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Abstract—Biomechanical measurement is of promising value 

for rehabilitation, assisted-living, and lifestyle management 

applications. Nevertheless, the understanding is still limited on 

the spatial variability of biomechanical dynamics that is essential 

for optimal motion sensor configuration. Besides, training 

physical activity detectors is usually data-heavy and time-

consuming. Targeting these two challenges, in this study, we 

propose a novel deep transfer intelligence framework, which 

leverages deep learning to characterize spatial variability of 

different motion sensors on diverse body locations, and further 

leverages inter-subject transfer learning to maximize data-

efficiency in challenging scarce data learning. More specifically, 

to characterize the spatial variability, we propose deep 

convolutional neural networks to investigate capabilities of both 

different sensor locations and channels, on physical activity 

measurement. The characterization determines both optimal 

sensor configuration and optimal channel configuration. Further, 

we propose a transfer learning approach to mine inter-subject 

similarity and then share learned knowledge among subjects, 

thereby minimizing the training effort and maximizing the data-

efficiency in the wearable scarce data learning scenario. Our 

evaluation experiments have determined the optimal sensor 

location from seven options as thigh, and the optimal 

sensor&channel configuration from 42 options as thigh-

accelerometer-axis-Y. Our experiments have further 

demonstrated that, with transfer learning under the optimal 

sensor&channel configuration, only 10% of data from the target 

subject for model fine-tuning can yield a physical activity 

detection accuracy up to 91.6%, with a performance boosting of 

9% compared with direct learning without transfer learning. 

Therefore, the deep transferable learning framework will greatly 

advance spatial variability characterization for optimal sensor 

and channel configuration, and efficient scarce data learning in 

biomedical measurement.   

 
Index Terms—Deep Learning, Transfer Learning, Biomedical 

Instrumentation, Biomechanical Measurement. 
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I. INTRODUCTION 

IOMECHANICAL measurement is of promising value 

for rehabilitation, assisted-living, and lifestyle 

management applications. Biomechanical data carries 

musculoskeletal dynamics, which further relate to other health 

concerns like the neurological movement disorders. The 

prevalence of mobility difficulties and/or disabilities, 

according to Centers for Disease Control and Prevention 

(CDC) in United States, is impacting one in seven adults, and 

with age, it increases to two in five adults [1]. Its impacts on 

children are also reported to be significantly increasing [2].  

The biomechanical dynamics measurement, therefore, is 

attracting intensive interests nowadays [3]. For instance, 

Panahandeh et al. [4] developed an activity measurement 

system with an inertial measurement unit (IMU) placed on the 

chest. Lee et al. reported an arm motion measurement system 

with a wearable wireless sensor network. Zou et al. [5] 

developed a system for inertial measurement with sensors 

placed on the elbow. Liu et al. [6] developed a gait 

measurement system for force monitoring on crutches, for 

rehabilitation and assistive living purposes. Ashry et al. [7] 

developed a system with a wrist IMU and deep neural network 

for physical activity recognition.  

However, in light of the fact that human biomechanical 

dynamics are highly different in different body locations [8-

10], the understanding of spatial variability of the motion 

sensors is still limited. The characterization of spatial 

variability of different sensor locations is essential to 

determine the optimal sensor configuration strategies, for 

achieving high robustness and high usability of the 

biomechanical measurement system. This is the first challenge 

that we target in this study, aiming to provide comprehensive 

characterization of the spatial variability of different sensor 

placement locations, and also to characterize the sensor 

channels for each sensor location. 

Further, the computational models for biomechanical data 

analytics have also been reported including both non-machine 

learning and machine learning methods. Panahandeh et al. [4] 

developed a Hidden Markov Model for pedestrian activity 

classification. Li et al. [11] proposed a Kalman filtering 

method for body motion measurement. Ahmed et al. [12] also 

reported a Kalman method for body orientation estimation. 

Ashry et al. [7] designed a Long Short-Term Memory model 

for activity detection. Yang et al. [13] reported an activity 
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graph based on Convolutional Neural Network (CNN). Liu et 

al. reported a support vector machine-based physical activity 

detection algorithm [14]. Uddin et al. reported a random 

forest-based model for activity and posture recognition [15].  

These studies also mainly focus on data analytics and 

measurement for a single sensor location. We in this study, 

instead, leverage deep learning to investigate 7 different body 

locations, for spatial variability characterization. Further, we 

also characterize each channel of the 3-axis accelerometer and 

3-axis gyroscope, resulting in 42 spatial configurations. In our 

previous study [16], we have studied different sensor locations 

and indicated the significant spatial variability, and in this 

study we extend it to a thorough research on 42 different 

spatial configurations. Another limitation of the previous 

study is we have not studied the data-efficiency and transfer 

learning, for scarce data learning.  

So, another challenge in this study targets is the data-

efficiency in deep learning model training. Typically, deep 

learning requires a large amount of data for robust model 

training, which poses significant needs on data collection. 

Maximizing the data-efficiency for minimizing the training 

effort on the target user is substantially important but 

challenging.  

Transfer learning studies have been reported in areas like 

computer vision and natural language processing. For 

instance, Shaha et al. reported the transfer learning model for 

image classification [17]. Kim et al. reported the sequential 

transfer learning algorithm for lane estimation in self-driving 

applications [18]. He et al. developed a transfer learning 

model for information recommendation [19].  

In biomechanical data analytics, nevertheless, the study of 

transfer learning [20] is still limited in terms of how to 

maximize the learning outcomes with minimized training 

effort. To the best of our knowledge, this is the first study to 

leverage deep transfer learning on biomechanical data mining 

for spatial variability characterization and data-efficient 

learning. Therefore, as another major aim, the transfer learning 

strategy is introduced in our study to leverage inter-subject 

similarity for deep learning performance boosting. In such a 

way, the learned knowledge from other subjects can be 

transferred to the target user of interest, thereby significantly 

increasing the physical activity detection (PAD) accuracy of 

the deep learning model even with no or scarce data from the 

target user.  

Overall, targeting two challenges – spatial variability 

understanding and scarce data learning, we propose a novel 

deep transfer intelligence framework (Fig. 1), which leverages 

deep learning to characterize spatial variability of motion 

sensors for optimal sensor and channel configuration, and 

further leverages inter-subject transfer learning to maximize 

data-efficiency on PAD model training. More specifically, to 

analyze the spatial variability, we propose the deep 

convolutional neural network to investigate capabilities of 

both different sensor locations and different sensor channels, 

on physical activity detection. The characterization determines 

both optimal sensor configuration and optimal channel 

configuration. Further, we propose a transfer learning 

approach to mine the patterns in the non-target users and then 

transfer the learned patterns to the target user, thereby 

minimizing the training effort and maximizing the data-

efficiency of the target user. In short, our major contributions 

are summarized as below: 

(a) Propose deep learning algorithms for comprehensively 

characterizing and understanding the inter-sensor spatial 

variability for optimal sensor location determination, and 

inter-channel variability for optimal channel determination, 

called SwPAD (Sensor-wise PAD) and SCwPAD 

(Sensor&Channel-wise PAD), respectively;  

(b) Determine the optimal sensor location from seven 

sensor location candidates as thigh, and also determine the 

optimal sensor&channel configuration from 42 options as 

 
Fig. 1. The proposed novel framework for deep learning-based biomechanical spatial variability learning and transfer learning-based efficient scarce data 
learning.   
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thigh-accelerometer-axis-Y, thereby providing optimal 

configuration principles for biomechanical measurement;  

(c) Propose transfer learning algorithms to extract the 

patterns from the non-target users and then transfer the learned 

patterns to the target user (SxPAD corresponds to optimal-

sensor-based transfer learning, and SCxPAD corresponds to 

optimal-sensor&channel-based transfer learning, where x 

indicates the optimum), for both data-efficiency maximization 

and model accuracy maximization towards scarce data 

learning on the target user; 

(d)  Demonstrate that only 10% of data from the target 

subject can yield a PAD accuracy up to 91.6%, with the thigh-

accelerometer-axis-Y configuration, indicating feasibility of 

both single-channel-based and scarce-data-based PAD on the 

target user. 

 To the best of our knowledge, this is the first time to 

systematically investigate sensor-wise and channel-wise 

spatial variability in PAD to determine the optimal sensor 

location and optimal channel selection, and investigate 

transferrable patterns in PAD from non-target users to the 

target user, thereby greatly advancing spatial variability 

characterization and data-efficient learning in biomechanical 

measurement.     

II. APPROACHES 

We detail in this section the system diagram, optimal sensor 

determination, optimal sensor&channel determination, data-

efficient transfer learning, and evaluation strategy.  

A. System Diagram 

The proposed system, to deal with the diverse biomechanical 

dynamics as shown in Fig. 2, aims to firstly determine the 

optimal sensor and sensor channel configurations through 

deep mining, and then evaluate the feasibility of transferring 

knowledge from non-target users to the target user in terms of 

physical activity detection.  

As shown in Fig. 2, the biomechanical data from the forearm 

sensor and the thigh sensor are highly diverse, and the six 

channels of each sensor are also of great difference. Therefore, 

the deep learning architecture as shown in Fig. 3 is proposed 

to investigate the optimal sensor location, i.e., B. Sensor-wise 

PAD (SwPAD) for inter-sensor spatial variability analysis. 

More specifically, seven deep learning models with this same 

architecture have been trained, corresponding to seven sensor 

locations in this study. The model architecture includes three 

convolutional stages, with the number of feature maps as 16, 

32, 32, and 64, respectively. The convolutional filter size is set 

as 1-by-2. After each convolutional stage, there are one max-

pooling stage with the pooling operator as 1-by-2, and one 

dropout stage with the dropping rate as 15%. There are two 

hidden dense layers and one output layer, with the number of 

neurons as 512, 256, and 6, respectively. Here the six neurons 

in the output layer correspond to the number of activity types 

in this study. For SwPAD, the input dimension is 6-by-100, 

corresponding to six sensor channels (3-axis accelerometer 

and 3-axis gyroscope) and the 100-sample signal segment (2 

seconds since the sampling rate is 50 Hz). Overall, SwPAD 

analyzes the inter-sensor spatial variability in terms of 

physical activity detection performance. 

After determining the optimal sensor location from seven 

candidates in SwPAD, we then name the optimal sensor 

location as x and then investigate SxPAD – the transfer 

learning. More specifically, we use data from non-target users 

to pre-train the deep learning model, with the same 

architecture in Fig. 3 (input dimension as 6-by-100), and then 

use different portions of data from the target user to fine-tune 

the pre-trained model, as shown in Fig. 4. In Fig. 4, the model 

pre-training uses different portions of data from non-target 

users, including 0%, 25%, 50%, 75%, and 100%. Then model 

fine-tuning uses different portions of data from the target user, 

including 0%, 10%, 20%, 30%, 40%, and 50%. The testing 

uses 50% of the data from the target users. So there are 29 

different strategies (excluding the strategy with 0% for pre-

training and 0% for fine-tuning). In this way, we can gain 

findings on how transfer learning can help minimize the 

 
Fig. 2. Selected visualization of six-dimension signal segments during 
the climbing up activity of the subject 1.   

Notes. A: accelerometer; G: gyroscope; X/Y/Z: different signal 

channels. 

 
Fig. 3. Deep learning architecture proposed for Sensor-wise Physical 
Activity Detection (SwPAD), which analyzes the inter-sensor spatial 

variability to select out the optimal sensor location from seven 

candidates in this study.  
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requirement of data from the target user, and how transfer 

learning can boost the performance.  

Further, we have investigated the sensor&channel 

configurations. 42 combinations are considered, since there 

are seven sensor locations and six channels for each location 

(3-axis accelerometer and 3-axis gyroscope), resulting in 

Sensor&Channel-wise PAD (SCwPAD). The deep learning 

architecture is also like Fig. 3, but the input dimension is 1-by-

100 since there is only one channel selected for each 

configuration. In total, 42 models have been trained and the 

optimal sensor&channel configuration is determined. 

Based on the optimal sensor&channel configuration, x, we 

have further studied the transfer learning, still shown as Fig. 4, 

i.e., SCxPAD, with the same deep learning architecture and 

the input dimension is set as 1-by-100. SCxPAD is expected to 

minimize the training effort and maximize the data-efficiency 

through both single-channel-based learning and transfer 

learning.    

B. Sensor-wise Physical Activity Detection (SwPAD) for 

Inter-sensor Spatial Variability Analysis 

To investigate the inter-sensor spatial variability, we have 

proposed a CNN architecture as shown in Fig. 3, which 

includes the convolutional filters for spatial pattern extraction, 

max-pooling operators for dimension reduction, and fully 

connected dense layers for final class label generation from 

flattened patterns. 

The learning principle of CNN [21-24] is as (1), and 𝑧𝑖,𝑗
𝑙,𝑘

 is 

corresponding to the 𝑖 − 𝑡ℎ row and 𝑗 − 𝑡ℎ column of the 𝑘 −
𝑡ℎ feature map in the layer  𝑙, which is calculated as the sum 

of the weighted neuron output 𝑦𝑖+𝑚,𝑗+𝑛
𝑙−1,𝑐

 in the previous layer 

with the weight as 𝑤𝑚,𝑛,𝑐
𝑙,𝑘

. 𝑀, 𝑁, and 𝐶 are filter height, filter 

width, and number of input maps, respectively, and 𝑚, 𝑛, and 

𝑐 are their corresponding indices. 𝑏 is the bias input for the 

neuron. After feeding 𝑧𝑖,𝑗
𝑙,𝑘

 into the activation function 𝜑(∙), 

which is chosen as ‘RELU’ for computation efficiency, the 

neuron output 𝑦𝑖,𝑗
𝑙,𝑘

 is yielded as (2).  

 

𝑧𝑖,𝑗
𝑙,𝑘 = ∑ ∑ ∑ 𝑤𝑚,𝑛,𝑐

𝑙,𝑘 𝑦𝑖+𝑚,𝑗+𝑛
𝑙−1,𝑐

𝐶−1

𝑐=0

𝑁−1

𝑛=0

𝑀−1

𝑚=0

+ 𝑏          (1) 

𝑦𝑖,𝑗
𝑙,𝑘 = 𝜑(𝑧𝑖,𝑗

𝑙,𝑘)                                                      (2)    

         

With the backpropagation learning algorithm and the chain 

rule of differentiation, the gradient of the error 𝐸 with respect 

to the convolutional filter weight 𝑤𝑚,𝑛,𝑐
𝑙,𝑘

 is given as (3), where 

the 𝐸 is backpropagated to 𝑧𝑖,𝑗
𝑙,𝑘

 and then to 𝑤𝑚,𝑛,𝑐
𝑙,𝑘

. 𝐻 and 𝑊 

are the height and width of the 𝑘 − 𝑡ℎ feature map in the layer 

𝑙. After further derivation, (3) is transformed to be (4), where 

𝛿𝑖,𝑗
𝑙,𝑘

 is the gradient of 𝐸 with respect to the input of the 

activation function.  

 

𝜕𝐸

𝜕𝑤𝑚,𝑛,𝑐
𝑙,𝑘 = ∑ ∑

𝜕𝐸

𝜕𝑧𝑖,𝑗
𝑙,𝑘

𝜕𝑧𝑖,𝑗
𝑙,𝑘

𝜕𝑤𝑚,𝑛,𝑐
𝑙,𝑘

𝑊−𝑁

𝑗=0

𝐻−𝑀

𝑖=0

                          (3) 

𝜕𝐸

𝜕𝑤𝑚,𝑛,𝑐
𝑙,𝑘 = ∑ ∑ 𝛿𝑖,𝑗

𝑙,𝑘𝑦𝑖+𝑚,𝑗+𝑛
𝑙−1,𝑐

𝑊−𝑁

𝑗=0

𝐻−𝑀

𝑖=0

                             (4) 

We will leverage the proposed CNN deep learning model to 

evaluate seven different sensor locations and determine the 

performance in terms of physical activity detection. The total 

number of parameters is 1.3 million. The model has four CNN 

stages (16, 32, 32, and 64 feature maps, respectively) and 

three dense layers (512, 256 and 6, respectively), as shown in 

Fig. 3. The spatial variability is reflected by the PAD 

performance with seven different models (corresponding to 

seven different sensor locations). 

C. Optimal Sensor Location x Determination after SwPAD 

The optimal sensor determination is achieved by (5), where 

the 6-axis data from sensor 𝑥, denoted as 𝑆𝑥, is fed into the 

CNN model 𝑓(∙). The performance is then calculated with the 

function 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(∙) which is calculated as the number of 

correctly classified instances divided by the total number of 

instances, and the optimax sensor index 𝑥∗ is finally 

determined.  

 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

[𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑓(𝑆𝑥))]              (5) 

Considering the spatial variability among seven sensor 

locations, chest, forearm, head, shin, thigh, upper-arm, and 

waist, the proposed deep learning model is expected to be able 

to effectively mine these diverse biomechanical dynamics and 

determine their contribution to the physical activity detection 

task. Looking forward, for more diverse biomechanical 

dynamics-based applications like rehabilitation, assisted 

prosthesis, and movement disorders, the proposed deep 

learning model is expected to be able to find out the most 

effective sensor location that can maximize both information 

capturing and detection accuracy.  

D. Transfer Learning (SxPAD) from Non-target Users to The 

Target User, with the Selected Optimal Sensor Location x  

Further, we propose a transfer learning [25-29] approach to 

maximize the deep learning performance and minimize the 

 
Fig. 4. The proposed transfer learning approach, which pre-trains the 
model on the non-target users and then fine-tunes the model on the 

target user, to facilitate PAD performance on the target user towards 

efficient scarce data learning.  
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training effort, based on the optimal sensor location, named as 

SxPAD. The achieved methodology, as shown in Fig. 4, 

therefore, can boost the deep learning accuracy through shared 

inter-subject dynamics. More specifically, when selecting a 

subject as the target user, we define other subjects as the non-

target users. For the whole dataset, we repeat this for each 

subject, meaning that each subject can be the target user. The 

transfer learning SxPAD is still based on the same CNN (input 

is 6-by-100), but trained in a different strategy with two steps 

as below.  

In the first step, the model is pre-trained with the data from 

non-target users; and in the second step, the model is fine-

tuned with the data from the target user. Different proportions 

of the pre-training data and different proportions of the fine-

tunning data have been considered, resulting in 29 transfer 

learning strategies (removing the case with 0% for pre-training 

and 0% for fine-tuning). So, 29 models have been evaluated 

independently. Fig. 4 gives the overall approach in deep 

transfer learning, and the detailed algorithm is given in 

Algorithm 1, where TL-OPTE, which stands for “Transfer 

Learning for Optimal Performance and Training Effort”, is 

proposed.    

The TL-OPTE algorithm, starting with the minimum 

amount (𝜓𝑖) of data from the target user (𝛺𝑡), evaluates and 

determines an appropriate amount (𝜙𝑖) of data from non-target 

users (𝛺𝑛𝑡), which can achieve performance equal to or above 

a pre-defined threshold (𝜀𝑡ℎ).  

As shown in the algorithm, given the initial deep learning 

model 𝜋, and several sets of parameters, the algorithm will 

finally output the indicator (𝛾) of whether the optimal solution 

is found, the trained model (𝜋∗), and generated optimal 

configurations like percentage of data needed for pre-training  

𝜙∗ and percentage of data needed for fine-tuning 𝜓∗. Different 

pre-defined thresholds (𝜀𝑡ℎ) have been evaluated in the results. 

The proposed algorithm firstly focuses on 𝜓𝑖 = 0, i.e., no 

need of target data, and evaluates different amounts of non-

target data (for 𝜙𝑖 in 𝛷) to determine the optimal percentage. 

The model in these cases is only pre-trained with non-target 

data without fine-tuning. If the performance meets the 

requirement 𝜀𝑡ℎ, the algorithm returns the solution and stops. 

Otherwise, the algorithm increases the amount of target data, 

and fine-tunes the pre-trained model with this available target 

data for possible performance enhancement.  

This process iterates until the optimal solution is 

determined, or the algorithm outputs the indicator showing 

that no solutions found and suggests that, either a different 

performance threshold should be chosen to relax the 

requirement, or a different deep learning architecture should 

be considered to enhance the performance. 

One thing to note is that the optimal percentage for the non-

target data may be the smaller one, not the highest one, which 

will be further analyzed in the results section. This is because 

the diversity of the inter-subject similarity may have negative 

impacts on the model pre-training. So, there is an optimal 

tradeoff between leveraging the inter-subject similarity and 

avoiding an over-pre-trained model.   

We in future will also study how to incorporate deep 

learning model architecture enhancement in the proposed 

algorithm. In this study, one of the efforts is to demonstrate 

the effectiveness of the TL-OPTE algorithm in terms of 

performance maximization and training effort minimization 

with a pre-designed deep learning model.    

E. Sensor&Channel-wide Physical Activity Detection 

(SCwPAD) for Inter-sensor&channel Spatial Variability 

Analysis 

To further investigate the spatial variability in multi-channel 

Algorithm 1   TL-OPTE 
(Transfer Learning for Optimal Performance and Training Effort) 

Input:  

initial deep learning model 𝜋 

non-target dataset 𝛺𝑛𝑡 

set of percentage for non-target dataset 𝛷 = {𝜙𝑖|𝑖 = 0, … ,100%} 

target dataset 𝛺𝑡 

set of percentage for target dataset 𝛹 = {𝜓𝑖|𝑖 = 0, … ,50%} 

percentage of target data for testing 𝜏 

performance threshold 𝜀𝑡ℎ 

Output: 

indicator of whether optimal solution found 𝛾 

optimal deep learning model 𝜋∗ 

percentage of data needed for pre-training  𝜙∗ 

percentage of data needed for fine-tuning 𝜓∗ 

performance of the optimal deep learning model  𝜇∗ 

Procedure: 

𝛾 = 𝐹𝐴𝐿𝑆𝐸; 𝜋∗ = 𝜋; 𝜙∗ = 0; 𝜓∗ = 0; 𝜇∗ = 0    //initialization 

for 𝜓𝑗 in 𝛹 do                             //loop 𝜓𝑗 in target user’ data 𝛹 

    for 𝜙𝑖 in 𝛷 do                         //loop 𝜙𝑖 in non-target users’ data 𝛷 

        if (𝜓𝑗 == 0%) and (𝜙𝑖 == 0%) do       

            pass                                     //pass the case that has no data 

        else do   

            if (𝜙𝑖 > 0%) do            

                𝜋 = 𝛤(𝜋, 𝛺𝑛𝑡, 𝜙𝑖)           //pre-train the model 𝜋   

            end if 

            if (𝜓𝑖 > 0%) do            

                𝜋 = 𝛤(𝜋, 𝛺𝑡 , 𝜓𝑗)             //fine-tune the model 𝜋 

            end if 

            𝜇𝑖,𝑗 = 𝜌(𝜋, 𝛹, 𝜏)                 //performance calculation 

            if 𝜇𝑖,𝑗 >= 𝜇∗ do 

                𝜙∗ = 𝜙𝑖; 𝜇
∗ = 𝜓𝑗           //optimal percentage determined 

                𝜋∗ = 𝜋; 𝜇∗ = 𝜇𝑖,𝑗             //optimal model determined 

                𝛾 = 𝑇𝑟𝑢𝑒 

            end if  

        end if 

    end for 

if (𝛾 == 𝑇𝑟𝑢𝑒) and (𝜇∗ ≥ 𝜀𝑡ℎ) do   //optimal configurations found 

        break 

    end if 

end for 

return 𝛾, 𝜋∗, 𝜙∗, 𝜓∗, 𝜇∗   //optimal model, configuration, performance 
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signals of each sensor location, we propose to leverage deep 

learning to quantify the contribution of each sensor&channel 

combination in the physical activity detection task. 

Considering seven sensor locations and six signal channels per 

sensor (3-axis acceleration and 3-axis angular velocity), we 

have studied 42 deep learning models to analyze the spatial 

variability, and determine the optimal sensor&channel 

configuration.  

The deep learning model is also based Fig. 3 for fair 

comparison purpose, with the difference in the number of 

input channels which is six for SwPAD and one for SCwPAD.  

F. Optimal Sensor&Channel Configuration x Determination 

after SCwPAD 

The optimal sensor&channel configuration is determined by 

(6), where each configuration 𝑆𝐶𝑥 is fed into the CNN model 
𝑓(∙), and the performance is calculated as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(∙) which 

is calculated as the number of correctly classified instances 

divided by the total number of instances. The determined 

configuration 𝑥∗ then indicates the sensor location and the 

signal channel that can represent the major patterns under 

different physical actiivty types.  

 

𝑥∗ = argmax
𝑥

[𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑓(𝑆𝐶𝑥))]              (6) 

 

This not only selects out the best configuration for 

biomechanical dynamics representation, but also provides an 

efficient way for minimizing the training effort and energy 

requirements, towards pervasive wearable smart health. 

G. Transfer Learning (SCxPAD) from Non-target Users to 

The Target User, with the Selected Optimal Sensor&Channel 

Configuration x  

We have further investigated the transfer learning approach 

based on the optimal sensor&channel configuration, names as 

SCxPAD. The same algorithm TL-OPTE is applied to 

determine the optimal learning strategy for performance 

maximization and training effort minimization. For transfer 

learning SCxPAD, the same deep learning model as Fig. 3 is 

used with the input dimension as 1-by-100. Also, different 

portions of the pre-training data and fine-tuning data have 

been considered, resulting in also 29 transfer learning 

strategies. 

The difference of applying TL-OPTE on SCxPAD and 

SxPAD is that, the former one uses 1-channel datasets, for 

both non-target users and the target user. The major algorithm 

flow is the same. The algorithm finally outputs the optimal 

model, configuration and performance after automatically and 

quantitatively searching the solution space.  

H. Evaluation Strategy 

To thoroughly evaluate the proposed algorithm framework, 

we will firstly demonstrate the results of SwPAD for optimal 

sensor location determination. Further, we will demonstrate 

the optimal of sensor&channel configuration under SCwPAD. 

Finally, we will show the transfer learning under SxPAD and 

SCxPAD, respectively.   

III.  RESULTS 

A. Experimental Setup 

The proposed framework has been evaluated on 

comprehensive sensor locations and signal channels, with 

different daily activity types. The multi-location multi-type 

motion database [30] is used, which has included seven sensor 

locations (chest, forearm, head, shin, thigh, upper arm, and 

waist), two 3-axis sensors (accelerometer and gyroscope) per 

location, and six activity types (climbing downstairs, climbing 

upstairs, jumping, lying, running/jogging, and walking). Each 

of fifteen subjects performed each activity for approximately 

10 minutes (except for jumping, about 2 minutes). The signal 

was sampled at 50Hz and is segmented every 100 samples, 

which is same as the input width of the CNN model. 

The simulation has been conducted o n the Dell Laptop with 

Nvidia GPU-based deep learning training and testing. The 

number of epochs is selected as 80. The training/testing 

splitting in spatial variability learning is set as 80%/20%. In 

deep transfer learning, the splitting is based on the approach 

given in Fig. 4, and explored by the proposed Algorithm 1: 

TL-OPTE. The six activity types have similar length of 

recording, except running. Considering running has sig 

nificant fluctuations of the signal amplitude which will 

facilitate learning already, no special data enhancement has 

been made to this minority class. Fro m the reported 

performance next, we can also observe all activity types have 

been effectively detected.  

B.  SwPAD for Inter-sensor Spatial Variability Analysis 

The SwPAD learning outcomes are demonstrated in Fig. 5 

and Fig. 6. We have split the instances of each subject to 80% 

and 20%, for training and testing, respectively. User-specific 

models have been trained and tested. As shown in Fig. 5, the 

learning process of selected sensor locations has converged 

well with continuously reduced training loss, indicating the 

effectiveness of the CNN deep model. With 80 epochs, the 

learning loss has effectively decreased and become stable, and 

the high testing accuracy is further given in Fig. 6.  

In Fig. 6, selected confusion matrices and performance 

summary for the thigh and upper arm locations, under 

SwPAD, are demonstrated. The comparison indicates much 

better performance with the thigh sensor location. The average 

accuracy of this thigh location is up to 98%. The recall, 

 
Fig. 5. The convergence of deep learning for (a) thigh sensor, and (b) 
upper arm sensor, under SwPAD. 
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precision, and f1-score are all above 95% for six different 

activity types, resulting in an average performance 

improvement of 4% compared with the upper arm location. 

The SwPAD analysis has given the PDA performance for each 

of the seven sensor locations, which will be further analyzed 

in the next step to determine the optimal sensor location x. 

C. SwPAD Summary and Optimal Sensor Location x 

Determination 

To summarize the performance of SwPAD, in Fig. 7, the 

performance of seven sensor locations, averaged on fifteen 

subjects, is given. The accuracy is used here, considering other 

criteria have similar trend as the accuracy, as shown in Fig. 6. 

From the demonstration, we can observe that all seven 

locations have an accuracy above 90%. The chest and thigh 

locations are top two among seven options. This could result 

from the relatively consistent biomechanical dynamics 

compared with other locations like forearm and upper arm. 

The tradeoff may therefore need to be made between the 

wearability and the convenience. Besides, the thigh location 

may be a more convenient location compared with the chest 

location. The accuracy of thigh is around 98.5%, averaged on 

fifteen subjects, so thigh is selected as the optimal sensor 

location. We will then, further investigate the difference 

among six signal channels of each sensor location.  

 
Fig. 7. Accuracy ranking plot of all seven sensor locations under 
SwPAD. The highest accuracy is obtained at the thigh sensor location, 
among all seven sensor locations.  

 
Fig. 6. Selected confusion matrices and performance summary for the thigh and upper arm locations, under SwPAD. The comparison indicates much better 

performance for the thigh sensor location, which will be further analyzed in Fig. 7 which summarizes the performance for all seven sensor locations.  

Note. C0 to C5: six different classes, corresponding to climbing downstairs, climbing upstairs, jumping, lying, running/jogging, and walking, respectively. 

(a1) Thigh – confusion matrix (b1) Upper arm – confusion matrix

(a2) Thigh – performance summary (b2) Upper arm – performance summary
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D. Transfer Learning (SxPAD) from Non-target Users to The 

Target User, with the Selected Optimal Sensor Location x  

We will then investigate the transfer learning approach for 

both SxPAD, and SCxPAD. Here we firstly focus on SxPAD. 

In Fig. 8, two examples of the transfer learning outcomes are 

given. The percentage (0%, 25%, 50%, 75%, 100%) in the 

legend indicates the amount of data from non-target users for 

pre-training the transferable model, where 0% is labeled as 

‘Direct learning’, i.e., without transfer learning. The 

percentage (0%, 10%, 20%, 30%, 40%, 50%) on the 

horizontal axis provides the amount of data from the target 

user for model fine-tuning. The accuracy is reported based on 

50% of the data from the target user for each case. The data 

from the thigh sensor location is used here. In direct learning, 

only the target user data is used in training.  

There are several major findings. Firstly, when without 

fine-tuning (horizontal axis = 0%), the accuracy of pre-trained 

models, tested on the target user, can already achieve an 

accuracy between 80% and 94%. It indicates the inter-subject 

similarity has been well learned. Secondly, the amount of data 

used in pre-training has not shown strong consistency when 

related to the performance. For example, in the top graph, 25% 

pre-training is best for user 1, while in the bottom graph, 

100% pre-training is best for user 4. This may result from the 

diverse inter-subject similarity, which, if high enough, will 

contribute to the performance like the bottom graph. Thirdly, 

when introducing 10% of target data for fine-tuning, the 

performance boosts significantly. With more target data for 

fine tuning, the performance keeps increasing.  

 To better summarize the transfer learning performance over 

all fifteen subjects, Fig. 9 gives the average accuracy, meaning 

that each subject has been treated as the target user and the 

other subjects as non-target users. Considering randomness of 

deep learning training, each transfer learning strategy has been 

evaluated twice and then averaged here. Still, we can observe 

that the accuracy is around 80% to 82.5% when without fine-

tuning. With 10% fine-tuning, the performance is boosted to 

around 92.5%.  

One thing to mention is that, the direct learning (without 

transfer learning) has an accuracy a bit higher than pre-

training&fine-tuning, which should result from the inter-

subject difference that may lower the performance slightly 

when more target data is used. However, we expect to observe 

different results for SCxPAD, considering that the single-

channel data of the target user may not be enough for model 

training and the transfer learning will significantly benefit the 

single-channel cases. It is detailed in the section F.  

E. SCwPAD Summary and Optimal Sensor&Channel 

Configuration x  Determination  

As shown in Fig. 10, 42 combinations of seven sensor 

locations and six channels per location have been evaluated 

and visualized, which give the difference of each 

configuration in terms of physical activity detection.  

To the best of our knowledge, it is the first study to 

comprehensively compare these configurations and reveal 

their ability in biomechanical dynamics mining. As shown, the 

chest and thigh locations, even with single signal channel, are 

still among the top configurations. Besides, the accelerometer-

channel Y is the best case for these two locations. 

Considering the thigh location is the optimal choice among 

6-channel sensor configurations under SwPAD, and the 

performance for thigh based on accelerometer-channel Y is 

comparable to that of chest, we finally select the ‘thigh& 

accelerometer-channel Y’ as the optimal configuration.  

 
Fig. 9. Average accuracy ranking plots for transfer learning SxPAD, 
with the determined optimal location (thigh).  

Note. Same definition of the legend (pre-training percentage) and 

horizontal axis (fine-tuning percentage) as Fig. 8. 
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Fig. 8 Selected accuracy ranking plots (subject 1 and 4) from transfer 
learning SxPAD, i.e., the transfer learning on the optimal sensor 

location (thigh).  

Notes. (1) The percentage (0%, 25%, 50%, 75%, 100%) in the legend: 
amount of data from non-target users for pre-training the transferable 

model, where 0% is ‘Direct learning’ without transfer learning. 

(2) The percentage (0%, 10%, 20%, 30%, 40%, 50%) on the horizontal 
axis: amount of data from the target user for model fine-tuning. The 

accuracy is reported based on 50% of the data from the target user for 

each case.  
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F. Transfer Learning (SCxPAD) from Non-target Users to 

The Target User, with the Selected Optimal Sensor&Channel 

Configuration x  

Transfer learning is attractive in sharing the knowledge 

from non-target users to the target user when the target data is 

limited. We here have studied the transfer learning under 

SCxPAD. Selected examples about two subjects are shown in 

Fig. 11, indicating the effectiveness of transfer learning for 

single-channel-based physical activity detection task. The 

average accuracy ranking plots for all subjects are given in 

Fig. 12. Detailed analysis of these figures is given below. 

In Fig. 11, there are several interesting findings. Firstly, the 

accuracy without fine-tuning (horizontal axis=0%) is already 

between 86% and 92%, indicating that the inter-subject 

similarity for the single-channel scenarios (SCxPAD) is more 

consistent than that for the 6-channel scenarios (SxPAD). This 

indicates that the accelerometer-channel Y is of critical 

biomechanical dynamics, and further introducing other 

channels, may lower the perfor  mance due to the complexity 

of the inter-subject similarity.  

Secondly, the accuracy without fine-tuning (horizontal 

axis=0%) is much higher than the accuracy under 10% of 

direct learning. This further indicates the inter-subject 

similarity is pretty high for the thigh&accelerometer-channel 

 
Fig. 11. Selected accuracy ranking plots (subject 1 and 4) for transfer 
learning SCxPAD, with the determined optimal sensor&channel 

configuration (thigh-accelerometer-channel Y).  

Note. Same definition of the legend (pre-training percentage) and 
horizontal axis (fine-tuning percentage) as Fig. 8. 
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Fig. 10. Accuracy ranking plot of all 42 sensor & channel combinations (7 sensors * 6 channels/location) under SCwPAD.   

Notes. (1) Each deep learning model on the horizontal axis is represented by three letters, e.g., ‘tay’ explained above. The first letter has six 
possibilities: c/f/h/s/t/u/w, which stand for chest/forearm/head/shin/thigh/upper-arm/waist, respectively.  

(2) The second letter has two possibilities: a/g, which stand for the accelerometer/gyroscope sensor, respectively.  

(3) The third letter has three possibilities: X/Y/Z, which stand for three different channels of a given sensor.  

Models
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Fig. 12. Average accuracy ranking plots for transfer learning SCxPAD, 
with the determined optimal sensor&channel configuration (thigh-

accelerometer-channel Y).  

Note. Same definition of the legend (pre-training percentage) and 
horizontal axis (fine-tuning percentage) as Fig. 8. 
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Table I. The optimal solutions determined by the proposed TL-OPTE 

algorithm, under SCxPAD. Take the performance threshold 𝜀𝑡ℎ =
90% as an example, with transfer learning, only 10% of data from the 

target subject can yield a physical activity detection accuracy up to 
91.6%, with a performance boosting of 9% compared with direct 

learning without transfer learning. 

𝜀𝑡ℎ 𝜙∗ 𝜓∗ 𝜇∗ 

86% 100% 0% 89.6% 

88% 100% 0% 89.6% 

90% 100% 10% 91.6% 

92% 75% 20% 92.3% 

93% 50% 30% 93.0% 

Notes. 

(1) 𝜀𝑡ℎ: performance threshold; 𝜙∗: percentage of data needed for pre-

training; 𝜓∗: percentage of data needed for fine-tuning; 𝜇∗: 

performance of the optimal deep learning model. 

(2) The granularity for the percentages (𝜙∗ and 𝜓∗) will provide can be 

further fine-grained based on the requirement, which can facilitate 
further minimization of the pre-training and fine-turning effort.  

Y configuration.  

Thirdly, when increasing the percentage of fine-tuning 

effort, different subjects may or may not benefit much from 

pre-training. This further indicates the complexity of inter-

subject similarity.  

Overall, encouragingly, the average performance on all 

subjects shown in Fig. 12, demonstrates transfer learning 

significantly improves the performance of direct learning on 

the target user. Considering randomness of deep learning 

training, each transfer learning strategy has also been 

evaluated twice and then averaged here. By setting different 

performance thresholds as shown in Table I, the corresponding 

optimal solutions are determined by the proposed TL-OPTE 

algorithm under SCxPAD.  

The results in Table I indicates that the optimal pre-training 

effort 𝜙∗ may not always be 100% for trading off between 

learning inter-subject similarity and avoiding over-pre-

training, and the fine-tuning effort 𝜓∗ can be very small for 

training effort minimization. Further the optimal accuracy 𝜇∗ 

can be higher than the threshold.  

Our experiments have further demonstrated that, with 

transfer learning, only 10% of data from the target subject can 

yield a physical activity detection accuracy up to 91.6%. This 

indicates the deep transfer learning framework has enabled 

very challenging scarce data learning on the target user, not 

only for minimizing the training effort on the target, but also 

for increasing the model performance on the target with 

transferred knowledge. 

In short, the proposed transfer learning framework can 

effectively maximize the performance and minimize the 

training effort on the target user, by optimally leveraging the 

inter-subject similarity to learn the sharable knowledge and 

patterns. 

G. Comparison with Previous Studies 

To further illustrate the spatial variability learning and 

scarce data learning with the proposed framework, we have 

conducted detailed comparison with other studies. Panahandeh 

et al. [4] placed the motion sensor on the chest; Kim et al.  

[31] placed the sensor on the wrist; Kang et al. [32] put the 

sensor on the arm; Zou et al. [5] put the sensor on the elbow. 

However, there is no comprehensive study on biomechanical 

spatial variability learning.  

In our study, with the same experiment setting up, we have 

fairly and thoroughly compared different sensor locations and 

channels, and determined the optimal system configuration 

principle.  

Further, previously studies also reported motion signal 

processing algorithms, such as Hidden Marko Model [4], 

Kalman Filtering [11], Long Short-term Memory [7] and CNN 

[13]. However, no study has been reported on deep transfer 

learning of the biomechanical data, towards the scarce data 

learning challenge. In this study, we have proposed and 

validated a deep transfer learning framework, and conducted 

thorough evaluations to demonstrate the effectiveness.  

With our algorithm, even with 10% of the target data, we 

can achieve satisfied performance through transferring the 

knowledge from non-target users. We have also demonstrated 

the scarce data learning in direct learning (without transferring 

knowledge from non-target users), as shown in Fig. 11 and 

Fig. 12. The simulation shows that, only 10% of the target 

user data is not enough for learning an effective model since 

the performance drop is about 9%. Therefore, this study will 

greatly advance scarce data learning in wearable health 

instrumentations, considering the data collection is time-

consuming and the inconvenient.    

H. Limitations and Future Studies 

We will further implement the proposed algorithm on the 

edge computing platform, e.g., the smartphone or wearable 

monitor. In the current study, the training and testing have 

both been done on a PC workstation with NVIDIA RTX 

A4000 GPU. One thing to note is that the deep transfer 

learning framework only increases the computation load in the 

training process, and does not increase the computation load 

of the deep neural network when implemented on the edge 

platform. Besides, the convolutional neural network can be 

efficiently supported by the processors on the edge platform, 

thanks to its regular paralleling processing flow and the shared 

convolutional weights for the same kernel.  

Besides, the contributions of each block in the network are 

also interesting, not only to evaluate the robustness of the 

network, but also to further design an efficient light-weight 

model. In this study, we have mainly targeted the spatial 

variability understanding and the scarce data learning, which 

can be further enhanced in the ablation experiments and 

studies in future.  

In future, we will also continue studying effective deep 

learning algorithms and transfer learning approaches to further 

enhance the accuracy and minimize the learning effort. 

Further, incorporating deep learning architecture search in the 

proposed TL-OPTE algorithm will also be interesting, which 

can facilitate automatic architecture determination for both 

performance improvement and model size reduction. Human 
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subjects are of great diversity in not only biomechanical big 

data but also other modalities [33-36], and it will be promising 

to advance the proposed framework to more smart health 

applications [37-40]. The proposed framework is of a high 

generalization capability, considering the spatial variability 

learning among sensors is a common need, and also the 

transfer learning is important for the scarce data learning 

challenge in wearable applications. We in the future will 

further enhance the framework on diverse sensing modalities 

and scenarios.  

We will also further study more sensor locations in future, 

which will facilitate enhanced understanding of the spatial 

variability and optimal sensor selection. Also, deep transfer 

learning may have different effects on different sensor 

locations.  

IV. CONCLUSION 

In this research, targeting biomechanical dynamics 

measurement that is of great promise for rehabilitation, 

assisted-living, and lifestyle management applications, we 

have proposed a deep transfer learning framework that can 

effectively grasp the inter-sensor spatial variability and inter-

subject similarity. The novel framework, for the first time, not 

only reveals the optimal sensor location from seven candidates 

and optimal sensor&channel combination from 42 candidates, 

but also demonstrates how transfer learning maximizes the 

data-efficiency in physical activity detector learning. Our 

evaluation experiments have determined the optimal sensor 

location as thigh, and the optimal sensor&channel 

configuration as thigh-accelerometer-axis-Y. Our experiments 

have further demonstrated that, with transfer learning under 

the optimal sensor&channel configuration, only 10% of data 

from the target subject can yield a physical activity detection 

accuracy up to 91.6%. This indicates the deep transfer learning 

framework has enabled very challenging scarce data learning 

on the target user, not only for minimizing the training effort 

on the target, but also for increasing the model performance on 

the target with transferred knowledge. Targeting the 

limitations of this study, we in future will further study the 

implementation of the algorithm on mobile devices, 

investigate the ablation effects, evaluate the algorithm on more 

data modalities and scenarios, and study more sensor 

locations. The research will greatly advance spatial variability 

characterization and data-efficient learning in biomechanical 

measurement. 
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