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Abstract— Wearable dynamics learning is attracting
intensive interests now in the era of smart health. One challenge
is how the learning model can be effective trained with limited
amounts of data. Targeting this, we in this study propose a deep
transfer learning framework, to leverage the knowledge
obtained from non-target users and boost the performance on
the target-user. More specifically, we have designed and pre-
trained a convolutional neural network on the non-target
database, and then fine-tuned the model on a small portion of
the target database. The framework has been evaluated on a
wearable biomechanical learning application for physical
activity detection. Compared with direct target-data-based
learning, the proposed deep transfer learning approach great
boosts the detection accuracy. This study will advance the
wearable dynamics learning applications through deep
knowledge transferring.
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I. INTRODUCTION

Wearable dynamics learning has been attracting intensive
interests in the era of smart health. For instance, wearable
cardiac monitoring has been sued for heart disease monitoring
[1]. Wearable motion sensor has been equipped on smart
watches and bands for step counting and lifestyle management
[2]. Wearable glucose monitor has been used for real-time
glucose level tracking. These advancements have brought
promising possibilities for smart health and big data practices.
In this study, we take a special interest in biomechanical
mining, which is essential for rehabilitation, lifestyle
management and fall detection applications.

Previous studies on biomechanical data analytics include
machine learning and deep learning approaches. For the
former one, support vector machine, decision tree, random
forest and other methods have been reported [3-6]. For the
latter one, convolutional and recurrent networks have been
studied [7-9]. One challenge is how the learning model can be
effective trained with limited amounts of data, and currently
the study of knowledge transferring for wearable data
analytics is still a gap to be filled [3, 4].

Transfer learning has been successful applied in areas such
as computer vision and natural language processing [10]. The
pre-trained models on related databases usually significantly
improve the performance on the target problem. The
abstracted patterns on the non-target databases can encode
some common knowledge that, if applied on the target data,
will facilitate information abstraction and contribute to the
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Fig 1. Transfer learning in biomechanical big data mining.

performance increase. As mentioned-above, it is still unclear
how transfer learning can be applied on the wearable data
analytics.

Targeting this, we in this study propose a deep transfer
learning framework, as shown in Fig. 1, to leverage the
knowledge obtained from non-target users and boost the
performance on the target-user.

More specifically, we have designed and pre-trained a
convolutional neural network on the non-target database, and
then fine-tuned the model on a small portion of the target
database. The framework has been evaluated on a wearable
biomechanical learning application for physical activity
detection. Compared with direct target-data-based learning,
the proposed deep transfer learning approach great boosts the
detection accuracy. This study will advance the wearable
dynamics learning applications through deep knowledge
transferring.

We will then detail the methods and results in section 2
and 3, respectively. Finally, we will conclude the study in
section 3.

II.  METHODS

A. System Diagram

The system diagram of the deep transfer learning approach
is given in Fig. 2, and an example of the biomechanical
dynamics is given Fig. 3. Compared with the direct learning
that may require a large amount of data, the transfer learning
approach can leverage the knowledge from non-target users
and minimize the data need on the target user. Furthermore,
with the same percentage of the target data, transfer learning
is expected to bring performance boosting, by leveraging the



Conv
Qutput

Input

Conv

0

[&----O O]

- /

Dataset Train size
——#» Model 1 ————% 0/25/50/
(sub x_bar) ]
75/100%
Dataset Train size Test size
»Model 2 4’*{5“ X) 0/10/20/ —» o
30/40/50% o

Fig. 2. The proposed deep transfer learning strategies, which leverage pre-training on the non-target data and fine-

tuning on the target data to boost the detection performance.

Notes. Conv: convolution; sub: subject; sub x_bar: non-target dataset; sub x: target dataset.

knowledge captured from the non-target data during the
pre-training process.

B. Knowledge Transferring

The knowledge transferring between non-target users and
the target user is through the model pre-training. We have
designed a convolutional neural network which has multiple
convolutional layers and dense layers. The model will firstly
learn the patterns from the non-target users. Although inter-
subject variabilities exist, there are significant amounts of
patterns also when the subjects are performing the same
activities. For example, in the walking activity, the
movements of hands and legs are more or less similar among
different subjects. The deep learning model can therefore learn
these patterns.

Afterwards, we apply the target data to fine-tune the pre-
trained model. It allows the model to further adjust its neural
weights to accommodate the inter-subject variability. This
process is expected to improve the detection accuracy. One
thing is note is that we want to minimize the fine-tuning effort,
SO
we

only adopt a small portion of the d ata from the target user.

The process is further given in (1-3). In (1), the initial deep
model M, is pre-trained on the dataset D¥ that is constructed
from non-target users X with a percentage of . Then in (2),
the pre-trained model M is further fine-tuned on the dataset
D7 that is constructed from the target user x with a percentage
of . Finally, in (3), the fine-tuned model M’ is tested on the
dataset D, that is selected from the target user with a
percentage of 50%.
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C. Training and Testing Strategies

We have evaluated different training and testing strategies.
More specifically, different percentages of data from non-
target users as given in (4) have been used for model pre-
training. Afterwards, different percentages of data from the
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Fig. 3. Inter-activity biomechanical dynamics, indicating the diverse behaviors in the signals.

Note. A-x/y/z: accelerometer x/y/z axis.



target user as given in (5) have been applied in the model fine-
tuning process. In such a way, we will have a comprehensive
understanding of how pre-training and fine-tuning should be
applied. To provide fair comparison, the testing is performed
on 50% of the data from the target user.

7€[0%, 25%, 50%, 75%, 100%] @)
c€[0%, 10%, 20%, 30%, 40%, 50%]  (5)

D. Framework Evaluation

A physical activity database [11] that includes six activity
types and fifteen subjects will be used for evaluation. We will
demonstrate  both  subject-level and database-level
performance, to evaluate the framework. The six activities are
climbing downstairs, climbing upstairs, jumping, lying,
running/jogging, and walking. The signal segmentation size is
two seconds, with a sampling rate of 50Hz.

III.  RESULTS

We will firstly illustrate selected wearable signals to show
the similarity and variability among different users. Then we
will demonstrate the knowledge transferring results, followed
by the performance summary and future research directions.

A. Selected Wearabel Signals

In Fig. 3, the selected signals from two different activities
are visualized. We can observe that the variabilities between
them are significant. This is reasonable because different
activities have diverse biomechanical diversities.

Meanwhile, there are also consistencies between these two
users. These are what we will leveraging through deep transfer
learning and what we want to share among the users.

B. Knowledge Transferring

We have shown the examples of how transfer learning
contributes to the performance improvement in Fig. 4, where
when increasing the percentage of the pre-training data, the
model performance basically improves. There are also some
interesting findings on other subjects. Sometimes more data
for pre-training may not have obvious contributions to the
performance improvement, which could be because of the
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Fig. 4. Knowledge transferring performance on a selected
subject.

(1) Notes of the legend. Direct learning: no transfer learning;
25/50/75/100%: transter learning with different percentage of
the non-target data.

(2) Notes of the horizontal axis. 0/10/20/30/40/50%: the
percentage of the target data used for fine-tuning (or training
@ Direct learning).

inter-subject variabilities. But overall, it is appropriate to use
more data for pre-training.

C. Performance Summary

The performance summary on the whole database is given
in Fig. 5, where the contribution of the pre-training step is
obvious. The direct learning without model pre-training has a
low accuracy, because of limited data for training. When the
percentage of target data small is small, the contribution from
pre-training is high. When increasing the percentage of target
data, the direct learning has increasing performance, but the
pre-training still brings significant performance boosting.
Therefore, the proposed deep transfer learning is effective in
enhancing the model performance.

D. Future Efforts

It will be interesting to further investigate more data to
further evaluate the framework. Also, it is possible to apply
the proposed algorithm to other smart health applications,
considering that the wearable data usually scarce and the
training can introduce lots of inconvenience.
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Fig. 5. Performance summary under different combinations of pre-training and fine-tuning strategies. Overall, the transfer
learning based on both pre-training and fine-tuning has boosted the performance significantly. For example, when target data =
10%, the transfer learning has an accuracy of 92%, compared with 83% without transfer learning.



IV. CONCLUSION

In this research we have targeted the wearable big data
learning problem and proposed a deep transfer learning
framework to minimize the training effort on the target user.
More specifically, the deep learning model is firstly pre-
trained on the non-target data and then fine-tuned on the target
data, thereby sharing the similar knowledge and patterns
among different subjects. The validated framework has
demonstrated very promising performance and boosted the
biomechanical data analysis accuracy compared with direct
learning without knowledge transferring. Thus, this study will
significantly benefit the wearable dynamics learning
applications.
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