, the prevalence of HCM in NF1 patients was only 2%, 

with a mean age of onset of 26 years. Also, mutations in the 

NF1 gene have been associated with a decreased risk of 

cardiomyopathy (59). 

Several genetic variants have been associated with an increased 

risk of cardiomyopathy in NS and NF1. In NS, mutations in the 

PTPN11 and RAF1 genes have been associated with an increased 

risk of HCM. Lin et al. in 2000 found that the prevalence of 

HCM was higher in NS patients with PTPN11 mutations than in 

those with RAF1 mutations (44% vs. 18%). Overall, 9% of the 

DCM cohort presenting in childhood or adolescence have RAF1 

mutations (59) PTPN11 had common echocardiography features 

characterized by pulmonary valve stenosis, while HCM is 

characterized by RAF1. RAF1 genotypes were shown as 

prognostic factors, eliciting multiple interventions that may be 

required for NS patients with severe pulmonary stenosis or 

myectomy for HCM (77). But a recent study indicated that the 

proportion of RIT1 mutation-positive patients who underwent 

intervention due to cardiovascular disease was significantly 

higher than that of patients with PTPN11 mutations (78). A 

multi-center cohort study to compare the incidence of sudden 

cardiac death (SCD) and implantable cardioverter-defibrillator 

(ICD) use between RAS-HCM (n = 188) and P-HCM (n = 567) 

patients showed a lower median age for RAS-HCM. 

Nonarrhythmic deaths occurred primarily in infancy, and SCD 

primarily in adolescence (79). Another study suggested the 

possibilities of prenatal RASopathy testing by comparing the 

genotypic variations from 352 chromosomal microarray negative 

cases for prenatal RASopathy testing with post-natal cohorts (25 

patients with available prenatal information and 108 institutional 

database genotypes). The study supported the view that a subset 

of RASopathy genes and variants that are more frequently 

associated with complex prenatal features such as hydrops/ 

effusions or serious cardiopathy should be considered in the 

prenatal evaluation (80). 

Trametinib, cobimetinib, and binimetinib are examples of 

medications that have been approved for use in certain tumors to 

suppress the RAS/MAPK signaling pathway. These medications 

may benefit NS patients with mutations resulting in gain-of- 

function alterations in the RAS/MAPK pathway. This has been 

investigated in mouse models with the RAF1 mutation, which is 

present in many NS patients. Mek inhibition during postnatal 

treatment reversed hypertrophy, restored standard cardiomyocyte 

size, and lowered fractional shortening toward the target range 

(81). Since then, there have been several case reports highlighting 

anecdotal successes with MEK inhibition in NS patients. By now, 

three groups have described the cases of four patients who, after 

underlying sex differences in RASopathy-induced 

cardiomyopathy and develop sex-specific management strategies 

to improve outcomes for both male and female patients. 

Age of onset and clinical penetrance of 

genetic variants in RASopathies 

Cardiomyopathy, a common cardiovascular complication in 

patients with NS and NF1, is caused by genetic mutations in the 
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using trametinib, showed improvement from NS and HCM (82– 

84). Studies have also shown that arrhythmia and lymphatic 

abnormalities resolve after starting MEK inhibition treatment 

(83, 85, 86). While there are some promising early reports of this 

medical therapy for a patient population for which it is typically 

believed that the only treatment option is cardiac transplantation, 

more research is still required in this area (87). 

Our understanding of the molecular basis of RASopathies 

continues to expand, along with our knowledge of the various 

Another possible explanation is that comorbidities, such as 

hypertension, diabetes, or obesity, can further exacerbate the risk 

of developing cardiomyopathy in individuals with RASopathies. 

It is crucial for clinicians to carefully monitor and manage these 

conditions to reduce the risk of cardiovascular complications in 

this patient population. 

Despite these challenges, genetic testing and imaging 

technology advances have greatly improved our ability to 

diagnose and monitor cardiomyopathy in individuals with 

RASopathies. Identifying specific genetic mutations associated 

with cardiomyopathy can help guide treatment decisions and 

improve outcomes for affected individuals. 

clinical manifestations of these disorders, including 

cardiomyopathy. Figure 3 indicates the involvement of RAS/ 

MAPK pathway genes in NS and NF1. The age of onset and 

clinical penetrance of cardiomyopathy in NS and NF1 are 

important factors that can influence the diagnosis and 

management of these conditions. However, much is still 

unknown about the mechanisms underlying the development of 

cardiomyopathy in RASopathies, and further research is needed 

to identify novel therapeutic targets and improve outcomes for 

affected individuals. One potential explanation for the variability 

in age of onset and clinical penetrance of cardiomyopathy in NS 

and NF1 is the wide range of genetic mutations that can occur 

within these genes. As we have seen, specific mutations can 

result in more severe forms of cardiomyopathy, while others may 

have little to no effect on the heart. Other genetic and 

environmental factors may also play a role in determining the 

De-novo mutations in RAS/MAPK pathway 

Since the RAS/MAPK pathway was discovered in humans, the 

role of these two molecules has been investigated extensively in a 

wide range of human diseases, including the role of somatic 

mutations in RAS/MAPK mediated cancer. RAS/MAPK pathway 

genes are often activated because of germline mutations, referred 

to as RASopathies, comprising ectodermal and mesodermal 

development abnormalities and various neoplasia. Interestingly, 

mutations in RASopathy genes impact different cellular subsets 

differently, and the phenotype observed in patients varies widely. 

This phenotype diversity with the same genotype could be due to severity and timing of cardiomyopathy in these individuals. 
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FIGURE 3 

RAS/MAPK pathway gene involvement in NS and NF1. Gene variants and cardiac malformations in NS and NF1. 
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secondary events modified by epigenetic, environmental, and yet 

undetermined factors. Recent sequencing technology advances 

have enabled us to decipher many genotype-phenotype mysteries. 

A recent study discovered de novo variants in PTPN11, RAF1, 

BARF, SHOC2, RASA1, and HRAS in nine sporadic patients, all 

of whom had cardiovascular abnormalities along with other 
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