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Deep Transferable Intelligence for Spatial Variability
Characterization and Data-efficient Learning in
Biomechanical Measurement
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Abstract—Biomechanical measurement is of promising value
for rehabilitation, assisted-living, and lifestyle management
applications. Nevertheless, the understanding is still limited on
the spatial variability of biomechanical dynamics that is essential
for optimal motion sensor configuration. Besides, training
physical activity detectors is usually data-heavy and time-
consuming. Targeting these two challenges, in this study, we
propose a novel deep transfer intelligence framework, which
leverages deep learning to characterize spatial variability of
different motion sensors on diverse body locations, and further
leverages inter-subject transfer learning to maximize data-
efficiency in challenging scarce data learning. More specifically,
to characterize the spatial variability, we propose deep
convolutional neural networks to investigate capabilities of both
different sensor locations and channels, on physical activity
measurement. The characterization determines both optimal
sensor configuration and optimal channel configuration. Further,
we propose a transfer learning approach to mine inter-subject
similarity and then share learned knowledge among subjects,
thereby minimizing the training effort and maximizing the data-
efficiency in the wearable scarce data learning scenario. Our
evaluation experiments have determined the optimal sensor

location from seven options as thigh, and the optimal
sensor&channel configuration from 42 options as thigh-
accelerometer-axis-Y. = Our  experiments have  further

demonstrated that, with transfer learning under the optimal
sensor&channel configuration, only 10% of data from the target
subject for model fine-tuning can yield a physical activity
detection accuracy up to 91.6%, with a performance boosting of
9% compared with direct learning without transfer learning.
Therefore, the deep transferable learning framework will greatly
advance spatial variability characterization for optimal sensor
and channel configuration, and efficient scarce data learning in
biomedical measurement.

Index Terms—Deep Learning, Transfer Learning, Biomedical
Instrumentation, Biomechanical Measurement.
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I. INTRODUCTION

IOMECHANICAL measurement is of promising value

for rehabilitation, assisted-living, and lifestyle
management applications. Biomechanical data carries
musculoskeletal dynamics, which further relate to other health
concerns like the neurological movement disorders. The
prevalence of mobility difficulties and/or disabilities,
according to Centers for Disease Control and Prevention
(CDC) in United States, is impacting one in seven adults, and
with age, it increases to two in five adults [1]. Its impacts on
children are also reported to be significantly increasing [2].

The biomechanical dynamics measurement, therefore, is
attracting intensive interests nowadays [3]. For instance,
Panahandeh et al. [4] developed an activity measurement
system with an inertial measurement unit (IMU) placed on the
chest. Lee et al. reported an arm motion measurement system
with a wearable wireless sensor network. Zou et al [5]
developed a system for inertial measurement with sensors
placed on the elbow. Liu et al [6] developed a gait
measurement system for force monitoring on crutches, for
rehabilitation and assistive living purposes. Ashry et al. [7]
developed a system with a wrist IMU and deep neural network
for physical activity recognition.

However, in light of the fact that human biomechanical
dynamics are highly different in different body locations [8-
10], the understanding of spatial variability of the motion
sensors is still limited. The characterization of spatial
variability of different sensor locations is essential to
determine the optimal sensor configuration strategies, for
achieving high robustness and high usability of the
biomechanical measurement system. This is the first challenge
that we target in this study, aiming to provide comprehensive
characterization of the spatial variability of different sensor
placement locations, and also to characterize the sensor
channels for each sensor location.

Further, the computational models for biomechanical data
analytics have also been reported including both non-machine
learning and machine learning methods. Panahandeh et al. [4]
developed a Hidden Markov Model for pedestrian activity
classification. Li et al. [11] proposed a Kalman filtering
method for body motion measurement. Ahmed ef al. [12] also
reported a Kalman method for body orientation estimation.
Ashry et al. [7] designed a Long Short-Term Memory model
for activity detection. Yang et al. [13] reported an activity
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Fig. 1. The proposed novel framework for deep learning-based biomechanical spatial variability learning and transfer learning-based efficient scarce data

learning.

graph based on Convolutional Neural Network (CNN). Liu et
al. reported a support vector machine-based physical activity
detection algorithm [14]. Uddin et al. reported a random
forest-based model for activity and posture recognition [15].

These studies also mainly focus on data analytics and
measurement for a single sensor location. We in this study,
instead, leverage deep learning to investigate 7 different body
locations, for spatial variability characterization. Further, we
also characterize each channel of the 3-axis accelerometer and
3-axis gyroscope, resulting in 42 spatial configurations. In our
previous study [16], we have studied different sensor locations
and indicated the significant spatial variability, and in this
study we extend it to a thorough research on 42 different
spatial configurations. Another limitation of the previous
study is we have not studied the data-efficiency and transfer
learning, for scarce data learning.

So, another challenge in this study targets is the data-
efficiency in deep learning model training. Typically, deep
learning requires a large amount of data for robust model
training, which poses significant needs on data collection.
Maximizing the data-efficiency for minimizing the training
effort on the target user is substantially important but
challenging.

Transfer learning studies have been reported in areas like
computer vision and natural language processing. For
instance, Shaha et al. reported the transfer learning model for
image classification [17]. Kim et al. reported the sequential
transfer learning algorithm for lane estimation in self-driving
applications [18]. He et al. developed a transfer learning
model for information recommendation [19].

In biomechanical data analytics, nevertheless, the study of
transfer learning [20] is still limited in terms of how to
maximize the learning outcomes with minimized training
effort. To the best of our knowledge, this is the first study to
leverage deep transfer learning on biomechanical data mining

for spatial variability characterization and data-efficient
learning. Therefore, as another major aim, the transfer learning
strategy is introduced in our study to leverage inter-subject
similarity for deep learning performance boosting. In such a
way, the learned knowledge from other subjects can be
transferred to the target user of interest, thereby significantly
increasing the physical activity detection (PAD) accuracy of
the deep learning model even with no or scarce data from the
target user.

Overall, targeting two challenges — spatial variability
understanding and scarce data learning, we propose a novel
deep transfer intelligence framework (Fig. 1), which leverages
deep learning to characterize spatial variability of motion
sensors for optimal sensor and channel configuration, and
further leverages inter-subject transfer learning to maximize
data-efficiency on PAD model training. More specifically, to
analyze the spatial variability, we propose the deep
convolutional neural network to investigate capabilities of
both different sensor locations and different sensor channels,
on physical activity detection. The characterization determines
both optimal sensor configuration and optimal channel
configuration. Further, we propose a transfer learning
approach to mine the patterns in the non-target users and then
transfer the learned patterns to the target user, thereby
minimizing the training effort and maximizing the data-
efficiency of the target user. In short, our major contributions
are summarized as below:

(a) Propose deep learning algorithms for comprehensively
characterizing and understanding the inter-sensor spatial
variability for optimal sensor location determination, and
inter-channel variability for optimal channel determination,
called SwPAD (Sensor-wise PAD) and SCwPAD
(Sensor&Channel-wise PAD), respectively;

(b) Determine the optimal sensor location from seven
sensor location candidates as thigh, and also determine the
optimal sensor&channel configuration from 42 options as
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thigh-accelerometer-axis-Y, thereby providing optimal
configuration principles for biomechanical measurement;

(c) Propose transfer learning algorithms to extract the
patterns from the non-target users and then transfer the learned
patterns to the target user (SXPAD corresponds to optimal-
sensor-based transfer learning, and SCxPAD corresponds to
optimal-sensor&channel-based transfer learning, where x
indicates the optimum), for both data-efficiency maximization
and model accuracy maximization towards scarce data
learning on the target user;

(d) Demonstrate that only 10% of data from the target
subject can yield a PAD accuracy up to 91.6%, with the thigh-
accelerometer-axis-Y configuration, indicating feasibility of
both single-channel-based and scarce-data-based PAD on the
target user.

To the best of our knowledge, this is the first time to
systematically investigate sensor-wise and channel-wise
spatial variability in PAD to determine the optimal sensor
location and optimal channel selection, and investigate
transferrable patterns in PAD from non-target users to the
target user, thereby greatly advancing spatial variability
characterization and data-efficient learning in biomechanical
measurement.

II. APPROACHES

We detail in this section the system diagram, optimal sensor
determination, optimal sensor&channel determination, data-
efficient transfer learning, and evaluation strategy.

A. System Diagram

The proposed system, to deal with the diverse biomechanical
dynamics as shown in Fig. 2, aims to firstly determine the
optimal sensor and sensor channel configurations through
deep mining, and then evaluate the feasibility of transferring
knowledge from non-target users to the target user in terms of
physical activity detection.
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Fig. 2. Selected visualization of six-dimension signal segments during
the climbing up activity of the subject 1.

Notes. A: accelerometer; G: gyroscope; X/Y/Z: different signal
channels.

Fig. 3. Deep leamning architecture proposed for Sensor-wise Physical
Activity Detection (SWPAD), which analyzes the inter-sensor spatial
variability to select out the optimal sensor location from seven
candidates in this study.

As shown in Fig. 2, the biomechanical data from the forearm
sensor and the thigh sensor are highly diverse, and the six
channels of each sensor are also of great difference. Therefore,
the deep learning architecture as shown in Fig. 3 is proposed
to investigate the optimal sensor location, i.e., B. Sensor-wise
PAD (SwPAD) for inter-sensor spatial variability analysis.
More specifically, seven deep learning models with this same
architecture have been trained, corresponding to seven sensor
locations in this study. The model architecture includes three
convolutional stages, with the number of feature maps as 16,
32,32, and 64, respectively. The convolutional filter size is set
as 1-by-2. After each convolutional stage, there are one max-
pooling stage with the pooling operator as 1-by-2, and one
dropout stage with the dropping rate as 15%. There are two
hidden dense layers and one output layer, with the number of
neurons as 512, 256, and 6, respectively. Here the six neurons
in the output layer correspond to the number of activity types
in this study. For SWPAD, the input dimension is 6-by-100,
corresponding to six sensor channels (3-axis accelerometer
and 3-axis gyroscope) and the 100-sample signal segment (2
seconds since the sampling rate is 50 Hz). Overall, SWPAD
analyzes the inter-sensor spatial variability in terms of
physical activity detection performance.

After determining the optimal sensor location from seven
candidates in SWPAD, we then name the optimal sensor
location as x and then investigate SXPAD — the transfer
learning. More specifically, we use data from non-target users
to pre-train the deep learning model, with the same
architecture in Fig. 3 (input dimension as 6-by-100), and then
use different portions of data from the target user to fine-tune
the pre-trained model, as shown in Fig. 4. In Fig. 4, the model
pre-training uses different portions of data from non-target
users, including 0%, 25%, 50%, 75%, and 100%. Then model
fine-tuning uses different portions of data from the target user,
including 0%, 10%, 20%, 30%, 40%, and 50%. The testing
uses 50% of the data from the target users. So there are 29
different strategies (excluding the strategy with 0% for pre-
training and 0% for fine-tuning). In this way, we can gain
findings on how transfer learning can help minimize the



Manuscript Accepted by IEEE TIM

Task 1
Pre-training
Non-target | . f;:g:ggg percentage
users AT selection
Transfer
Pre-trained Fine-tuning
Model Task 2 percentage
" selection
Pretrained Fine-tuning |~
‘ — Model % 0%,10%,20%, .
30%,40%,50% Testing
percentage
Target Refined ) selection
user Model -~

Fig. 4. The proposed transfer learning approach, which pre-trains the
model on the non-target users and then fine-tunes the model on the
target user, to facilitate PAD performance on the target user towards
efficient scarce data learning.

requirement of data from the target user, and how transfer
learning can boost the performance.

Further, we have investigated the sensor&channel
configurations. 42 combinations are considered, since there
are seven sensor locations and six channels for each location
(3-axis accelerometer and 3-axis gyroscope), resulting in
Sensor&Channel-wise PAD (SCwPAD). The deep learning
architecture is also like Fig. 3, but the input dimension is 1-by-
100 since there is only one channel selected for each
configuration. In total, 42 models have been trained and the
optimal sensor&channel configuration is determined.

Based on the optimal sensor&channel configuration, x, we
have further studied the transfer learning, still shown as Fig. 4,
i.e., SCxPAD, with the same deep learning architecture and
the input dimension is set as 1-by-100. SCxPAD is expected to
minimize the training effort and maximize the data-efficiency
through both single-channel-based learning and transfer
learning.

B. Sensor-wise Physical Activity Detection (SwPAD) for
Inter-sensor Spatial Variability Analysis

To investigate the inter-sensor spatial variability, we have
proposed a CNN architecture as shown in Fig. 3, which
includes the convolutional filters for spatial pattern extraction,
max-pooling operators for dimension reduction, and fully
connected dense layers for final class label generation from
flattened patterns.

The learning principle of CNN [21-24] is as (1), and le]k is
corresponding to the i — th row and j — th column of the k —

th feature map in the layer [, which is calculated as the sum
l-1,c
i+m,j+n

with the weight as W,l,;’fnyc. M, N, and C are filter height, filter
width, and number of input maps, respectively, and m, n, and
c are their corresponding indices. b is the bias input for the
neuron. After feeding zll]k into the activation function ¢(-),

of the weighted neuron output y in the previous layer

which is chosen as ‘RELU’ for computation efficiency, the
neuron output yll]k is yielded as (2).

Lk _ Lk 1-1,¢c
Zij = Winn,cYism,j+n T D €Y)]

v = o(z) 2

With the backpropagation learning algorithm and the chain
rule of differentiation, the gradient of the error E with respect
to the convolutional filter weight Wﬁfn,c is given as (3), where
the E is backpropagated to zll]k and then to w,l,'ll_"'nrc. H and W
are the height and width of the k — th feature map in the layer
l. After further derivation, (3) is transformed to be (4), where
dlljk is the gradient of E with respect to the input of the
activation function.

E < OF 0zl
ko Z z Lk ll;c] 3)
aw,,‘m_c = = azi"j 6w,,’l_n’c
OE H-M W-N
Lk, 1-1,
k- Z Z 8;/; yl'+m,cj+n 4)
an,n,C i=0 j=0

We will leverage the proposed CNN deep learning model to
evaluate seven different sensor locations and determine the
performance in terms of physical activity detection. The total
number of parameters is 1.3 million. The model has four CNN
stages (16, 32, 32, and 64 feature maps, respectively) and
three dense layers (512, 256 and 6, respectively), as shown in
Fig. 3. The spatial variability is reflected by the PAD
performance with seven different models (corresponding to
seven different sensor locations).

C. Optimal Sensor Location x Determination after SWPAD

The optimal sensor determination is achieved by (5), where
the 6-axis data from sensor x, denoted as S,, is fed into the
CNN model f(+). The performance is then calculated with the
function Accuracy(-) which is calculated as the number of
correctly classified instances divided by the total number of
instances, and the optimax sensor index x* is finally
determined.

x* = argmax[Accuracy(f(Sx))] (5

Considering the spatial variability among seven sensor
locations, chest, forearm, head, shin, thigh, upper-arm, and
waist, the proposed deep learning model is expected to be able
to effectively mine these diverse biomechanical dynamics and
determine their contribution to the physical activity detection
task. Looking forward, for more diverse biomechanical
dynamics-based applications like rehabilitation, assisted
prosthesis, and movement disorders, the proposed deep
learning model is expected to be able to find out the most
effective sensor location that can maximize both information
capturing and detection accuracy.

D. Transfer Learning (SxPAD) from Non-target Users to The
Target User, with the Selected Optimal Sensor Location x

Further, we propose a transfer learning [25-29] approach to
maximize the deep learning performance and minimize the
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training effort, based on the optimal sensor location, named as
SxPAD. The achieved methodology, as shown in Fig. 4,
therefore, can boost the deep learning accuracy through shared
inter-subject dynamics. More specifically, when selecting a
subject as the target user, we define other subjects as the non-
target users. For the whole dataset, we repeat this for each
subject, meaning that each subject can be the target user. The
transfer learning SxPAD is still based on the same CNN (input
is 6-by-100), but trained in a different strategy with two steps
as below.

In the first step, the model is pre-trained with the data from
non-target users; and in the second step, the model is fine-
tuned with the data from the target user. Different proportions
of the pre-training data and different proportions of the fine-
tunning data have been considered, resulting in 29 transfer
learning strategies (removing the case with 0% for pre-training
and 0% for fine-tuning). So, 29 models have been evaluated
independently. Fig. 4 gives the overall approach in deep
transfer learning, and the detailed algorithm is given in
Algorithm 1, where TL-OPTE, which stands for “Transfer
Learning for Optimal Performance and Training Effort”, is
proposed.

The TL-OPTE algorithm, starting with the minimum
amount (1;) of data from the target user (22%), evaluates and
determines an appropriate amount (¢;) of data from non-target
users (2™), which can achieve performance equal to or above
a pre-defined threshold (&;,).

As shown in the algorithm, given the initial deep learning
model m, and several sets of parameters, the algorithm will
finally output the indicator (y) of whether the optimal solution
is found, the trained model (7*), and generated optimal
configurations like percentage of data needed for pre-training
¢* and percentage of data needed for fine-tuning *. Different
pre-defined thresholds (&) have been evaluated in the results.

The proposed algorithm firstly focuses on ¥; = 0, i.e., no
need of target data, and evaluates different amounts of non-
target data (for ¢; in @) to determine the optimal percentage.
The model in these cases is only pre-trained with non-target
data without fine-tuning. If the performance meets the
requirement &, the algorithm returns the solution and stops.
Otherwise, the algorithm increases the amount of target data,
and fine-tunes the pre-trained model with this available target
data for possible performance enhancement.

This process iterates until the optimal solution is
determined, or the algorithm outputs the indicator showing
that no solutions found and suggests that, either a different
performance threshold should be chosen to relax the
requirement, or a different deep learning architecture should
be considered to enhance the performance.

One thing to note is that the optimal percentage for the non-
target data may be the smaller one, not the highest one, which
will be further analyzed in the results section. This is because
the diversity of the inter-subject similarity may have negative
impacts on the model pre-training. So, there is an optimal
tradeoff between leveraging the inter-subject similarity and
avoiding an over-pre-trained model.

We in future will also study how to incorporate deep

Algorithm 1 TL-OPTE
(Transfer Learning for Optimal Performance and Training Effort)

Input:

initial deep learning model ©

non-target dataset Q™

set of percentage for non-target dataset @ = {¢;|i = 0, ...,100%}
target dataset 2°

set of percentage for target dataset ¥ = {y;|i = 0, ...,50%}
percentage of target data for testing T

performance threshold &,

Output:

indicator of whether optimal solution found y
optimal deep learning model *

percentage of data needed for pre-training ¢*
percentage of data needed for fine-tuning "

performance of the optimal deep learning model u*

Procedure:
y = FALSE;n" =m;¢* = 0;¢* = 0; u* = 0 //initialization

for 1; in ¥ do //loop ; in target user’ data ¥

for ¢; in @ do //loop ¢; in non-target users’ data @
if ; == 0%) and (¢; == 0%) do
pass //pass the case that has no data
else do

if (¢; > 0%) do

7 =T(m,Q™, ¢;)
end if
if ; > 0%) do

m = I'(m,02'))
end if

//pre-train the model

//fine-tune the model m
wi; =p(m¥,1) /Iperformance calculation
ifp;; >=u" do

P =dsu" =1

=t = gy

//optimal percentage determined
//optimal model determined
y =True
end if
end if
end for

if (y == True) and (4" = ,;,) do //optimal configurations found

break
end if

end for

returny, ", ¢*, Y, u* //optimal model, configuration, performance

learning model architecture enhancement in the proposed
algorithm. In this study, one of the efforts is to demonstrate
the effectiveness of the TL-OPTE algorithm in terms of
performance maximization and training effort minimization
with a pre-designed deep learning model.

E. Sensor&Channel-wide  Physical — Activity — Detection
(SCwPAD) for Inter-sensor&channel Spatial Variability
Analysis

To further investigate the spatial variability in multi-channel
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signals of each sensor location, we propose to leverage deep
learning to quantify the contribution of each sensor&channel
combination in the physical activity detection task.
Considering seven sensor locations and six signal channels per
sensor (3-axis acceleration and 3-axis angular velocity), we
have studied 42 deep learning models to analyze the spatial
variability, and determine the optimal sensor&channel
configuration.

The deep learning model is also based Fig. 3 for fair
comparison purpose, with the difference in the number of
input channels which is six for SWPAD and one for SCwPAD.

F. Optimal Sensor&Channel Configuration x Determination
after SCwPAD

The optimal sensor&channel configuration is determined by
(6), where each configuration SC, is fed into the CNN model
f(+), and the performance is calculated as Accuracy(-) which
is calculated as the number of correctly classified instances
divided by the total number of instances. The determined
configuration x* then indicates the sensor location and the
signal channel that can represent the major patterns under
different physical actiivty types.

x* = argmax[Accuracy(f (SC,))] (6)

This not only selects out the best configuration for
biomechanical dynamics representation, but also provides an
efficient way for minimizing the training effort and energy
requirements, towards pervasive wearable smart health.

G. Transfer Learning (SCxPAD) from Non-target Users to
The Target User, with the Selected Optimal Sensor&Channel
Configuration x

We have further investigated the transfer learning approach
based on the optimal sensor&channel configuration, names as
SCxPAD. The same algorithm TL-OPTE is applied to
determine the optimal learning strategy for performance
maximization and training effort minimization. For transfer
learning SCxPAD, the same deep learning model as Fig. 3 is
used with the input dimension as 1-by-100. Also, different
portions of the pre-training data and fine-tuning data have
been considered, resulting in also 29 transfer learning
strategies.

The difference of applying TL-OPTE on SCxPAD and
SxPAD is that, the former one uses 1-channel datasets, for
both non-target users and the target user. The major algorithm
flow is the same. The algorithm finally outputs the optimal
model, configuration and performance after automatically and
quantitatively searching the solution space.

H. Evaluation Strategy

To thoroughly evaluate the proposed algorithm framework,
we will firstly demonstrate the results of SWPAD for optimal
sensor location determination. Further, we will demonstrate
the optimal of sensor&channel configuration under SCwPAD.
Finally, we will show the transfer learning under SXxPAD and
SCxPAD, respectively.

III. RESULTS

A. Experimental Setup

The proposed framework has been evaluated on
comprehensive sensor locations and signal channels, with
different daily activity types. The multi-location multi-type
motion database [30] is used, which has included seven sensor
locations (chest, forearm, head, shin, thigh, upper arm, and
waist), two 3-axis sensors (accelerometer and gyroscope) per
location, and six activity types (climbing downstairs, climbing
upstairs, jumping, lying, running/jogging, and walking). Each
of fifteen subjects performed each activity for approximately
10 minutes (except for jumping, about 2 minutes). The signal
was sampled at 50Hz and is segmented every 100 samples,
which is same as the input width of the CNN model.

The simulation has been conducted o n the Dell Laptop with
Nvidia GPU-based deep learning training and testing. The
number of epochs is selected as 80. The training/testing
splitting in spatial variability learning is set as 80%/20%. In
deep transfer learning, the splitting is based on the approach
given in Fig. 4, and explored by the proposed Algorithm 1:
TL-OPTE. The six activity types have similar length of
recording, except running. Considering running has sig
nificant fluctuations of the signal amplitude which will
facilitate learning already, no special data enhancement has
been made to this minority class. Fro m the reported
performance next, we can also observe all activity types have
been effectively detected.

B.  SwWPAD for Inter-sensor Spatial Variability Analysis

The SWPAD learning outcomes are demonstrated in Fig. 5
and Fig. 6. We have split the instances of each subject to 80%
and 20%, for training and testing, respectively. User-specific
models have been trained and tested. As shown in Fig. 5, the
learning process of selected sensor locations has converged
well with continuously reduced training loss, indicating the
effectiveness of the CNN deep model. With 80 epochs, the
learning loss has effectively decreased and become stable, and
the high testing accuracy is further given in Fig. 6.

In Fig. 6, selected confusion matrices and performance
summary for the thigh and upper arm locations, under
SwPAD, are demonstrated. The comparison indicates much
better performance with the thigh sensor location. The average
accuracy of this thigh location is up to 98%. The recall,

(a) Thigh sensor (b) Upper arm sensor
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Fig. 5. The convergence of deep learning for (a) thigh sensor, and (b)
upper arm sensor, under SWPAD.
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Fig. 6. Selected confusion matrices and performance summary for the thigh and upper arm locations, under SWPAD. The comparison indicates much better
performance for the thigh sensor location, which will be further analyzed in Fig. 7 which summarizes the performance for all seven sensor locations.
Note. CO to C5: six different classes, corresponding to climbing downstairs, climbing upstairs, jumping, lying, running/jogging, and walking, respectively.
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Fig. 7. Accuracy ranking plot of all seven sensor locations under
SwPAD. The highest accuracy is obtained at the thigh sensor location,
among all seven sensor locations.

precision, and fl-score are all above 95% for six different
activity types, resulting in an average performance
improvement of 4% compared with the upper arm location.
The SWPAD analysis has given the PDA performance for each

of the seven sensor locations, which will be further analyzed
in the next step to determine the optimal sensor location x.

C. SWPAD Summary and Optimal Sensor Location x
Determination

To summarize the performance of SWPAD, in Fig. 7, the
performance of seven sensor locations, averaged on fifteen
subjects, is given. The accuracy is used here, considering other
criteria have similar trend as the accuracy, as shown in Fig. 6.
From the demonstration, we can observe that all seven
locations have an accuracy above 90%. The chest and thigh
locations are top two among seven options. This could result
from the relatively consistent biomechanical dynamics
compared with other locations like forearm and upper arm.
The tradeoff may therefore need to be made between the
wearability and the convenience. Besides, the thigh location
may be a more convenient location compared with the chest
location. The accuracy of thigh is around 98.5%, averaged on
fifteen subjects, so thigh is selected as the optimal sensor
location. We will then, further investigate the difference
among six signal channels of each sensor location.
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Fig. 8 Selected accuracy ranking plots (subject 1 and 4) from transfer
learning SXPAD, i.e., the transfer learning on the optimal sensor
location (thigh).

Notes. (1) The percentage (0%, 25%, 50%, 75%, 100%) in the legend:
amount of data from non-target users for pre-training the transferable
model, where 0% is ‘Direct learning’ without transfer learning.

(2) The percentage (0%, 10%, 20%, 30%, 40%, 50%) on the horizontal
axis: amount of data from the target user for model fine-tuning. The
accuracy is reported based on 50% of the data from the target user for
each case.

D. Transfer Learning (SxPAD) from Non-target Users to The
Target User, with the Selected Optimal Sensor Location x

We will then investigate the transfer learning approach for
both SxPAD, and SCxPAD. Here we firstly focus on SxPAD.
In Fig. 8, two examples of the transfer learning outcomes are
given. The percentage (0%, 25%, 50%, 75%, 100%) in the
legend indicates the amount of data from non-target users for
pre-training the transferable model, where 0% is labeled as
‘Direct learning’, i.e., without transfer learning. The
percentage (0%, 10%, 20%, 30%, 40%, 50%) on the
horizontal axis provides the amount of data from the target
user for model fine-tuning. The accuracy is reported based on
50% of the data from the target user for each case. The data
from the thigh sensor location is used here. In direct learning,
only the target user data is used in training.

There are several major findings. Firstly, when without
fine-tuning (horizontal axis = 0%), the accuracy of pre-trained
models, tested on the target user, can already achieve an
accuracy between 80% and 94%. It indicates the inter-subject
similarity has been well learned. Secondly, the amount of data
used in pre-training has not shown strong consistency when
related to the performance. For example, in the top graph, 25%
pre-training is best for user 1, while in the bottom graph,
100% pre-training is best for user 4. This may result from the
diverse inter-subject similarity, which, if high enough, will
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Fig. 9. Average accuracy ranking plots for transfer learning SxPAD,
with the determined optimal location (thigh).

Note. Same definition of the legend (pre-training percentage) and
horizontal axis (fine-tuning percentage) as Fig. 8.

contribute to the performance like the bottom graph. Thirdly,
when introducing 10% of target data for fine-tuning, the
performance boosts significantly. With more target data for
fine tuning, the performance keeps increasing.

To better summarize the transfer learning performance over
all fifteen subjects, Fig. 9 gives the average accuracy, meaning
that each subject has been treated as the target user and the
other subjects as non-target users. Considering randomness of
deep learning training, each transfer learning strategy has been
evaluated twice and then averaged here. Still, we can observe
that the accuracy is around 80% to 82.5% when without fine-
tuning. With 10% fine-tuning, the performance is boosted to
around 92.5%.

One thing to mention is that, the direct learning (without
transfer learning) has an accuracy a bit higher than pre-
training&fine-tuning, which should result from the inter-
subject difference that may lower the performance slightly
when more target data is used. However, we expect to observe
different results for SCxPAD, considering that the single-
channel data of the target user may not be enough for model
training and the transfer learning will significantly benefit the
single-channel cases. It is detailed in the section F.

E. SCwPAD Summary and Optimal Sensor&Channel

Configuration x Determination

As shown in Fig. 10, 42 combinations of seven sensor
locations and six channels per location have been evaluated
and visualized, which give the difference of each
configuration in terms of physical activity detection.

To the best of our knowledge, it is the first study to
comprehensively compare these configurations and reveal
their ability in biomechanical dynamics mining. As shown, the
chest and thigh locations, even with single signal channel, are
still among the top configurations. Besides, the accelerometer-
channel Y is the best case for these two locations.

Considering the thigh location is the optimal choice among
6-channel sensor configurations under SwPAD, and the
performance for thigh based on accelerometer-channel Y is
comparable to that of chest, we finally select the ‘thigh&
accelerometer-channel Y’ as the optimal configuration.
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Fig. 10. Accuracy ranking plot of all 42 sensor & channel combinations (7 sensors * 6 channels/location) under SCwPAD.

Notes. (1) Each deep learning model on the horizontal axis is represented by three letters, e.g., ‘tay’ explained above. The first letter has six
possibilities: ¢/f/h/s/t/u/w, which stand for chest/forearm/head/shin/thigh/upper-arm/waist, respectively.

(2) The second letter has two possibilities: a/g, which stand for the accelerometer/gyroscope sensor, respectively.

(3) The third letter has three possibilities: X/Y/Z, which stand for three different channels of a given sensor.

F. Transfer Learning (SCxPAD) from Non-target Users to
The Target User, with the Selected Optimal Sensor&Channel
Configuration x

Transfer learning is attractive in sharing the knowledge
from non-target users to the target user when the target data is
limited. We here have studied the transfer learning under
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Fig. 11. Selected accuracy ranking plots (subject 1 and 4) for transfer
learning SCxPAD, with the determined optimal sensor&channel
configuration (thigh-accelerometer-channel Y).

Note. Same definition of the legend (pre-training percentage) and
horizontal axis (fine-tuning percentage) as Fig. 8.

SCxPAD. Selected examples about two subjects are shown in
Fig. 11, indicating the effectiveness of transfer learning for
single-channel-based physical activity detection task. The
average accuracy ranking plots for all subjects are given in
Fig. 12. Detailed analysis of these figures is given below.

In Fig. 11, there are several interesting findings. Firstly, the
accuracy without fine-tuning (horizontal axis=0%) is already
between 86% and 92%, indicating that the inter-subject
similarity for the single-channel scenarios (SCxPAD) is more
consistent than that for the 6-channel scenarios (SXPAD). This
indicates that the accelerometer-channel Y is of critical
biomechanical dynamics, and further introducing other
channels, may lower the perfor mance due to the complexity
of the inter-subject similarity.

Secondly, the accuracy without fine-tuning (horizontal
axis=0%) is much higher than the accuracy under 10% of
direct learning. This further indicates the inter-subject
similarity is pretty high for the thigh&accelerometer-channel
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Fig. 12. Average accuracy ranking plots for transfer learning SCxPAD,
with the determined optimal sensor&channel configuration (thigh-
accelerometer-channel Y).

Note. Same definition of the legend (pre-training percentage) and
horizontal axis (fine-tuning percentage) as Fig. 8.
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Y configuration.

Thirdly, when increasing the percentage of fine-tuning
effort, different subjects may or may not benefit much from
pre-training. This further indicates the complexity of inter-
subject similarity.

Overall, encouragingly, the average performance on all
subjects shown in Fig. 12, demonstrates transfer learning
significantly improves the performance of direct learning on
the target user. Considering randomness of deep learning
training, each transfer learning strategy has also been
evaluated twice and then averaged here. By setting different
performance thresholds as shown in Table I, the corresponding
optimal solutions are determined by the proposed TL-OPTE
algorithm under SCxPAD.

The results in Table I indicates that the optimal pre-training
effort ¢* may not always be 100% for trading off between
learning inter-subject similarity and avoiding over-pre-
training, and the fine-tuning effort y* can be very small for
training effort minimization. Further the optimal accuracy pu*
can be higher than the threshold.

Our experiments have further demonstrated that, with
transfer learning, only 10% of data from the target subject can
yield a physical activity detection accuracy up to 91.6%. This
indicates the deep transfer learning framework has enabled
very challenging scarce data learning on the target user, not
only for minimizing the training effort on the target, but also
for increasing the model performance on the target with
transferred knowledge.

In short, the proposed transfer learning framework can
effectively maximize the performance and minimize the
training effort on the target user, by optimally leveraging the
inter-subject similarity to learn the sharable knowledge and
patterns.

G. Comparison with Previous Studies

To further illustrate the spatial variability learning and
scarce data learning with the proposed framework, we have
conducted detailed comparison with other studies. Panahandeh
et al. [4] placed the motion sensor on the chest; Kim et al.
[31] placed the sensor on the wrist; Kang ef al. [32] put the
sensor on the arm; Zou et al. [5] put the sensor on the elbow.
However, there is no comprehensive study on biomechanical
spatial variability learning.

In our study, with the same experiment setting up, we have
fairly and thoroughly compared different sensor locations and
channels, and determined the optimal system configuration
principle.

Further, previously studies also reported motion signal
processing algorithms, such as Hidden Marko Model [4],
Kalman Filtering [11], Long Short-term Memory [7] and CNN
[13]. However, no study has been reported on deep transfer
learning of the biomechanical data, towards the scarce data
learning challenge. In this study, we have proposed and
validated a deep transfer learning framework, and conducted
thorough evaluations to demonstrate the effectiveness.

With our algorithm, even with 10% of the target data, we
can achieve satisfied performance through transferring the

Table 1. The optimal solutions determined by the proposed TL-OPTE
algorithm, under SCxPAD. Take the performance threshold & =
90% as an example, with transfer learning, only 10% of data from the
target subject can yield a physical activity detection accuracy up to
91.6%, with a performance boosting of 9% compared with direct
learning without transfer learning.

Etn ¢ Y [
86% 100% 0% 89.6%
88% 100% 0% 89.6%
90% 100% 10% 91.6%
92% 75% 20% 92.3%
93% 50% 30% 93.0%

Notes.

(1) & performance threshold; ¢*: percentage of data needed for pre-

training; *: percentage of data needed for fine-tuning; u*:

performance of the optimal deep learning model.

(2) The granularity for the percentages (¢* and ¥*) will provide can be
further fine-grained based on the requirement, which can facilitate
further minimization of the pre-training and fine-turning effort.

knowledge from non-target users. We have also demonstrated
the scarce data learning in direct learning (without transferring
knowledge from non-target users), as shown in Fig. 11 and
Fig. 12. The simulation shows that, only 10% of the target
user data is not enough for learning an effective model since
the performance drop is about 9%. Therefore, this study will
greatly advance scarce data learning in wearable health
instrumentations, considering the data collection is time-
consuming and the inconvenient.

H. Limitations and Future Studies

We will further implement the proposed algorithm on the
edge computing platform, e.g., the smartphone or wearable
monitor. In the current study, the training and testing have
both been done on a PC workstation with NVIDIA RTX
A4000 GPU. One thing to note is that the deep transfer
learning framework only increases the computation load in the
training process, and does not increase the computation load
of the deep neural network when implemented on the edge
platform. Besides, the convolutional neural network can be
efficiently supported by the processors on the edge platform,
thanks to its regular paralleling processing flow and the shared
convolutional weights for the same kernel.

Besides, the contributions of each block in the network are
also interesting, not only to evaluate the robustness of the
network, but also to further design an efficient light-weight
model. In this study, we have mainly targeted the spatial
variability understanding and the scarce data learning, which
can be further enhanced in the ablation experiments and
studies in future.

In future, we will also continue studying effective deep
learning algorithms and transfer learning approaches to further
enhance the accuracy and minimize the learning effort.
Further, incorporating deep learning architecture search in the
proposed TL-OPTE algorithm will also be interesting, which
can facilitate automatic architecture determination for both
performance improvement and model size reduction. Human
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subjects are of great diversity in not only biomechanical big
data but also other modalities [33-36], and it will be promising
to advance the proposed framework to more smart health
applications [37-40]. The proposed framework is of a high
generalization capability, considering the spatial variability
learning among sensors is a common need, and also the
transfer learning is important for the scarce data learning
challenge in wearable applications. We in the future will
further enhance the framework on diverse sensing modalities
and scenarios.

We will also further study more sensor locations in future,
which will facilitate enhanced understanding of the spatial
variability and optimal sensor selection. Also, deep transfer
learning may have different effects on different sensor
locations.

IV. CONCLUSION

In this research, targeting biomechanical dynamics
measurement that is of great promise for rehabilitation,
assisted-living, and lifestyle management applications, we
have proposed a deep transfer learning framework that can
effectively grasp the inter-sensor spatial variability and inter-
subject similarity. The novel framework, for the first time, not
only reveals the optimal sensor location from seven candidates
and optimal sensor&channel combination from 42 candidates,
but also demonstrates how transfer learning maximizes the
data-efficiency in physical activity detector learning. Our
evaluation experiments have determined the optimal sensor
location as thigh, and the optimal sensor&channel
configuration as thigh-accelerometer-axis-Y. Our experiments
have further demonstrated that, with transfer learning under
the optimal sensor&channel configuration, only 10% of data
from the target subject can yield a physical activity detection
accuracy up to 91.6%. This indicates the deep transfer learning
framework has enabled very challenging scarce data learning
on the target user, not only for minimizing the training effort
on the target, but also for increasing the model performance on
the target with transferred knowledge. Targeting the
limitations of this study, we in future will further study the
implementation of the algorithm on mobile devices,
investigate the ablation effects, evaluate the algorithm on more
data modalities and scenarios, and study more sensor
locations. The research will greatly advance spatial variability
characterization and data-efficient learning in biomechanical
measurement.
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