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A Simple Temporal Network with Uncertainty (STNU) is a data structure for reasoning 
about time constraints on actions that may have uncertain durations. An STNU is 
dispatchable if it can be executed in real-time with minimal computation 1) satisfying 
all constraints no matter how the uncertain durations play out and 2) retaining maximum 
flexibility. The fastest known algorithm for converting STNUs into dispatchable form runs 
in O (n3) time, where n is the number of timepoints. This paper presents a faster algorithm 
that runs in O (mn + kn2 + n2 logn) time, where m is the number of edges and k is the 
number of uncertain durations. This performance is particularly meaningful in fields like 
Business Process Management, where sparse STNUs can represent temporal processes or 
plans. For sparse STNUs, our algorithm generates dispatchable forms in time O (n2 logn), a 
significant improvement over the O (n3)-time previous fastest algorithm.

 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In many sectors of real-world industry, it is necessary to plan and schedule tasks allocated to multiple agents partici-
pating in complex processes. Temporal planning aims to determine the order of task execution while respecting temporal 
constraints such as, for example, release times, maximum durations, and deadlines [13]. To build feasible plans, a temporal 
planner must be able to do quantitative temporal reasoning. The literature includes many formalisms of temporal reasoning 
that differ in their expressiveness and computational complexity [13,2].

Over the past twenty-five years, several major application developers have highlighted the need for (1) the explicit 
representation of actions with uncertain durations; (2) efficient algorithms for determining whether plans involving such 
actions are controllable; and (3) efficient algorithms for converting such plans into a form that enables them to be executed 
in real-time with minimal computation, while preserving maximum flexibility. For example, researchers working on NASA’s 
Deep Space One and Remote Agent projects stressed that, during the real-time execution of a plan, “The latency issue affects the 
form of updates that are propagated through the network, and reinforces the need for an efficient executive component. This motivates 
the use of limited propagation, which in turn introduces the need to augment the network with implied links . . .which are also useful for 
supporting stronger forms of propagation that are required to handle scheduling with uncontrollable events [e.g., actions with uncertain 
durations]” [28]. More recently, the need to address these kinds of issues has been raised in a variety of domains involving 
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Fig. 1. A plan fragment for an autonomous spacecraft [28] and two equivalent representations of its temporal aspects as an STNU.

autonomous robots [16,6], rovers [4,35,1], and underwater vehicles [37,19,3,1,12], as well as more broadly in the field of 
Business Process Management [7,20,22,21,10,14,15,31,11].

Over the past two decades, numerous researchers have made significant theoretical and practical progress in all of these 
areas, as follows: (1) providing the theoretical foundations for Simple Temporal Networks with Uncertainty (STNUs) which 
can be used to explicitly represent actions with uncertain durations [26,17]; (2) providing polynomial-time algorithms for 
determining whether any given STNU is dynamically controllable (DC) [27,38,23,24,30,5]; and (3) providing polynomial-time 
algorithms for converting an STNU into so-called dispatchable form [29,39,36,24,25].

For a simple illustration, Fig. 1a shows a sample plan fragment for an autonomous spacecraft that consists of two time-

lines: one for the engine, and one for its attitude, where the timing of the thrust, point and idle actions are assumed to 
be under the full control of the execution module, whereas the warm_up and turn actions are assumed to have uncontrol-
lable, but bounded durations. In other words, the execution module controls when instances of these actions start, but only 
observes their completion in real time, as they occur. The temporal aspects of this plan can be represented by an STNU, 
shown in Fig. 1b, where timepoints such as A, B , and C represent the starting or ending times of actions, arrows labeled 
by intervals represent temporal constraints to be satisfied, and double arrows labeled by intervals represent so-called con-
tingent links. For each contingent duration, the execution module is presumed to control the starting time of the action, but 
not its duration. However, it may react to observations of contingent executions in real-time. Fig. 1c shows an alternative, 
equivalent representation of that STNU.

For any STNU, it is important to determine whether it is dynamically controllable (i.e., whether it is possible, in real-
time, to schedule all of its non-contingent timepoints such that all constraints will necessarily be satisfied no matter what 
durations turn out for the contingent links). Several polynomial-time algorithms are available to solve this so-called DC-
checking problem [27,23,24,5]. However, once an STNU is known to admit a dynamic scheduler, it is also important to be 
able to compute one efficiently. For maximum flexibility and minimal space and time requirements, a dynamic scheduler 
for an STNU is typically computed incrementally, in real-time, so that it can react to observations of contingent executions 
as they occur. An efficient dynamic scheduler can be realized by first transforming an STNU into a dispatchable form [29,39]. 
Then, to execute the dispatchable STNU, it suffices to maintain time-windows for each timepoint and, as each timepoint X
is executed, only updating time-windows for neighbors of X in the graph. Dispatchable STNUs are very important in appli-
cations that demand quick responses to observations of contingent events. Furthermore, applications that involve frequent 
replanning require efficient algorithms for converting STNUs into dispatchable forms.

Previously, in the literature, the fastest algorithm for computing the dispatchable form of a dynamically controllable 
STNU is Morris’ 2014 algorithm, which runs in O (n3) time, where n is the number of timepoints [24]. This paper presents a 
faster, O (mn + kn2 + n2 logn)-time algorithm for converting dynamically controllable STNUs into dispatchable form, where 
m is the number of temporal constraints, and k is the number of contingent links. Such an improvement in time complexity 
is significant for practical applications (e.g., modeling business processes) where the networks are typically sparse. For ex-
ample, if m = O (n logn) and k = O (logn), then our algorithm runs in O (n2 logn) � O (n3) time. Similarly, if m = O (n1.5) and 
k = O (

√
n), then our algorithm runs in O (n2.5) � O (n3) time. Furthermore, our algorithm achieves an order-of-magnitude 

speed-up in practice because it typically inserts an order of magnitude fewer new edges into the network than does Morris’ 
algorithm. The paper includes a proof of correctness for our algorithm and an empirical evaluation that demonstrates its 
better performance over existing public benchmarks.

2. Background

A Simple Temporal Network (STN) is a data structure for representing and reasoning about time constraints on actions, 
where each action is represented as a pair of instantaneous events called timepoints, representing the starting and ending 
times of the action. Formally, an STN is a pair (T , C), where T is a set of real-valued variables (timepoints), and C is a 
set of binary difference constraints of the form, Y − X ≤ δ, where X, Y ∈ T and δ ∈R [9]. The graph of an STN is a pair 
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Table 1

A high-level comparison of the two fastest DC-checking algorithms for STNUs.

Algorithm Time-complexity Problem edges Rules Prop dirn Prop along Pot func?

Morris 2014 O (n3) Neg. edges Table 2 Bkwd Non-neg. edges No

RUL− 2018 O (mn + k2n + kn logn) UC edges Table 3 Bkwd LO-edges Yes

(T , Eo), where for each (Y − X ≤ δ) in C , there is a labeled directed edge X δ Y in Eo . In this paper, the constraints and 
edges associated with an STN are called ordinary constraints and edges.1 For convenience, ordinary edges may be notated 
as (X, δ, Y ). An STN is consistent (i.e., has a solution) if and only if its graph has no negative cycles [9]. Finally, two STNs 
over the same set of timepoints are called equivalent if they admit the same set of solutions.

A Simple Temporal Network with Uncertainty augments an STN to accommodate actions with uncertain durations [26]. 
An STNU is a triple (T , C, L), where (T , C) is an STN, and L is a set of contingent links, each having the form (A, x, y, C), 
where 0 < x < y < ∞, and A, C ∈ T . Each (A, x, y, C) represents an uncertain duration where x ≤ C − A ≤ y. A is called the 
activation timepoint; C , the contingent timepoint; and �C = y − x, the uncertainty in the link’s duration. Although distinct 
contingent links may share an activation timepoint, they must have distinct contingent timepoints. We let TC denote the 
set of contingent timepoints, and TX = T \TC the set of executable timepoints.

The graph for an STNU (T , C, L) is a pair, (T ,Eo ∪ E� ∪ Eu), where (T , Eo) is the graph for the STN (T , C), and the 
contingent links in L correspond to edges in E� ∪Eu . Specifically, for each (A, x, y, C) ∈L, there are two edges: a lower-case

(LC) edge, and a upper-case (UC) edge. The lower-case (LC) edge A c:x C in E� represents the uncontrollable possibility that 

the duration C − A may be as low as x. The upper-case (UC) edge C C :−y
A in Eu represents the uncontrollable possibility that 

the duration C − A may be as high as y.
Such edges may be notated as (A, c:x, C) and (C, C :−y, A), respectively.2 Fig. 1c shows the STNU graph corresponding 

to the plan fragment from Fig. 1a. It contains three contingent links, where W , A and C are the activation timepoints, and 
T , B , and D are the contingent timepoints.

Following the literature, we let n = |T |, m = |C|, and k = |L|; E�o = E� ∪ Eo the set of LO-edges; (T , E�o), the LO-graph; 
Eou = Eo ∪ Eu , the set of OU-edges; and (T , Eou), the OU-graph.

If L is empty (i.e., no contingent links), then the STNU S = (T , C, ∅) reduces to the STN (T , C). In addition, for any 
STNU, the corresponding LO-graph and OU-graph may be viewed as STNs by ignoring the alphabetic labels on their edges.

2.1. Dynamic controllability

Although the durations of contingent links are typically not known in advance, a dynamic strategy can be used to govern 
the execution of the executable timepoints (i.e., those in TX ). Unlike fixed solutions for STNs, a dynamic strategy for an 
STNU may react in real-time to observe executions of contingent timepoints (i.e., those in TC ), but its decisions about when 
to execute timepoints in TX cannot depend on advance knowledge of future events. If there exists a dynamic strategy for 
executing the timepoints in TX that guarantees that all ordinary constraints will be satisfied no matter how the durations 
of the as-yet-unexecuted contingent links turn out, then the STNU is said to be dynamically controllable (DC) [26,17].

Given its practical importance, researchers have recently presented several efficient DC-checking algorithms, all of which 
use (sound) rules for generating new edges that effectively bypass certain kinds of problematic edges in the STNU graph. For 
each algorithm, if the generation of bypass edges does not yield a certain kind of negative cycle, then the STNU is necessarily 
DC. The algorithms differ in the kinds of edges they view as problematic, the edge-generation rules they use, the direction 
of propagation (forward or backward), whether they need to compute and update a potential function, and, if so, the edges 
from which the potential function is derived. The two fastest DC-checking algorithms, the O (n3)-time algorithm due to 
Morris [24] and the O (mn + k2n + kn logn)-time algorithm due to Cairo et al. [5], will be most relevant for this paper. Their 
high-level features are compared in Table 1.

2.1.1. The Morris 2014 DC-checking algorithm
Morris [24] introduced an O (n3)-time DC-checking algorithm that uses the edge-generation rules shown in Table 2. 

(The edges generated by the rules are shown as dashed.) The algorithm views negative edges (i.e., edges having a negative 
weight) as problematic. It propagates backward from so-called negative nodes (i.e., nodes having one or more incoming 
negative edges) along paths in the LO-graph, aiming to generate non-negative edges to effectively bypass the negative edges.

Fig. 2 shows sample propagations by the Morris 2014 algorithm. Each starts from the source node of a negative edge 
(shown as red and thick) and proceeds backward along non-negative LO-edges. Since all edges (other than the first one) 

1 In the literature, STNs and their graphs are sometimes defined using an interval notation, where a constraint Y − X ∈ [a, b], sometimes called a 
requirement link, is equivalent to the pair of ordinary constraints, Y − X ≤ b and X − Y ≤ −a; and the link X [a,b]

Y is equivalent to the pair of ordinary 
edges, X b

−a
Y . The interval notation is not used in this paper because it frequently requires the use of ∞ and −∞ to represent “no constraint”. In 

addition, each interval-based constraint has two representations (e.g., Y − X ∈ [a, b] is equivalent to X − Y ∈ [−b, −a]).
2 In the literature, and as illustrated in Fig. 1b, contingent links in STNU graphs are sometimes represented using intervals. This paper prefers the labeled 

LC and UC edges because they enable a more intuitive form for constraint-propagation rules.
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Table 2

Edge-generation rules used by Morris 2014 [24].

Rule Graphical representation Conditions

(NC) X Y W
v w

v + w

(none)

(UC) X Y A
v C :w

C :v + w
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w < 0
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Fig. 2. Sample Propagations by the Morris 2014 Algorithm. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

are non-negative, Dijkstra’s algorithm [8] can be used to guide the traversal of shortest paths without needing a potential 
function.

In Fig. 2a, the NC (No Case) and LC (Lower Case) rules (shown in parentheses) are used to generate the non-negative 
bypass edge (U , 4, W ), shown as blue and dashed. The intermediate edges, shown as dotted, are computed along the way, 
but not inserted into the graph. More generally, a single run of Dijkstra can be used to generate bypass edges for multiple 
ordinary negative edges incoming to a single node.

Fig. 2b is similar to 2a, except that the initial edge (C, C :−15, A) and the intermediate (dotted) edges are UC edges. The 
intermediate UC edges, generated by the UC (Upper Case) and CC (Cross Case) rules, correspond to conditional constraints, 
called waits. For example, the edge (A′, C :−10, A) corresponds to a wait that can be glossed as: “While C remains unexecuted, 
A′ must wait at least 10 after A.” Finally, the UC and LR (Label Removal) rules combine to generate the bypass edge (U , 4, A), 
shown as blue and dashed.

This approach to generating bypass edges does not generalize to cases in which the negative edges coming into a node 
include both ordinary and UC edges or multiple UC edges. Therefore, the algorithm first does an O (n)-time pre-processing 
step to ensure that the negative edges coming into a negative node are either all ordinary edges or a single UC edge, but 
not both.

Fig. 2c shows that back-propagation from one negative edge can be interrupted by an encounter with another negative 
edge. Here, back-propagation from C is interrupted by the negative edge (V , −7, W ). Once edge (V , −7, W ) is bypassed by 
the (blue, dashed) edge (U , 15, W ), back-propagation from C can continue, eventually generating the (blue, dashed) edge, 
(U , 2, A). More generally, any time the processing of a negative node X encounters another negative node Y , the processing 
of X is interrupted until the processing of Y is completed. A cycle of such interruptions, which is easy to track, necessarily 
corresponds to a cycle of (negative) intermediate (dotted) edges, as shown in Fig. 2d, which signals that the STNU is not DC. 
If all negative nodes can be fully processed without encountering such a cycle, then the network is guaranteed to be DC.

Since there are at most O (n) negative nodes, and the processing of each negative node can be done in O (m̂ + n logn)

time, where m̂ = O (n2) is the number of edges in the graph at the end of the algorithm, the overall complexity is O (n3).

2.1.2. The RUL− DC-checking algorithm
Cairo et al. [5] introduced a DC-checking algorithm, called RUL− , that views UC edges as problematic. From each UC edge 

E , it propagates backward along LO-edges, using the rules from Table 3, aiming to generate ordinary edges that bypass E .
Because LO-edges can be negative, the algorithm computes and updates a solution for the LO-graph, viewed as an STN. 

As in Johnson’s algorithm [8], it uses this solution as a potential function to enable Dijkstra-like traversals of shortest paths. 
The potential function is initialized by an O (mn)-time call to Bellman-Ford [8], and periodically updated by an incremental 
algorithm similar to the one of Ramalingam et al. [34]. Since there are k UC edges, and it adds at most kn edges, the overall 
complexity reduces to O (mn + k2n + kn logn), a significant improvement over O (n3), especially for sparse graphs.
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Table 3

Edge-generation rules used by RUL− [5].

Rule Graphical representation Applicability conditions

(R)
P Q C

v w

v + w Q ∈ TX , w < �C ,C ∈ TC

(L)
A j C ′ C

c′:x′ w

x′ + w C ′ 
≡ C, w < �C ,C ∈ TC

(Ulp)
P C A

v C :−y

v − y (A, x, y,C) ∈ L, v ≥ �C

(Unlp)
P C A

v C :−y

−x (A, x, y,C) ∈ L, v < �C

A

(Assuming (A,8,20,C) ∈ L)

CXC2A2WT
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Fig. 3. RUL− generating bypass edges for the (thick, red) UC edge.
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Fig. 4. RUL− dealing with an interrupting UC edge, assuming that the relevant contingent links are (A′,1,9,C ′) and (A,8,20,C).

Fig. 3 illustrates the two-phase processing of a UC edge E = (C,C :−20, A) by the RUL− algorithm. The first phase prop-
agates backward from C along LO-edges, using the R (Relax) and L (Lower) rules from Table 3 to generate ordinary edges 
terminating at C (shown as dotted edges). The applicability conditions of the R and L rules ensure that this phase stops 
when an edge with length at least �C = 20− 8 = 12 has been generated: here, with the edge (T , 14, C). Then, for each 
newly generated (dotted) edge Ê , the second phase combines Ê with E using either the Unlp or Ulp rule to generate bypass 
edges (shown as dashed or dash-dotted). (U is for Upper; nlp is for non-length-preserving; and lp is for length-preserving.) The 
applicability conditions for these rules ensure that every bypass edge will have length −x = −8 (shown in brown, dashed), 
except the last one (shown in blue, dash-dotted), which has length 14 − 20 = −6.

In general, the back-propagation in the first phase is guided by a Dijkstra-like traversal of LO-paths, which is made 
possible by using the above-mentioned potential function to reweight the edges in the LO-graph. If, as is typical, the bypass 
edges inserted into the graph during the second phase introduce new shortest paths into the LO-graph, then the potential 
function for the LO-graph must be incrementally updated, as previously mentioned, in preparation for processing the next 
UC edge.

The RUL− algorithm’s processing of one UC edge can be interrupted by another, as shown in Fig. 4, where the first-
phase back-propagation from C is interrupted by the UC edge (C ′, C ′:−9, A′). Processing this UC edge generates the (blue, 
dashed) bypass edge (T , 9, A′), after which the first-phase processing of (C, C :−20, A) continues, generating the (dotted) 
edge (T , 14, C) and, in the second phase, the bypass edge (T , −6, A). Similar to the Morris 2014 algorithm, a cycle of such 
interruptions would imply that the STNU was not DC, but if all UC edges can be fully processed without encountering such 
a cycle, then the network must be DC.

2.2. Dispatchability

Although the DC property for STNUs is important, knowing that a dynamic strategy exists is not the same as being able 
to efficiently compute one. For one thing, a dynamic strategy for an STNU may have exponentially many branches, and 
so it may not be practical to compute it in advance. Instead, such strategies are typically computed incrementally, in real-
time, which enables execution decisions to react to observations of contingent executions as they occur. Such considerations 
led researchers to define the dispatchability of temporal networks, and to develop algorithms for converting STNUs into a 
dispatchable form. Dispatchable STNUs are very important in applications that demand quick responses to observations of 
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Fig. 5. A vee-path of length 3 in an STN.

contingent events. The rest of this section summarizes relevant results from the literature on dispatchability—for STNs and 
STNUs.

2.2.1. STN dispatchability
Although solutions for consistent STNs can be efficiently computed in advance, it is often desirable to compute solutions 

incrementally, in real-time, to preserve as much flexibility as possible during execution. Toward that end, Tsamardinos et 
al. [39] defined a real-time dispatching (RTD) algorithm that incrementally attempts to compute a solution for an STN in real-
time, using only local propagation. For each timepoint, the RTD algorithm maintains a time-window that contains possible 
values for it. The algorithm iteratively selects a timepoint X to be executed next and a time v at which to execute it. It then 
updates the time-windows for neighbors of X (i.e., timepoints that are connected to X by a single edge—hence, local). For 
example, if X is executed at time 10, then an outgoing non-negative edge (X, 5, Y ) generates an upper bound of 10 +5 = 15

for Y , and an incoming negative edge (W , −3, X) generates a lower bound of 10 + 3 = 13 for W . In addition, once X has 
been executed at time v , all remaining unexecuted timepoints must be executed at or after v . (No going backward in time.) 
It follows that a timepoint is enabled for execution only if all of its outgoing negative edges terminate at already-executed 
timepoints. Because it performs only one update per edge, the RTD algorithm runs in O (m) time, making it very practical.

Tsamardinos et al. [39] then defined an STN graph G to be dispatchable if every run of the RTD algorithm on G is guar-
anteed to generate a solution for G—no matter how the choices of X and v are made, as long as the time-window bounds 
and enablement requirements are observed. Muscettola et al. [29] then gave an O (mn + n2 logn)-time algorithm, called 
fastDispatchMin (FDM), that converts any consistent STN into minimal dispatchable form (i.e., an equivalent dispatchable STN 
having the fewest edges). More recently, Morris [25] provided a graphical characterization of STN dispatchability in terms 
of vee-paths. A vee-path is any path that consists of zero or more negative edges, followed by zero or more non-negative 
edges. An STN is vee-path-complete (VPC) if, whenever there is a path from any X to any Y , there is a shortest path from X
to Y that is a vee-path.

Theorem 1 (Morris [25]). A consistent STN is dispatchable if and only if it is vee-path-complete.

The intuition behind this result is illustrated in Fig. 5. Given that the RTD algorithm only executes a timepoint if it has no 
negative outgoing edges to unexecuted timepoints, RTD will execute U before V , and V before W . But then local propagation 
ensures that V − W ≤ −4 and U − V ≤ −1 will necessarily hold. Next, if RTD executes X before U , then X ≤ U < U + 2

ensures that X − U ≤ 2 will hold. But if RTD executes U before X , then local propagation ensures that X − U ≤ 2 will hold. 
Similar remarks apply to the constraint Y − X ≤ 6. Since the RTD algorithm necessarily satisfies each edge constraint along 
the path from W to Y , it necessarily satisfies the path constraint Y − W ≤ 3.

2.2.2. eSTNU dispatchability
Morris [24] generalized the notion of dispatchability from STNs to extended STNUs (eSTNUs), which are STNUs along 

with any generated UC edges (e.g., the dotted UC edges in Fig. 2b). Recall that a generated UC edge such as (W , C :−5, A)

represents a conditional constraint, called a wait: as long as C remains unexecuted, W must wait until 5 after A. His main 
result builds on the notion of a projection for an eSTNU, which is an STN that results from choosing fixed durations for the 
contingent links.

Projection. Let G = (TX ∪ TC , Eo ∪ E� ∪ Eu ∪ Eug ) be any eSTNU graph where Eu contains the original UC edges, and Eug

the generated UC edges (i.e., waits). A situation for G is any function, ω : TC → R, that specifies fixed durations for the 
contingent links. In particular, for each (A, x, y, C) ∈ L, ω(C) ∈ [x, y]. (We’ll write ωc instead of ω(C).) The projection of G
in the situation ω is the STN (T , Eo ∪ Eω

� ∪ Eω
u ∪ Eω

ug
), where for each (A, x, y, C) ∈L:

(LC) (A, c:x,C) ∈ E� iff (A,ωc,C) ∈ Eω
� ;

(UC) (C,C :−y, A) ∈ Eu iff (C,−ωc, A) ∈ Eω
u ; and

(Waits) (V ,C :−v, A) ∈ Eω
u iff (V ,−δ, A) ∈ Eω

ug
, where δ = min{v,ωc}.

The edges in Eω
� and Eω

u fix each contingent duration C − A to the value ωc . The edges in Eω
ug

depend on the relationship 
between the wait times and ωc . For example, Fig. 6 shows a projection where ωc = 5 for the contingent link (A, 1, 10, C). 
The waits for V and W expire when C executes at 5, and thus appear as unconditional lower bounds of 5 in the projection, 
while the wait for Y expires at 4, before C executes, and thus appears as an unconditional lower bound of 4 in the 
projection.

The following theorem, due to Morris [24], characterizes the dispatchability of an eSTNU in terms of its STN projections.

6
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Fig. 6. Projecting an eSTNU onto the situation where ωc = 5.

Theorem 2 ([24]). An eSTNU is dispatchable if and only if all of its STN projections are dispatchable (as STNs).3

Morris augmented his 2014 DC-checking algorithm to not only compute all intermediate (dotted) edges, both ordinary 
and upper-case, but also insert them into the graph. He then proved that, for DC inputs, the algorithm, which still runs 
in O (n3) time, necessarily outputs an equivalent dispatchable eSTNU. In contrast, the RUL− DC-checking algorithm offers 
no such guarantee. Therefore, Morris’ O (n3) algorithm is the fastest so far for transforming an STNU into dispatchable form. (Recall 
that the RUL− DC-checking algorithm has no guarantee of returning a dispatchable network. It typically does not return a 
dispatchable network.)

3. A faster dispatchability algorithm for STNUs

This section presents a novel algorithm, called FDSTNU , where FD stands for Fast Dispatch. Like Morris’ 2014 algorithm, 
our FDSTNU algorithm first checks the dynamic controllability of the input STNU and then, for DC instances, converts it 
into an equivalent dispatchable eSTNU. Its worst-case time complexity is O (mn + kn2 + n2 logn), where k is the number of 
contingent links and m is the number of ordinary edges. This complexity is better than the O (n3)-time complexity of the 
Morris 2014 algorithm, especially for sparse graphs (e.g., when k � n and m � n2). Since the Morris 2014 algorithm is the 
only other algorithm with a dispatchability guarantee for DC STNUs, FDSTNU is now the fastest such algorithm. The rest of 
this section describes the FDSTNU algorithm in detail and then proves its correctness.

The FDSTNU algorithm has three phases, as follows.

(1) It runs a variant of the RUL− algorithm, augmented to generate and insert new UC edges that correspond to wait 
constraints.

(2) It processes each LC edge, propagating forward along LO-edges, looking for opportunities to generate ordinary bypass 
edges.

(3) It runs the FDM algorithm [29] on the subgraph of ordinary edges, which is an STN, to convert it into a dispatchable
STN subgraph.

To motivate the different phases of the FDSTNU algorithm, consider the sample STNU shown in Fig. 7a, which happens 
to be dynamically controllable. Fig. 7b shows the same STNU together with the edges generated by the original version of 
the RUL− algorithm. In particular, the brown, dashed edges are obtained by applying the Unlp rule, and the cyan, dotted 
edge is obtained by applying the R rule. Even with these new edges, the STNU is not dispatchable, as demonstrated, for 
example, in Fig. 7c, which shows the STN projection in the situation where ωc = 4. Notice that this projection has paths 
from A to W , and from C to Y , but no corresponding vee-paths. Hence, for example, an STN dispatcher could inadvertently 
execute A, C , and Y at times 10, 14, and 16, respectively, before discovering (too late) that no value for X could satisfy 
18 = Y + 2 ≤ X ≤ C + 3 = 17. Similarly, it could execute A and Y at 0 and 1, respectively, before discovering that C
could not satisfy 4 = 4+ A ≤ C ≤ Y + 1 = 2. Or it could execute A and W at 0, before discovering that C cannot satisfy 
7 = 7 + W ≤ C ≤ A + 4 = 4.

In contrast, Fig. 7d shows how FDSTNU processes the same DC STNU. The first phase applies the RUL− algorithm, prop-
agating backward from the original UC edge (C, C :−10, A); but, instead of using the Unlp rule to generate the edges 
(Y , −1, A) and (X, −1, A), it uses the UC rule (from Table 2) to generate the (brown, dashed) wait edges (Y , C :−9, A)

and (X, C :−11, A). Next, the second phase propagates forward from the LC edge (A, c:1, C), using the LC rule (from Table 2) 
to generate the (teal, dash-dotted) edge (A, −6, W ). Finally, the third phase runs the FDM algorithm on the ordinary STN 
subgraph, inserting the (red, dotted) edges (C, 1, Y ) and (Y , −6, W ). Fig. 7e shows the STN projection for the situation 
where ωc = 4. It is easy to check that this projection is vee-path-complete and, hence, by Theorem 1, dispatchable. It can 
similarly be shown that every STN projection of the eSTNU in Fig. 7d is dispatchable (as an STN), and hence that the eSTNU 
output by the FDSTNU algorithm is dispatchable (as an eSTNU).

The next paragraphs provide more detail about the three phases of the new FDSTNU algorithm.

3 Equivalently, Morris [24] first proved the result and then defined dispatchability for eSTNUs in terms of the dispatchability of the STN projections.
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Fig. 7. Comparing RUL− and FDSTNU on a DC STNU.
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Fig. 8. Edges generated by Phase 1 of FDSTNU .

Phase 1: Modified RUL− . This phase involves running a slightly modified version of the RUL− algorithm. (If the input 
STNU is not DC, then Phase 1 will return ⊥.) Hunsberger and Posenato [18] recently showed that for DC checking, it is not 
necessary to insert the (dotted) intermediate edges generated by the R and L rules into the STNU graph (cf. Fig. 3); it suffices 
to merely keep track of the associated distances. They also showed that the Unlp rule, and all of the edges it would generate, 
can be completely avoided in exchange for doing a limited amount of forward propagation from LC edges in certain (rare) 
circumstances, discussed in a moment. By dramatically reducing the number of edges that the algorithm inserts into the 
graph, the many instances of Dijkstra-like propagation run much faster. They showed that their algorithm, called RUL2021, 
runs up to an order of magnitude faster on a variety of STNU benchmarks, although it has the same worst-case complexity.

Fig. 8 illustrates how Phase 1 exploits the distance information associated with the (dotted) intermediate edges to gener-
ate and insert new UC edges that correspond to wait constraints, shown as brown and dashed, with red labels. In particular, 
for each dotted edge, which Phase 1 computes but does not insert into the graph, the UC rule (from Table 2) is applied 
to combine that edge with the original (thick red) UC edge to generate, and insert, a new UC edge. For example, in Fig. 8, 
the UC rule applied to the dotted edge (C2, 4, C) and the original UC edge (C, C :−20, A) generates the new UC edge 
(C2, C :−16, A). Along with the new UC edges, Phase 1 also inserts ordinary bypass edges, such as the blue dash-dotted 
edge in Fig. 8, which RUL2021, like RUL− , computes using the Ulp rule.

As mentioned earlier, in exchange for not inserting the intermediate (dotted) edges during backpropagation, RUL2021 
does a limited amount of forward propagation. (This forward propagation is only included for the purpose of DC checking; 
it does not generate any new edges.) The forward propagation is triggered in the (rare) cases where back-propagation from 
a UC edge (C, C :−y, A) encounters a cycle, from C back to C , whose length is less than �C = y − x. Such a cycle has 
less flexibility than the contingent link; therefore, if any of its timepoints are constrained to occur before C , the network 
cannot be DC. To check this, RUL2021 propagates forward from C along LO-edges, keeping track of the shortest path-
lengths it encounters. (In addition, it only visits timepoints that belong to the triggering cycle.) Fig. 9 shows two similar-

looking, but critically different examples where this kind of forward propagation has been triggered because the preceding 

8
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Fig. 9. Two cases of a cycle (C, X, Y ,C) of length 3 < �C = 10 − 1 = 9 triggering forward propagation by RUL2021.
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Fig. 10. Sample forward propagation during Phase 2 of the FDSTNU algorithm.

back-propagation from (C, C :−10, A) encountered a cycle (C, X, Y , C ) of length 3 < �C . In the lefthand graph, forward 
propagation from C to X to Y reveals a negative-length path from C to Y which, for illustration, is represented in the figure 
by the dotted edge (C, −3, Y ). At this point, RUL2021 immediately stops because the STNU cannot be DC. (To see why, 
note that the LC rule could then generate the dashed bypass edge (A, −2, Y ), which would create a negative cycle, from 
A to Y to C to A, in the OU-graph.) In the righthand graph, no negative-length path emanating from C in the LO-graph is 
encountered. As a result, RUL2021 can resume its processing of UC edges, picking up wherever it had left off.4

Finally, to greatly simplify the proof of correctness for the new algorithm, Phase 1 uses a slightly relaxed version of the 
R rule from Table 3 in which the constraint Q ∈ TX is removed (i.e., Phase 1 allows the middle timepoint in the R rule to 
be any timepoint). This relaxed version of the R rule is still sound, since it is a version of the sound NC rule from Table 2

with stricter applicability conditions.
Phase 1 can be done in O (mn +k2n +kn logn), the worst case complexity of RUL2021 algorithm, where m is the number 

of edges, n the number of nodes, and k < n the number of contingent links.

Phase 2: Forward propagation. Because Phase 1 processes UC edges by propagating backward along LO-edges, the edges 
it generates to bypass UC edges may also inadvertently bypass some LC edges. For example, the LC edge (A2, c2:2, C2) is 
bypassed in Fig. 8 by the wait edge (A2, C :−14, A). However, because such back-propagation only starts from UC edges, it 
is not guaranteed to generate all possible bypass edges for LC edges. For example, for the STNU from Fig. 7a, neither RUL−

nor RUL2021 would generate the edge (A, −6, W ), which bypasses the LC edge (A, c:1, C).

Since, as illustrated in Fig. 7d-e, these kinds of bypass edges are needed to ensure dispatchability, Phase 2 of FDSTNU

carries out forward propagations from each of the k LC edges, along paths in the LO-graph, looking for opportunities to 
generate ordinary edges that bypass the LC edges. When processing an LC edge (A, c:x, C), FDSTNU propagates forward 
from the contingent timepoint C , keeping track of the lengths of the shortest paths emanating from C in the LO-graph. 
Whenever the forward propagation reveals a negative-length path emanating from C , the LC rule (from Table 2) is used to 
generate an ordinary bypass edge (e.g., the edge (A, −6, W ) in Fig. 7d). Although similar to the limited forward propagation 
done during Phase 1, the goal here is not to check for negative cycles in the OU-graph—that has already been done by 
Phase 1—but instead to generate bypass edges that will contribute to making the output of FDSTNU a dispatchable eSTNU.5

Fig. 10 illustrates the forward propagation during Phase 2. In the figure, forward propagation from the contingent time-

point C continues until the first time the length of the path turns negative—in this case, when the path of length −3 from 
C to Y is encountered. Morris [23] called such paths extension sub-paths. Because the extension sub-paths explored during 
Phase 2 contain only LO-edges, Morris’ analysis ensures that the rules from Table 2 can always be applied to generate the 
corresponding bypass edges. In addition, the bypass edges generated by Phase 2 will invariably be ordinary edges. For ex-
ample, in Fig. 10, several applications of the rules from Table 2 can be used to generate the (red, dotted) edge (C, −3, Y ); 
and then the LC rule (also from Table 2) can be used to generate the ordinary (blue, dashed) bypass edge (A, −2, Y ). Cru-
cially, because the rules are length preserving, and always generate ordinary edges, there is no need for Phase 2 to actually 
apply the rules. Instead, Phase 2 need only compute the lengths of shortest paths emanating from C in the LO-graph and, 
whenever it encounters a negative-length path, immediately generate the ordinary bypass edge. Once a bypass edge such 
as (A, −2, Y ) is generated, no further propagation past Y is carried out.

Since Phase 1 ends with an updated potential function based on the LO-edges, Phase 2 can use that potential function 
to guide its forward propagations in the LO-graph. Furthermore, because the rules that it uses to generate bypass edges 
are length preserving, and the paths it explores do not involve any UC edges, inserting those new ordinary edges into the 

4 The RUL− algorithm deals with the scenarios in Fig. 9 quite differently. For each graph, it uses the Unlp rule to generate the edge (Y , −1, A) which, on 
the left, creates a negative cycle, from A to C to X to Y to A, in the LO-graph, but not on the right.
5 The forward propagations done during Phase 1 are insufficient for this purpose because they are triggered only when certain cycles are encountered, 

and they only explore nodes belonging to the triggering cycles.
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network cannot disturb the potential function. As a result, Phase 2 never needs to update the potential function. In addition, 
for efficiency, all bypass edges generated during Phase 2 are not actually inserted into the graph until the very end of the 
phase. Therefore, since Phase 1 ends with at most m∗ = m + kn edges, and each of the k runs of Dijkstra can be done in 
O (m∗ + n logn) time, Phase 2 can be done in O (k(m + kn) + kn logn) = O (km + k2n + kn logn) time overall.

Phase 3: FDM. The pre-existing fastDispatchMin (FDM) algorithm takes an STN as input and generates as output an equiv-
alent minimal dispatchable STN. It ensures that, whenever there is a path from any X to any Y , there is necessarily a 
shortest path from X to Y that is also a vee-path. Phase 3 of FDSTNU applies the FDM algorithm to the STN subgraph of the 
eSTNU that comprises only the ordinary edges, transforming it into a dispatchable STN subgraph. In the process, some new 
ordinary edges may be inserted into the graph (e.g., the red edges in Fig. 7c), while others may be removed. For example, 
if the edge (X, −1, C) had been in the ordinary subgraph of Fig. 7c, then FDM would have removed it, given the alternative 
vee-path from X to Y to C of length −1.

Since Phases 1 and 2 each insert at most kn new edges, Phase 3 runs in O ((m +kn)n +n2 logn) = O (mn +kn2 +n2 logn)

time.

Complexity of FDSTNU . The overall complexity of the FDSTNU algorithm derives from the complexities of its three phases, as 
follows:

Phase 1+ Phase 2+ Phase 3

= O (mn + k2n + kn logn) + O (km + k2n + kn logn) + O (mn + kn2 + n2 logn)

= O (mn + kn2 + n2 logn)

Theorem 3. Let G be any DC STNU. Then the eSTNU obtained by running the FDSTNU algorithm on G is necessarily a dispatchable 
eSTNU.

Proof. The following is a sketch of the proof. A much more detailed proof is given in the Technical Appendix.
Let G∗ be the eSTNU output by FDSTNU . By Theorem 2, G∗ is dispatchable if and only if all of its STN projections are 

dispatchable (as STNs). By Theorem 1, each STN projection is dispatchable if and only if it is vee-path-complete. Therefore, 
let ω be any situation, Gω the corresponding STN projection of G∗ , and Pω

xy any path in Gω from some X to some Y . It 
suffices to prove that there is a shortest path from X to Y in Gω that is also a vee-path. With no loss of generality, assume 
Pω

xy is a shortest path in Gω .

Let P∗
xy be a path in G∗ that projects onto Pω

xy in the situation ω. The rest of the proof has three parts. First, process 
the upper-case edges in P∗

xy from left to right, showing that each can be bypassed (by a path in G∗) either by an ordinary 
edge or a path consisting of zero or more negative ordinary edges followed by a UC edge (a so-called nU-subpath). After 
processing all of the UC edges, the result is a path P ′

xy from X to Y in G∗ that consists of zero or more nU-subpaths, 
followed by zero or more LO-edges. Crucially, all of the edges in the prefix consisting of the nU-subpaths are negative, and 
hence project onto a path with only negative edges.

The second part involves processing the LC edges in the LO remainder of P ′
xy from right to left, showing that, for each, 

either (1) it can be bypassed by an ordinary edge (in G∗), or (2) the subpath of ordinary edges following it can be replaced 
by all non-negative ordinary edges (in G∗). An LC edge followed by zero or more non-negative ordinary edges is henceforth 
called an Lnn-subpath. Crucially, all of the edges in an Lnn-subpath are non-negative, and hence project onto a path that 
comprises only non-negative edges. After processing all of the LC edges, the result is a path P ′′

xy from X to Y in G∗ that is 
the concatenation of (1) zero or more nU-subpaths, (2) an ordinary path (i.e., a path consisting of only ordinary edges), and 
(3) zero or more Lnn-subpaths.

The third part notes that since Phase 3 of FDSTNU ensures that the subgraph of ordinary edges is STN-dispatchable, the 
middle portion of P ′′

xy can be replaced, if necessary, by an ordinary vee-path (in G∗). This ensures that the resulting path, 

P
†
xy , projects onto a vee-path in Gω . Finally, the Technical Appendix confirms that the length of the projection of P†

xy is no 
more than the length of the original path Pω

xy . �

Theorem 4. If the input G is DC, then the FDSTNU algorithm necessarily outputs an equivalent eSTNU.

Proof. All rules used by FDSTNU have been proven to be sound by the researchers that introduced them [27,23,5]. As a 
result, all edges generated during Phases 1 and 2 must be respected by any dynamic execution strategy for the eSTNU. 
Finally, Phase 3 replaces the ordinary subgraph (an STN) with an equivalent ordinary subgraph (another STN). Therefore, 
all of the edges in the eSTNU output by FDSTNU must be satisfied by any dynamic strategy for the input STNU, and vice-
versa. �

3.1. Pseudocode

This section presents pseudocode for the new procedures used by the FDSTNU algorithm. Pseudocode for RUL2021 and

fastDispatchMin is available elsewhere [18,29].
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Algorithm 1: The FDSTNU algorithm.

Input: G = (T , E = Eo ∪ E� ∪ Eu), an STNU graph.
Output: A dispatchable eSTNU graph, if G is DC; ⊥, otherwise.

// Phase 1: checks DC and, if successful, generates a solution, f , for the LO-graph and distToC, a map C �→ [d1, . . . , dn], where for each Xi ∈ T , di is the 
minimum distance from Xi to C in the LO-graph.

1 (G1 = (T , E1), f , distToC) := RUL2021(G)

2 if f == {} then return ⊥
// Below, insert all waits accumulated by modified RUL2021

3 accum := {}
4 foreach contingent link (A, x, y, C) ∈ E1 do

5 accum := accum∪ genWaitEdges(G1, (A, x, y, C), distToC(C)) // cf. Alg. 2

6 G1b := (T , E1b = E1 ∪ accum)

// Phase 2: inserts ordinary edges that bypass LC edges

7 accum := {}
8 foreach contingent link (A, x, y, C) ∈ E1b do

9 accum := accum∪ fwdProp(G1b, (A, c:x, C), f ) // cf. Alg. 3

10 G2 := (T , E2 = E1b ∪ accum)

// Phase 3: makes ordinary subgraph STN-dispatchable

11 G3 := fastDispatchMin(G2 , f )
12 return G3

The FDSTNU algorithm. Algorithm 1 gives the high-level structure of the FDSTNU algorithm. If the input STNU G is DC, 
FDSTNU returns an equivalent, dispatchable eSTNU; otherwise, it returns ⊥.

Phase 1 of FDSTNU is realized in two steps. In the first step, at Line 1, FDSTNU calls the RUL2021 algorithm to check 
whether G is dynamically controllable (DC). If it is, RUL2021 outputs the STNU G1 = (T , E1), where E1 contains all the 
edges of E , together with ordinary edges that bypass UC edges. We modified RUL2021 to also return (1) f , a solution/po-
tential function for the LO-graph; and (2) distToC, a map that provides, for each contingent node C , an array of the minimum 
distances from each node X to C in the LO-graph. These are minor modifications since these data are already computed by
RUL2021. In cases where G is not DC, then f is empty and the check in Line 2 makes FDSTNU halt, returning ⊥.

The second step of Phase 1, at Lines 3 to 6, involves calling genWaitEdges (Algorithm 2, discussed below), once for 
each contingent link, to compute and insert the wait constraints derived from the distances stored in distToC (cf. the brown 
dashed edges in Fig. 8). The resulting eSTNU is called G1b .

Phase 2 of FDSTNU is realized in Lines 7 to 10. For each LC edge e, FDSTNU calls fwdProp (Algorithm 3, discussed below), 
which propagates forward from e to generate ordinary edges that bypass e. It uses the potential function f to enable a 
Dijkstra-like propagation along LO-edges. G2 is the eSTNU graph obtained by inserting the ordinary bypass edges into G1b .

Finally, Phase 3, at Line 11, calls fastDispatchMin on G2 . (We modified fastDispatchMin to take the eSTNU G2

as input, but it only operates on the ordinary STN subgraph.) The eSTNU G3 is obtained by replacing the ordinary edges in 
G2 by the equivalent ordinary subgraph computed by fastDispatchMin. G3 is the dispatchable eSTNU output by FDSTNU .

The genWaitEdges algorithm. Algorithm 2 gives pseudocode of the algorithm genWaitEdges. Given a DC STNU G , 
and a contingent link (A, x, y, C), genWaitEdges returns the set of wait edges (e.g., the brown dashed edges with red 
values shown in Fig. 8) that result from applying the UC rule to the UC edge (C, C :−y, A) and each of the intermediate

edges (e.g., the dotted edges in Fig. 8) that are computed, but not inserted, by RUL2021. To speed up genWaitEdges, 
the distance from each X to C in the LO-graph, computed by RUL2021, is provided in the vector dist = [d1, . . . , dn], which 
derives from distToC[C] in Algorithm 1.

Algorithm 2: The genWaitEdges algorithm.

Input: G , a DC STNU graph; (A, x, y, C), a contingent link; dist = [d1, . . . , dn], where for each i, di is the minimum distance from Xi to C in the 
LO-graph G�o .

Output: The set of UC edges/waits obtained by applying the UC rule to the (dotted) edges corresponding to distances in dist and the UC edge 
(A, C :−y, C).

1 newWaits := {} // For accumulating generated UC/wait edges

2 �C := y − x

3 foreach Xi ∈ T do

4 if Xi 
≡ C then // I.e., Xi and C are distinct time-points

5 δxc := dist[Xi ] = di
6 if δxc < �C then // Applicability condition

7 newWaits := newWaits∪ (Xi , C :(δxc − y), A) // Generate UC edge

8 return newWaits

For each Xi , δxc (at Line 5) holds the distance from X to C in the LO-graph. If δxc ≥ �C , then RUL2021 would have 
used the Ulp rule to generate an ordinary bypass edge (e.g., the blue, dashed edge in Fig. 8). Otherwise, δxc < �C and

genWaitEdges generates the UC edge, (Xi,C :δxc − y, A) (Lines 6 to 7). The set of UC edges is returned at Line 8.
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Fig. 11. Execution time vs number of nodes, n.

The fwdProp algorithm. Pseudocode for fwdProp is given as Algorithm 3. For a given contingent link (A, x, y, C), it 
does a forward propagation along edges in the LO-graph emanating from C , aiming to generate ordinary edges that bypass 
the LC edge (A, c:x, C). It uses the potential function f to re-weight edges in the LO-graph to be non-negative, thereby 
enabling a Dijkstra-like traversal of paths. The key for each X in the priority queue is d(C, X) − f (X), where d(C, X) is the 
distance from C to X in the LO-graph. Whenever some d(C, X) < 0 (Line 7), a bypass edge is generated. Otherwise, forward 
propagation along edges emanating from X continues (Lines 10 to 16).

Algorithm 3: The fwdProp algorithm.

Input: G = (T , E = Eo ∪ E� ∪ Eu), a DC eSTNU graph; (A, x, y, C), a contingent link; f , a solution for the LO-graph G�o .

Output: A set of ordinary edges that bypass the LC edge (A, c:x, C).

1 Q := new empty priority queue
// For each X , keyX = d(C, X) − f (X), where d(C, X) is the dist. from C to X in G�o .

2 Q.insert(C, − f (C)) // keyC = d(C, C) − f (C) = 0 − f (C) = − f (C)

3 accum := {}
4 while ¬Q.empty() do

5 (X, keyX ) := Q.extractMin()

6 d(C, X) := keyX + f (X)

7 if d(C, X) < 0 then // Signal to generate a bypass edge

8 accum := accum∪ (A, x + d(C, X), X) // Accumulate bypass edge

9 else // Otherwise, propagate forward

10 foreach (X, δXY , Y ) ∈ Eo ∪ E� do

11 if Y 
≡ C and Y 
≡ A then // I.e., Y is distinct from A and C
12 keyY := d(C, X) + δXY − f (Y )

13 if Q.state(Y ) == notYetInQ then

14 Q.insert(Y , keyY )

15 else if Q.state(Y ) == inQ then

16 Q.decreaseKey(Y , keyY )

17 return accum

4. Experimental evaluation

We evaluated the performance of the FDSTNU algorithm against two pre-existing algorithms: Morris 2014, the previous 
state-of-the-art for computing dispatchable eSTNUs; and RUL2021, which only does DC checking, to see how much the move 
from DC checking to computing dispatchable network costs. All algorithms were implemented in Java and run on a JVM 17 
with 8 GB of heap memory on a Mac OS X box with an Intel(R) Quad-Core Intel Core i7@2.6GHz. Our implementations are 
available in the CSTNU Tool [33]. Summaries of our tests and results are given below.

We used two of the STNU benchmarks published by Posenato [32] and already used for a previous work [18].

For each n ∈ {500, 1000, 1500, 2000, 2500}, the first benchmark (called Test 1) contains 200 randomly generated DC 
STNUs, each having n nodes, n/10 contingent links, and around 6 incident edges for each node (for a total of m ≈ 3n

edges).

Fig. 11 displays the average execution times; each point represents the average execution time for an algorithm on the 
first 100 instances of the given size. The error bars, which show 95% confidence intervals, are not visible because standard 
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Fig. 12. Number of added edges vs number of nodes, n.
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Fig. 13. Execution time vs. number of nodes, n, comparing performance on instances in which, k, the number of contingent links is n/10 or �
√
n�.

deviation values are around 2% of average execution times. These results confirm that FDSTNU outperforms the previous 
state-of-the-art, Morris 2014, for computing dispatchable eSTNUs. In addition, it highlights that computing a dispatchable 
network is roughly an order of magnitude more expensive than DC checking by RUL2021.

Fig. 12 plots the number of edges inserted by each algorithm as a multiple of the number of edges in the input graph, 
using a log scale. It shows that FDSTNU generates a dispatchable network adding, on average, fewer than 1.8m new edges, 
while Morris 2014 averages around 20m new edges.

The second benchmark was obtained from the first by reducing the number of contingent links, k, from n/10 to �
√
n�. 

(“Extra” contingent links were converted into ordinary constraints.) Fig. 13 displays the average execution times, each point 
representing the average execution time for an algorithm on 100 instances of the given size. The error bars, which show 95% 
confidence intervals, are not visible because standard deviation values are around 2% of average added edges. These results 
confirm that the FDSTNU algorithm performs better on instances where k = �

√
n�, with a smaller execution-time grow-rate, 

as compared to its performance on Test 1, with k = n/10. In addition, although the Morris 2014 algorithm also performs 
better on instances where k = �

√
n�, as compared to its performance on instances where k = n/10, its execution-time grow-

rate appears to be the same across the two benchmarks.

5. Conclusion

This paper introduced a new algorithm, FDSTNU , that converts DC STNUs into dispatchable form. Its complexity is O (mn +
kn2 + n2 logn), which is significantly better than the previous best, Morris’ O (n3) algorithm, when networks are sparse. For 
example, if m = O (n logn) and k = O (logn), then FDSTNU algorithm runs in O (n2 logn) � O (n3) time. The paper proved 
the algorithm’s correctness and presented an empirical evaluation demonstrating its better performance on existing STNU 
benchmarks.
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Future work will focus on computing a minimal dispatchable network for DC STNUs (i.e., an equivalent, dispatchable 
STNU having the fewest edges). No existing algorithm for computing minimal dispatchable STNUs currently exists.
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Appendix A. Proofs

A.1. Notation and preliminary results

In this section, we shall continue to use upper-case letters such as A, B, C , U , V , W , X and Y to denote time-points. 
However, the upper-case letter E , often augmented by subscripts, shall be reserved for denoting upper-case edges, while 
the lower-case letter e shall be used to denote lower-case edges. In addition, the following lemma uses F to denote any 
arbitrary edge.

Definition 1 (Projection notation). For any (LC, UC or ord) edge F in an eSTNU graph G , and any situation ω, let Prω(F )

denote the projection of F in the situation ω, and let ‖F‖ω = |Prω(F )| denote the length of its projection. Similarly, for any 
path P in G , let Prω(P) denote the path obtained by replacing each edge in P by its projection, and let ‖P‖ω = |Prω(P)|
denote the length of the projected path.

Lemma 1. For any (LC, UC or ord) edge F in an eSTNU graph G , and any situation ω, |F | ≤ ‖F‖ω and, hence, for any path P in G , 
|P| ≤ ‖P‖ω . Furthermore, |F | < 0 if and only if ‖F‖ω < 0.

Proof. If F is an ordinary edge eo = (U , δ, V ), then |F | = δ = ‖F‖ω . If F is an LC edge (A, c:x, C), then |F | = x ≤ ωc = ‖F‖ω .

If F is an original UC edge (C, C :−y, A), then |F | = −y ≤ −ωc = ‖F‖ω . If F is a generated UC edge (V , C :−v, A), then 
|F | = −v ≤ max{−ωc,−v} = ‖F‖ω .

For the second claim, first suppose that |F | ≥ 0. Then 0 ≤ |F | ≤ ‖F‖ω implies that ‖F‖ω ≥ 0. On the other hand, if 
|F | < 0, then one of the following must hold: (1) F is an ord edge, in which case, ‖F‖ω = |F | < 0; (2) F is an original UC 
edge, whence ‖F‖ω = −ωc < 0; or (3) F is a generated UC edge, whence ‖F‖ω = max{−ω, −v} < 0. (Generated UC edges 
necessarily satisfy −v < 0 given the applicability conditions for the Ulp rule.) �

A.2. Main result

Theorem 3. Let G be any DC STNU. Then the eSTNU obtained by running the FDSTNU algorithm on G is necessarily a 
dispatchable eSTNU that is equivalent to G .

Proof. Let G be any DC STNU. Distinguish the changes made to G by FDSTNU , as follows. Let G1 be the eSTNU that results 
from running Phase 1 (i.e., modified RUL2021) on G . Thus, G1 includes all edges from G together with the ord and UC 
bypass edges generated by Phase 1. Next, let G2 be the eSTNU that results from running Phase 2 (i.e., forward propagation 
from LC edges) on G1 . Thus, G2 includes all edges from G1 together with any ord bypass edges generated by Phase 2. Next, 
let G3 be the eSTNU that results from running Phase 3 on G2 (i.e., running the FDM algorithm on the ord edges in G2). Thus, 
G3 includes all of the LC and UC edges from G2 together with an equivalent, but typically very different, set of ord edges. 
By construction, G3 is the output eSTNU generated by running the RUL2021 algorithm on G . In addition, for any situation 
ω, the STN projection of G3 in that situation is denoted by Gω .

Path notation. In this proof, a term such as P i
uv will be used to denote a path from U to V in the graph Gi . Different 

paths with the same endpoints and in the same graph are distinguished by alphabetic indices, primes or asterisks in the 
superscript. For example, P2

uv , P
2a
uv and P2′

uv might denote three different paths from U to V in G2; and Pω
xy and Pω∗

xy might 
denote different paths from X to Y in the projection Gω .

Given Theorem 2, it suffices to prove that every STN projection of the output eSTNU G3 is dispatchable. Toward that end, 
let ω be any situation and Gω the projection of G3 in that situation. Next, given Theorem 1, it suffices to show that Gω is 
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Pω
xy : X B K U A . . .10 4 −1 −6

XP3
xy : B K U A . . .10 k:2 −1 C :−8

XP2
xy : B K A′ U A . . .10 k:2 2 −3 C :−8

XP1
xy : B K A′ C ′ U A . . .10 k:2 2 c′:3 −6 C :−8

Fig. A.14. Illustrating paths in the proof of Theorem 3.

vee-path-complete. Toward that end, let Pω
xy be any shortest path in Gω from some X to some Y . It then suffices to show 

that there must exist a vee-path Pω∗
xy in Gω from X to Y such that |Pω∗

xy | ≤ |Pω
xy |.

Now, by the definition of the projection Gω , each edge in Pω
xy necessarily derives from a corresponding (LC, UC or 

ord) edge in G3 . Therefore, as illustrated in Fig. A.14, there must exist a path P3
xy in G3 whose edges project onto the 

corresponding edges in Pω
xy in the situation ω. Hence, Prω(P3

xy) =Pω
xy .

Next, note that because Phase 3 replaces the set of ord edges in G2 with an STN-equivalent set of ord edges in G3 , it 
follows that each ordinary edge in G3 derives from either the same edge in G2 or an equivalent ordinary path in G2 . Thus, 
there must exist a path P2

xy in G2 obtained by replacing each ordinary edge in P3
xy by an equivalent ord edge-or-path in G2 . 

For example, in Fig. A.14, (X, 10, B) appears in both P3
xy and P2

xy , whereas (K , −1, U ) in P3
xy corresponds to the equivalent 

two-edge path (K , 2, A′, −3, U ) in P2
xy .

Now some of the ordinary edges in P2
xy may be bypass edges generated during Phase 2, each of which derives from 

an LO-path in G1 comprising an LC edge e, followed by a negative-length LO-path Pe . (The path Pe is called an extension 
subpath (ESP) for the LC edge e [23].) Therefore, there must exist a path P1

xy in G1 obtained by replacing each ordinary 

bypass edge in P2
xy by a corresponding LO-path from G1 . For example, in Fig. A.14, the ordinary edge (A′, −3, U ) in P2

xy is 

replaced by the two-edge LO-path (A′, c′:3, C ′, −6, U ) in P1
xy .

By construction, the UC edges in P3
xy also appear in P2

xy and P1
xy ; and no other UC edges appear in any of these paths. 

As a result, these UC edges partition P3
xy, P

2
xy and P1

xy in the same way. Similarly, the LC edges in P3
xy also appear in P2

xy

and P1
xy . However, P1

xy may also contain additional LC edges (e.g., (A′, c′:3, C ′) in Fig. A.14). In addition, since Phases 1, 2 

and 3 are all length-preserving, |P1
xy | = |P2

xy | = |P3
xy | and, by Lemma 1, |P3

xy| ≤ ‖P3
xy‖ω = |Pω

xy|.
The rest of the proof has three sections. The first analyzes the UC edges; the second, the LC edges; and the third, the 

ord edges. Based on these analyses, P3
xy is transformed into a path P3′

xy whose projection is a vee-path whose length is at 

most |Pω
xy |. In particular, P3′

xy has a prefix consisting of negative OU-edges, a suffix consisting of non-negative LO-edges, and 
a middle section that is a vee-path of ordinary edges.

Analyzing UC edges in P3. Let Eu = (U , C :−u, A) be the leftmost (i.e., first occurrence of a) UC edge in P3
xy , and let 

(A, x, y, C) be the corresponding contingent link. For example, in Fig. A.14, Eu = (U , C :−8, A). Since Eu is the leftmost 
UC edge in P3

xy , it follows that the subpath P3
xu from X to U comprises only LO-edges. It also follows that the cor-

responding subpaths from X to U in P2
xy and P1

xy also comprise only LO-edges, as illustrated in Fig. A.14. Finally, let 

X = T0, T1, . . . , T f = U be the time-points preceding U in P1
xy . In Fig. A.14, this sequence of time-points would be 

X, B, K , A′, C ′, U .

When Phase 1 processed the original UC edge (C, C :−y, A), it did so by back-tracking from C along shortest LO-paths 
in G1 , continuing as long as the path-length was less than �C .

6 For each T i ∈ {X = T0, T1, . . . , T f = U }, let P1
tic

denote a 

shortest LO-path from T i to C in G1 . (The P1
tic

paths need not be sub-paths of P1
xy .)

Case a.1: For some T i , the shortest LO-path P1
tic

satisfies |P1
tic

| ≥ �C . In case there might be multiple such time-points, let 

T be the rightmost such T i in P1
xy , and let P1

tc denote a shortest LO-path from T to C in G1 . Since |P1
tc| ≥ �C , it follows 

that T cannot be U (i.e., T must precede U in P1
xy). (If Eu is a generated UC edge, then the shortest LO-path P1

uc from 

U to C satisfies |P1
uc | < �C . Alternatively, if Eu is the original UC edge, then |P1

uc| = |P1
cc| = 0 < �C .) Furthermore, by the 

choice of T , for each T j strictly between T and U in P1
xy , |P1

t jc
| < �C and, hence, Phase 1 would have back-tracked along 

the edge preceding T j in P1
xy . This implies that Phase 1 would necessarily have explored the entire path from U back to T . 

Therefore, Phase 1 must have processed T , at which point it must have generated an ordinary bypass edge Et = (T , −t, A), 
where −t = |P1

tc| − y.

6 Phase 1 starts by back-tracking along LO-paths in G (i.e., the input STNU). But the processing of one UC edge might generate new ordinary edges, 
thereby increasing the pool of LO-edges available for subsequent back-tracking. In addition, should back-tracking from some C during Phase 1 encounter 
the activation time-point A′ for some other contingent link, then Phase 1 interrupts its back-tracking from C until the UC edge (C ′, C ′:−y′, A′) has been 
fully processed. As a result, when back-tracking from a given UC edge, every LO-edge generated during Phase 1 that could be encountered when processing 
that UC edge is, just in time, generated for further back-tracking. It follows that Phase 1 can, without loss of generality, be viewed as back-tracking along 
LO-paths in G1 .
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A

C

UT

−t = |P1
tc | − y ≤ |P1

tu | − u

C :−u

C
:−

y

|P1
tu |

|P
1
uc
| <

�C
|P1

tc
| ≥ �C

(a) Eu = (U , C :−u, A) is a generated UC edge

ACT

|P1a
tc |

|P1
tc |

C :−y

−t = |P1
tc | − y ≤ |P1a

tc | − y

(b) Eu = (C, C :−y, A) is an original UC edge

Fig. A.15. Paths relevant to Case a.1 in the proof of Theorem 3.

Fig. A.16. Paths relevant to Case a.1 of proof of Theorem 3.

The case where Eu is a generated UC edge (U , C :−u, A) is illustrated in Fig. A.15a, where P1
tu is the LO-sub-path of P1

xy

from T to U , P1
uc is any shortest LO-path from U to C in G1 , and the ordinary edge Et is blue and dashed. (Note that P1

uc

is not a sub-path of P1
xy .) Since P

1
tc is a shortest LO-path from T to C in G1 , it follows that |P1

tc | ≤ |P1
tu | + |P1

uc|. As a result, 
−t = |Et | = |P1

tc| − y ≤ |P1
tu | + |P1

uc| − y = |P1
tu | + |Eu | = |P1

tu | − u. Therefore, letting P1′
xy be the path in G1 obtained from 

P1
xy by replacing the subpath from T to A by the ordinary edge Et yields |P1′

xy | ≤ |P1
xy|.

The (simpler) case where Eu is the original UC edge (C, C :−y, A) (i.e., where U = C ) is illustrated in Fig. A.15b, where 
P1

tc is a shortest path from T to C in G1 , and P1a
tc is the LO-sub-path of P1

xy from T to C . (P1a
tc and P1

tc may or may not 

be the same path.) Since P1
tc is by definition a shortest LO-path in G1 , it follows that −t = |Et | = |P1

tc | − y ≤ |P1a
tc | − y. 

Therefore, letting P1′
xy be the path in G1 obtained from P1

xy by replacing the subpath from T to A by the ordinary edge Et
again yields |P1′

xy | ≤ |P1
xy|.

Next, we must show that the time-point T necessarily belongs to P2
xy . Suppose not. The only way that could happen, as 

illustrated in the top of Fig. A.16, is if, for some LC edge e = ( Â, ̂c:x̂, Ĉ), T is an interior time-point in an extension subpath 
P1

ĉw
in P1

xy , where Phase 2 used e and P1
ĉw

to generate an ordinary bypass edge from Â to W in P2
xy . In the figure, the LC 

edge e is highlighted in pink, and the extension sub-path P1
ĉw

is highlighted in purple. In this case, the bypass edge from 

Â to W would not only bypass the LC edge, it would also bypass T .
Since the forward propagation of Phase 2 stops when a negative subpath is found, every proper prefix of the extension 

sub-path P1
ĉw

, including the subpath P1
ĉt

from Ĉ to T , must have non-negative length, and every suffix of P1
ĉw

, including 

the subpath P1
tw from T to W , must have negative length.7 Next, since �C ≤ |P1

tc|, and P1
tc is a shortest LO-path in G1 , 

it follows that �C ≤ |P1
tc| ≤ |P1

tw | + |P1
wc| < |P1

wc|, since |P1
tw | < 0. But then �C < |P1

wc|, which contradicts the choice of 

T . Therefore, T must appear in P2
xy ; and the path P2′

xy , illustrated at the bottom of Fig. A.16, obtained by replacing the 

subpath from T to A in P2
xy by the ordinary edge Et necessarily belongs to G2 . Furthermore, a similar argument confirms 

that every LC edge preceding T in P1
xy that does not belong to P2′

xy must have an extension subpath that precedes T in 

P1
xy (and P1′

xy ) and therefore can be used to generate the corresponding ordinary bypass edge in P2′
xy . And since Phase 2 is 

length-preserving, |P2′
xy| = |P1′

xy| ≤ |P1
xy |.

Next, let P3′
xy be the path in G3 obtained by replacing each ordinary edge of P2′

xy by the equivalent ordinary edge-or-path 

generated by Phase 3. Since Phase 3 is length-preserving, it follows that |P3′
xy| = |P2′

xy| = |P1′
xy | ≤ |P1

xy |. Next, every LC or UC 

edge in P3′
xy also appears in P3

xy ; however, P3
xy , unlike P

3′
xy , also contains the UC edge Eu , as well as any LC edges bypassed 

by Et . Therefore, it follows that ‖P3′
xy‖ω ≤ ‖P3

xy‖ω = |Pω
xy |. (Projections preserve the lengths of ordinary edges/paths, but if 

F is an LC or UC edge, |F | ≤ ‖F‖ω , by Lemma 1.)

7 These kinds of properties of extension sub-paths for LC edges were originally observed and proven by Morris [23].
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Fig. A.17. An example of Case a.2 of proof of Theorem 3.

Fig. A.18. General scenario for Case a.2 of proof of Theorem 3.

As a result, the UC edge Eu has effectively been removed from P3
xy , without having increased the length of the projection. 

(This concludes Case a.1.)
Case a.2: For each T i , the shortest LO-path P1

tic
satisfies |P1

tic
| < �C . In this case, let T be the leftmost time-point T i in 

P1
xy such that the LO-subpath P1

tu from T to U is non-negative. (If all such sub-paths are negative, then choose T = U .)

Fig. A.17 shows a sample scenario for this case, where �C = 12; P1
xt , the LO-subpath of P1 from X to T is shaded green; 

and P1
ta , the subpath from T to A, is shaded brown. In the figure, note that the path from T to U has the non-negative 

length 3, while the paths from C̃ to U , and from X̃ to U , have the negative lengths −1 and −2, respectively. Now, since 
each T i is reachable by back-propagation from C , and the length of each P1

tic
is less than �C , it follows that Phase 1 must 

have generated, for each T i , a UC bypass edge (T i, C :−ti, A) which, by definition, must belong to G1 . In particular, the 
UC bypass edge (T , C :−t, A), shown as a blue, dashed edge, must belong to G1 . (Fig. A.18 shows a more general scenario, 
albeit assuming that Eu = (U , C :−u, A) is a generated UC edge. The case where Eu is the original UC edge (C, C :−y, A)

is simpler.) In addition, as in Case a.1, T cannot be the interior time-point in the extension sub-path for any LC edge 
ê = ( Â, ̂c:x̂, Ĉ) preceding T in P1

xy since the prefix from Ĉ to T would have to be non-negative, implying that the subpath 

from Ĉ to U must be non-negative, contradicting the choice of T . As a result, T must belong to P2
xy and, hence, also to P3

xy .

Therefore, the projected length of Et = (T , C :−t, A) satisfies:

‖Et‖ω = max{−t,−ωc}
= max{|P1

tc| − y,−ωc}
≤ max{|P1

tu| + |P1
uc| − y,−ωc}

= max{|P1
tu| − u,−ωc}

≤ max{|P1
tu| − u, |P1

tu | − ωc} since |P1
tu| ≥ 0

= |P1
tu| +max{−u,−ωc}

= |P1
tu| + ‖Eu‖ω

= |P3
tu| + ‖Eu‖ω Phases 2 and 3 are length preserving

≤ ‖P3
ta‖ω (∗)

where, in the last two steps, P3
tu is the subpath of P3

xy from T to U , and P3
ta is the subpath of P3

xy from T to A. In short, 

the projected length of Et is no more than the projected length of the corresponding subpath from T to A in P3
xy .

Next, consider the subpath P1
xt from X to T . Now, by the choice of T , every suffix of P1

xt must be negative. Therefore, 
for each LC edge in P1

xt , if any, Phase 2 generates an ordinary bypass edge, such as the dashed brown edge (X, −4, T ) in 
Fig. A.17. Therefore, let P2

xt be the ordinary path in G2 obtained from P1
xt by bypassing each of its LC edges with ordinary 

edges generated during Phase 2; and let P3
xt be the equivalent ordinary vee-path from X to T guaranteed to exist in G3 as 

a result of Phase 3. (Note that P2
xt and P3

xt need not be sub-paths of P2
xy and P3

xy , respectively.) Then, since P
3
xt has only 

ordinary edges, whereas the subpath P3∗
xt of P3

xy from X to T may have had some LC edges, Lemma 1 ensures that:

‖P3
xt‖ω ≤ ‖P3∗

xt ‖ω (†)
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X M TP3
xt :

P3
xm: neg. ord edges P3

mt : non-neg. ord edges

X M TP2a
xt :

P2a
xm: ord edges P2a

mt : ord edges

X M TP1a
xt :

P1a
xm: LO-edges P1a

mt : LO-edges

Fig. A.19. Paths relevant to Case a.2.2 of proof of Theorem 3.

Now P3
xt is a vee-path in G3 . Hence, it consists of zero or more negative ordinary edges, followed by zero or more 

non-negative ordinary edges.
Case a.2.1: P3

xt consists solely of negative edges. In this case, let P3′
xy be the path in G3 that is the concatenation of P3

xt , the 

UC edge Et = (T , C :−t, A), and the suffix P3
ay of P3

xy from A onward. Then:

‖P3′
xy‖ω = ‖P3

xt‖ω + ‖Et‖ω + ‖P3
ay‖ω

≤ ‖P3∗
xt ‖ω + ‖P3

ta‖ω + ‖P3
ay‖ω By ( † ) and (∗), above

= ‖P3
xy‖ω

In short, P3′
xy has effectively replaced the portion of P3

xy from X to A by a path consisting of zero or more negative ordinary 
edges, followed by the UC bypass edge Et , without increasing the length of its projection.

Case a.2.2: P3
xt consists of zero or more negative edges followed by one or more non-negative edges. In this case, let M be the 

time-point dividing the negative edges of P3
xt from the non-negative edges, as illustrated in Fig. A.19, and let P3

xm and 
P3

mt be the subpaths from X to M , and from M to T that comprise all of the negative and non-negative edges of P3
xt , 

respectively. Given that Phase 3 may replace one ordinary path with a different, but equivalent ord path, it may be that M
does not belong to P2

xt . However, each ordinary edge in P3
xt is equivalent to some ordinary path in G2; hence, as shown 

in Fig. A.19, there is some path P2a
xt in G2 that can be obtained by replacing each ordinary edge in P3

xt by an equivalent 
ord-edge-or-path in G2 . Under this construction, P2a

xt necessarily contains M . Let P2a
xm and P2a

mt be the sub-paths from X to 
M , and from M to T , respectively. Similarly, there must be some path P1a

xt in G1 that can be obtained by replacing each 
ordinary edge in P2a

xt that was generated during Phase 2 by the corresponding LO-subpath that generated it. Under this 
construction, P1a

xt necessarily contains the time-point M . Thus, let P1a
xm and P1a

mt be the sub-paths from X to M , and from 
M to T , respectively. Note that P1a

xt need not be a sub-path of P1
xy .

Now, since |P1a
mt | = |P2a

mt | = |P3
mt | ≥ 0, it is possible that, during the Phase 1 processing of the original UC edge E =

(C, C :−y, A), back-propagation from (T , C :−t, A) along LO-edges in P1a
mt might have encountered a time-point V for which 

P1
vc , the shortest LO-path from V to C in G1 , satisfied |P1

vc | ≥ �C , leading to the generation of an ordinary edge (V , −v, A)

that bypasses both Et and E . If so, let P1′
xy be the concatenation of: (1) the prefix P1a

xv of P1a
xt from X to V ; (2) the ordinary 

bypass edge (V , −v, A); and (3) the suffix of P1
xy from A onward. In this way, P1′

xy has a prefix from X to A that contains 
only LO-edges, as in Case a.1. (A similar analysis as that done in Case a.1 ensures that the projection of the corresponding 
path P3′

xy will be no greater than |Pω
xy |.)

Otherwise, all suffixes of P1a
mt must have been explored by Phase 1, with associated shortest LO-paths to C of length less 

than �C , generating corresponding UC bypass edges, including a UC edge, Em = (M, C :−m, A), from M to A that bypasses 
both P1a

mt and Et . In this case, let P1′
xy be the concatenation of: (1) the LO-subpath P1a

xm from X to M; (2) the UC bypass edge 

Em = (M, C :−m, A); and (3) the suffix of P1
xy from A onward. Similarly, let P2′

xy be the concatenation of: (1) the ordinary 

subpath P2a
xm from X to M , (2) the UC bypass edge Em , and (3) the suffix of P2

xy from A onward. Finally, let P3′
xy be the 

concatenation of: (1) the ordinary subpath P3
xm from X to M , which consists solely of negative edges; (2) the UC edge Em; 

and (3) the suffix of P3
xy from A onward. Then ‖P3′

xy‖ω ≤ ‖P3
xy‖ω , as follows. First, ‖Em‖ω satisfies:

‖Em‖ω = max{−m,−ωc}
= max{|P1

mc| − y,−ωc}
≤ max{|P1

mt | + |P1
tc| − y,−ωc} Shortest path

= max{|P1a
mt | − t,−ωc}

≤ max{|P1a
mt | − t, |P1a

mt | − ωc} |P1a
mt | ≥ 0

= |P1a
mt | +max{−t,−ωc}

= |P1a
mt | + ‖Et‖ω

= |P3
mt | + ‖Et‖ω Phases 2 and 3 are length preserving

≤ |P3
mt | + ‖P3

ta‖ω By (∗) above

≤ ‖P3
mt‖ω + ‖P3

ta‖ω By Lemma 1 (∗∗)

Thus,
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A C Y
c:x

P3
cy : vee-path

A C Y
c:x

P2
cy : ord edges

ACase b.1: C YW
c:x

|P2
cw | < 0

x+ |P2
cw |

AP3
ay : Y

|P3
ay | = |P2

ay |

Fig. A.20. Paths in part b of proof of Theorem 3.

‖P3′
xy‖ω = ‖P3

xm‖ω + ‖Em‖ω + ‖P3
ay‖ω

≤ ‖P3
xm‖ω + (‖P3

mt‖ω + ‖P3
ta‖ω) + ‖P3

ay‖ω By (∗∗), above

= ‖P3
xt‖ω + ‖P3

ta‖ω + ‖P3
ay‖ω

= ‖P3∗
xt ‖ω + ‖P3

ta‖ω + ‖P3
ay‖ω By ( † ), above

= ‖P3
xy‖ω

In short, P3′
xy has effectively replaced the portion of P3

xy from X to A by a path consisting of zero or more negative ordinary 
edges, followed by the UC bypass edge Em , without increasing the length of its projection. This concludes Case a.2.

Recursively analyzing the remaining UC edges in P3′
xy . If the leftmost UC edge Eu in P3

xy is handled by Case a.1, then P3′
xy

effectively bypasses Eu , thereby enabling the next leftmost UC edge to be addressed—whether by Case a.1 or a.2. On the 
other hand, if Eu is handled by Case a.2, then the prefix P3

xa of P3
xy from X to A has been replaced in P3′

xy by a sequence of 
zero or more negative ordinary edges, followed by a UC bypass edge. Hereinafter, such paths may be called nU-subpaths (for 
“negative, then upper-case”). As a result, the next leftmost UC edge can now be addressed—whether by Case a.1 or a.2—but 
only considering the portion of P3′

xy from A onward. Continuing in this way, all of the UC edges in P3
xy can eventually be 

processed, with Cases a.1 and a.2 appearing in any combination, resulting in a modified path P3u
xy which either (1) has no 

UC edges—which only happens if all UC edges were handled by Case a.1—or (2) has all of its UC edges in a prefix that is 
the concatenation of one or more nU-subpaths. These two possibilities may be concisely described as P3u

xy having all of its 
(zero or more) UC edges within a prefix that is the concatenation of zero or more nU-subpaths.

Analyzing the LC edges in P3u
xy . Let P3u

xq denote the prefix of P3u
xy described above that contains all of the (zero or more) 

UC edges from P3u
xy and consists of a sequence of zero or more nU-subpaths, terminating at some time-point Q . Since 

nU-subpaths only contain ordinary and UC edges, it follows that any LC edges remaining in P3u
xy necessarily belong to the 

suffix P3u
qy from Q to Y . Furthermore, this suffix is identical to the suffix P3

qy of P3
xy . Therefore, the following analysis shall 

begin with P3
qy , and the corresponding suffix P2

qy of P2
xy .

The analysis of LC edges in P3
qy is in many ways the mirror image of the analysis of UC edges described earlier. Instead 

of processing UC edges from left to right, the LC edges are processed from right to left. In addition, the propagation goes 
forward from LC edges; and the roles of negative and non-negative edges are swapped. However, the analysis of LC edges is 
vastly simpler, mainly because UC edges play no role and Phase 2 only generates ordinary edges, never additional LC edges.

Let e = (A, c:x, C) be the rightmost LC edge in P3
qy , and let P3

cy be the suffix of P3
qy from C to Y , as illustrated in the top 

row of Fig. A.20. By the choice of e, all edges in P3
cy are necessarily ordinary. Furthermore, since G3 is vee-path-complete, 

we may assume without loss of generality that P3
cy is a vee-path. Let P2

cy be the corresponding path in G2 obtained by 

replacing each ordinary edge in P3
cy by its equivalent ordinary edge-or-path in G2 , as shown in the second row of Fig. A.20.

Case b.1: The first edge of P3
cy is negative. In this case, P2

cy necessarily contains a negative-length prefix, as illustrated in 

the third row of Fig. A.20, where P2
cw denotes the first negative prefix of P2

cy . By the choice of P
2
cw , it follows that all 

proper prefixes of P2
cw have non-negative length. As a result, Phase 2 would necessarily generate the ordinary bypass edge 

(A, x + |P2
cw |, W ), shown as blue and dashed.8

Let P2
ay be the path in G2 from A to Y obtained by replacing both the LC edge e and the extension sub-path P2

cw by the 

ordinary bypass edge from A to W . Note that P2
ay comprises only ordinary edges. Next, let P3

ay be the ordinary path in G3

from A to Y , shown in the last row of Fig. A.20, obtained by applying Phase 3 to the edges in P2
ay . Finally, let P

3′
qy be the 

same as P3
qy , except that the portion from A to Y has been replaced by P3

ay . In this way, the LC edge e has effectively been 

removed from the path P3
qy . Furthermore, since Phases 2 and 3 are length-preserving and P3′

qy contains one fewer LC edge 

than P3
qy , Lemma 1 ensures that ‖P3′

qy‖ω ≤ ‖P3
qy‖ω .

8 Although Phase 2 is applied to LO-paths in G1 , it may equivalently be viewed as applying to LO-paths in G2 . For example, if, when propagating forward 
from an LC edge e, the extension sub-path P2

cw contained some ordinary edges in G2 that were generated by Phase 2 after the LC edge e was processed, 
the forward propagation from e explores all of those same LO-paths, resulting in the same set of bypass edges for e.
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XP3u
xy Q R Y

nU-subpaths: all neg. ord vee-path Lnn-subpaths: all non-neg.

XPω∗
xy Y

ord vee-path

Fig. A.21. Final paths from X to Y in proof of Theorem 3.

Case b.2: The first edge in P3
cy is non-negative. Since P3

cy is vee-path, it follows that the path P3
ay from A to Y consists 

solely of non-negative edges: in particular, e, followed by non-negative ordinary edges. This kind of path is hereinafter 
called an Lnn-subpath (for “lower-case followed by non-negative edges”). Therefore, in this case, we can let P3′

qy =P3
qy , and 

the recursive processing of the next rightmost LC edge can be carried out, but restricting attention to the portion of P3′
qy

that precedes A.

Recursively analyzing the remaining LC edges in P3′
qy . If the LC edge e was bypassed by an ordinary edge as in Case b.1 

above, then the next rightmost LC edge in P3′
qy can be recursively processed in the context of the entire path P3′

qy . On the 

other hand, if the LC edge remains in P3′
qy as part of an Lnn-subpath from A to Y , then the next rightmost LC edge can be 

recursively processed in the context of the portion of P3′
qy that precedes A.

After processing all of the LC edges in this way, using whatever combination of Cases b.1 and b.2 are needed, the 
path from Q to Y will have a suffix from some R to Y that contains all of the remaining LC edges (if any) and is the 
concatenation of zero or more Lnn-subpaths. Furthermore, since Cases b.1 and b.2 both preserve the length of the overall 
path, but may remove some LC edges, it follows that the projected length of the overall path from X to Y cannot be longer 
than the original ‖P3

xy‖ω .

Concluding the proof.
After processing all of the UC and LC edges from P3

xy , the modified path, shown as P3u
xy in Fig. A.21, will have a prefix 

from X to Q that is the concatenation of zero or more nU-subpaths that together contain all of the UC edges (if any), and a 
suffix from R to Y that is the concatenation of zero or more Lnn-subpaths that together contain all of the LC edges (if any). 
In between, there will be a path from Q to R consisting of zero or more ordinary edges which, given the STN-dispatchability 
of G3 , can be assumed to be a vee-path. Furthermore, all of the path modifications used in processing/bypassing the UC and 
LC edges have been shown to result in a projection in Gω that is no longer than the original projection ‖P3

xy‖ω = |Pω
xy|.

Since every edge in an nU-subpath is negative, and every edge in an Lnn-subpath is non-negative, it follows that the 
projected path, called Pω∗

xy in Fig. A.21, is a vee-path that is no longer than the original path Pω
xy . �
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