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ABSTRACT Biological nitrogen fixation, the microbial reduction of atmospheric
nitrogen to bioavailable ammonia, represents both a major limitation on biological
productivity and a highly desirable engineering target for synthetic biology. However,
the engineering of nitrogen fixation requires an integrated understanding of how the
gene regulatory dynamics of host diazotrophs respond across sequence-function space
of its central catalytic metalloenzyme, nitrogenase. Here, we interrogate this relationship
by analyzing the transcriptome of Azotobacter vinelandii engineered with a phyloge-
netically inferred ancestral nitrogenase protein variant. The engineered strain exhibits
reduced cellular nitrogenase activity but recovers wild-type growth rates following an
extended lag period. We find that expression of genes within the immediate nitrogen
fixation network is resilient to the introduced nitrogenase sequence-level perturbations.
Rather the sustained physiological compatibility with the ancestral nitrogenase variant
is accompanied by reduced expression of genes that support trace metal and electron
resource allocation to nitrogenase. Our results spotlight gene expression changes in
cellular processes adjacent to nitrogen fixation as productive engineering considerations
to improve compatibility between remodeled nitrogenase proteins and engineered host
diazotrophs.

IMPORTANCE Azotobacter vinelandii is a key model bacterium for the study of biological
nitrogen fixation, an important metabolic process catalyzed by nitrogenase enzymes.
Here, we demonstrate that compatibilities between engineered A. vinelandii strains
and nitrogenase variants can be modulated at the regulatory level. The engineered
strain studied here responds by adjusting the expression of proteins involved in
cellular processes adjacent to nitrogen fixation, rather than that of nitrogenase proteins
themselves. These insights can inform future strategies to transfer nitrogenase variants
to non-native hosts.

KEYWORDS nitrogen fixation, nitrogenase, Azotobacter vinelandii, ancestral protein
reconstruction, RNA-Seq

itrogen cycling impacts ecosystems across the globe and is vitally important

for sustained biological activity. The largest reservoir of nitrogen is highly inert
atmospheric N, that is unavailable to most organisms. Nature has invented a single
molecular mechanism to reduce, or “fix, N, gas to bioavailable NH3 and overcome
nitrogen limitations on biological productivity via the family of nitrogenase enzymes
hosted solely by certain bacteria and archaea (1, 2). Nevertheless, approximately half of
global fixed nitrogen today is generated by anthropogenic means to meet the demands
of a rapidly expanding human population (3). Although nitrogenases catalyze nitrogen
fixation at ambient conditions, the Haber-Bosch process, which generates the bulk of
anthropogenic fixed nitrogen, requires high temperatures and pressures and is both
energetically and environmentally costly (4). Thus, strategies to both improve biological
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nitrogen fixation activity and distribute the enzymatic machinery to non-diazotrophic
hosts (e.g., cereal crops) are highly desirable bioengineering goals (5, 6).

A critical component of nitrogen fixation in natural diazotrophs is its genetic
regulatory architecture that is required to coordinate the expression of nitrogenase
enzymes in response to dynamic environmental conditions and physiological states
(7-9). Regulatory precision is necessary due to the high metabolic cost of nitrogen
fixation as well as the complex nature of its supporting protein network. For exam-
ple, the aerobic, diazotrophic model gammaproteobacterium Azotobacter vinelandii has
more than 50 proteins that support three nitrogenase isozyme systems, with molecu-
lar functions including nitrogenase regulation and assembly, electron transport, and
cofactor synthesis (8, 10, 11). The oxygen sensitivity of the nitrogenase metalloenzyme
demands that aerobic microbial hosts (desirable models for nitrogen fixation transfer
to crop plants such as cereals) utilize particular strategies to ensure metabolic compat-
ibility, including temporal/spatial regulation of nitrogen fixation activity or protection
via heightened respiratory rates (9, 12). These features make regulatory optimization
challenging, particularly with the heterologous expression of nitrogen fixation genes.
Under diazotrophic conditions (i.e., lacking an exogenous reduced nitrogen source),
nitrogenases are highly expressed [e.g., comprising up to 10% of total protein in A.
vinelandii (13)]. Nevertheless, in heterologous expression systems, overexpression of
nitrogenase proteins decreases total nitrogen fixation activity (14), perhaps due to
misfolding of excess proteins (15). Nitrogen fixation evidently relies on a fine-tuned
protein network stoichiometry that is well-optimized in native hosts but is often
incompatible with other species (16).

Relative to regulation, sequence-level engineering of nitrogenases and their
associated proteins for improved outcomes has received little attention. Prior mutagen-
esis studies have generally aimed to generate key insights into nitrogenase biochem-
ical mechanisms via disruption of activity rather than to increase activity through
a broader exploration of sequence space (1, 17). Only recently have the functional
consequences of nitrogenase sequence variation been deeply interrogated, for example,
through random mutagenesis (18), extant ortholog libraries (19), and resurrection of
phylogenetically inferred ancestral proteins (20). These sequence-level studies have the
potential to identify variants with improved catalytic activities, stabilities, or interactions
with associated proteins, as well as compromises of two or more of these features
(e.g., reduced activity but highly improved stability). Nevertheless, due to the many
genetic requirements for nitrogenase activity, functional insights from these studies are
unlikely to be divorced from their downstream consequences on the surrounding cellular
network in both native and heterologous hosts. Sequence-level optimization might be
hampered by protein network incompatibilities and/or a counterproductive regulatory
response (21). Thus, successful nitrogen fixation bioengineering prospects rely upon a
concerted understanding of both nitrogenase sequence and regulatory space.

In this study, we probe the regulatory response of A. vinelandii to a synthetic,
ancestral variant of the nitrogenase catalytic protein NifD, previously resurrected from
within the direct A. vinelandii evolutionary lineage (20). The establishment of the A.
vinelandii genetic system, which has detailed the nitrogenase regulon structure and
expression mechanisms, and the detailed physiological information available from
decades of work, makes A. vinelandii an ideal model organism for the transformation
of synthetic nitrogenase genes and downstream transcriptional characterization (1, 8,
10, 22, 23). The nitrogenase variants of the engineered A. vinelandii strain have reduced
N, reduction activity, also reflected by reduced cellular nitrogenase substrate reduction
rates. Nevertheless, following an extended growth lag, the strain is capable of diazotro-
phic growth at rates comparable to wild type (WT). By analyzing the transcriptome of
the engineered strain, we identify the gene expression patterns that accompany the
sustained compatibility between the nitrogenase variant and the A. vinelandii host. We
find that transcription levels within the immediate nitrogen fixation network, including
nitrogenase and nitrogenase-related gene clusters, are highly robust to mutations in

September/October 2023 Volume 11  Issue 5

Microbiology Spectrum

10.1128/spectrum.02815-23 2

Downloaded from https:/journals.asm.org/journal/spectrum on 29 November 2023 by 128.104.138.6.


https://doi.org/10.1128/spectrum.02815-23

Research Article Microbiology Spectrum

a core, catalytic component of nitrogen fixation. Rather the regulatory response is
enriched for genes external to this immediate network that indirectly impact nitrogen
fixation by modulating electron flux, trace metal transport, motility, stress response,
and central metabolism. Our results shift focus to these ancillary cellular functions as
potential engineering targets to improve the compatibility of remodeled nitrogenase
proteins in diazotrophic hosts.

RESULTS AND DISCUSSION

An ancestral nitrogenase protein variant results in defects to A. vinelandii
nitrogen fixation ability

To interrogate the regulatory consequences of sequence-level changes in an engi-
neered nitrogenase gene, we selected a previously constructed A. vinelandii strain,
“ancNif," reported by Garcia et al. (20), in which one of the WT nitrogenase catalytic
genes, nifD (encoding the NifD protein subunit), was replaced with a phylogenetically
inferred ancestral variant (20, 24, 25) (Fig. 1A). The ancestral NifD protein sequence
was reconstructed from a phylogenetic node within the extant A. vinelandii nitrogenase
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FIG 1 Construction and physiology of A. vinelandii strain ancNif harboring an ancestral nitrogenase NifD protein subunit, previously reported by Garcia et
al. (20). (A) The protein sequence of ancestral NifD was inferred from a NifHDK protein phylogeny (the targeted ancestral NifD clade, which includes the A.
vinelandii lineage, shown in bold). The ancestral nifD gene (pink) was integrated into the A. vinelandii genome by homologous recombination, replacing a
kanamycin resistance marker (KanR) previously incorporated to knock out WT nifD (see Materials and Methods). The engineered ancestral gene is the only
genetic perturbation within the broader nif major and minor clusters. (B) ColabFold-predicted structure of the hybrid nitrogenase catalytic tetramer, NifDK, in
ancNif, generated in the present study. NifD subunits are colored tan, with residues within the ancestral NifD that are substituted relative to WT highlighted
pink. NifK is shown as transparent. FeMo-co serves as both the site of N, reduction to NH3, as well as reduction in the alternative substrate CoH, to CoHg
(dotted arrow). (C) Growth curve and growth parameters of ancNif and WT. Midpoint time represents the time to the inflection point of a logistic curve fit
to the growth data (26), which highlights the extended growth lag in ancNif. Average growth parameter values are tabulated (five biological replicates per
strain) 1 SD. (D) Acetylene reduction rates of ancNif and WT. The bar plot shows mean acetylene reduction rates (three biological replicates per strain) and error
bars represent £1 SD. (C-D) Asterisks indicate P < 0.05 relative to WT (one-way ANOVA, post-hoc Tukey HSD). (A-D). Figures modified from Garcia et al. (20).
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evolutionary lineage and bears ~85% protein sequence identity to WT NifD (Fig. S1 and
S2). Unlike random mutagenesis or replacement with extant orthologs from divergent
clades, this strategy introduced sequence variation derived from the evolutionary
relationships across extant nitrogenases within a proteobacteria clade and was thus
more likely to retain genomic compatibility (20).

NifD, together with NifH and NifK subunit proteins, comprises the molybdenum-
(Mo-) nitrogenase complex. Although A. vinelandii also possesses genes encoding
vanadium- (V-) and iron- (Fe-)nitrogenase isozymes, which differ in their metal depend-
encies and expression conditions (27), only nifD has been replaced with an ancestral
variant in the ancNif strain. Therefore, the Mo-nitrogenase in ancNif is a hybrid enzyme
complex of ancestral and WT subunits (Fig. 1B). The NifD protein subunit binds the
iron-molybdenum metallocluster (FeMo-co) that serves as the site for nitrogenase
substrate reduction and together with NifK comprises the heterotetrameric catalytic
component of nitrogenase. Electrons are delivered to the NifD active site via transient
interactions between NifDK and the homodimeric nitrogenase reductase component
NifH.

Garcia et al. previously demonstrated that strain ancNif exhibits a comparable
diazotrophic growth rate to that of WT A. vinelandii, albeit with a ~14 h growth lag
(Fig. 1C) (20). Growth rates were assessed under molybdenum-replete conditions, under
which the hybrid Mo-nitrogenase is expressed and the alternative V- and Fe-nitrogena-
ses are repressed (8). The Mo-nitrogenase activity of ancNif in the mid-log phase was
previously found to be diminished (~40% that of WT), as detected by decreased cellular
reduction rates of the nitrogenase substrate, acetylene (Fig. 1D) (20). This reduction
in activity was confirmed by both nitrogenase immunodetection and purified enzyme
activity assays to be due to reduced nitrogenase activity rather than reduced nitrogenase
protein concentration (20). Purified ancNif nitrogenase exhibited ~30% N, reduction
activity of WT nitrogenase, though the efficiency of ancNif nitrogenase (~1.95, quantified
by the ratio of reduced N to evolved H;) was comparable to that of WT (~2.10). Taken
together, strain ancNif displays a measurable phenotypic defect while still retaining
sufficient diazotrophic activity to eventually sustain cell growth at WT rates. Thus, ancNif
is a suitable target for investigations into the transcriptional consequences of sequence-
level nitrogenase perturbations, as well as for probing how A. vinelandii is capable of
accommodating a less active nitrogenase variant.

Gene expression patterns within the nitrogen fixation network are resilient to
nitrogenase perturbations

We analyzed the transcriptome of the engineered ancNif strain sampled under mid-log
(OD600 = 0.7; after ~20 h for WT and ~35 h for ancNif), diazotrophic growth conditions
by RNA-Seq. Relative to WT strains cultured under the same conditions, we identified 405
genes (out of 5,051 mapped genes; ~8%) that are significantly differentially expressed
(adjusted P < 0.05), with 293 genes (~6%) having increased transcript abundance in
ancNif and 112 genes (~2%) with decreased transcript abundance in ancNif (Fig. 2;
Supplemental file 2). Of those genes exceeding this significance threshold, 57 genes had
at least a log, fold change of 2 in the ancNif strain compared to WT, either increased
(54 genes) or decreased (three genes) transcript abundance. We identified five clusters
of gene response types in ancNif: three clusters among the 293 genes with increased
transcript abundance in ancNif and two clusters among the 112 genes with decreased
transcript abundance in ancNif (Fig. 2B; Supplemental file 3).

Because our genetic manipulation targeted the catalytic nifD gene, we investigated
whether nitrogen-fixation-related genes were among those differentially expressed in
the ancNif strain. We hypothesized that this manipulation would result in modifications
to protein stoichiometries within the immediate nitrogen fixation network, accommo-
dating a hybrid nitrogenase enzyme with reduced catalytic activity. In A. vinelandii, genes
within the immediate network of the molybdenum-dependent nitrogenase are arranged
into two distinct clusters, the nif major (Avin_01360 to Avin_01720) and minor clusters
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expression patterns across three biological replicates of ancNif.

(Avin_50900 to Avin_51060) (10, 28) (Fig. 3) (10). The major cluster includes the nifHDK
catalytic genes, and both clusters include other nif genes important for nitrogenase
assembly, metallocluster biosynthesis, and regulation. Interspersed among nif cluster
genes are naf genes (nitrogenase-associated factors) that support assembly and
biosynthesis, though many are not strictly required for diazotrophy and/or have
unknown functions (10). The minor cluster contains rnf genes that form one of two
respiratory complexes that direct electron flow to nitrogenase in A. vinelandii (the other
is encoded by fix genes located elsewhere on the genome) (29). Predicted operons
within the nif major and minor clusters mirror those previously reported (10, 30)
(Supplemental file 4). Finally, the dedicated genes for V- and Fe-nitrogenases in A.
vinelandii are housed in vnf and anf clusters, respectively, though nitrogen fixation by
these alternative nitrogenases has previously been shown to also be supported by
expression of certain nif genes (8, 10, 27).

In both WT and ancNif strains, the catalytic nitrogenase genes, nifHDK, are the most
highly expressed (log,(FPKM) = 12-14, top 1% of all gene expression levels) relative to
other genes within the major and minor nif clusters. In fact, in ancNif, nifH is the fourth
most highly expressed gene in our data set (nifD and nifK ranked within the top 12),
supporting previous findings that nitrogenase subunits constitute a significant percent-
age of total protein in nitrogen-fixing A. vinelandii. Little expression was observed for vnf
and anf genes (e.g., ~600-fold decreased expression of catalytic vnfHDK or anfHDK genes
relative to nifHDK), which was expected since alternative nitrogen fixation in A. vinelandii
is predicted to be repressed under the tested, molybdenum-replete, diazotrophic
conditions (8).

Contrary to our hypothesis, we found that the expression of genes within the
immediate nitrogen fixation network is largely unaffected by the replacement of an
ancestral NifD variant in ancNif. Only two genes within the nif major and minor clusters
showed significant increases in expression: the nitrogenase catalytic gene, nifK
(Avin_01400; fold change = 2.4), and an uncharacterized gene with an ABC transporter
domain, nafJ (Avin_01580; fold change = 1.5) (Fig. 3; Supplemental file 2). Thus, relative
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stoichiometries of gene products across the nif clusters are expected to remain
unchanged in ancNif. No genes within the nif, vnf, or anf clusters were found to have
significantly lower expression in ancNif compared to WT. Together, these results suggest
that nitrogen-fixation-related gene expression is remarkably robust to sequence-level
perturbation to nitrogenase.

Regulatory response is enriched in cellular functions outside the immediate
nitrogen fixation network

We expanded our focus to analyze the regulatory response across cellular functions
outside of the immediate nitrogen fixation network (i.e., outside of the major and
minor nif clusters) that might otherwise be indirectly impacted by perturbation of the
nitrogenase enzyme. We found several genes encoding proteins that are associated
with pilus formation, molybdenum transport, electron transport, and central carbon
metabolism to be among those with the largest expression changes in ancNif relative to
WT (Fig. 4).
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Pilus formation

Of the 50 genes with the largest increases in expression in ancNif (~1% of all mapped
genes), 16 are related to Type IV pilus structure, assembly, and regulation, and have fold
changes > 4 relative to WT. In fact, the gene with the largest increase in expression
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in ancNif (~230-fold increase in expression relative to WT) is pilA, which codes for the
major, filament-forming pilin protein (31). Other pil genes with increased expression
are primarily located in three clusters (pilEVWY1, Avin_11830 to Avin_11870; pilABCD,
Avin_12070 to Avin_12104; and pilMNOPQ, Avin_45260 to Avin_45300; Fig. 4A). Across
diverse bacteria, Type IV pili contribute to cell motility, sensing, attachment, aggregation,
and DNA uptake (31). Furthermore, large increases in Type IV pilus gene expression have
previously been observed in the transition from non-diazotrophic to (Mo dependent)
diazotrophic conditions in A. vinelandii (8). The precise functional relationship between
pilus formation and nitrogen fixation in A. vinelandii remains unclear. However, our
finding that pilus gene expression is amplified even further in ancNif—exhibiting defects
in its diazotrophic growth behavior relative to WT—might be indicative of resource
limitation and associated stress response. Indeed, increased Type IV pilus expression has
previously been reported in bacteria under starvation conditions (32-34).

Molybdenum transport

We observed that genes encoding proteins associated with molybdenum transport are
expressed at lower levels (~2-fold decrease) in ancNif relative to WT. A. vinelandii harbors
a relatively complex pathway for molybdenum uptake and homeostasis that includes
the transmembrane, high-affinity molybdenum ABC-type transporters (mod), as well
as ATP-dependent molybdenum storage proteins (mos) (11, 35). In ancNif, modABCGE
genes within the mod1 cluster (Avin_50650 to Avin_50690; duplicates of some of these
genes are also found within additional mod2 and mod3 clusters that are expressed
at <10% the level of mod1 in ancNif), which encode both the structural components
of the transporter and its transcriptional repressor (modET1) (7), show lower expression
levels (Fig. 4). Furthermore, we observe ~1.7-fold lower transcript levels of mosAB in
ancNif relative to WT (Supplemental file 2). Deletions of modET and mosAB have each
previously been shown to impair the accumulation of intracellular molybdenum (35-
37). Therefore, we hypothesize that reduced expression of these genes in ancNif may
similarly reduce intracellular molybdenum that is otherwise needed to support the
molybdenum-dependent, nif nitrogenase system.

Electron transport

Among the genes with the largest decrease in expression in ancNif relative to WT are
those that encode the Fix respiratory complex, which, together with the Rnf complex,
provides low potential electrons for nitrogen fixation (29, 38). Relative to WT, fixABCX
genes (Avin_10520 to Avin_10560) in ancNif have ~3- to 4-fold decreases in expression
(Fig. 4A). The electron bifurcating Fix system transfers electrons from NADH to both
quinone and flavodoxin/ferredoxin, the latter which donates electrons to nitrogenase
(38). By contrast, Rnf, the expression of which is not significantly impacted in ancNif,
couples the reduction in flavodoxin/ferredoxin to the proton motive force. Previous
deletion mutants have demonstrated that there is some degree of redundancy between
the Rnf and Fix systems, but inactivation of both the fix and the rnf genes within the nif
minor cluster is sufficient to abolish nitrogen fixation activity (38). Under varying oxygen
conditions or expression of different nitrogenase isozymes, A. vinelandii cells display
preferences for either Rnf or Fix as a means of optimizing electron flow for efficient
nitrogen fixation. The Fix is favored when oxygen is limiting and/or when additional
energy is required for the expression of alternative V- and Fe-nitrogenases (29). The
decrease in Fix gene expression but relative maintenance of Rnf transcript levels in
ancNif suggests both that ancNif cells do not require the additional electron flux to
nitrogenase that would have been generated by Fix and that rely more strongly on the
reducing power provided by Rnf.

Central carbon metabolism

Several genes that encode enzymes within the A. vinelandii tricarboxylic acid (TCA) cycle
exhibited decreased expression levels in ancNif compared to WT (~2 to 3-fold decrease
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in expression; adjusted P < 0.05; Fig. 4B; Fig. S4). We note, however, that expression of
isocitrate lyase (icl; Avin_28420) was increased by ~2-fold in ancNif. ic/ directs carbon
toward the glyoxylate shunt and away from oxidative steps of the TCA cycle (39)
that would otherwise generate reduced NADH for electron flow to nitrogenase. The
expression changes within the TCA cycle in ancNif are opposite from what has previously
been observed in mutant A. vinelandii strains that constitutively express nitrogenase.
Constitutive nitrogenase expression leads to an increase in the expression of genes that
encode enzymes in the TCA cycle, as well as decreased flux through the glyoxylate shunt
(40). Although TCA cycle gene expression in the constitutively expressing A. vinelandii
strain likely reflects greater cellular investment in generating reducing power for larger
quantities of nitrogenase enzyme, the opposite outcome in ancNif instead implies a
preference for reserving carbon via the glyoxylate shunt at the expense of decreasing
total electron flux toward nitrogen fixation.

Reduced nitrogenase activity results in lowered transcription of genes that
support resource allocation toward nitrogen fixation

Transcriptomic profiling of the mutant A. vinelandii strain ancNif harboring an ancestral
NifD variant suggests a global pattern in which engineered cells reduce transcription
of genes that support resource allocation for molybdenum-dependent nitrogen fixation
in response to the diminished activity of the hybrid nitrogenase complex. Specifically,
we find evidence of gene expression changes that would be expected to restrict
molybdenum transport and storage, as well as electron flux by both downregulating
Fix and upregulating the glyoxylate shunt that bypasses oxidative steps of the TCA cycle
(Fig. 4). Furthermore, though the specific relationship between the observed increased
expression of Type IV pilus genes and nitrogen fixation remains unclear, these patterns
imply cellular investment in strategies to respond to resource limitation.

Interestingly, once overcoming an extended growth lag, the diazotrophic growth rate
of ancNif is comparable to that of WT (Fig. 1C). Under standard diazotrophic conditions,
the growth rate of A. vinelandii is limited by the nitrogen fixation rate (29). Thus, the
mutations in the ancestral, catalytic nifD gene of ancNif that slow nitrogenase activity
are likely responsible for the initial lag in growth. We note, however, that the changes in
gene expression patterns alone cannot fully explain how ancNif achieves similar growth
rates to WT during the exponential phase. The precise mechanism underlying the growth
phenotype of ancNif awaits further analyses.

A slower nitrogenase enzyme would be expected to result in a wasteful excess of
inputs to nitrogen fixation, including trace metals and reducing equivalents, without
further changes to the transcriptome. The global expression patterns of sampled ancNif
cells in mid-log phase, following the initial lag, demonstrate that this bottleneck in net
nitrogen fixation rate is not loosened by increasing the pool of assembled and active
nitrogenase, as transcript levels of genes within the nif clusters remain relatively constant
compared to WT (Fig. 3). A possible explanation for this is that WT A. vinelandii already
expresses nitrogenase proteins at high levels (13), limiting the selection of possible
nif requlating mutations. Furthermore, adjustments to stoichiometries of nitrogen-fixa-
tion-related genes may be similarly inaccessible, as A. vinelandii, like other well-studied
diazotrophs, likely already expresses well-optimized ratios of nif gene products (16).
Rather we hypothesize that the cellular processes adjacent to nitrogen fixation that are
enriched in gene expression differences in ancNif may be amenable to more dynamic
regulatory control to optimize cellular investment in nitrogen fixation.

Conclusion

This transcriptomic data set showcases the ability of A. vinelandii to readily incorporate
phylogenetically inferred, ancient nitrogenase protein variants and respond dynami-
cally to reduced nitrogen fixation activity. The regulatory response in an A. vinelandii
strain engineered with an ancestral nifD sequence is enriched in genes external to
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the nitrogen fixation network, including those related to molybdenum processing and
electron transport, as the expression of nif genes is evidently resilient to the nitrogenase
perturbations in ancNif and their physiological outcomes. This work provides a novel
perspective on the challenge associated with the engineering of nif gene expression for
improvements to nitrogen fixation. Importantly, transcriptional patterns in the hybrid
nitrogenase-engineered strain highlight adjacent cellular processes as potentially more
effective engineering targets for fine-tuning nitrogen fixation metabolism in bacteria,
particularly in the interest of optimizing compatibilities between host models and
nitrogenase protein variants.

MATERIALS AND METHODS
Ancestral sequence construction

Phylogenetic inference and reconstruction of the ancestral NifD variant sequence in
strain ancNif were performed previously by Garcia et al. (20). Briefly, a representative
nitrogenase protein sequence data set was curated following an initial BLASTp (41)
search of the NCBI non-redundant protein database. A concatenated NifHDK align-
ment was generated by MAFFT v7.450 (42) and phylogenetic inference and ancestral
sequence reconstruction were performed by RAXML v8.2.10 (43) under the LG+ G + F
evolutionary model. Though this version of the RAXML software does not perform full
marginal ancestral sequence reconstruction, the ancestral NifD protein sequence was
previously not found to differ substantially when generated by the marginal reconstruc-
tion algorithm implemented in PAML [see Garcia et al. (20) for additional discussion].

Nitrogenase structure prediction

The three-dimensional structure of the hybrid NifDK heterotetramer was predicted
by Colabfold (44) (https://github.com/YoshitakaMo/localcolabfold), which combines the
AlphaFold2 structure prediction method (45) with the MMSeq2 method for homology
detection (46). Colabfold was run with standard options (three recycles and AMBER
all-atom optimization in GPU). Protein structures were visualized by ChimeraX (47).

A.vinelandii genome engineering

Phenotypic characterization of A. vinelandii strains in this study was performed
previously (20), following Carruthers et al. (26). A. vinelandii WT, ancNif, and DJ2278
strains were cultured under Mo-replete, diazotrophic conditions. Cells were inoculated
into flasks containing Burk’s medium lacking a fixed nitrogen source and grown at 30°C
and 300 rpm (five biological replicates per strain). Optical density at 600 nm (ODgqq)
was monitored over the growth period. Growth parameters were estimated by the
Growthcurver R package (48). To quantify cellular acetylene reduction rates, the strains
described above were cultured to an OD600 = 0.5 (three biological replicates per strain).
Flasks were subsequently sealed and 25 mL of headspace was replaced by acetylene
gas. Cultures were shaken at 30°C and agitated at 300 rpm for 60 min. Headspace gas
was sampled every 15 min over this period and analyzed on a Nexis GC- 2030 gas
chromatograph (Shimadzu). Acetylene reduction rates were normalized to total protein,
quantified by the Quick Start Bradford Protein Assay kit (Bio-Rad).

RNA library preparation and sequencing

Seed cultures of A. vinelandii WT and ancNif strains were grown in nitrogen-supplemen-
ted Burk’s medium (13 mM ammonium acetate) for 24 h at 30°C and 300 rpm. Seed
cultures were then inoculated into nitrogen-free Burk’s medium and grown diazotroph-
ically to an ODggg of ~0.7 (mid-log), immediately followed by RNA extraction with
the RNeasy Mini kit (Qiagen) following the manufacturer’s instructions. RNA extracts
were assessed on a Nanodrop 2000c (Thermofisher Scientific) and confirmed to contain
>2.5 pg of RNA with a purity of A260/280 = 1.8-2.2; A260/230 > 1.8. RNA extracts were
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stored at —80°C. RNA library preparation and paired-end sequencing (2 x 150 bp read
length; lllumina NovaSeq 6000) was performed by Novogene.

RNA sequencing bioinformatic analysis

Raw FASTQ reads were trimmed using Trimmomatic version 0.3 (49) (default settings
except for HEADCROP = 5, LEADING = 3, TRAILING = 3, SLIDINGWINDOW = 3:30, MINLEN
= 36). Trimmed reads were aligned to the A. vinelandii DJ genome sequence (GenBank
accession CP001157.1) using bwa-mem v0.7.17 (version 0.7.17-h5bf99c6_8) (50) with
default parameters. Alignment files were further processed with Picard-tools v2.26.10
(https://broadinstitute.github.io/picard/) (CleanSAM and AddOrRepleaceReadGroups
commands) and samtools v1.2 (51) (sort and index commands). Paired aligned reads
were mapped to gene locations using HTSeq v0.6.0 (52) with default parameters. The
R package edgeR v3.30.3 (53) was used to identify significantly differentially expressed
genes from pairwise analyses, using Benjamini and Hochberg (54) adjusted P value (FDR)
< 0.05 as a significance threshold. Raw sequencing reads were normalized using the
fragments per kilobase per million mapped reads method (FPKM). Volcano plots were
constructed with ggplot2 (55). For significantly differentially expressed genes, clustering
analysis of expression patterns was performed with DP_GP_cluster v0.1 (56). Operons
were predicted using Operon-mapper (https://biocomputo.ibt.unam.mx/operon_map-
per/, accessed 2022-10-19) (57) with default settings. The R package Pathview (58) was
used to map fold changes of differentially expressed genes (FDR-adjusted P < 0.05)
involved in the A. vinelandii TCA cycle to the KEGG (59) pathway map (avn00020). KEGG
Gene Set Enrichment Analysis (GSEA) was performed using the R package clusterProfiler
v.4.6.2 (60). The number of minimum required genes was set to five and the significant
enrichment cutoff was set to an FDR-adjusted P < 0.05.
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