ORIGINAL ARTICLE

Effects of RuBisCO and CO₂ concentration on cyanobacterial growth and carbon isotope fractionation

Amanda K. Garcia¹ | Mateusz Kędzior¹ | Arnaud Taton² | Meng Li³ | Jodi N. Young³ □ | Betül Kaçar¹ □

Correspondence

Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA. Email: bkacar@wisc.edu

Funding information

National Aeronautics and Space Administration; National Institutes of Health: National Science Foundation: Simons Foundation

Abstract

Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO₂ concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacterium Synechococcus elongatus PCC 7942 that overexpresses RuBisCO across varying atmospheric CO2 concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO₂ fixation versus CO₂ supply, and thus whole-cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO2 concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the $^{13}\text{C}/^{12}\text{C}$ isotopic discrimination ($\epsilon_{_D}$) at all tested CO $_2$ concentrations, yielding $\epsilon_{_D}$ of $\approx 23\%$ for both wild-type and mutant strains at elevated CO₂. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record.

KEYWORDS

biosignatures, carbon fixation, carbon isotope fractionation, cyanobacteria, RuBisCO

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2023 The Authors. Geobiology published by John Wiley & Sons Ltd.

¹Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA

²Division of Biological Sciences, University of California San Diego, La Jolla, California, USA

³School of Oceanography, University of Washington, Seattle, Washington, USA

1 | INTRODUCTION

The conserved microbial metabolic pathways that drive global biogeochemistry emerged on Earth billions of years ago, the evolution of which has both shaped and been shaped by large-scale environmental transitions (Falkowski et al., 2008; Knoll & Nowak, 2017; Lyons et al., 2015). These microbial processes have left distinct signatures that are evidence of biological activity billions of years in the past. The oldest and most extensive signature of biological activity on Earth is the deviation in stable carbon isotopic compositions (13 C/ 12 C, expressed as δ^{13} C) between preserved inorganic and organic carbon, interpreted to reflect the isotopic discrimination of ancient biological carbon fixation (Des Marais, 2001; Krissansen-Totton et al., 2015; Lloyd et al., 2020; Schidlowski, 2001). This deviation is primarily shaped by enzymes that preferentially assimilate the lighter ¹²C isotope from inorganic carbon sources. Carbon biosignatures preserved in the geologic record therefore reflect the long-term evolution of these enzyme-mediated processes and their hosts' physiologies.

The RuBisCO enzyme (ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase) catalyzes the reduction in inorganic CO2 as the initial step of carbon assimilation into organic biomass via the Calvin-Benson-Bassham (CBB) cycle (Erb & Zarzycki, 2018; Nisbet et al., 2007; Tcherkez et al., 2006). RuBisCO is one of the most abundant proteins on Earth (Bar-On & Milo, 2019; Ellis, 1979; Raven, 2013), and its presence in photoautotrophic organisms, including earlyevolved cyanobacteria, suggests that this enzyme has played a significant role in primary production for much of Earth history (Hamilton et al., 2016; Schirrmeister et al., 2016; Schopf, 2011). Thus, the isotopic fractionation behavior of RuBisCO is also thought to have largely influenced Precambrian carbon isotope signatures preserved in the geologic record (Garcia et al., 2021; Schidlowski, 1988). Although there are multiple forms of RuBisCO, the known range of the Form IA/IB RuBisCO isotopic effect (ε≈20%-30%) (Guy et al., 1993; Scott et al., 2007; von Caemmerer et al., 2014)-the form utilized by extant cyanobacteria and responsible for the bulk of modern primary production (Field, 1998)—is largely consistent with the ~25% mean deviation between preserved inorganic and organic carbon isotopic compositions across geologic time (Des Marais, 2001; Havig et al., 2017; Kedzior et al., 2022; Krissansen-Totton et al., 2015; Lloyd et al., 2020; Schidlowski, 2001). The kinetic isotopic effects of cyanobacterial Form IA and IB RuBisCOs in particular have been measured between ~22% and 24% (Guy et al., 1993; Scott et al., 2007), whereas land plant Form IB RuBisCOs typically have larger effects of up to ~29‰ (von Caemmerer et al., 2014) and Form ID RuBisCOs have exhibited smaller effects between ~11% and 19% when measured in vitro (Boller et al., 2011, 2015), though in vivo assays of red algal Form ID RuBisCOs indicate much larger values (MacFarlane & Raven, 1990; Stepien & Austin, 2015).

RuBisCO is an important factor in the generation of distinct carbon isotopic biosignatures associated with CBB-utilizing organisms (Hayes, 2001; Laws et al., 1995; Wilkes & Pearson, 2019). Nonetheless, the carbon isotopic composition of bulk photoautotrophic biomass

often deviates from values obtained for purified RuBisCOs, a discrepancy at least partially explained by the fact that the latter are measured at CO2 saturation (e.g., (Boller et al., 2011; Guy et al., 1993; Scott et al., 2007; von Caemmerer et al., 2014)). This discrepancy might also be attributable to several intracellular physiological and metabolic features that additionally shift the isotopic composition in organism biomass. These include the activity of carbon-concentrating mechanisms (CCM) that elevate CO2 in RuBisCO-containing cellular compartments (Hurley et al., 2021; Laws et al., 2002; Price et al., 2008; Raven et al., 2008; Wilkes & Pearson, 2019) and the diffusive transport of CO₂ (Hayes, 1993; Rau et al., 1996). Studies have shown that photosynthetic carbon isotope discrimination ($\varepsilon_{\rm p}$) may vary due to environmental factors and cellular physiological responses, including temperature (Deleens et al., 1985; Wong & Sackett, 1978), pH (Hinga et al., 1994; Roeske & O'Leary, 1984), growth rate (Bidigare et al., 1997; Laws et al., 1997), and CO₂ concentration (Eichner et al., 2015; Freeman & Hayes, 1992; Hinga et al., 1994; Hurley et al., 2021; Schubert & Jahren, 2012; Wilkes et al., 2018), as well as light, nutrient, and water availability (Cernusak et al., 2013; Eek et al., 1999; Hill et al., 2008).

An aspect of photoautotrophic carbon isotopic discrimination that has not been thoroughly investigated is how varying RuBisCO expression may have influenced ancient host organism growth and biosignature generation. Evolutionary biologists have long debated the role of genetic regulation versus protein-level variation in evolutionary selection (Carroll, 2005; Fay & Wittkopp, 2008; Olson-Manning et al., 2012; Taylor et al., 2022; Wilson et al., 1974). Whereas catalytic properties of proteins may diverge according to their specific amino-acid compositions and structures, their overlying genetic regulation (i.e., controls on the timing, regulation and magnitude of protein expression) can additionally affect observed metabolic outputs of interest to geobiologists. The evolution of genetic regulation is often overlooked in geobiological evaluation of ancient microbial biosignatures due to the challenges involved with disentangling their effects from other variables. For carbon isotope discrimination in particular, the cellular quantity of RuBisCO might impact to what degree the RuBisCO kinetic isotope effect is expressed by influencing the rate of CO₂ consumption compared with rate of CO₂ supply.

RuBisCO expression has been shown to be CO_2 -sensitive (Gesch et al., 2003; Onizuka et al., 2002; Sengupta et al., 2019). This observation is particularly important, considering that atmospheric CO_2 concentrations exceeded present-day levels by more than an order of magnitude for much of Earth history (between ~0.001 and 0.1 bar CO_2 through the Precambrian (Catling & Zahnle, 2020)) and that ancient RuBisCOs likely navigated a tradeoff between carboxylase turnover rates and CO_2 / O_2 selectivity to adapt to varying historical CO_2/O_2 levels (Erb & Zarzycki, 2018; Kacar et al., 2017; Poudel et al., 2020; Tcherkez et al., 2006). Although both in vivo and in vitro experimental work has demonstrated the positive correlation between CO_2 levels and RuBisCO isotopic discrimination (Freeman & Hayes, 1992; Hinga et al., 1994; Schubert & Jahren, 2012; Wilkes et al., 2018), the role

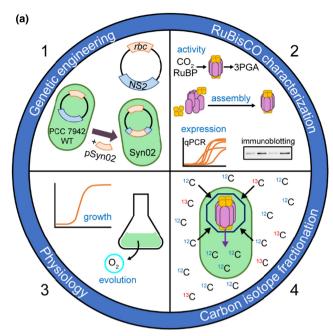
4724669, 2023, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/gbi.12543 by University Of Wiscon

Wiley Online Library on [29/11/2023]. See the Terms and Conditions (https://

on Wiley Online Library for rules

of use; OA

are governed by the applicable Creative Commons


of RuBisCO expression, given its CO2 sensitivity, has not yet been explored. Furthermore, quantifying the biosignature-level impacts of RuBisCO expression would improve interpretation of experimental studies that characterize the carbon isotopic discrimination of environmentally or genetically perturbed laboratory models, as these perturbations are likely to generate RuBisCO expression variability.

To investigate the interplay between RuBisCO expression and CO2 concentration as well as their effects on cyanobacterial physiology and carbon isotopic discrimination, we generated a genetic system to manipulate the expression levels of RuBisCO in the model organism Synechococcus elongatus PCC 7942 (hereafter S. elongatus) (Bonfil et al., 1998; Gabay et al., 1998; Maeda et al., 2000; Omata et al., 2001; Tchernov et al., 2001). Genetic engineering is facilitated by this strain's ability to take up and integrate exogenous DNA into its genome by homologous recombination (Taton et al., 2020). S. elongatus also possesses the β -carboxysome-based CCM that likely impacted the production of Precambrian carbon biosignatures following the rise of atmospheric oxygen (Hurley et al., 2021; Lyons et al., 2014). Thus, S. elongatus is a suitable model to study the genetic basis of ancient carbon biosignatures. We engineered its genome with an additional copy of the RuBisCO operon and confirmed overexpression of RuBisCO under both ambient and elevated CO₂ levels. Then, we determined growth rate, photosynthetic oxygen evolution rate, and ¹³C/¹²C discrimination of the engineered strain in comparison to wild-type S. elongatus under different atmospheric conditions.

RESULTS

2.1 A second copy of the rbc operon results in increased amount of active RuBisCO

The RuBisCO Form IB enzyme in S. elongatus is encoded by an operon that includes a CO₂-sensitive promoter region (Sengupta et al., 2019) and the structural rbcL (large subunit) and rbcS (small subunit) genes (Vijayan et al., 2011). We designed S. elongatus strain SynO2 that harbors the native rbc operon and a second copy inserted in the chromosome neutral site 2 (NS2), a site that permits genetic modification without additional indirect phenotypic impact (Andersson et al., 2000; Clerico et al., 2007) (Figure 1). Additionally, we generated a control strain (Syn01) whereby RuBisCO is provided solely by an engineered rbc operon at its NS2 site (Table 1). Attributes of these strains related to carbon fixation, including RuBisCO transcription and protein expression, carboxylase activity, and carbon isotope fractionation, were evaluated under different CO₂ conditions, including ambient (~0.04%), 2%, and 5% CO₂ concentrations. These CO₂ concentrations were selected to measure the impact of a Precambrian-like atmosphere, which is generally constrained between ~0.1% and ~10% CO2 for much of the early evolution of cyanobacteria (assuming ~1-bar total paleopressure) (Catling & Zahnle, 2020).

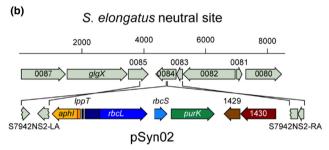


FIGURE 1 Experimental strategy. (a) Overall methodology. (1) Genetic engineering: An additional copy of the rbc operon was inserted at the chromosomal NS2 site of S. elongatus PCC 7942 to create the SynO2 strain. (2) RuBisCO characterization: Proteinlevel analysis was carried out by investigating catalytic activity, assembly into a hexadecameric complex, and expression at both the transcript and protein levels. (3) Physiology: S. elongatus WT and Syn02 strains were evaluated by monitoring microbial growth characteristics and rate of photosynthetic oxygen evolution. (4) Carbon isotope fractionation: The impact of RuBisCO overexpression on biomass δ^{13} C under varying CO₂ concentrations was assessed. (b) Map of the genetic insert in S. elongatus strain Syn02. Plasmid pSyn02 was used to insert the rbc operon and the aph1 gene conferring kanamycin resistance in PCC 7942 WT NS2 to generate the SynO2 strain. Crosslines indicate homologous recombination sites and scale bars show DNA fragment sizes (in

We evaluated whether the additional copy of the rbc operon in strain Syn02 resulted in increased RuBisCO rbcL and purK (located downstream of rbcL in the operon) transcription under varying CO₂ levels (ambient, 2%, and 5% CO₂). Transcription was measured by quantitative reverse-transcription PCR (RT-qPCR), normalized to secA and ppc reference genes (Hood et al., 2016; Luo et al., 2019; Szekeres et al., 2014). We observed that elevated CO₂ enhanced WT rbcL transcription by at least ~5-fold relative to ambient conditions (p<.001; Figure 2b, Figure S1B; see Materials and Methods). rbcL

TABLE 1 Strains and plasmids used in this study

Strain or plasmid	Description/genotype	Antibiotic resistance	Source/reference
WT	Wild-type strain of <i>S. elongatus</i> PCC 7942	-	Susan S. Golden (UC San Diego)
pAM4937	Expression vector for S. elongatus PCC 7942 neutral site 2 (NS2)	Km	(Taton et al., 2014)
pSyn02	pAM4937 carrying the <i>rbc</i> operon including <i>rbcL</i> , <i>rbcS</i> , <i>purK</i> , and flanking sequences from <i>S. elongatus</i> PCC 7942 (CP000100: 1,479,071–1,484,283)	Km	This study
Syn02	S. elongatus PCC 7942 carrying a second copy of the rbc operon and flanking sequences at NS2: NS2::aphl-rbcL-rbcS-purK- Synpcc7942_1429- Synpcc7942_1430	Km	This study
pAM4951	Expression vector for S. elongatus PCC 7942 neutral site 1 (NS1)	Sp + Sm	(Taton et al., 2014)
pSyn01	Plasmid to replace <i>S. elongatus</i> ' native <i>rbc</i> operon (CP000100: 1,479,070–1,482,595) with a Sp/Sm resistance gene: Δ(<i>rbcL-rbcS-purK</i>)::aadA.	Sp+Sm	This study
Syn01	S. elongatus strain Syn02 with the native rbc operon removed: Syn02 and and Δ (rbcL-rbcS-purK)::aadA.	Km, Sp+Sm	This study

transcription was further increased by at least ~2-fold in Syn02 relative to WT across all tested CO_2 levels and growth phases, and as high as ~14-fold in air (p<.01; Figure 2a, Figure S1A). Expression of purK in Syn02 increased by >2-fold at 2% and 5% CO_2 relative to WT, but decreased by ~0.5-fold in air (Figure S1C).

To determine RuBisCO overexpression at the protein-level, we quantified RbcL protein from crude cell lysates by Western blot using rabbit anti-RbcL antibody (see Materials and Methods). In agreement with RuBisCO overexpression indicated by the RT-qPCR results, densitometric analyses revealed a mean ~2 to 4-fold increase of RbcL protein in Syn02 relative to WT across all tested $\rm CO_2$ concentrations (p < .01; Figure 2c). Finally, we confirmed proper assembly of the large (L) and small (S) subunits into the RuBisCO $\rm L_8S_8$ complex in Syn02 as well as the Syn01 control strain by native protein electrophoresis and detection by anti-RbcL antibody. At 2% $\rm CO_2$, we found a ~3-fold increase in assembled RuBisCO protein for Syn02 and ~2-fold increase for Syn01 relative to WT for cultures grown in 2% $\rm CO_2$ (Figure 2d).

Finally, we tested whether RuBisCO overexpression in Syn02 resulted in an increased amount of active RuBisCO by determining the total carboxylase activity of cell lysates. Because we detected the smallest increase in transcript levels for Syn02 relative to WT under 2% CO $_2$, we selected this growth condition to provide a reasonable lower bound on Syn02 RuBisCO activity. We measured a mean ~1.8-fold (p<.01) increase in Syn02 lysate RuBisCO activity relative to WT (Figure 2e). Despite the modest increase in assembled RuBisCO detected for the control strain, Syn01, no significant difference in activity was found between Syn01 and WT cultures grown in these same conditions.

2.2 | RuBisCO overexpression does not strongly influence growth rate or photosynthetic activity

Following confirmation that Syn02 overexpresses active RuBisCO, we compared growth rates of WT and Syn02 *S. elongatus* strains at

different CO_2 levels to identify potential downstream physiological effects of increased RuBisCO protein. WT and Syn02 both exhibited ~2.5-fold faster growth rates under 2% and 5% CO_2 compared with ambient air (p < .001; Figure 3; Table 2). Syn02 exhibited a slight ~1.1-fold increase in growth rate in ambient air relative to WT (p < .05). No difference in growth rate was observed between the two strains under 2% and 5% CO_2 . The carrying capacity (maximum cell density measured at OD_{750} across the total growth period) for cultures varied between different atmospheric conditions, with a maximum carrying capacity of OD_{750} ≈ 8.4 reached under 2% CO_2 . No significant difference in carrying capacity was found between WT and Syn02 cultures grown under the same atmospheric conditions. These experiments were replicated with unsparged cultures, yielding consistent results (Table S1).

To further test for differences in photosynthetic activities between the WT and Syn02 strains, we measured their oxygen evolution rates in ambient air. After brief incubation in the dark, culture samples were exposed to saturated light in an oxygen electrode chamber to detect levels of molecular oxygen. Oxygen evolution rates were normalized to chlorophyll a concentrations, following Zavřel et al. (2015). We did not observe a significant difference in mean oxygen evolution rate between WT and Syn02 (340 \pm 30 $O_2\cdot h^{-1}\cdot \mu g^{-1}$ chlorophyll a and 360 \pm 30 $O_2\cdot h^{-1}\cdot \mu g^{-1}$ chlorophyll a, respectively) (Table 2).

2.3 | S. elongatus ¹³C/¹²C fractionation is insensitive to RuBisCO overexpression

We tested the combined influence of RuBisCO overexpression and ${\rm CO_2}$ concentration on the magnitude of whole-cell $^{13}{\rm C}/^{12}{\rm C}$ isotopic discrimination in *S. elongatus*. The isotopic compositions ($\delta^{13}{\rm C}$) of ${\rm CO_2}$ gas (${\rm CO_{2(g)}}$) in the headspace, the dissolved inorganic carbon pool (DIC), and biomass, as well as pH of the growth medium, were measured during the early exponential growth phase (pH of growth medium also measured prior to culture inoculation; Supplementary

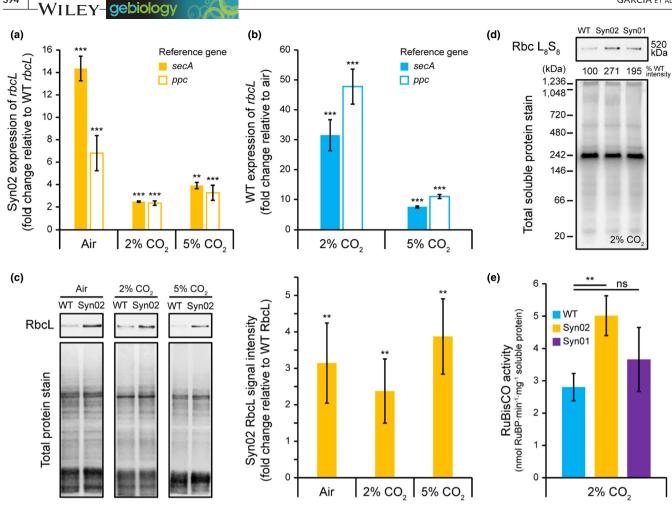


FIGURE 2 RuBisCO expression, assembly, and activity in *S. elongatus* strains under varying CO_2 concentrations. (a) Expression of Syn02 *rbcL* relative to WT *rbcL*. Asterisks indicate *t*-test results compared to WT *rbcL* expression at the same growth condition. (b) Expression of WT *rbcL* at 2% and 5% CO_2 relative to ambient air. Asterisks indicate *t*-test results compared to WT *rbcL* expression in air. (a,b) Expression data was measured by RT-qPCR, normalized to reference genes *secA* and *ppc*. Columns represent mean fold expression for three biological replicates. (c) Immunodetection of RbcL. (*left*) Western blot showing RbcL protein detected by anti-RuBisCO antibody and total protein stain from crude cell lysates. (*right*) RbcL percentage signal intensities were normalized to that for the total soluble protein load. Columns represent mean RbcL intensities for six biological replicates, relative to mean values for WT cultures at the same growth condition. Asterisks indicate *t*-test results compared to WT RbcL. (d) Immunodetection of assembled RuBisCO. Western blot showing the proper assembly of RbcL and RbcS into the L_8S_8 hexadecameric complex L_8S_8 (520 kDa), detected by anti-RbcL antibody. Rbc L_8S_8 percentage signal intensity was normalized to that for the total soluble protein load, and is shown relative to WT. (e) Lysate RuBisCO activity. Activity was measured by the RuBP consumption rate, normalized to total soluble protein content of cell lysate. Columns represent the mean activity of three biological replicates. Asterisks indicate *t*-test results for pairwise comparison indicated by horizontal line. (a-c,e) Error bars on all graphs indicate ± 1 SD. Ns, Not significant; **p < .001; ***p < .001.

Information, Table S2 and S3). The difference between source of inorganic carbon ($\delta^{13}C_{\text{CO2(g)}}$) and biomass ($\delta^{13}C_{\text{biomass}}$), expressed as $\Delta\delta^{13}C_{\text{CO2(g)-biomass}}$ (see Materials and Methods), for WT and Syn02 are shown in Figure 4.

Under ambient conditions, the experimental system was not at equilbirum, with the pH of the culture medium increasing to ~11 between inoculation and isotopic measurement (cyanobacterial mats and blooms have been observed to reach pH>9 under CO $_2$ depletion in natural settings (Borovec et al., 2010; Jensen et al., 2011; Wilhelm et al., 2020)). Thus, under these non-equilibrium conditions, $\delta^{13}\text{C}$ of aqueous CO $_2$ ($\delta^{13}\text{CO}_{2(\text{aq})}$), and, by extension, ϵ_p (the difference between $\delta^{13}\text{C}_{\text{CO}2(\text{aq})}$ and $\delta^{13}\text{C}_{\text{biomass}}$), could not be calculated.

Nevertheless, we observed that both $\delta^{13}{}_{DIC}$ and $\delta^{13}{}_{C_{biomass}}$ values did not vary widely as a function of the tested S. elongatus strain, and there is no significant difference in $\Delta\delta^{13}{}_{C_{CO2(g)-biomass}}$ between WT and Syn02 (4.7 \pm 0.3% and 5.0 \pm 0.5%, respectively; p >.05).

Under increased CO $_2$ concentrations (2% CO $_2$), the experimental system is close to equibilibrium, with the isotopic difference between DIC and CO $_{2(g)}$ ($\Delta\delta^{13}C_{\text{DIC-CO2}}$) \approx 8%. There was no significant difference in $\Delta\delta^{13}C_{\text{CO2(g)-biomass}}$ between WT and Syn02 strains (22.39 \pm 0.07% and 22.3 \pm 0.4%, respectively; p>.05). If we assume equilibrium under 2% CO $_2$ and estimate $\delta^{13}C_{\text{CO2(aq)}}$, ϵ_p values for WT and Syn02 are also not significantly different (23.0 \pm 0.2% and 23.6 \pm 0.2%, respectively; see Materials and Methods for

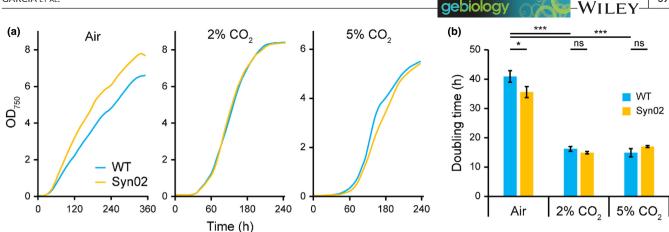


TABLE 2 Growth parameters and oxygen evolution rates of *S. elongatus* strains under varying CO₂ concentrations^a

Strain	Atmosphere	Growth rate (h ⁻¹)	Carrying capacity (OD ₇₅₀)	Oxygen evolution rate (nmol $O_2 h^{-1} \mu g^{-1}$ chlorophyll a)
WT	Air	0.017 ± 0.001	6.8 ± 0.7	340 ± 30
	2% CO ₂	0.043 ± 0.002	8.4 ± 0.5	-
	5% CO ₂	0.047 ± 0.005	5.4 ± 0.3	-
Syn02	Air	$0.020 \pm 0.001^*$	7.6 ± 0.5	360 ± 30
	2% CO ₂	0.046 ± 0.001	8.3 ± 0.2	-
	5% CO ₂	0.040 ± 0.001	5.4 ± 0.4	-

^aValues are means of three biological replicates ± 1 SD. Asterisks indicate t-test result from comparison with WT for the same atmospheric condition, *p<.05.

calculation). These results demonstrate that the increased RuBisCO transcriptional levels and total carboxylase activity measured for Syn02 in our experiments does not significantly impact whole-cell S. elongatus $^{13}\mathrm{C}/^{12}\mathrm{C}$ discrimination, both at ambient and elevated CO_2 concentrations.

3 | DISCUSSION

In this study, we developed an engineered laboratory system to investigate the coupled impact of elevated CO_2 levels and RuBisCO expression on cyanobacterial physiology and carbon isotope discrimination. We tested whether the overexpression of RuBisCO influences S. elongatus growth, photosynthetic oxygen evolution rate, and carbon isotopic signatures at different CO_2 atmosphere concentrations by generating an engineered S. elongatus strain Syn02 that harbors a second copy of the rbc operon at NS2. We first confirmed overexpression of RuBisCO in our engineered strain, Syn02, by combining transcriptional analyses, protein quantification, and assays of total protein carboxylation activity. Our results show elevated RuBisCO transcription in S. elongatus strain Syn02 relative to

WT at all tested CO_2 concentrations (ambient air, 2%, and 5% CO_2) (Figure 2a), with a~2-fold increase in active, assembled RuBisCO protein measured under 2% CO_2 (Figure 2d,e). Thus, we established that Syn02 is a suitable model to evaluate the impact of RuBisCO overexpression on downstream physiology and isotopic discrimination. We also observed that higher levels of CO_2 result in increased RuBisCO transcription for both WT and Syn02 strains relative to ambient air. This result is consistent with previous studies reporting the sensitivity of RuBisCO expression to CO_2 (Gesch et al., 2003; Onizuka et al., 2002; Sengupta et al., 2019).

Our experimental approach also enabled us to detect potential upper bounds on the ability of *S. elongatus* to overexpress RuBisCO under a variety of CO₂ conditions. First, increased *rbcL* transcription in SynO2 relative to WT did not always result in a proportional increase in translated RuBisCO protein. For example, even though SynO2 showed a~14-fold increase in *rbcL* transcript relative to WT in air (Figure 2a), total SynO2 RbcL protein only increased by ~3-fold under these same conditions (Figure 2c). These results indicate that other physiological factors, possibly including RuBisCO translation rate/accuracy or expression of ancillary proteins in our experimental system, may ultimately limit RuBisCO expression

4724669, 2023, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/gbi.12543 by University Of Wisco

, Wiley Online Library on [29/11/2023]. See the Terms

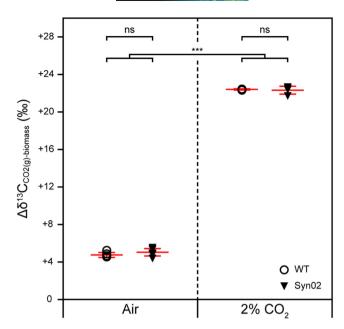


FIGURE 4 13C/12C discrimination associated with photosynthetic CO_2 fixation (ε_p) of *S. elongatus* strains under ambient and 2% ${
m CO}_2$ concentrations. $\Delta\delta^{13}{
m C}_{{
m CO2(g)-biomass}}$ values are calculated relative to measured $\delta^{13}C_{CO2}$ (Table S3; see Materials and Methods for calculation). Mean (long horizontal bars) and ± 1 SD (vertical error bars) are shown in red, calculated for seven (air) and four (2% CO₂) biological replicates. Asterisks indicate t-test results for pairwise comparisons indicated by horizontal lines. Ns, Not significant; ***p < .001.

beyond transcription. Further, it is important to consider whether all translated RuBisCO protein is catalytically active. Previous studies have shown that overexpression of RuBisCO in cyanobacteria generally produces an increased pool of active carboxylase (Atsumi et al., 2009; Iwaki et al., 2006; Lechno-Yossef et al., 2020; Liang & Lindblad, 2017). Indeed, for cells grown in 2% CO2, we found that nearly all overexpressed RuBisCO protein was likely to be assembled and catalytically active (Figure 2c,e). Future work may determine whether this proportion of active, overexpressed RuBisCO holds for cells cultivated at other CO2 conditions. Finally, we observed that the impact of a second rbc copy in Syn02 on rbcL transcription was dampened at elevated CO2 relative to air (Figure 2a), suggesting a potential limit to the combined expression-level effects of increased rbc copy number and increased CO2. Altogether, our findings suggest the presence of physiological constraints that may be limiting RuBisCO overexpression at both transcript and protein levels, the exact mechanism of which awaits further characterization. Similar approaches investigating other model microbial systems would clarify the degree to which these observations might extend to cyanobacteria gene regulation in the past.

We investigated whether the overexpression of RuBisCO in strain Syn02 impacted the growth characteristics of S. elongatus and, by that manner, might have the potential to influence isotopic discrimination (Bidigare et al., 1997; Laws et al., 1997; Wilkes et al., 2018). Although various culture conditions including pH,

temperature, CO2 concentration, nutrient availability, and light intensity may substantially affect the growth characteristics of cyanobacteria (Kuan et al., 2015; Rillema et al., 2020; Ungerer et al., 2018; Yu et al., 2015), the influence of genetic factors, including the regulation of RuBisCO expression, is less well known. Previous studies targeting the correlation between RuBisCO overexpression and cyanobacterial physiology have yielded mixed results. For instance, faster growth rates and oxygen evolution rates were observed for an engineered Synechocystis PCC 6803 strain that overexpresses RuBisCO (Liang & Lindblad, 2017), as well as in S. elongatus upon co-overexpression of its phosphoribulokinase (Kanno et al., 2017). However, in Synechococcus sp. PCC 7002, the overexpression of RuBisCO did not alter growth rate (De Porcellinis et al., 2018). The impact of RuBisCO upregulation on cyanobacterial growth appears to be species/strain-specific. Our data show that RuBisCO overexpression in S. elongatus PCC 7942 strain Syn02 results in a minor increase in growth rate in ambient air relative to WT, and no significant difference in growth or oxygen evolution rates was observed at elevated CO2 levels. Our results indicate that further study is needed to fully understand the coupled interaction of different environmental conditions and genetic backgrounds in determining cyanobacterial growth parameters of relevance to carbon biosignature generation.

We found that the degree of RuBisCO overexpression generated in Syn02 did not measurably impact S. elongatus $\delta^{13}C_{\text{biomass}}$ neither did it affect isotopic fractionation between biomass and the source carbon ($\delta^{13}CO_{2(g)}$) (Figure 4). Rather, inorganic carbon availability had the overriding influence, an effect that has previously been observed empirically for a variety of autotrophs (Freeman & Hayes, 1992; Hinga et al., 1994; Schubert & Jahren, 2012; Wilkes et al., 2018), including for cyanobacteria in particular (Eichner et al., 2015; Hurley et al., 2021). The calculation of ε_n under ambient CO₂ was not possible in our experimental setup as the system was not at equilibrium. The small fractionation difference found between the source carbon and biomass along with slower growth rates under ambient air suggests the system was considerably carbon limited. Under carbon limitation and a nonequilibrium system, a number of factors can influence δ^{13} Cbiomass, including Rayleigh fractionation, kinetic isotope effects on the conversion of inorganic carbon species (which are often significantly different to the equilibrium isotope effects (Yumol et al., 2020)), and CCM activity (Hurley et al., 2021). Though we are unable to calculate ε_n under ambient air, it should be noted that high pH, dense biomass, and carbon limitation are representative of phytoplankton blooms and cyanobacterial mats (Borovec et al., 2010; Jensen et al., 2011; Wilhelm et al., 2020). The geological record often requires the assumption of equilibrium when using δ^{13} C of carbonates and total organic carbon (δ^{13} C_{carb}, δ^{13} C-TOC) to draw inferences about atmospheric composition. However, we consider that in some cases where the majority of biological deposition routinely occurs during periods of high biomass (i.e., cyanobacterial mats or blooms), nonequilibrium systems may dominate and influence paleoreconstructions.

.4724669, 2023, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/gbi.12543 by University Of Wisconsin Madison, Wiley Online Library on [29/11/2023]. See the Terms and Condition on Wiley Online Library for rules

Under 2% CO₂ (a concentration within the estimated range of Precambrian atmospheric CO₂ (Catling & Zahnle, 2020)), we observed a larger fractionation between $CO_{2(g)}$ and cyanobacterial biomass. Theoretically, under high CO2 concentrations, RuBisCO is able to exert close to its full intrinsic kinetic isotope effect (KIE), maximizing $\varepsilon_{\rm p}$ (Bidigare et al., 1997; Hayes, 1993; Schubert & Jahren, 2012; Wilkes et al., 2018). Under 2% CO2 this system was close to equilibrium. We thus approximated $\varepsilon_{\rm p}$ from calculated $\delta^{13}C_{\rm CO2(ag)}$, which was found to be ~23%, close to the measured KIE for cyanobacterial Form IA and IB RuBisCO at saturating CO₂ of ~22%-24% (Guy et al., 1993; Scott et al., 2007). Nevertheless, these results should be treated with caution as we did not measure RuBisCO KIE in vitro, and other factors such as other biological processes (including carbon-concentrating mechansims, organic composition) and quasi-equilibrium could impact the whole-cell, isotopic signatures observed in our experimental system (Burnap et al., 2015; Eichner et al., 2015; Hurley et al., 2021; Wilkes & Pearson, 2019).

It is apparent that the increased RuBisCO expression and total protein carboxylase activity in Syn02 exerts little impact on ¹³C/¹²C of cyanobacterial biomass. $\varepsilon_{\rm n}$ of ancient cyanobacteria falls within the ~8%-24% range inferred from the Precambrian carbon isotope record following the rise of atmospheric oxygen (Hurley et al., 2021; Krissansen-Totton et al., 2015). Our data suggest that potential overexpression of RuBisCO by past cyanobacterial primary producers likely does not help explain the distribution of Precambrian carbon biosignatures. Rather, it is more probable that other environmental and intracellular factors, including but not limited to CO2 levels, growth rates, temperature, and CCM effects, as well as taxonomic and RuBisCO form variability (reviewed by Garcia et al. (2021)), are more significant determinants of the isotopic compositions of organic carbon. Nevertheless. our results provide an important control for future investigations of carbon fixation signatures based on engineered, model microbial systems. Such studies would likely generate RuBisCO expression variability as a function of environmental or genetic manipulations, as was observed in the isotopic characterization of a cyanobacterium hosting an inferred, Precambrian RuBisCO (Kedzior et al., 2022). Explicit investigations of regulatory dynamics associated with ancient carbon fixation, by strategies including the phylogenetic reconstruction of ancestral regulatory pathways and promoter sequences, would reveal whether the carbon fixation signatures of ancient primary producers might be impacted beyond the RuBisCO expression variability tested here. Further integrative laboratory approaches addressing these factors are crucial to expand the utility of modern organismal proxies in interpreting evidence for microbial activity on Earth.

4 | MATERIALS AND METHODS

4.1 | Cyanobacterial growth and maintenance

Synechococcus elongatus PCC 7942 strains were cultured in BG-11 medium (Rippka et al., 1979) as liquid cultures or on agar plates (1.5% (w/v) agar and 1 mm $Na_2S_2O_3\cdot 5H_2O$). For recombinant strains, liquid

and solid media were supplemented with appropriate antibiotics: $2 \, \mu \text{g·ml}^{-1}$ Spectinomycin (Sp) plus $2 \, \mu \text{g·ml}^{-1}$ Streptomycin (Sm), $5 \, \mu \text{g ml}^{-1}$ Kanamycin (Km). The cyanobacterial growth was measured by optical density at 750 nm (OD₇₅₀).

The strains were archived at -80°C in 15% (v/v) glycerol. The 2-ml glycerol stocks were rapidly thawed and inoculated in liquid BG-11 (supplemented with antibiotics as needed). Liquid cultures were maintained in a Percival environment chamber (Cat. No. I36LLVLC8) fitted to a CO₂ gas cylinder input, permitting monitoring and control of internal atmospheric CO₂. Cultures were shaken at 120 rpm at 30°C under continuous low illumination of 45 µmol photon·m⁻² s⁻¹, and ambient air, until they reached an OD_{750} between 0.4 and 0.6. These cultures were then used to inoculate fresh cultures that were grown using similar conditions but under continuous, moderate illumination of $80\,\mu mol$ photon·m⁻² s⁻¹ (following (Smith & Williams, 2006); growth saturation has been observed at illumination levels greater than 120 µmol photon·m⁻² s⁻¹) and sparged at selected CO₂ concentrations (ambient air, 2%, or 5% CO₂; cultures were also grown without sparging for carbon isotope fractionation experiments and to assess differences in growth rate; Table S1). Cultures were sampled at an OD₇₅₀ of ~7 to 7.5 for most subsequent experiments, as described below. Cultures were sampled at an earlier OD₇₅₀ of 0.5-1.5 (early exponential growth phase) for carbon isotope fractionation measurement and for additional RT-qPCR experiments (Figure S1).

4.2 Genetic engineering of cyanobacteria

A recombinant strain of S. elongatus was constructed by natural transformation using standard protocols (Clerico et al., 2007) and the plasmids and methods described below (Table 1). To construct the plasmid pSyn02, pAM4937 was digested with Swal to release the ccdB toxic gene and produce a plasmid backbone that contains the pBR322 E. coli origin of replication, the base of mobilization site for conjugal transfer, the aph1 gene conferring kanamycin resistance, and sequences for homologous recombination into S. elongatus chromosome at NS2. The rbc operon was amplified from S. elongatus PCC 7942 gDNA with primers F01 and R01 (Table S4) containing 20-nucleotide sequences that overlap with pAM4937 backbone. The resulting DNA fragments were assembled using the GeneArt™ Seamless Cloning and Assembly Kit (Invitrogen, Cat. No. A13288). pSyn02 was used to insert the rbc operon into NS2 of the wild-type genome in the strain PCC 7942 through homologous recombination to create the strain of S. elongatus, Syn02, carrying two copies of the rbc operon. Plasmid pSyn-01 was constructed by using two primer pairs F02/R02 and F03/ R03 (Table S4), (1) to amplify a fragment of pAM4951 that contains the E. coli origin of replication and the site for conjugal transfer, and (2) to amplify the aadA gene conferring spectinomycin/streptomycin resistance. Native rbc operon flanking sequences were amplified from the S. elongatus PCC 7942 gDNA with the primer pairs F04/R04 and F05/R05 (Table S4) containing 20-nucleotide sequences that overlap with the pAM4951 fragments.

Transformation was carried out after growing the WT strain in liquid culture at 30 °C with shaking (120 rpm) and a light intensity of $80\,\mu\text{mol}$ photon·m⁻² s⁻¹ until an $OD_{750}\sim0.7$. The cells were prepared for transformation according to the protocol by Clerico et al. (2007) and plated on BG-11 agar containing the appropriate antibiotic(s) for recovery. Subsequently, the colonies were picked using sterile pipette tips, patched onto BG-11 agar containing the appropriate antibiotic(s), and further incubated to ensure complete chromosome segregation (i.e., incorporation of the *trans*-gene into all chromosomes). The patched transformants were screened using colony PCR using the primers F06/R06 and F07/R07 and the genotypes of the engineered strains were confirmed by Sanger sequencing using the primers F08/R08 (Figure S3, Table S4).

4.3 | Extraction of total RNA and proteins

Cultures were collected during the exponential growth phase. Cells were pelleted by centrifugation at $4700\times g$ for 10 min at room temperature and resuspended in 10 ml of TE buffer (10 mm Tris, pH 8.0, 1 mm EDTA). To prepare the crude cell lysate, 8 ml of the cell suspension were pelleted by centrifugation at $4700\times g$ for 10 min at room temperature, resuspended in $500\,\mu l$ of hot (pre-warmed to 95°C) TE buffer supplemented with 1% (w/v) SDS and incubated at 95°C for 10 min. The mixture was sonicated at 40% amplitude for 3×10 s with 10 s intervals and the cell debris was centrifuged at $17,000\times g$ for 10 min at room temperature. The supernatant was collected and stored at -80°C. Total RNA was extracted from the remaining 2 ml of the cell suspension using the RNeasy® Protect Bacteria Mini Kit (QIAGEN, Cat. No. 74524) following the manufacturer instructions.

4.4 Analysis of *rbc* operon expression by RT-qPCR

Total RNA was quantified with a NanoDrop spectrophotometer and 1 µg of RNA was treated with the amplification grade deoxyribonuclease I (Invitrogen, Cat. No. 18068-015). Ten microliters of DNase I-treated RNA was then used for reverse transcription (RT) performed with the SuperScript™ IV First-Strand Synthesis System (Invitrogen, Cat. No. 18091050). The four pairs of qPCR primers (listed in Table S4) were designed with Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus. cgi). Both reference genes have previously been shown to be stably expressed under diverse conditions in S. elongatus (Luo et al., 2019). The quality of cDNA and primer specificity was assessed by PCR using cDNA templates (RT positive reactions), RT negative controls, and the qPCR primers. The analysis of gene expression levels was performed in a real-time thermal cycler qTOWER³ G (Analytik Jena AG), equipped with the qPCRsoft software, using the cycles: 50°C/2 min, 95°C/2 min, 40×(95°C/15s, 60°C/1 min). The relative expression of the rbc operon genes (rbcL and purK) was calculated as the average fold change normalized to secA or ppc reference genes

using the delta-delta Ct method. The experiment was carried out using three biological replicates and three technical replicates.

4.5 | Analysis of RbcL protein by Western blot

Total protein concentration in the crude cell lysates was measured using the Pierce™ BCA Protein Assay Kit (Thermo Scientific, Cat. No. 23225). The lysates were loaded in the amount of 5 μg of total protein in Laemmli sample buffer onto a 6% (v/v) polyacrylamide stacking gel. Proteins were electrophoresed in a 12% polyacrylamide resolving gel in TGS buffer and blotted in transfer buffer onto a PVDF membrane. Total protein load in each sample was visualized by Revert™ 700 Total Protein Stain (LI-COR Biosciences, Cat. No. 926-11011) and used for RbcL signal normalization. Detection of RbcL was performed by overnight incubation of the membrane at 4°C with rabbit anti-RbcL antibody (Agrisera, Cat. No. ASO3 037), 1:5000 in TBST with 5% nonfat milk, followed by 1-h incubation at room temperature with IRDye® 800CW goat antirabbit IgG secondary antibody (LI-COR Biosciences, Cat. No. 926-32211), 1:20,000 in Intercept® (TBS) blocking buffer (LI-COR Biosciences, Cat. No. 927-60001) with 0.1% (v/v) Tween-20 and 0.01% (w/v) SDS. Both the total protein load and the amount of RbcL in each sample were documented with Odyssey® Fc Imaging System (LI-COR Biosciences, Cat. No. 2800-03) at the near-infrared detection mode. The images were acquired using Image Studio™ software. The densitometric analysis of RbcL signal intensity, normalized to total protein load, was performed with Quantity One® software (Bio-Rad) for six biological replicates. The amount of RbcL produced by each replicate of the SynO2 strain culture was compared to the averaged level of RbcL in the WT PCC 7942 replicate cultures and expressed as the averaged percent of RbcL synthesized by the WT strain.

4.6 | Assembly of RuBisCO subunits

Assembly of the RuBisCO large and small subunits into a hexadecameric complex in each strain was evaluated by native gel electrophoresis and immunodetection. Samples were collected during the exponential growh phase. Cells grown under 2% CO2 were pelleted by centrifugation at 4700×g for 10 min at room temperature and resuspended in 400 µl of native lysis buffer (50 mm Tris, pH 8.0, 150 mm NaCl, 1 mm EDTA, 10% (v/v) glycerol) supplemented with 5 mm DTT, 100 µg/ml lysozyme from chicken egg white, and 1% (v/v) Halt™ Protease Inhibitor Cocktail (Thermo Scientific, Cat. No. 78430). The cell suspensions were incubated at 30°C for 15 min and subjected to five consecutive freeze-thaw cycles (10 min at -80°C followed by 5 min at 30°C), then were sonicated on ice for 3 min at 30% amplitude (2-s on/off intervals), centrifuged at 17,000×g for 15 min at 4°C. The concentration of total soluble proteins in the lysates was determined with a Pierce™ BCA Protein Assay Kit. The lysates were adjusted to 5 µg of total soluble proteins in native sample buffer and then loaded onto a 4%–20% Mini-PROTEAN® TGX™ Precast Protein Gel (Bio-Rad, Cat. No. 4561094). Protein electrophoreses were performed in TG buffer (60 mm Tris, 192 mm glycine) at 100 V for 4 h at 4°C and blotted in transfer buffer (48 mm Tris, pH 9.2, 39 mm glycine, 0.04% (w/v) SDS) onto a nitrocellulose membrane. After three 10-min washes in wash buffer (48 mm Tris, pH 9.2, 39 mm glycine, 20% (v/v) methanol), total protein load in each sample was visualized by Revert™ 700 Total Protein Stain and used for the normalization of RuBisCO complex quantity. Immunodetection of the RuBisCO complex was performed with the same primary and secondary antibodies that were used to analyze the level of RbcL, as described above.

4.7 | Catalytic activity of RuBisCO

The activity of RuBisCO in cyanobacterial lysates was measured using a spectrophotometric coupled-enzyme assay that links this activity with the rate of NADH oxidation (Kubien et al., 2011). The cyanobacterial strains were cultured under 2% CO2, collected, and pelleted as described above. The pellets were resuspended in 1 ml of ice-cold lysis buffer (50 mm EPPS, 1 mm EDTA, 2 mm DTT, pH 8.0) and transferred into 2 ml screw-capped tubes with Lysing Matrix B (MP Biomedical) for lysis by bead beating using FastPrep-24™ 5G bead beater (MP Biomedical) with 4 m/s for 10 s, followed by 2-min incubation on ice, repeated six times. The cell lysates were transferred to new Eppendorf tubes to remove the beads and unbroken cells and to pellet the thylakoid membrane by centrifugation at $10,000 \times g$ for 1 min and at $20,000 \times g$ for 30 min at 4°C, sequentially. The resulting clear supernatants containing cytosolic soluble proteins, including phycobiliproteins and RuBisCO, were used to determine protein concentration by Pierce™ BCA Protein Assay Kit and to measure RuBisCO activity by employing an assay adapted from Kubien et al. (2011). The assay buffer (100 mm HEPES, 25 mm MgCl₂, 1 mm EDTA, pH 7.6) was used considering the high Michaelis constant for CO₂ (K_c) for cyanobacterial RuBisCO. 20 μl of cell lysates were preincubated in the assay mix (with 5 mm NaHCO3) at 25 °C for activation before initiating the reaction by adding synthesized ribulose 1,5-bisphosphate (RuBP) according to Kane et al. (1998). The absorbance at 340nm was monitored using a Synergy H1 plate reader (BioTek). RuBisCO activity was reported as RuBP consumption rate normalized to total soluble protein content. The assay was performed for three biological replicates.

4.8 | Cyanobacterial growth measurements

 ${
m OD}_{750}$ values were plotted as a function of time and analyzed in R with the Growthcurver package. Growth curve data was fitted to the standard form of the logistic equation to calculate growth parameters including growth rate, doubling time, and carrying

capacity (Sprouffske & Wagner, 2016). Each strain was grown in triplicate for every condition.

4.9 | Photosynthetic oxygen evolution rate

Synechococcus elongatus strain photosynthetic activity was assayed using a Clark-type oxygen electrode chamber to measure the level of molecular oxygen produced in cyanobacterial cultures. Cells were grown in 50 ml of BG-11 at 30°C, illumination of 80 μmol photon·m⁻²·s⁻¹, shaking at 120 rpm, in ambient air, and with culture sparging. The samples were collected from triplicate cultures during the exponential growth phase, pelleted by centrifugation at $4700 \times g$ for 10 min at room temperature, and resuspended in fresh BG-11 to an OD₇₅₀ of ~1.0. Oxygen evolution rates were normalized to chlorophyll a concentration following (Liang & Lindblad, 2017) using the protocol by Zavřel et al. (2015). The remaining suspension was incubated in the dark for 20min with gentle agitation. Samples from each suspension, prepared in three technical replicates, were analyzed in an oxygen electrode chamber under saturated light, using the Oxygraph+ System (Hansatech Instruments) equipped with the OxyTrace+ software. Oxygen evolution rate was monitored for 10 min and expressed as nanomoles of molecular oxygen evolved per hour per microgram of chlorophyll a.

4.10 | Carbon isotope fractionation in bulk cyanobacterial biomass

Carbon isotope fractionation experiments were conducted under ambient and 2% CO2 conditions. Cyanobacteria were cultured in shaken flasks (all other conditions as described above) to an OD_{750} of 0.5-1.5 in the early exponential growth phase (seven and four biological replicates per strain for experiments conducted in air and 2% CO₂, respectively). Cells were pelleted by centrifugation at 4700×g for 10 min at room temperature and washed in 10 ml of 10 mm NaCl. The bacteria were resuspended in 1 ml of 10 mm NaCl and transferred to Eppendorf tubes. After centrifugation at 4700×g for 10 min at room temperature, the supernatant was completely removed, the pellets were dried in opened tubes in a laboratory oven at 50°C for 2 days, and the resultant dried biomass samples were transferred into tin capsules. Growth medium aliquots were sampled both prior to culture inoculation and alongisde cell harvest during the early exponential phase (see above) for pH measurement. Aliquots sampled alongside cell harvest were filter-sterilized (0.2 μm), transferred to Extetainer vials leaving no headspace, and stored at 4°C for DIC concentration and $\delta^{13} C_{\text{DIC}}$ measurement. Finally, internal incubator gas was sampled for ambient and 2% CO₂ experiments, as well as CO₂ gas cylinders used to mix 2% CO₂, following the sample collection protocol provided by the UC Davis Stable Isotope Facility.

The carbon isotope composition of bulk biomass ($\delta^{13}C_{biomass}$), DIC ($\delta^{13}C_{DIC}$), and CO $_2$ ($\delta^{13}C_{CO2(g)}$) samples was determined at the UC Davis Stable Isotope Facility. $\delta^{13}C_{biomass}$ was analyzed using

a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20–20 isotope ratio mass spectrometer (Sercon Ltd.). $\delta^{13}\text{C-}_{\text{DIC}}$ (prepared by CO $_2$ gas evolution using 85% phosphoric acid) and $\delta^{13}\text{C}_{\text{CO2(g)}}$ were measured by a GasBench II system interfaced to a Delta V Plus IRMS (Thermo Scientific). All carbon isotopic composition values are reported relative to the Vienna PeeDee Belemnite standard (V-PDB):

$$\delta^{13}C_{sample}\big[\%_{\it o}\big]\!=\!\left(\frac{^{13}C/^{^{12}}C_{sample}}{^{13}C/^{^{12}}C_{V-PDB}}\!-\!1\right)\!\times\!1000$$

For cultures grown at 2% CO_2 , the carbon isotope fractionation associated with photosynthetic CO_2 fixation (ϵ_p) was calculated from $\delta^{13}C_{\text{biomass}}$ and $\delta^{13}C_{\text{CO2(ao)}}$ according to Freeman and Hayes (1992):

$$\epsilon_{p} \big[\% \ell \big] = \left(\frac{\delta^{13} C_{CO2(aq)} + 1000}{\delta^{13} C_{biomass} + 1000} - 1 \right) \times 1000$$

 $\delta^{13}C_{CO2(aq)}$ was calculated from measured $\delta^{13}C_{DIC}$ following the equation provided by Rau et al. (1996), based on Mook et al. (1974):

$$\delta^{13}C_{CO2(aq)}[\%] = \delta^{13}C_{DIC} + 23.644 - \frac{9701.5}{T_K}$$

where T_{κ} is the absolute temperature in Kelvin.

The calculation of $\varepsilon_{\rm p}$ requires a system in equilibrium to estimate CO $_{2({\rm aq})}$, though we note that some studies describe $\varepsilon_{\rm p}$ as the difference between $\delta^{13}{\rm C}_{{\rm CO2(g)}}$ and $\delta^{13}{\rm C}_{{\rm biomass}}$ (Heureux & Rickaby, 2015). Thus, for cultures grown under ambient CO $_{2}$ (non-equilibrium conditions), we calculated the isotopic deviation between the inorganic carbon source ($\delta^{13}{\rm C}_{{\rm CO2(g)}}$) and the dissolved inorganic carbon pool ($\delta^{13}{\rm C}_{{\rm DIC}}$):

$$\Delta \delta^{13} C_{CO2(g)-DIC} [\%] = \delta^{13} C_{CO2(g)} - \delta^{13} C_{DIC}$$

as well as between $\delta^{13}C_{CO2(g)}$ and $\delta^{13}C_{biomass}$:

$$\Delta\delta~^{13}\mathrm{C}_{\mathrm{CO2(g)-biomass}}\big[\%_{\mathit{e}}\big] = \delta~^{13}\mathrm{C}_{\mathrm{CO2(g)}} - \delta~^{13}\mathrm{C}_{\mathrm{biomass}}$$

4.11 | Statistical analyses

Results for experimental analyses were presented as the mean and the sample standard deviation (SD) values of at least three independent experiments. Statistical significance was analyzed with the two-tailed *t*-test. The unpaired sample *t*-test assuming equal variances was used to compare the values obtained for different cyanobacterial strains and the paired sample *t*-test was used to compare the values for the same strain at different experimental conditions.

FUNDING INFORMATION

This work was supported by the National Science Foundation Emerging Frontiers Program Award No. 1724090 (BK), NASA Early Career Faculty (ECF) Award No. 80NSSC19K1617 (BK), NASA Postdoctoral Fellowship (AKG), Simons Foundation Early Career Award No. 561645 (JNY and ML), and National Institute of General Medical Sciences of the National Institutes of Health award number R01GM118815 (AT, to James W. Golden at the University of California-San Diego).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Amanda K. Garcia https://orcid.org/0000-0002-1936-2568
Arnaud Taton https://orcid.org/0000-0001-5494-5964

Meng Li https://orcid.org/0000-0001-9831-8575

Jodi N. Young https://orcid.org/0000-0002-3156-8403

Betül Kaçar https://orcid.org/0000-0002-0482-2357

REFERENCES

- Andersson, C. R., Tsinoremas, N. F., Shelton, J., Lebedeva, N. V., Yarrow, J., Min, H., & Golden, S. S. (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. *Methods in Enzymology*, 305, 527–542.
- Atsumi, S., Higashide, W., & Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. *Nature Biotechnology*, 27(12), 1177–1180. https://doi.org/10.1038/nbt.1586
- Bar-On, Y. M., & Milo, R. (2019). The global mass and average rate of rubisco. Proceedings of the National Academy of Sciences of the United States of America, 10, 4738–4743. https://doi.org/10.1073/ pnas.1816654116
- Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes, J. M., Hollander, D., Jasper, J. P., King, L. L., Laws, E. A., Milder, J., Millero, F. J., Pancost, R., Popp, B. N., Steinberg, P. A., & Wakeham, S. G. (1997). Consistent fractionation of ¹³C in nature and in the laboratory: Growth-rate effects in some haptophyte algae. *Global Biogeochem Cycles*, 11(2), 279–292. https://doi.org/10.1029/96gb03939
- Boller, A. J., Thomas, P. J., Cavanaugh, C. M., & Scott, K. M. (2011). Low stable carbon isotope fractionation by coccolithophore RubisCO. Geochimica et Cosmochimica Acta, 75(22), 7200–7207. https://doi. org/10.1016/j.gca.2011.08.031
- Boller, A. J., Thomas, P. J., Cavanaugh, C. M., & Scott, K. M. (2015). Isotopic discrimination and kinetic parameters of RubisCO from the marine bloom-forming diatom, *Skeletonema costatum*. *Geobiology*, 13(1), 33–43. https://doi.org/10.1111/gbi.12112
- Bonfil, D. J., Ronen-Tarazi, M., Sultemeyer, D., Lieman-Hurwitz, J., Schatz, D., & Kaplan, A. (1998). A putative HCO₃⁻ transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. *FEBS Letters*, 430(3), 236–240.
- Borovec, J., Sirová, D., Mošnerová, P., Rejmánková, E., & Vrba, J. (2010). Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. *Biogeochemistry*, 101(1–3), 323–333. https://doi.org/10.1007/s10533-010-9488-4
- Burnap, R., Hagemann, M., & Kaplan, A. (2015). Regulation of CO₂ concentrating mechanism in cyanobacteria. *Life*, 5(1), 348–371. https://doi.org/10.3390/life5010348
- Carroll, S. B. (2005). Evolution at two levels: On genes and form. *PLoS Biology*, 3(7), e245. https://doi.org/10.1371/journ al.pbio.0030245
- Catling, D. C., & Zahnle, K. J. (2020). The Archean atmosphere. Science Advances, 6(9), eaax1420. https://doi.org/10.1126/sciadv.aax1420
- Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A., Marshall, J. D., & Farquhar, G. D. (2013). Environmental and physiological

14724669, 2023, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/gbi.12543 by University Of Wisconsin

- Madison, Wiley Online Library on [29/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley

on Wiley Online Library for rules

of use; OA articles are governed by the applicable Creative Commons

- determinants of carbon isotope discrimination in terrestrial plants. *New Phytologist*, 200(4), 950–965. https://doi.org/10.1111/nph.12423
- Clerico, E. M., Ditty, J. L., & Golden, S. S. (2007). Specialized techniques for site-directed mutagenesis in cyanobacteria. *Methods in Molecular Biology*, 362, 155–171. https://doi.org/10.1007/978-1-59745-257-1 11
- De Porcellinis, A. J., Norgaard, H., Brey, L. M. F., Erstad, S. M., Jones, P. R., Heazlewood, J. L., & Sakuragi, Y. (2018). Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. *Metabolic Engineering*, 47, 170–183. https://doi.org/10.1016/j.ymben.2018.03.001
- Deleens, E., Treichel, I., & O'Leary, M. H. (1985). Temperature dependence of carbon isotope fractionation in CAM plants. *Plant Physiology*, 79(1), 202–206. https://doi.org/10.1104/pp.79.1.202
- Des Marais, D. J. (2001). Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. *Reviews in Mineralogy and Geochemistry*, 43(1), 555–578. https://doi.org/10.2138/gsrmg.43.1.555
- Eek, M. K., Whiticar, M. J., Bishop, J. K. B., & Wong, C. S. (1999). Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific. *Deep Sea Research Part II:*Topical Studies in Oceanography, 46(11–12), 2863–2876. https://doi.org/10.1016/s0967-0645(99)00086-7
- Eichner, M., Thoms, S., Kranz, S. A., & Rost, B. (2015). Cellular inorganic carbon fluxes in *Trichodesmium*: A combined approach using measurements and modelling. *Journal of Experimental Botany*, 66(3), 749–759. https://doi.org/10.1093/jxb/eru427
- Ellis, R. J. (1979). The most abundant protein in the world. *Trends in Biochemical Sciences*, 4(11), 241–244.
- Erb, T. J., & Zarzycki, J. (2018). A short history of RubisCO: The rise and fall (?) of Nature's predominant CO₂ fixing enzyme. Current Opinion in Biotechnology, 49, 100–107. https://doi.org/10.1016/j. copbio.2017.07.017
- Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth's biogeochemical cycles. *Science*, *320*(5879), 1034–1039. https://doi.org/10.1126/science.1153213
- Fay, J. C., & Wittkopp, P. J. (2008). Evaluating the role of natural selection in the evolution of gene regulation. *Heredity (Edinb)*, 100(2), 191–199. https://doi.org/10.1038/sj.hdy.6801000
- Field, C. B. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. *Science*, 281(5374), 237–240. https://doi.org/10.1126/science.281.5374.237
- Freeman, K. H., & Hayes, J. M. (1992). Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO₂ levels. *Global Biogeochemical Cycles*, 6(2), 185–198. https://doi.org/10.1029/92gb00190
- Gabay, C., Lieman-Hurwitz, J., Hassidim, M., Ronen-Tarazi, M., & Kaplan, A. (1998). Modification of topA in Synechococcus sp. PCC 7942 resulted in mutants capable of growing under low but not high concentration of CO2. FEMS Microbiology Letters, 159(2), 343–347. https://doi.org/10.1111/j.1574-6968.1998.tb12881.x
- Garcia, A. K., Cavanaugh, C. M., & Kacar, B. (2021). The curious consistency of carbon biosignatures over billions of years of earth-life coevolution. *The ISME Journal*, 15, 2183–2194. https://doi.org/10.1038/s41396-021-00971-5
- Gesch, R. W., Kang, I. H., Gallo-Meagher, M., Vu, J. C. V., Boote, K. J., Allen, L. H., & Bowes, G. (2003). Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO₂ and temperature. *Plant, Cell & Environment, 26*(12), 1941–1950. https://doi.org/10.1046/j.1365-3040.2003.01110.x
- Guy, R. D., Fogel, M. L., & Berry, J. A. (1993). Photosynthetic fractionation of the stable isotopes of oxygen and carbon. *Plant Physiology*, 101(1), 37–47. https://doi.org/10.1104/pp.101.1.37

- Hamilton, T. L., Bryant, D. A., & Macalady, J. L. (2016). The role of biology in planetary evolution: Cyanobacterial primary production in low-oxygen Proterozoic oceans. *Environmental Microbiology*, 18(2), 325–340. https://doi.org/10.1111/1462-2920.13118
- Havig, J. R., Hamilton, T. L., Bachan, A., & Kump, L. R. (2017). Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped earth system progression across the Archean and Paleoproterozoic. *Earth-Science Reviews*, 174, 1–21. https://doi. org/10.1016/j.earscirev.2017.06.014
- Hayes, J. M. (1993). Factors controlling ¹³C contents of sedimentary organic compounds: Principles and evidence. *Marine Geology*, 113(1–2), 111–125. https://doi.org/10.1016/0025-3227(93)90153-m
- Hayes, J. M. (2001). Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Reviews in Mineralogy and Geochemistry, 43(1), 225–277. https://doi.org/10.2138/gsrmg.43.1.225
- Heureux, A. M. C., & Rickaby, R. E. M. (2015). Refining our estimate of atmospheric CO₂ across the Eocene–Oligocene climatic transition. *Earth and Planetary Science Letters*, 409, 329–338. https://doi. org/10.1016/j.epsl.2014.10.036
- Hill, W. R., Fanta, S. E., & Roberts, B. J. (2008). 13C dynamics in benthic algae: Effects of light, phosphorus, and biomass development. *Limnology and Oceanography*, 53(4), 1217–1226. https://doi.org/10.4319/lo.2008.53.4.1217
- Hinga, K. R., Arthur, M. A., Pilson, M. E. Q., & Whitaker, D. (1994). Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO₂ concentration, pH, temperature, and species. *Global Biogeochemical Cycles*, 8(1), 91–102. https://doi.org/10.1029/93gb03393
- Hood, R. D., Higgins, S. A., Flamholz, A., Nichols, R. J., & Savage, D. F. (2016). The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. *Proceedings of the National Academy of Sciences of the United States of America*, 113(33), E4867-E4876. https://doi.org/10.1073/pnas.15249 15113
- Hurley, S. J., Wing, B. A., Jasper, C. E., Hill, N. C., & Cameron, J. C. (2021). Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria. *Science Advances*, 7(2), eabc8998. https://doi. org/10.1126/sciadv.abc8998
- Iwaki, T., Haranoh, K., Inoue, N., Kojima, K., Satoh, R., Nishino, T., Wada, S., Ihara, H., Tsuyama, S., Kobayashi, H., & Wadano, A. (2006). Expression of foreign type I ribulose-1,5-bisphosphate carboxy-lase/oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC7942 cells. *Photosynthesis Research*, 88(3), 287-297. https://doi.org/10.1007/s11120-006-9048-x
- Jensen, S. I., Steunou, A. S., Bhaya, D., Kuhl, M., & Grossman, A. R. (2011).
 In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. The ISME Journal, 5(2), 317–328. https://doi.org/10.1038/ismej.2010.131
- Kacar, B., Hanson-Smith, V., Adam, Z. R., & Boekelheide, N. (2017). Constraining the timing of the great oxidation event within the rubisco phylogenetic tree. *Geobiology*, 15(5), 628–640. https://doi. org/10.1111/gbi.12243
- Kane, H. J., Wilkin, J.-M., Portis, A. R., & John Andrews, T. (1998). Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in Ribulose-1,5-bisphosphate. *Plant Physiology*, 117(3), 1059– 1069. https://doi.org/10.1104/pp.117.3.1059
- Kanno, M., Carroll, A. L., & Atsumi, S. (2017). Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. *Nature Communications*, 8(1), 14724. https://doi.org/10.1038/ ncomms14724
- Kedzior, M., Garcia, A. K., Li, M., Taton, A., Adam, Z. R., Young, J. N., & Kacar, B. (2022). Resurrected rubisco suggests uniform carbon isotope signatures over geologic time. *Cell Reports*, 39(4), 110726. https://doi.org/10.1016/j.celrep.2022.110726
- Knoll, A. H., & Nowak, M. A. (2017). The timetable of evolution. Science Advances, 3(5), e1603076. https://doi.org/10.1126/sciadv.1603076

- Krissansen-Totton, J., Buick, R., & Catling, D. C. (2015). A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. *American Journal of Science*, 315(4), 275–316. https://doi.org/10.2475/04.2015.01
- Kuan, D., Duff, S., Posarac, D., & Bi, X. (2015). Growth optimization of Synechococcus elongatus PCC7942 in lab flasks and a 2-D photobioreactor. The Canadian Journal of Chemical Engineering, 93(4), 640-647. https://doi.org/10.1002/cjce.22154
- Kubien, D. S., Brown, C. M., & Kane, H. J. (2011). Quantifying the amount and activity of rubisco in leaves. Methods in Molecular Biology, 684, 349–362. https://doi.org/10.1007/978-1-60761 -925-3 27
- Laws, E. A., Bidigare, R. R., & Popp, B. N. (1997). Effect of growth rate and CO₂ concentration on carbon isotopic fractionation by the marine diatom *Phaeodactylum tricornutum*. *Limnology and Oceanography*, 42(7), 1552–1560. https://doi.org/10.4319/lo.1997.42.7.1552
- Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., & Macko, S. A. (1995). Dependence of phytoplankton carbon isotopic composition on growth rate and ${\rm [CO_2]_{aq}}$. Theoretical considerations and experimental results. *Geochimica et Cosmochimica Acta*, 59(6), 1131–1138. https://doi.org/10.1016/0016-7037(95)00030-4
- Laws, E. A., Popp, B. N., Cassar, N., & Tanimoto, J. (2002). ¹³C discrimination patterns in oceanic phytoplankton: Likely influence of CO₂ concentrating mechanisms, and implications for palaeoreconstructions. Functional Plant Biology, 29(3), 323–333. https://doi.org/10.1071/pp01183
- Lechno-Yossef, S., Rohnke, B. A., Belza, A. C. O., Melnicki, M. R., Montgomery, B. L., & Kerfeld, C. A. (2020). Cyanobacterial carboxysomes contain an unique rubisco-activase-like protein. New Phytologist, 225(2), 793–806. https://doi.org/10.1111/nph.16195
- Liang, F., & Lindblad, P. (2017). Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metabolic Engineering Communications, 4, 29–36. https://doi.org/10.1016/j.meteno.2017.02.002
- Lloyd, M. K., McClelland, H. L. O., Antler, G., Bradley, A. S., Halevy, I., Junium, C. K., Wankel, S. D., & Zerkle, A. L. (2020). The isotopic imprint of life on an evolving planet. *Space Science Reviews*, 216(7), 1–54. https://doi.org/10.1007/s11214-020-00730-6
- Luo, X., Li, J., Chang, T., He, H., Zhao, Y., Yang, X., Zhao, Y., & Xu, Y. (2019). Stable reference gene selection for RT-qPCR analysis in Synechococcus elongatus PCC 7942 under abiotic stresses. BioMed Research International, 2019, 7630601. https://doi.org/10.1155/2019/7630601
- Lyons, T. W., Fike, D. A., & Zerkle, A. (2015). Emerging biogeochemical views of Earth's ancient microbial worlds. *Elements*, 11(6), 415–421. https://doi.org/10.2113/gselements.11.6.415
- Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth's early ocean and atmosphere. *Nature*, 506(7488), 307–315. https://doi.org/10.1038/nature13068
- MacFarlane, J. J., & Raven, J. A. (1990). C, N and P nutrition of Lemanea mamillosa Kutz. (Batrachospermales, Rhodophyta) in the Dighty burn, Angus, U.K. Plant, Cell and Environment, 13(1), 1–13. https://doi.org/10.1111/j.1365-3040.1990.tb01294.x
- Maeda, S., Price, G. D., Badger, M. R., Enomoto, C., & Omata, T. (2000). Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. The Journal of Biological Chemistry, 275(27), 20551–20555. https://doi.org/10.1074/jbc.M003034200
- Nisbet, E. G., Grassineau, N. V., Howe, C. J., Abell, P. I., Regelous, M., & Nisbet, R. E. R. (2007). The age of rubisco: The evolution of oxygenic photosynthesis. *Geobiology*, 5, 311–335. https://doi.org/10.1111/j.1472-4669.2007.00127.x
- Olson-Manning, C. F., Wagner, M. R., & Mitchell-Olds, T. (2012). Adaptive evolution: Evaluating empirical support for theoretical predictions. *Nature Reviews. Genetics*, 13(12), 867–877. https://doi.org/10.1038/nrg3322

- Omata, T., Gohta, S., Takahashi, Y., Harano, Y., & Maeda, S. (2001). Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. *Journal of Bacteriology*, 183(6), 1891–1898. https://doi.org/10.1128/JB.183.6.1891-1898.2001
- Onizuka, T., Akiyama, H., Endo, S., Kanai, S., Hirano, M., Tanaka, S., & Miyasaka, H. (2002). CO₂ response element and corresponding trans-acting factor of the promoter for Ribulose-1,5-bisphosphate carboxylase/oxygenase genes in *Synechococcus* sp. PCC7002 found by an improved electrophoretic mobility shift assay. *Plant and Cell Physiology*, 43(6), 660–667. https://doi.org/10.1093/pcp/pcf082
- Poudel, S., Pike, D. H., Raanan, H., Mancini, J. A., Nanda, V., Rickaby, R. E. M., & Falkowski, P. G. (2020). Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. *Proceedings of the National Academy of Sciences*, 117(48), 30451–30457. https://doi.org/10.1073/pnas.2018939117
- Price, G. D., Badger, M. R., Woodger, F. J., & Long, B. M. (2008). Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): Functional components, ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany, 59(7), 1441–1461. https://doi.org/10.1093/jxb/erm112
- Rau, G. H., Riebesell, U., & Wolf-Gladrow, D. (1996). A model of photosynthetic ¹³C fractionation by marine phytoplankton based on diffusive molecular CO₂ uptake. *Marine Ecology Progress Series*, 133, 275–285. https://doi.org/10.3354/meps133275
- Raven, J. A. (2013). Rubisco: Still the most abundant protein of earth? New Phytologist, 198(1), 1–3. https://doi.org/10.1111/nph.12197
- Raven, J. A., Cockell, C. S., & De La Rocha, C. L. (2008). The evolution of inorganic carbon concentrating mechanisms in photosynthesis. *Philosophical Transactions of the Royal Society, B: Biological Sciences*, 363(1504), 2641–2650. https://doi.org/10.1098/rstb.2008.0020
- Rillema, R., MacCready, J. S., & Vecchiarelli, A. G. (2020). Cyanobacterial growth and morphology are influenced by carboxysome positioning and temperature. https://doi.org/10.1101/2020.06.01.127845
- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. *Microbiology*, 111(1), 1–61. https://doi.org/10.1099/00221287-111-1-1
- Roeske, C. A., & O'Leary, M. H. (1984). Carbon isotope effects on the enzyme-catalysed carboxylation of ribulose bisphosphate. *Biochemistry*, 23, 6275–6284.
- Schidlowski, M. (1988). A 3,800-million-year isotopic record of life from carbon in sedimentary-rocks. *Nature*, 333(6171), 313–318. https://doi.org/10.1038/333313a0
- Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: Evolution of a concept. Precambrian Research, 106(1-2), 117-134. https://doi.org/10.1016/S0301-9268(00)00128-5
- Schirrmeister, B. E., Sanchez-Baracaldo, P., & Wacey, D. (2016). Cyanobacterial evolution during the Precambrian. *International Journal of Astrobiology*, 15(3), 187–204. https://doi.org/10.1017/s1473550415000579
- Schopf, J. W. (2011). The paleobiological record of photosynthesis. *Photosynthesis Research*, 107(1), 87–101. https://doi.org/10.1007/s11120-010-9577-1
- Schubert, B. A., & Jahren, A. H. (2012). The effect of atmospheric CO₂ concentration on carbon isotope fractionation in C₃ land plants. *Geochimica et Cosmochimica Acta*, 96, 29-43. https://doi.org/10.1016/j.gca.2012.08.003
- Scott, K. M., Henn-Sax, M., Harmer, T. L., Longo, D. L., Frame, C. H., & Cavanaugh, C. M. (2007). Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnology and Oceanography, 52(5), 2199–2204.

- Sengupta, A., Sunder, A. V., Sohoni, S. V., & Wangikar, P. P. (2019). Fine-tuning native promoters of Synechococcus elongatus PCC 7942 to develop a synthetic toolbox for heterologous protein expression. ACS Synthetic Biology, 8(5), 1219–1223. https://doi.org/10.1021/acssynbio.9b00066
- Smith, R. M., & Williams, S. B. (2006). Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proceedings of the National Academy of Sciences, 103(22), 8564–8569. https://doi.org/10.1073/pnas.0508696103
- Sprouffske, K., & Wagner, A. (2016). Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics, 17, 172. https://doi.org/10.1186/s12859-016-1016-7
- Stepien, C. C., & Austin, A. (2015). Impacts of geography, taxonomy and functional group on inorganic carbon use patterns in marine macrophytes. *Journal of Ecology*, 103(6), 1372–1383. https://doi. org/10.1111/1365-2745.12451
- Szekeres, E., Sicora, C., Dragos, N., & Druga, B. (2014). Selection of proper reference genes for the cyanobacterium Synechococcus PCC 7002 using real-time quantitative PCR. FEMS Microbiology Letters, 359(1), 102–109. https://doi.org/10.1111/1574-6968.12574
- Taton, A., Erikson, C., Yang, Y., Rubin, B. E., Rifkin, S. A., Golden, J. W., & Golden, S. S. (2020). The circadian clock and darkness control natural competence in cyanobacteria. *Nature Communications*, 11(1), 1688. https://doi.org/10.1038/s41467-020-15384-9
- Taton, A., Unglaub, F., Wright, N. E., Zeng, W. Y., Paz-Yepez, J., Brahamsha, B., Palenik, B., Peterson, T. C., Haerizadeh, F., Golden, S. S., & Golden, J. W. (2014). Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. *The Nucleic Acids Research*, 42(17), e136. https://doi.org/10.1093/nar/gku673
- Taylor, T. B., Shepherd, M. J., Jackson, R. W., & Silby, M. W. (2022). Natural selection on crosstalk between gene regulatory networks facilitates bacterial adaptation to novel environments. *Current Opinion in Microbiology*, 67, 102140. https://doi.org/10.1016/j.mib.2022.02.002
- Tcherkez, G. G., Farquhar, G. D., & Andrews, T. J. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. *Proceedings of the National Academy of Sciences of the United States of America*, 103(19), 7246–7251. https://doi.org/10.1073/pnas.0600605103
- Tchernov, D., Helman, Y., Keren, N., Luz, B., Ohad, I., Reinhold, L., Ogawa, T., & Kaplan, A. (2001). Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem I-generated deltamuH+. *The Journal of Biological Chemistry*, 276(26), 23450–23455. https://doi.org/10.1074/jbc.M101973200
- Ungerer, J., Lin, P.-C., Chen, H.-Y., Pakrasi, H. B., Giovannoni, S. J., Burnap, R., & Sherman, L. (2018). Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973. MBio, 9(1), e02327-17. https://doi.org/10.1128/mBio.02327-17
- Vijayan, V., Jain, I. H., & O'Shea, E. K. (2011). A high resolution map of a cyanobacterial transcriptome. Genome Biology, 12(5), R47. https:// doi.org/10.1186/gb-2011-12-5-r47

- von Caemmerer, S., Tazoe, Y., Evans, J. R., & Whitney, S. M. (2014). Exploiting transplastomically modified rubisco to rapidly measure natural diversity in its carbon isotope discrimination using tuneable diode laser spectroscopy. *Journal of Experimental Botany*, 65(13), 3759–3767. https://doi.org/10.1093/jxb/eru036
- Wilhelm, S. W., Bullerjahn, G. S., McKay, R. M. L., & Moran, M. A. (2020). The complicated and confusing ecology of Microcystis blooms. MBio, 11(3), e00529-20. https://doi.org/10.1128/mBio.00529-20
- Wilkes, E. B., Lee, R. B. Y., McClelland, H. L. O., Rickaby, R. E. M., & Pearson, A. (2018). Carbon isotope ratios of coccolith-associated polysaccharides of *Emiliania huxleyi* as a function of growth rate and CO₂ concentration. *Organic Geochemistry*, 119, 1-10. https://doi.org/10.1016/j.orggeochem.2018.02.006
- Wilkes, E. B., & Pearson, A. (2019). A general model for carbon isotopes in red-lineage phytoplankton: Interplay between unidirectional processes and fractionation by RubisCO. *Geochimica et Cosmochimica Acta*, 265, 163–181. https://doi.org/10.1016/j.gca.2019.08.043
- Wilson, A. C., Maxson, L. R., & Sarich, V. M. (1974). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences, 71(7), 2843–2847. https://doi.org/10.1073/pnas.71.7.2843
- Wong, W. W., & Sackett, W. M. (1978). Fractionation of stable carbon isotopes by marine phytoplankton. *Geochimica et Cosmochimica Acta*, 42(12), 1809–1815. https://doi.org/10.1016/0016-7037(78) 90236-3
- Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., Koppenaal, D. W., Brand, J. J., & Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports, 5(1), 8132. https:// doi.org/10.1038/srep08132
- Yumol, L. M., Uchikawa, J., & Zeebe, R. E. (2020). Kinetic isotope effects during CO2 hydration: Experimental results for carbon and oxygen fractionation. *Geochimica et Cosmochimica Acta*, 279, 189–203. https://doi.org/10.1016/j.gca.2020.03.041
- Zavřel, T., Sinetova, M., & Červený, J. (2015). Measurement of chlorophyll *a* and carotenoids concentration in cyanobacteria. *Bio-Protocol*, 5(9), e1467. https://doi.org/10.21769/BioProtoc.1467

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Garcia, A. K., Kędzior, M., Taton, A., Li, M., Young, J. N., & Kaçar, B. (2023). Effects of RuBisCO and CO₂ concentration on cyanobacterial growth and carbon isotope fractionation. *Geobiology*, *21*, 390–403. https://doi.org/10.1111/gbi.12543