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Abstract

®

CrossMark

In this work, a new theoretical model for contact resonance atomic force microscopy, which
incorporates the elastic dynamics of a long sensing tip is presented. The model is based on the
Euler—Bernoulli beam theory and includes coupling effects from the two-beam structure, also
known as an ‘L-shaped’ beam in the literature. Here, high-accuracy prediction of the sample
stiffness, using several vibration modes with a relative error smaller than 10% for practical
working ranges, is demonstrated. A discussion on the model’s capability to predict the dynamic
phenomena of eigenmode veering and crossing, as the force applied to the sample increases, is
presented. The L-shaped beam model presented here is also applicable for structural applications
such as: micro-electro-mechanical systems, energy harvesting, and unmanned aerial vehicle

landing gear.

Keywords: contact resonance, atomic force microscopy, long elastic tip, qPlus sensor,

nano-needle

1. Introduction

The atomic force microscope (AFM) traditionally uses a
micro-cantilever beam to scan sample topography and mea-
sure sample material properties at the nano-scale. Contact
resonance (CR) is a mode of AFM operation specifically
designed for estimating mechanical properties while the AFM
microcantilever tip is in the linear, net-repulsive region of the
force-distance curve. The coupled sensor-sample natural fre-
quencies, along with a theoretical model, are utilized for the
estimation of the samples stiffness [1, 2]. Then, a contact
mechanics model is used to relate the sample stiffness to the
mechanical properties of the sample of interest. The appli-
cation of CR in the linear region of the sensor-sample surface
interaction force, allow scientists to model the sample stiff-
ness using a linear spring, assuming small sample deforma-
tion. The AFM cantilever sensor is modeled using the Euler—
Bernoulli beam theory, and the assumption of small ampl-
itude vibrations. The combination of a simple beam model
and simple sample model to describe a complicated physical
phenomenon provides researchers with a powerful analytical
tool for the analysis of nano-scale mechanical properties.
Scientists have employed the AFM to measure samples
with a wide range of stiffnesses in various environments,
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including vacuum, air, and liquids, to accommodate the
sample’s specific requirements. However, when dealing with
soft biological samples, new challenges emerge in both sensor
design and data processing. In order for the biological sam-
ples to retain their original properties, measurements must be
performed in the sample’s native environment, i.e. a liquid
environment. To enable in situ measurements of biological
samples in their native environments, a new sensor design
using a long sensing tip, sometimes referred to as a needle,
has been introduced [3-10].

The use of a long sensing tip assures the micro-cantilever
beam body is out of the liquid, thereby reducing hydro-
dynamic forces on the sensor body [11-15], and achieving a
high-quality factor [8]. The described method, named trolling
mode (TM), has been used to scan sample topography [8],
take sample property measurements [7], and was used to
demonstrate high-speed imaging of live biological samples
[10]. The gPlus sensor uses a quartz tuning fork (QTF) with a
tip attached to one of the tuning fork tines to perform force
measurements with a pico-newton resolution [16, 17]. The
qPlus sensor, in contrast to the micro-sensors commonly used
in AFM, features a cantilevered beam that is an order of
magnitude larger. This larger scale allows for more flexibility
in design, fabrication, and attachment of the sensing tip. With
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Figure 1. Cantilever sensor with an elastic tip in contact with an elastic substrate (modeled as linear springs). This system represents an

L-shaped structure comprised of two E-B beams.

the advantages offered by imaging with gqPlus sensors,
researchers have achieved remarkable feats, including
obtaining Angstrom-level spatial resolution by attaching a
single molecule to the end of the sensing tip [18], and
observing the signature of electron orbitals [19].

Jaquez-Moreno et al [20] introduced a new CR model for
sensors with long, massive, rigid tips. The model was
numerically verified in their work, and was later experimen-
tally validated by Zimron-Politi and Tung [21]. The suc-
cessful use of nano-needles and gPlus sensors in trolling
mode, along with new theoretical CR models, paves the way
for contact resonance trolling mode (CRTM). CRTM will
allow advanced measurements of biological samples in situ,
and will further improve AFM’s current and successful use
for health-care applications [22-24]. With the decreasing
diameter of the tip, to allow for high spatial resolution ima-
ging, and the extended length, to allow in-liquid measure-
ments and perform invasive cell manipulation [25-27], the
contribution of the flexibility of the tip becomes significant. In
order to include the tip’s flexibility, the system is modeled
using a two beam layout, sometimes referred to as an
L-shaped beam. The structural vibrations of frames and
L-shaped beams has been the focus in a variety of fields and
applications, such as microrobotics [28], micro electro
mechanical systems (MEMS) [29, 30], and energy harvesting
[31-33]. The frames have been studied in a general arbitrary
configuration [34], and specifically in the L-shaped config-
uration analytically [35, 36] and numerically [37].

In this paper, a theoretical model for the flexural vibra-
tions of an L-shaped beam fixed on one end and supported by
two springs on the other end is developed. The procedure to
generate the equation governing the natural frequencies of the
coupled sensor-tip-sample system, known as the characteristic
equation is outlined. Then, the orthogonality condition for the
eigenmodes is derived, and a numerical experiment mimick-
ing CR measurements is performed. The proposed model is
used to predict sample stiffness with great success for two

cases of long, elastic AFM tips. The orthogonality condition
is also used to predict eigenmode veering and crossing, and is
discussed in section 2.3.

2. Theory and model development

In this section, a theoretical model for a cantilever sensor
equipped with a long, elastic tip is developed. The joint structure
of the cantilever and tip results in an L-shaped beam sensor. The
L-shaped beam sensor has one side securely fastened from dis-
placements and rotations (fixed), and another side elastically
supported by two linear springs (see figure 1). The L-shaped
beam is modeled using two Euler—Bernoulli (E-B) beams con-
nected by appropriate boundary conditions. Each of the E-B
beams has one side fixed, relative to its own coordinate system.
The beam with one side globally fixed represents the classic
AFM cantilever beam, whereas the other beam, with one end
elastically supported, represents the long elastic tip which can be
used in trolling mode. In figure 1, the key parameters of the CR
idealized model under investigation are illustrated. Small ampl-
itude vibrations are assumed throughout this work. For clarity of
nomenclature, the classic AFM cantilever beam is referred to as
‘beam’ and the elastic tip as ‘tip’.

2.1. Flexural vibrations

With reference to figure 1, the flexural vibrations of the beam-
tip-sample model are analyzed in the x;—y; plane only. The
beam is assumed to be of constant cross-sectional dimension
with area A{, length L, density p;, and Young’s modulus E;.
The tip is located at x; = L, and has a constant cross-section
with area A,, length L,, density p,, and Young’s modulus E,.
The elastic substrate is modeled using two linear springs. The
first is a vertical spring (normal) with stiffness k, and the
second one is a lateral spring (tangential) with stiffness k.
The equation of motion for the transverse vibrations of the
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beam is given by [38]:
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0" wi(xy, 1) ey i, 1) _ 0. M

A
i or? oxf'

where I; is the second area moment of inertia, and wq(x;, 1)
represents the transverse displacement of the beam at a given
location x; along the axis, and a specified time 7. Similarly, the
equation of motion for the transverse vibrations of the tip is
defined in the tip coordinate frame. Due to the rotations of the tip
coordinate system, the tip reference frame is non-inertial. An
additional term is added to the right hand side of the equation due
to the effects of the non-inertial reference frame. Translations of
the tip coordinate system and axial effects are neglected. The
equation of motion for the tip is given by:

0wy (x2, 1)
or?

4
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where L, is the second area moment of inertia of the tip, and
wi(xp, 1) represents the transverse displacement of the tip at a
given location x, along the axis and a specified time f.
0@) = W is the slope at the end of the beam, x; =L,
where the bel:am and tip are connected.

The coupling between the beam, tip, and the sample
stiffness, are brought together into a single system model by
manipulating equations (1) and (2), along with the following
eight boundary conditions [38]:
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where 1, is the rotational inertia of the sensing tip, and m;, is the
total mass of the sensing tip. Equations (3a) and (3b), represent
the fixed boundary condition on one side of the beam.
Equations (3¢) and (3d) represent the bending moment and shear
forces at the beam end, respectively. Equations (3¢) and (3f)
represent the fixation of the tip to the beam in the tip coordinate
frame. Equations (3g) and (3/) represent the bending moment
and shear forces at the tip end, respectively. Due to the small
displacement assumption, nonlinear terms which include multi-
plicative products of the beam deflection and tip deflection, such
as the bending moment applied on the beam end, caused by the

term kwi(L;, Hwr(Ly, 1) are ignored. Furthermore, any effects due
to axial deformation of the beam and tip are neglected.
Dimensional analysis of the two equations of motion and
the boundary conditions allows identification of the non-
dimensional parameters which will govern the problem:

!/
L N TR B 7Y
k(; k P1A1L1 Ll
Eilip,Ay Ly
A=l gy = |SHPf2R @)
P1A1L1 E212p1A|L1
where k, = 3B i the static stiffness of the beam. R, can also be

Ly

written as: R; = l% - A, where k, = 3122312 is the static stiffness

of the tip. R, encapsulates the dynamic coilpling effects between
the beam and the tip by combining the beam and tip static
stiffness ratio, multiplied by the mass ratio. For the limit of
E, — ooleading to R; — 0, the model reduces to the rigid tip
model presented by Jaquez-Moreno et al [20]. The limit of the
nondimensional sample stiffness aw — 0 corresponds to the case
of a freely vibrating L-shaped beam discussed by Oguamanam
et al [34, 35]. This limiting case represents the situation where no
contact between the sensor tip and the sample exists.

The solution for the equations of motion, presented in
equations (1) and (2), is based on the assumption of a
separable solution [38], such that wix;, f)=1L;- W(G) - "
where (; = % is the nondimensional length along the beam
and the tip, ‘and w is the dimensional natural frequency.
Substituting the ansatz of a separable solution into
equations (1) and (2), and using the dimensional analysis,
leads to two ordinary differential equations of fourth order, in
the spatial dimensions (; and (,, describing the eigenfunc-
tions, or mode shapes, of the beam-tip-sample system:

W — (ML) - W =0, &)

W — (MLy)* - (Wa + ¢ - W' (1) = 0. (6)

)\, are the separation constants such that: (\;L;)* = w?(p,A; L")/

(E;I,). Using the above relation also leads to the relation

between the two separation constants: \yL, = A L;/R,. The

general form of the spatial solution for the homogeneous
equation (5) is:

Wi(G) = Geos(MLy - G) + Gosin(ALy - ()
+Geosh(M L, - ¢) + Cysinh(A L, - ¢, (7)

and the general form of the spatial solution for the non-
homogeneous equation (6) can be found using the method of
undetermined coefficients [39]:

Wa(() = Cscos(M Ly - () 4+ Cesin(AaLs - ()
+C7 COSh()\sz . CZ) + Cg sinh()\sz . Cz)
—G - W) ®)

Using the dimensional analysis and the separable solution, the
nondimensional forms of the boundary conditions given in
equation (3) are simplified to:

Wi(0) = 0,
W'(0) =0,

9a)
(9b)



Nanotechnology 35 (2024) 075503

N Zimron-Politi and R C Tung

W (1) = LD W (1) = 3agl?>(Wa(1) + Wi'(1))
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W"(1) =0, 9)

2
W"(1) = 30@2—‘1(“’2(1) + W' (1)). (9h)

From the boundary condition equations (9a), (9b) and (9¢) it
can be shown that:

C] = —C3, Cz = —C4, and C5 = —C7. (10)

Combining the general solutions given in equations (7)
and (8), along with the boundary conditions given in
equation (9), the eigenvalue problem (EVP), which governs the
eigenmodes and eigenfrequencies of the system, can be formed.
By performing algebraic manipulations, five linear homogeneous
equations in C,, are obtained, i.e. the integration coefficients.
These equations are expressed in matrix form as:

[M]sxs{q} sx1 = {0} 511, (11

The elements of matrix M are given in appendix A, and
{g} = [C3, C4, Cg, C7, C3]" is the vector of integration
coefficients.

The solution to the EVP is obtained by setting the
determinant of matrix M to zero, in order to find the non-
trivial solution. This manipulation results in the characteristic
equation of the system, which describes the relationship
between the governing nondimensional parameters and the
natural frequencies, functionally described by:

FONILy, o, AL, 8, ¢, Rg) = 0. (12)

Here, )\ is the wave number of the nth natural frequency and the
remaining parameters are the non-dimensional quantities descri-
bed previously. The characteristic equation can be solved for any
of the countably infinite A{'L; eigenvalues (EV) of the system.

2.2. Orthogonality condition

The orthogonality between any two eigenmodes is an
important condition in the modal analysis of a system, and it
can also be used to mass-normalize the eigenmodes [38]. A
full derivation of the orthogonality condition is presented in
appendix B, with the final condition given as:

fol Wiy Wis - dG + Wir(D) - A - Wi(1)
+ WD) - d - WD

FAC [ Wa W G (War - WD)
+ W W (D] - dG = 6 (13)

b is the Kronecker delta, and r and s are subscripts
describing any two eigenmodes. Equation (13) can be used to

obtain the mass-normalized eigenmodes by solving the
equation for the unknown integration coefficient in the case of
r=s, as is standard practice in modal analysis [38].

2.3. Eigenmode veering and crossing and its effect on the CR
measurements

Eigenmode veering or crossing is a phenomenon where a
change in a single or multiple parameters of the system causes
a change in the trajectory of the natural frequency loci [40].
For example, in CR measurements the in-contact resonance
frequencies for a given set point force, which is related to the
nondimensional sample stiffness «, are measured. The fre-
quencies measured are related to specific modes, which for a
simple cantilever probe can be related to the well-known
bending modes of an Euler—Bernoulli beam. Using simple
cantilever AFM probes, the transverse bending modes main-
tain their initial ordering with the change in o. Nonetheless,
each mode shape evolves with the change in « while the
eigenfrequency ordering remains in place.

For the cases discussed in this work, where a long elastic
tip is used, other mode shapes are generated due to the tip’s
dynamics. Varying o can introduce eigenmode veering and
crossing, which interferes with the tracking of a specific mode
for contact resonance. The ability to track a specific mode
with the change in the contact force is crucial for the accurate
prediction of the sample’s stiffness «. In the case of an
eigenmode veering or crossing, if a CR frequency is asso-
ciated with the wrong eigenmode the results may become
erroneous.

The interaction between two or more frequency loci can take
place in two forms In the first form, a crossing of the two fre-
quency curves is witnessed, evidenced by a change in order
between two eigenfrequencies. For example, assume that a cer-
tain eigenmode shape is associated with the lowest frequency for
a specific value of the varying parameter. As the varying para-
meter is increased, the eigenmode shape now becomes associated
with the 2nd lowest frequency. By plotting the eigenvalues or the
eigenfrequencies as a function of the varying parameter, an
abrupt crossing can be seen with the loci intersection. In the
second form, the eigenmode veering, the two loci approach each
other but diverge without intersecting. Nonetheless, the final
result of the eigenmode veering interaction is the same as in the
eigenmode crossing, a change in the eigenmode shape ordering.
In the eigenmode veering case, the interaction between the two
loci is continuous and without an actual intersection, and there-
fore more complicated to distinguish. Furthermore, the interac-
tion in the eigenmode veering case occurs over a certain range of
the varying parameter, and not at a specific value of the varying
parameter, as in the eigenmode crossing case. Using traditional
CR models and sensors, eigenmode veering and crossing is
rarely, if ever, encountered.

Huang et al [40] developed a sensitivity function which
allows one to accurately distinguish between eigenmode
veering and crossing. Furthermore, the sensitivity function is
used in this work to track the mode shape evolution as it
changes with the increase in . The sensitivity function uses
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the inner product between two eigenvectors, ®, and ®:

Ses = (Pr, BY), (14)

where ®? is the s™ normalized eigenvector for the case of the
minimum value of the varying parameter, and ®, is the rth
normalized eigenvector which varies for different values of
the varying parameter. By plotting S, as a function of the
parameter causing the interaction, the two different types of
interactions: the eigenmode veering or crossing, can be dis-
tinguished. In the case of an eigenmode crossing between
modes 1 and s, the value of S, will change from zero right
before the crossing (recall that any two modes are orthogo-
nal), to a value of one immediately after the crossing. This
indicates that mode shape ®,, which was orthogonal to ®°
before the crossing, has becoming similar to ®° after the
crossing. In the case of an eigenmode veering, the two modes
interact over a certain range in a continuous fashion. In this
veering range, the mode shapes of the two veering modes
become a combination of the two interacting modes, leading
to a continuous change in the value of 0 < S, < 1. As the
veering takes place, both eigenmodes are distinctly altered, as
compared to their shapes prior to the veering.

In this work, eigenmode veering and crossing is exam-
ined while varying the nondimensional sample stiffness «.
The orthogonality condition given in equation (13) is imple-
mented as a sensitivity function to investigate possible
changes between eigenmodes used in the aforementioned CR
procedure. Here, the mode shape @2 corresponds to the out-
of-contact mode shape, or the o =0 mode shape. Imple-
menting the orthogonality condition between W;,, W, and
Wl(fs, W£S leads to:

- 1
sr,szfo Wip - WO, - dG, + Wir(1) - A - WO,(1)
+ W (D) - 1 W0
1
FAL. fo [War - W2, + G - (Wayr - Wi/O(1)

+ Wy - W ()] - dé,,

where S, is the sensitivity function in integral form.

The use of the inner product sensitivity function, given in
equation (14), can be implemented only when the eigenvec-
tors are produced by numerical tools, such as a Finite Element
Analysis, and are then normalized by the norm of the vector.
In the case of a real world contact resonance experiment, the
integral form of the sensitivity function, given in
equation (15), can be used. This form is based on the pre-
sented theoretical model. This will allow researchers to pre-
dict possible eigenmode veering and crossing in any «
domain, without the need to use finite element analysis for a
wide range of «. Unlike simple cantilever beams, the ortho-
gonality conditions in the case of an L-shaped beam must
include the effects from the beam and elastic tip, along with
the natural boundary conditions of the problem. Discretizing
the continuous solutions given in equations (7) and (8) into a
column vector format, and performing the dot product
between two different modes (r=s), it is found that the
solution is not orthogonal, unless all the effects considered in

(15)

the derived orthogonality condition (given in equation (15))
are implemented. Thus, utilizing the orthogonality condition
as a sensitivity function for determining eigenmode veering
and crossing offers a strong advantage in terms of computa-
tional efficiency. In the case of a long massive rigid tip, as
discussed in [20], the orthogonality condition will include the
effects from the natural boundary conditions of tip mass and
rotational inertia, and is also different than the simple case of
a cantilever beam without any natural boundary conditions.

2.4. Sample stiffness identification procedure

In CR, the experimental natural frequencies are converted to
the eigenvalues of the system using the dispersion relation:

f = (N'L)? | EiLy
" 2 A\ p AL}

Zimron-Politi and Tung [21] proposed to rewrite the disper-
sion relation in the form:

ML= f, - C, (17)

thus, defining a new system parameter C. C cannot be
determined by using the fixed-free eigenvalues, as in common
CR practice, where the tip mass and rotational inertia are
ignored. The out-of-contact, or the ‘free’ frequencies, provide
information about the sensor related parameters of the system.
The out-of-contact characteristic equation is obtained by
considering the case of & =0, and is reduced to a function of
5 system parameters, functionally described as follows:

FONILy, A L, €, Ry) = 0.

(16)

(18)

Plugging equations (17) into (18) will lead to an equation with 5
unknown system parameters, along with an experimental fre-
quency. A similar scheme was introduced in [21] considering the
long, massive, rigid, tip model out of contact. In order to estimate
the system parameters, they used information from 3 freely
vibrating transverse eigenfrequencies of the sensor in order to
determine the 3 unknown system parameters of their system: A,
I;, and C, which was denoted as the 3-Mode approach. In the
case presented here, due to the elasticity of the tip, the freely
vibrating sensor problem results in the following 5 unknown
system parameters: A, IA,, C, R,, and 4. In order to estimate the 5
unknown system parameters 5 freely vibrating eigenfrequencies
are used. This complex, highly nonlinear set of 5 equations is
challenging for numerical solution of similar form, i.e. a 5-Mode
approach. Furthermore, one may also use other measurements to
estimate some of the system parameters. For example, an esti-
mation for £ = Lf by a scanning electron microscope (SEM) is

relatively simple, and will reduce the problem to 4 unknowns.
For some tip geometries, a relation between A, J,, and £ can be
analytically derived, which will further reduce the dimensionality
of the problem. For example, considering a cylindrical tip, the
rotational inertia of the sensing tip is given by [, = %m,Lzz at the
beam and tip interface. Therefore, /, can be expressed as a
function of A and ¢ [, = 32%.

For typical optical lever based AFM systems, the detection
of eigenmodes consisting primarily of tip motion is unlikely,
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Figure 2. Eigenvalue loci showing multiple « solutions in blue background regions, with A =0.5, ; = 0.005, R;=0.5, £= 0.5, and ¢ =0.8.

especially if the tip mass is negligible relative to the mass of the
cantilever beam. In such a case, a higher frequency bandwidth
must be used to measure all the required freely vibrating eigen-
frequencies, resulting in a more elaborate experimental setup.
Furthermore, the model derived in this work is based on the
Euler—Bernoulli beam equation, which ignores the rotational
inertia of the cross-section and shear effects, thereby performing
better for lower modes where these effects are negligible. With
the two considerations described above, along with the com-
plexity of solving a system of 5 highly nonlinear equations,
reducing the dimensionality of the free system to 3 free mea-
surements and 3 unknown system parameters is proposed. In
[21], a graphical approach was also used to find the system
parameters and to ensure a single solution is found, thus illus-
trating another advantage of using a 3-Mode approach. In order
to reduce the dimensionality of the free system discussed here,
throughout this work it is assumed that £ = 12—12 is known (as if it
was measured by an SEM), and the analytical relation for a
cylindrical tip: I, = [Z% is used. Following the above 2 proce-
dures, a measurement of 3 free eigenfrequencies will determine
the remaining 3 unknown system parameters: A, C, and R,. Note
that the use of any number of free eigenfrequencies for the
determination of the system parameters is not limited to the
lowest free eigenfrequencies. That is, any free eigenfrequency
can be used, regardless of the mode shape (beam dominant or tip
dominant) and the ordering.

Once all system parameters that can be identified using
free frequencies are estimated, one can proceed to the in-
contact measurements and estimation of the remaining para-
meters. For the in-contact cases, the remaining two unknown
parameters in the characteristic equation are o and ¢ which
can be determined either by a single mode prediction, or by a
multi-modal prediction. In a single mode prediction, ¢ is
assumed to be known and may use any mode to calculate a.

In a multi-modal prediction, both o and ¢ are solved for
simultaneously [41], by using two different eigenfrequencies.
Throughout this work, both the single and multi-modal pre-
dictions are demonstrated for the different examples.

The characteristic equation functionally given in(12) is a
quadratic equation in «, therefore resulting in two solutions. The
phenomenon of having multiple « solutions was discussed the-
oretically in [20], and proven experimentally in [21]. The solution
to the quadratic equation: ¢,” + ¢;a + ¢o = 0 is the well-known

—c = \/clz —dcrcg

2c
possible « solutions using physically 2realistic system parameters

shows that two real solutions are always found.

Consider the case presented in figure 2 for an eigenvalue
greater than the value of the minimum found for mode 2 (the
freely vibrating 2nd mode), and less than the maximum value
found for mode 1 (the high sample stiffness value). In the
described region, i.e. in the lower blue background range, two
eigenmodes exist, one with a low « value corresponding to
mode 2, and one with a higher a value corresponding to mode
1. That is, in the blue background range, two positive «
solutions exist corresponding to the + solutions of the quad-
ratic equation. Similarly, in the upper blue background range,
two positive « solutions exist, one for mode 3 (lower «
value), and the second for mode 2 (higher o value). Outside
of the blue regions, one negative « solution and one positive
« solution are obtained. The negative « solution is dis-
regarded as it is not physically meaningful.

quadratic formula: oy, = . Investigating the

3. Numerical experiments

In CR experiments, the measured freely vibrating and in-
contact natural frequencies are used, along with a theoretical
model, to estimate the sample stiffness. Then, a contact
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Table 1. qPlus sensor dimensions and mechanical properties used in
the FE model.

Quartz prong Tungsten tip
E, 80 GPa E, 345 GPa
2 0.17 vy 0.28
p1 2650kgm™3  p, 19300 kgm—3
Ly 2.357 mm L, 1.186 mm
h 0.2134 mm d 0.1 mm
b 0.127 mm L, 0.15 mm

v; are the Poisson ratios, 4 and b are the
thickness and width of the quartz beam
respectively, d is the diameter of the tungsten
tip, and L, is the length of the etched section
of the tip. In the FE model, for the etched
section, the tip diameter reduces from the
nominal diameter d to a diameter of 0.01 mm
due to the size of the other components in the
model and mesh considerations.

mechanics model is used to calculate the reduced modulus,
which is a series combination of the indentation modulus of
the sample and tip. In order to verify the new proposed model,
a numerical experiment in which data from a finite element
(FE) modal analysis is used in lieu of a real AFM experiment.
This allows one to perform an estimation of the FE assigned
sample stiffness, using the modal frequencies and the pro-
posed model. Then, the relative error between the estimated
stiffness and the assigned stiffness is calculated, based on the
proposed CR model and system parameter identification
scheme. Thus, the numerical experiment allows one to isolate
the proposed CR model accuracy from the additional contact
mechanics and experimental setup errors. The percent of
relative error is calculated as follows:

QETM — OFE

PE = x 100, (19)

QFE

where agTy 1S the nondimensional sample stiffness estimated
by the elastic tip model (ETM), and agg is the sample stiff-
ness assigned in the FE model normalized by the calculated
static stiffness of the sensor.

In the following numerical experiments, previously pub-
lished sensors that contain significant tip modifications are
modeled. The FE model includes an L-shaped elastic beam fixed
at one end and elastically supported by two springs on the other
end, representing the sample stiffness. The FE simulations were
performed using ANSYS commercial software with a parametric
study varying the elastic support of the tip.

In a homogeneous material, the normal sample stiffness k
and the lateral sample stiffness k’ are related via the Poisson

. k' 1—v? 1—v
ratio v, such that [42, 43] 7= o= ZW =2—.
For realistic values of the Poisson ratio given by 0 < v < 0.5,
¢ is limited to 2/3 <¢ < 1. Throughout this work,
¢ = ]% = (0.8 is assigned in the numerical experiments,
which represents a Poisson’s ratio of v =1/3.

The nondimensional sample stiffness « is the varying
parameter in the parametric study and is controlled by adjustment
of the normal spring stiffness supporting the L-shaped beam. For
all cases discussed in this work, the static stiffness of the

0.000
—
0.250

0.500
—
0.750

1.000 (mm)

Figure 3. FE model of the qPlus sensor with a tungsten tip.

cantilever beam is used to normalize the value of the normal
spring in the FE model. A preliminary static analysis is per-
formed to find the static stiffness k. of the beam. A unit load Fp,
is applied at the tip end, in the direction along the tip, for the free
case (no springs attached to the tip), and the directional deflection
¢ at the tip end is measured. The static stiffness is then calculated
such that: k. = Fa;". The sample stiffness is varied in an actual
experimental setup by changing the amount of force pressing the
sensor tip against the sample, increasing the contact area and the
corresponding sample stiffness. Each of the numerical experi-
ments is described in more detail in the next sub-sections.

3.1. qPlus sensor

In this section, the numerical experiment performed using an
AFM gPlus sensor is described. The qPlus sensor is built from
a quartz tuning fork (QTF) and may be modified with a
variety of tips. In the numerical experiment discussed here, a
tungsten needle is assumed as a probing tip. The setup
describe by Yamada et al [44] to perform nano-lubrication
measurements is used in order to simulate the contact reso-
nance setup. The dimensions and mechanical properties used
in the simulation are presented in table 1, and the non-
dimensional sample stiffness is varied between 107> <
a < 10°, covering a wide range of possible sample stiffnesses.

A solid hex dominant mesh is used in the FE model (see
figure 3), and the resulting modal frequencies are sorted for the
in-plane vibration modes. In an AFM experiment, one must use
both transverse and lateral channels to properly identify the
transverse modes. The processing of out-of-plane eigen-
frequencies using the ETM model can result in significant inac-
curacies. An additional analysis is performed with the springs set
to zero stiffness, corresponding to the out-of-contact freely
vibrating case. The lowest 3 free eigenfrequencies are used to
determine the system parameters as described in section 2.4. The
resulting system parameters used in this work are presented in
table 2, along with the nominal values. Finally, each case’s fre-
quencies are used as input for the theoretical model to predict the
nondimensional sample stiffness « using equation (12). Results
are presented in section 4.
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Table 2. gPlus sensor system parameters as calculated using the nominal values and the 3-Mode approach with 2 additional assumptions.

Source of data A I Ry ¢ C (sec)
Nominal values 1.0193  0.0792 0.7469 0.4829 1.1206 x 10~*
Three transverse modes (3-Mode approach)  0.8931  0.0825 0.7798 0.5264 1.1165 x 10~*

For the nominal value of the tip length to cantilever length ratio, £ = % is used, whereas in the 3-Mode approach

La+h/2 . .
{= % is used to simulate an SEM measurement.

Table 3. Nano-needle sensor dimensions and mechanical properties
used in the FE model.

Silicon sensor Platinum tip

Orthotropic material properties. See notes  E, 168 GPa

for details 123 0.284
P 2330 & pr 21450 2%
h 2.1 pm d 0.6 pm
b 25 pm

Material properties used to describe the single crystal silicon sensor [45].
Material axes are given in figure 4. E, = E. = 169.7 GPa, E, = 130.4 GPa,
Uy = 1, = 0.362, v, =0.278, v, = 1,, = 0.061, G, = G, =

xy s Vyz = Vyx

80.0 GPa, G, = 51.0 GPa.

3.2. Nano-needle sensor

Nano-needles are very thin and long extensions fabricated onto
traditional AFM cantilever sensors. In this numerical setup, the
experimental setup used in [8], using a silicon sensor and a
platinum needle tip, is mimicked. The dimensions and mechan-
ical properties used are presented in table 3, and the nondimen-
sional sample stiffness is varied between 10* < o < 10°.

In this case, due to the large dimensional differences
between the cantilever and the needle tip, a solid hex domi-
nant mesh is used for the silicon cantilever and Timoshenko
beam elements are used to model the platinum needle tip (see
figure 4). The needle tip has a constant cross-section and
length to thickness ratio of 100 and is ideal for beam-type
elements. Once again, the resulting modal frequencies are
sorted for the in-plane vibration modes, and the 3-Mode
approach is used to identify the system parameters. The
resulting system parameters for the nano-needle are presented
in table 4, along with the nominal values.

The use of nano-needles for sample property estimation may
be limited by additional factors, including the axial stiffness of
the needle tip and buckling of the tip. In this numerical setup, the
axial stiffness of the tip is more than two orders of magnitude
larger than the bending stiffness of the cantilever, so it is con-
cluded it is well-suited for property estimation. Buckling of the
needle tip can limit the applied load on the sample, but is also a
function of the varying sample stiffness, as it alters the boundary
conditions of the tip. In this work, it is assumed that no buckling
is present, and the focus is placed on the vibration analysis of the
system. Buckling of needle tips has been studied in [46].

The discrepancies reported in tables 2 and 4 between the
nominal and the calculated values can be explained due to the
deviation between the theoretical model and the numerical
experiment setups. Such deviations may include: geometric

=

0.00 40.00 80.00 (um)

20.00 60.00

Figure 4. FE model of the silicon sensor with platinum needle tip.
The Orthotropic material properties of the silicon sensor are given in
the coordinate system shown at the bottom right corner.

simplifications, material model (for the nano-needle case), and
neglecting nonlinear and axial effects. Furthermore, the use of the
3-Mode approach allows one to find an equivalent system using
the presented theoretical model, that describes the experimental
system in use, and results in equivalent free frequencies.

4. Results and discussion

Using the presented ETM and the scheme for identifying the
system parameters, both described in this work, the non-
dimensional sample stiffness o will now be predicted based
on the numerical experiment eigenfrequencies, as is common
in contact resonance practice. The eigenfrequencies are con-
verted to eigenvalues using equation (17) and the calculated
system parameter C. Then, the ETM characteristic equation
in-contact, functionally presented in equation (12), is used
with the remaining system parameters: A, IA, R, and /, along
with the eigenvalues obtained from equation (17). The pre-
diction of « is demonstrated using a single mode prediction,
to simplify the estimation procedure, for the qPlus sensor case
in the next section by assuming ¢ = 0.8. In the nano-needle
case, the estimation is compared using a single and multi-
modal prediction scheme. Once « is estimated, the percent of
relative error compared to the assigned stiffnesses from the
finite element model is calculated using equation (19).
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Figure 5. (a) FE numerical experiment results for the qPlus sensor. (b) Eigenfunction sensitivity showing complex interactions between the
three lowest modes. (c) The percent of relative error of the single mode o predictions.

Table 4. Nano-needle system parameters as calculated using the nominal values and the 3-Mode approach with 2 additional assumptions.

Source of data A I Ry, 14 C (sec)
Nominal values 0.0238  0.0018 2.7999 0.4800 1.9245 x 107>
Three transverse modes (3-Mode approach)  0.0185  0.0015 2.8433  0.4884  1.8976 x 10>

For the nominal value of the tip length to cantilever length ratio, £ = IL—f is used, whereas in the 3-Mode approach

Ly+h/2
(==
L

4.1. gPlus sensor numerical experiment results

In figure 5(a), the lowest three transverse eigenfrequencies
from the FE modal analysis, denoted by fcg, are presented as
a function of the nondimensional sample stiffness a. The 3
different modes are denoted ‘Mode 1°, ‘Mode 2’, and ‘Mode
3’ for simplicity. Recall that the mode shape associated with
‘Mode 1°, for example, with a low « value can become the

is assumed to simulate an SEM measurement.

second lowest eigenfrequency, as opposed to the lowest fre-
quency, due to eigenmode veering or crossing. Using
traditional CR with conventional cantilever geometries,
eigenmodes transform due to sample stiffness changes, but
never lose their initial ordering. A certain interaction between
the two lowest eigenfrequencies can be observed around
a =50 and is further examined by using the eigenfunction
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Figure 6. Elastic Tip Model predictions for the three lowest modes.
Results are presented for the qPlus sensor case using single mode
predictions (assuming ¢ = 0.8).

sensitivity results presented in 5b. The sensitivity function
results present a complex interaction, possibly between all 3
modes considered in the region 10° < a < 10°. A clear
determination of the veering or veerings is not achieved in
this example. Nonetheless, by considering the changes in the
relative error of the rth mode, and comparing it to the changes
in the eigenfunction sensitivity of the S, a positive corre-
lation is found. Thus, the prediction quality decreases for the
rth mode when the eigenfunction sensitivity S, starts
decreasing from a value of one. It is proposed that this
phenomenon occurs when the mode shape starts deviating
from the out-of-contact mode shape, indicative of an eigen-
mode veering, rather than a shift resulting from a change in
sample stiffness. Given that eigenmode veering is a gradual,
continuous transition spanning a specific region, the mode
shapes progressively diverge. Since the system parameters
were derived from the out-of-contact modes, any dissimilarity
between the in-contact modes and their out-of-contact coun-
terparts could potentially lead to inaccurate prediction of the
sample stiffness. The foundation of contact resonance ori-
ginally rested on the examination of the shift in eigen-
frequencies between out-of-contact and in-contact states for a
particular eigenmode. In this study, it is imperative to con-
sider eigenmode veering and crossing to maintain the corre-
lation between out-of-contact and in-contact eigenfrequencies
of the same eigenmode.

For the third lowest eigenfrequency, a sharp change in slope
is seen in the eigenfrequency versus « curve around o = 2000
and may also be associated with eigenmode veering or crossing
with higher modes. Higher eigenmode interactions can occur
indefinitely, therefore the three lowest eigenfrequencies are
focused on. These three frequencies are also the most widely
used eigenfrequencies in CR and are practically observable using
current AFM or gPlus sensor setups.

10

Due to the very high static stiffness of the Quartz prong,
only very low « values are practical for nano level experi-
ments. For example, if a tungsten tip radius of R =100 nm
[47] is considered, a reduced modulus of E* = 100 GPa, and
the Hertz contact mechanics model [48], it will require 0.1 N
of force to reach an « of approximately 50, which is not
suitable for nano-mechanical measurements. Nonetheless, the
estimation will be continued for the sake of the analysis, and
to gain a better understanding of the effects of eigenmode
veering and crossing on the estimation, which occur at a high
« value in this example.

Next, the single mode prediction of the nondimensional
sample stiffness « is presented in figure 6, and the corresponding
relative error in figure 5(c). The results show that the prediction
using mode 1 is excellent for o < 102, with the error limited to
about +10%. The prediction using mode 2 shows excellent
results for a < 10. Using mode 3, the prediction does not pro-
duce adequate results in this case. A possible reason for the under
performance of mode 3 prediction is the use of an Euler—Ber-
noulli (E-B) model for the description of a thick beam. As dis-
cussed in section 2.4, the E-B model neglects the rotational
inertia of the cross-section and shear effects. The QTF’s cross-
section is relatively thick compared to its width, and will there-
fore be more affected by the neglected rotational inertia and shear
effects, especially in higher modes.

In this section, a single-mode prediction of « is performed
by assuming a known ¢ value. As ¢ is only a function of the
Poisson ratio, as discussed at the beginning of section 3, it is
bounded in the range of: 2/3 < ¢ < 1. It is found that a +10%
error in the estimation of ¢ will cause a change in the reported
relative error of about £4% using mode 1, and about +6% using
mode 2 at most. If no information is available on the value of ¢
(or the Poisson ratio) of the sample, it is recommended to use a
multi-modal approach, as demonstrated next in the Nano-needle
numerical experiment.

4.2. Nano-needle numerical experimental results

The numerical experiment results for the nano-needle sensor
are presented in figure 7(a) for the lowest three transverse
eigenfrequencies, denoted ‘Mode 1°, ‘Mode 2’, and ‘Mode 3’.
In this case, it is observed that the two lowest eigen-
frequencies interact twice with each other around
a=6x10"*, and then again around o = 0.4, while the third
lowest eigenfrequency does not undergo an interaction with
other eigenmodes. Both interactions of mode 1 and mode
2 are eigenmode veerings, as a continuous change in the
eigenfunction sensitivity is presented in figure 7(b). In
figures 7(c)—(q), equations (7) and (8) are employed to plot
the mode shapes for the three lowest eigenfrequencies, for
different o values. To visualize the two veerings, multiple o
values are considered: before the first veering, during the first
veering, after the first and before the second veering, during
the second veering, and after the second veering. The first and
second eigenvectors associated with the lowest o value are
represented by solid red and blue lines, respectively. The first
eigenvector, presented in figure 7(c), is driven mainly by the
tip motion, whereas the second eigenvector, presented in
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Figure 7. (a) FE numerical experiment results for the nano-needle sensor. Zoomed-in images show veerings of the two curves. (b)
Eigenfunction sensitivity showing the two eigenmode veerings between mode 1 and mode 2. (c)—(g) The mode shape corresponding to the
lowest eigenfrequency at different « values. (h)—(1) The mode shape corresponding to the second lowest eigenfrequency at different o values.
(m)—(q) The mode shape corresponding to the third lowest eigenfrequency at different v values.

figure 7(h), is a combination of both the beam and tip. The
eigenvectors interact during the veerings and create unique
shapes which are a combination of both eigenvectors in the
veering range (for each of the veering cases). After the first
veering and before the second one, it is observed that the
eigenvectors have switched order (see figure 7(e) and (j)). The
mode shape associated with the 1st lowest eigenfrequency at
a=0.0010 is denoted as mode shape A, and the 2nd lowest
eigenfrequency at o =0.0010 is denoted as mode shape B.
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For the mode shapes presented in figure 7(c)—(1), the above
definition is used to track a specific mode shape during the
modes interaction.

Next, the single and multi-modal predictions of the non-
dimensional sample stiffness « is presented in figure 8(a) and the
corresponding relative error in figure 8(b). The single mode
prediction results using mode 1 and mode 3 show excellent
performance in the range of o < 30, with mode 2 performing
very good for a similar range. The effect from eigenmode veering
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percent of relative error (b) presented for the nano-needle case. Mode 1/2/3 are the results for the single mode prediction. Mode r-s is the
result for a multi-modal prediction using data from mode r and mode s.

causes a change in the prediction, observable mainly in the
veering range. In the multi-modal prediction analysis, the solu-
tions are limited to physically meaningful solutions, i.e. a >0
and 2/3 < ¢ < 1. The multi-modal prediction using modes r and
s is denoted as: mode r—s. The prediction error of mode 1-2
follows the error of the single mode 2 prediction, thus the multi-
modal approach is affected more by the mode with the larger
error. As mode 1 and mode 2 undergo eigenmode veering with
each other, the multi-modal prediction using mode 1-2 does not
fail as the information is maintained within the couple. None-
theless, within the eigenmode veering ranges, the multi-modal
prediction does fail, similarly to the single mode prediction. The
mode 2-3 prediction performs similarly to the mode 1-2 pre-
diction before the first veering, and after the second veering. The
similarity can be explained due to the fact that both mode 1 and
mode 3 perform better than mode 2 in the single prediction.
Therefore, the multi-modal prediction error is dominated by the
mode with the larger error, i.e. mode 2. Between the first veering
and the second veering of modes 1 and 2, the mode 2-3 pre-
diction fails while the mode 1-3 prediction performs excellent.
Outside of the discussed range, the mode 1-3 prediction fails.
After the second veering, mode 3 lacks sufficient measurement
sensitivity [49] (different than the eigenfunction sensitivity), as
the single mode prediction underperforms as well.

Before the first veering both mode 1 and mode 3 show
excellent single mode prediction performance, and therefore it
was expected that the mode 1-3 multi-modal prediction also
perform well. This discrepancy can be explained by further
investigation of the specific mode shapes. The mode combination
that does not yield a solution is more suitably named mode A—C,
rather than mode 1-3. After the first veering the mode B—C does
yield good results. By considering the mode shapes A and C, it is

Table 5. Investigation of mode A and C behavior. Comparison of the
ML, and the E-B fixed-free eigenvalues, and the ratio between the
maximum displacement of the tip and beam in their own reference

frames :Ziix:: for the rth mode.
0 AL> max (W2 r)
f, &kHz) AL, BaL oL max(Wi.5)
Mode A 65.1 1.8740 1.8751 0.9994 9134
Mode C 408.3 4.6934  4.6941 0.9999 973.7

found that they are both dominated by tip motion, as can be seen
in figure 7(c)—(g) and (m)—(q). In order to quantify the partici-
pation of the beam and tip in a specific mode shape, two factors
are considered in the freely vibrating case (out-of-contact). The
first factor is the value of A\,L, compared to the Euler—Bernoulli
(E-B) fixed-free eigenvalues. The second factor considered is the
ratio between the maximum displacement of the tip relative to the
maximum displacement of the beam, each in its own reference
frame. The E-B fixed-free eigenvalues are determined from the
characteristic ~ equation: cos(8,L) - cosh(8,L) + 1 0,
with the first two solutions presented in table 5. AL, is the
separation constant for the tip equation of motion, and is related
to the eigenvalues of the system by the relation presented in
section 2: MLy = )\ILI\/E . The free eigenfrequencies of the
entire system, presented in table 5, and equation (17) with the
calculated C parameter, are used to calculate the eigenvalues
AiLy. Then, the relation between the separation constants given
above is used, to find M\,L,. By considering the ratio between
XL, and the fixed-free E-B eigenvalues (3,L, very high similarity
is found. Furthermore, the ratio between the tip maximum dis-
placement and the beam maximum displacement is almost 3
orders of magnitude. The similarity between AL, and the E-B

12
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Figure 9. A review of the nondimensional parameters for sensors tips. (a) £ as a function of A. (b) R, as a function of A.

fixed-free eigenvalues, and the large difference in the tip and
beam displacements, determines that modes A and C are by and
large tip motion dominant modes, with negligible beam partici-
pation. With that in mind, the effect of the normal spring on a tip
motion dominated mode is negligible, because the motion at the
end of the L-shaped beam is primarily orthogonal to the normal
spring direction for tip-motion dominated modes. Therefore, data
from two tip modes, such as mode A and C, does not provide
sufficient information to solve for both o and ¢ in a multi-modal
procedure.

The multi-modal prediction results demonstrate the necessity
in identifying the eigenmode interactions for suitable selection of
modes and ranges for prediction. Nonetheless, the range in which
the eigenmode veering is occurring is found to be mostly
unsuitable for prediction using either the single mode or the
multi-modal prediction procedures.

4.3. Elastic tip model range

In this section, the physical parameter range in which the use
of the ETM is required for prediction accuracy will be
examined, as opposed to previously discussed models. First,
different tips used for atomic force microscopy are reviewed.
The findings are divided into four different groups: Nano-
needles, qPlus, Rocky Mountain nanotechnology (RMN), and
traditional AFM sensors. The domain of system parameters
for these different tip geometries is inspected. Findings are
plotted in figure 9. Ellipses are used to circle 4 different
groups found in the data, representative of the 4 groups of
sensor tips: Nano-needle (purple), qPlus (red), RMN (light
brown), and traditional AFM sensors (blue).

For traditional AFM sensors a pyramidal tip of height
12.5 ym is assumed, and a square base of length 11 ym. The
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static stiffness of a pyramidal tip is estimated using a FE static
analysis by applying a unit load and measuring the directional
displacement. Once the static displacement of the tip is found,

and the nondimensional tip mass is calculated based on the
ke

ky

level of dynamic coupling between the beam and the tip. The
RMN sensors are solid platinum sensors with large conical tips.
The static stiffness of the conical tips are estimated using [50].
The traditional AFM sensors combine low A, R, and #values,
thus validated CR models are widely available and reviewed in
[51]. The RMN sensors include significant tip mass and length,
and are unlikely to perform well using CR models that do not
include these effects in the model. The dynamic coupling para-
meter R; for the RMN sensors varies from about R; = 0.05 to
approximately R;= 1.2. For such a wide range, a differentiation
between the use of the ETM presented here, to the use of the
rigid tip model (RTM) presented in [20] is required. Zimron-
Politi and Tung [21] have used an RMN sensor in CR and
compared the data analysis of using a traditional CR model [2] to
the RTM. Their findings showed that no results were obtained for
the traditional CR model while the use of the RTM was limited
to about 10% error. They have also suggested that elastic effects
from the tip affected their results in both the estimation of the
system parameters and the CR analysis.

Considering the nano-needles, it is found that in most
cases the tip mass is relatively small, even compared to tra-
ditional AFM sensors. Nonetheless, in most cases considered
for the nano-needles, the dynamic coupling R, is large. Using
the qPlus sensors, a combination of large tip mass and length,
along with large dynamic coupling, in some cases are found.
The gPlus sensors studied here vary almost three orders of
magnitude from approximately R; = 0.02 to R, = 12.5.

geometry, the definition of R; = - A is used to estimate the
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Figure 10. The 3 lowest eigenvalues calculated using both ETM (solid lines) and RTM (dotted lines). Each of the figures represent a different
R, case for the ETM results, while the RTM results are unaffected. Mode 1 in red, Mode 2 in blue, and Mode 3 in purple.

To estimate the ranges in which the ETM is recom- cases of qPlus and nano-needle sensors, respectively, is
mended for use, it is compared with the RTM, which is plotted. The values presented in tables 2 and 4 for A, ], and ¢
considered the closest CR model to the ETM to date. The are utilized.

ETM deviates from the RTM by considering the dynamic Based on the two cases studied here: a massive tip qPlus
effects from the vibrations of the tip, encapsulated in the sensor and a light tip nano-needle sensor, it is found that the
nondimensional parameter R,. The first three eigenvalues are  expected deviation between the ETM and RTM begins at R,
calculated using both the ETM and RTM for a range of o values as low as 0.05. Furthermore, it is found that the higher
values, and for different values of R,. In figures 10(a) and (b), the mode number is, the deviation between the two models
the comparison between the ETM and RTM results for the begins for a lower « value. For cases in which one of the 3
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lowest eigenvalues includes significant tip motion, and cannot
be estimated based only by the beam motion, the use of the
RTM will become highly inaccurate.

5. Conclusions

In this work, a new theoretical model for the vibrations of an
L-shaped beam fixed at one end, and elastically supported at
the other end by two linear springs is introduced. A derivation
of the characteristic equation for the vibration analysis of the
system is presented, along with the eigenvectors. The ortho-
gonality condition for the system is derived and used as a
sensitivity function to examine the existence of eigenmode
veering and crossing, with the change in the nondimensional
sample stiffness. A scheme for the use of out-of-contact
experimental data for the calculation of the system’s non-
dimensional parameters is presented and used during a
numerical experiment. A numerical experiment is used to
mimic contact resonance atomic force microscopy, using long
elastic tips for verification of the new model. A finite element
modal analysis results of an AFM qgPlus sensor, and a micro-
sensor equipped with a nano-needle, is used as the setup of
the numerical experiment. The results show that in spite of
eigenmode veering in the data, the proposed model is able to
predict the sample stiffness with a relative error of no more
than 10% for significant practical ranges, using several dif-
ferent modes. The percent of relative error for both numerical
experiment cases are presented in figures 5(c) and 8(b), and
summarize the verification of the model. Considering the two
example cases of a qPlus sensor and a nano-needle discussed
in this work, it is found that the use of the ETM is crucial for
systems with R, > 0.05.

For cases in which CR multi-modal analysis is per-
formed, to solve for an additional system parameter along
with «, the ability to detect and compensate for eigenmode
veering and crossing is highly important. For cases where the
two modes used for multi-modal analysis are interacting with
each other by veering or crossing, no degradation to the
prediction is expected. Conversely, if one (or two) of the
modes used for multi-modal analysis is interacting with other
modes, significant error in the prediction of the variables is
expected.

To date, the proposed ETM is the only contact resonance
model accounting for tip flexibility. All prior CR models are
based on a single beam with various boundary conditions,
where the tip flexibility is neglected. The use of a two-beam
model to account for both beam and tip motion, opens new
venues in CR. Though the discussion mostly focuses on
prediction accuracy, note that the ETM is the only CR model
to predict any tip motion.

The use of long, massive, elastic tips give rise to an
increase in the out-of-plane modes. The ETM focuses on the
in-plane transverse vibration of the beam-tip-sample system.
The AFM user is encouraged to utilize both transverse and
lateral channels to properly infer transverse modes. The use of
additional sensors, such as a laser Doppler vibrometer, can
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also assist the experimentalist in the identification of trans-
verse modes.

The model presented in this work is also of interest to the
structural dynamics community as it is can be used for the
prediction of a L-shaped structure eigenfrequencies and
corresponding eigenmodes. An extension to this work may
include incorporating sample visco-elasticity, axial flexibility
of the structure, adjustable tip location, tilt angle with respect
to the sample, and the inclusion of out-of-plane modes in the
analytical model.
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Appendix A. Elements of matrix M

The elements of matrix M;;, presented in equation (11), are as
follows:
Let us use A\{L; = AL for simplicity.

M; 1 = (cos(AL) + cosh(AL))(AL)?.
M, 5 = (sinh(\L) + sin(AL))(AL)>.

My = L (AQL)YR cos OLYRY)
d2
+ 3sin (AL/Rg)Rz20¢p
— sin(ALJRy) AL Ry).
—A

-3¢
M4 = i
b R,2 (( 3
cosh (AL:/Ry)
+ (Rﬁaas - %A(AL)ZJE)cos@LJR_d)

(ALY Ry — R}a¢)

_ %A(/\L)Z(AL Ry sin(\LyRy)

— AL Ry sinh(A\L\JRy) — 24/R2)).
¢

3
d2

+3sinh (AL\/Rg)Ry2ap + sinh (AL\/Rg) A(AL)*\Ry).
M, 1 = (sinh(A\L) — sin(A\L))(\L)?
—((ALY*A — 3a)(cos(AL) — cosh(AL)).
M, = (cos(AL) + cosh(AL))(AL)?
—((AL)*A — 3a)(—sinh(AL) + sin(AL)).

My s = —(—A(AL)’Rq cosh (AL\Ry)
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M2,3 =0.
Moy = 0.
M2,5 =0.

M; ) = —{(sinh(AL) + sin(A\L)).
Ms, = {(cos(AL) — cosh(AL)).

Ms3 = Ry.

M3,4 =0.
M5 = \Ry.
M4,| =0.
M, =0.

Mys = —sin(ALJRy).
My 4 = cosh(AL\Ry) + cos (AL\Ry).

M, 5 = sinh (AL\/Ry).
Ms, = 0.
M5 2 = 0.

Ms; = ——(A(AL) JRy cos (AL \Ry)
+3 sin (AL /Ry)Rya).

&(A(gm sinh (AL JRy) VRa

A

- BOL o VR VR

+cos(>\L JRi)Rya¢p — cosh(AL JRy)Ry0).
Mss = —(A(/\L)3 cosh (AL \/R;)/Ra

-3 smh()\L JRI)R ).

Msy =

Appendix B. Orthogonality condition

Here, the orthogonality condition for the model developed in
this work is derived. To begin, consider the nondimensional
form of the EOM for the beam, given in equation (5), for two
distinct solutions, mode r and mode s:

VVI,rW = (/\l,rLl)4 : ‘/Vl,r,
VVI,SW == (AI,SL])4 ‘ VVI,S-

B
(B2)

where W, , is the spatial solution to the deflection of the
‘beam’ section for the nth mode, and W,, is the spatial
solution to the deflection of the ‘tip’ section for the nth mode.
Multiplying equation (B1) by W, g, equation (B2) by W, ,, and
integrating over the domain gives:

1 1
Jwe i dg = [T OnL® - W W g,

(B3)

1 1
j(; vvl,s”” . Vvl,r : dC] = L/(; ()\I,SLI)4 ' VVI,S : vvl,r . dC]
(B4)
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Subtracting equations (B4) from (B3) leads to:
1
Jo W Wi = Wi - W) - dp = (ML)

—OuL)Y) - [ Wi Wi - dg, (BS)

Applying integration by parts twice to the left hand side
of equation (B5), and using the boundary conditions given in
equation (9) gives:

1
(OeL))* — sL)®) - { j; Wi+ Wi - dG + Wis(1)

A Wig(D) + W (D - 1 W (D)

1
+A8 - [0 G (Onda)® - War - Wa/(D)
0
~QuLnt - W WL (D) - dG
=366 - (W (1) - War() = W(1) - Wa (1),
(B6)

Next, consider the nondimensional form of the EOM for
the tip, given in equation (6), for two distinct solutions, mode
r and mode s:

mo__
W, =

mo__
W =

Aail) - (War + G - W (1), B7)
AasLa)t - (Was + G - Wi (1), (B3)

Multiplying equation (B7) by W, , and equation (B8) by
W, and integrating over the domain gives:

1 1
Jo War - Was - dGy = [ QL)

'(W2,r + Cz : VVl/,r(l)) : VVZ,S . dCz,
1 1
Jy Wi W - dGy = [ Ouila)?
'(VVZ,S + CZ . VV],S/(I)) : VVZ,r : d<2
Subtracting equations (B10) from (B9) leads to:

(B9)
(B10)

1
j; (War™ - Wag — W " - Way) - dCy
1
=((MarLa)* — (Casla)®) - j; Wa, - Wa - dC,
1 !
FOoilo) - fo Gy Wag - Wi (1) - dCy — (asln)®

1
: fo G- War - Wi/ (1) - d.
(B11)

Applying integration by parts twice to the left hand side
of equation (B11), and using the boundary conditions given in
equation (9) gives:

1
RZ - (MaL))* — \sLn)®) - fo Wa, - Wa - dC,
2 ! /
R [ G (Ount - Wag - WD)
0
- (/\1,5L1)4 : VVZ,r : ‘/Vls/(l)) . dCz

- (Was(1) - W (1) — Wa, (1) - W {/(1)).
(B12)

R}
:3 —_—
o«bA



Nanotechnology 35 (2024) 075503

N Zimron-Politi and R C Tung

A-L?

Multiplying equation (B12) by R'Z
d

and subtracting it

from equation (B6) gives:

1
(()\l,rLl)4 - ()\I,SLI)4) . {L VVl,r : vvl,s : d<1 + vvl,r(l)

A Wi (D) + W (D) - I W ()
1
+ AL f War - Was + G - (War - Wi (D)
0
+Was - W, ()] - dGy) = 0.
(B13)

Recalling that r and s are distinct modes (N Ly = A sLq),
the orthogonality condition is obtained:

1
fo Wie Wi - dG + Wie(1) - A - Wig(1)
+ WL (D) -1 W)
1
+ AL fo [(Wor - Wy + G - (War

Wi (1) + Was - Wi ()] - dG, = 0. (B14)
The first row of equation (B14) represents the beam
section with the end mass and rotational inertia and is iden-
tical to the result obtained in [52]. The second row represents
the effects from the elastic tip section and the overall ortho-
gonality condition obtained here is equivalent to the one
given in [34] for the case of an ‘L-shaped’ beam with no
additional mass. As expected, the effects from the springs
discussed in this work (and not discussed in [34] cancel out,
and do not affect the final result [38]. Following the ortho-
gonality condition obtained in equation (B14), define:

S Wi Wi dg o+ WD) - A W)
W, () - I - WD)
FAC [ o Wy G Ol WD)
+Was - W ()] - dC, = 6. (B15)
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