Published on IEEE UEMCON Conf

Deep Reinforcement Learning with IoT System
Characterization and Knowledge Adaptation

Jiadao Zou
Department of Electrical and Computer Engineering
Purdue School of Engineering and Technology

Indianapolis, IN, USA

Abstract—With many devices in the IoT big data system,
the challenge arises on how to configure the devices based on
the system constraints like the energy budget. The typical
scenarios include many wearable health sensors or inter-of-
things. In this study, targeting this challenge, we propose a
novel deep reinforcement learning framework for configuring
the system for optimal operations, which automatically learns
through actions and feedbacks. Our novel contributions are
two-fold, which greatly boost the performance. First, we
propose a system characterization approach that can extract
the patterns of the system states of many devices to determine
whether the system state has significant changes. Second, we
propose a knowledge adaptation approach to determine when
to update the learning buffer and how to select a learning
batch. Further, we have investigated hyperparameters
including learning rate, batch normalization and
regularization methods, on deep reinforcement learning
outcomes. Evaluated on a multi-device system setup, the
proposed framework has demonstrated significant
performance boosting with the novel designs. This study will
greatly advance intelligent configuration for systems with
many wearables or IoT devices, towards big data practices.

Keywords—Deep Reinforcement Learning, Big Data,
System Constraints, Optimization

I. INTRODUCTION

Smart devices like wearables and Internet of Things, are
bringing emerging applications to many fields, such as
smart health [1, 2], smart home and smart world [3, 4]. The
wearable motion sensor can provide real-time physical
activity type detection and energy expenditure tracking.
And the Electrocardiogram monitor can provide real-time
heart disease monitoring, to predict acute or manage chronic
cardiac conditions.

However, along with so many devices, there is a
significant requirement on the energy budget towards long-
term applications. Nowadays, it is still challenging to
support multiple devices for continuous and long-term
monitoring applications, since these devices are usually

This study is supported by NSF CAREER Award Grant, USA.
Jiadao Zou and Qingxue Zhang (qxzhang@purdue.edu) are with Purdue
School of Engineering and Technology, Indianapolis, Indiana, USA.

Qingxue Zhang, Senior Member, IEEE
Department of Electrical and Computer Engineering

Department of Biomedical Engineering
Purdue School of Engineering and Technology

Indianapolis, IN, USA

10
e
E@/

Fig. 1 Optimal multi-device system configuration
with reinforcementlearning on the center node.

Center

Optimization

energy hungry. In this study, targeting this challenge, we
propose a novel deep reinforcement learning framework to
optimally configure the devices for both energy
optimization and performance maximization.

The challenge, more specifically, arises from the
complex relationships among the devices. With a number of
devices and a center node that communicates with and
controls the devices, the system dynamics are highly
complex and manual configuration of the system is
impractical. As shown in Fig. 1, multiple devices are
wirelessly connected to the center node, and each device
usually has its own energy budget and computing resources.
The center is thus needed to effectively manage the tasks for
the devices, while taking into account the crucial system
constraints.

There are some previously reported studies on multi-
device system optimization. To tackle such mixed integer
programming problems [5, 6], traditional methods like
dynamic programming [7, 8] and brand-and-bound
algorithms [9] can be applied. Nevertheless, the computing
complexity is high. The local search or other heuristic
approaches [10-13] are then optional alternatives, but they
still need a significant number of iterations for solution
search. New approaches were also reported using deep
reinforcement learning. Huang et. al, [14] proposed the
edge-mobile network optimization approach based on deep
reinforcement learning of the actions and device states,
which shows promising performance on the system
configuration. However, for deep reinforcement learning,
the learning effectiveness is critical. We aim to enhance the

intelligence of the deep reinforcement learning with more
‘intelligence’ so that it can characterize the system states
more effectively and remember the knowledge more
efficiently.

In this study, we propose a novel deep reinforcement
learning framework, which automatically learns through
actions and feedbacks. Our novel contributions are two-
fold, aiming to greatly boost the performance. First, we
propose a system characterization approach that can extract
the patterns of the system states to determine whether the
system state has significant changes. Second, we propose a
knowledge adaptation approach to determine when to
update the learning buffer and how to select a learning
batch. Further, we have investigated hyperparameters
including learning rate, batch normalization and
regularization methods, on deep reinforcement learning
outcomes. Evaluated on a multi-device system setup, the
proposed framework has demonstrated significant
performance boosting with the novel designs. This study
will greatly advance intelligent configuration for multi-
device systems, towards big data practices.

II. METHODS

In this section, we detail the proposed novel deep
reinforcement learning architecture, for multi-device
system configuration.

A. System Diagram

A system diagram is given in Fig. 2, where the deep
reinforcement learning framework reads in the system state,
generates actions, diversifies, and selects the action.

More importantly, we propose a system characterizer to
intelligently extract the patterns of the system and determine
whether the system state has significant changes. We further
propose a knowledge adaptation learning buffer which
determines when to save and how to select a batch from the
buffer.

B. System Characterization

The multi-device system state changes over time, and
correspondingly, the deep reinforcement learning
framework needs to learn from these state changes.
However, usually the system states and actions are simply
stored in the buffer for training the framework later. In such
a case, there is no differentiation of contributions from the
information saved in the buffer, meaning that some
information stored may have limited contribution to the
framework training due to redundancy.

Therefore, we propose to extract the patterns from the
system states, and leverage these patterns to determine
where new knowledge needs to be stored in the buffer. We
have introduced the probability-based approach, Gaussian
Mixture Model (GMM), to characterize the system states.
GMM pre-assumes all the data points are from the mixture
of a finite number of multivariate Gaussian distributions
while the key parameters of mean and covariance are
unknown. The GMM model is given in (1), where 6 is the
underlying distributions, h is the measurement such as the
channel gain for each device, and m; is the weighting factor
if needed. GMM aims to estimate the underlying
distributions of the current system information.

P(hl6) = Eiim; Pi(h|6) (1)

State _
éhal'actel'ization\ ﬁeal'ning Bl]fft‘l“

A

[1
[1

\ AN J

Fig. 2 The proposed novel deep reinforcement
learning framework with system characterization
and knowledge adaptation.

C. Intelligent Learning Buffer for Knowledge Adaptation

With the system characterization, the learning buffer can
then be updated based on the detection of new system states,
meaning that if new knowledge is detected, we then store it
to the learning buffer. The new knowledge usually reflects
significant system state changes and thus can contribute to
the diversity of the training process, thereby improving the
deep reinforcement learning outcomes. Three learning
buffer updating strategies — loose similarity check, strict
similarity check, and partial similarity check, are compared
to comprehensively demonstrate the outcomes.

We propose to further investigate an effective strategy
to leverage the new knowledge in the buffer when
generating the gradient for the deep actor neural network
during the training process. We here consider two strategies:
random batch, and random batch plus new knowledge. The
former one selects randomly samples from the buffer; the
latter one also selects randomly samples from the buffer but
at the same time selects the new knowledge just stored. In
such a case, random batch plus knew knowledge is expected
to enhance the learning process of the proposed framework.

D. Investigation on Hyperparameters

We have further investigated the critical design
parameters for the deep reinforcement learning framework.
The learning rate of deep reinforcement learning is
essential, since it is based on the rewarding feedback to
update the parameters. It is of great importance to select an
appropriate speed for the parameter search process. We
therefore have different learning rates.

The batch normalization usually scales the input or
learned features to standardize them before feeding them
into the next layer. It can normalize the contribution of a
mini batch and make the learning process smoother. The
dropout technique is a popular regularization approach and
is expected to improve the generalization ability of the
trained model. Therefore, we have also thoroughly studied
the contribution of batch normalization and dropout
regularization in the deep reinforcement learning process.

E. Evaluation

To evaluate the proposed deep reinforcement learning
framework, we have created a complex database with
random channel gains that has 1000 time points, and the first
700 are used for training and remaining for testing. 15
devices are connected to the center node, making a complex
multi-device system with different energy budget and
computing resources. Within each time window, each
device can harvest the energy from the center node, and
choose to upload the computing task to the center node or
choose to perform the task by itself. The center node, within
each time window, will transfer energy wirelessly to the
devices, and handle the tasks uploaded by devices if there
are. The goal is to maximize the computation rate of the
whole system including the center and the devices, while
making sure the energy constraint on the devices is met. We
have run 15 trials per model setting to report the averaged
performance.

III. RESULTS

We in this section detail the simulation results and
demonstrate that the proposed deep reinforcement learning
framework can effectively generate optimal configuration
for the multi-device system.

A. Overview of the Performance

Fig. 3 shows the deep reinforcement learning outcomes
for the training and testing phases, in time window 1-700,
and 701-1000, respectively. The absolute computation rate
and the rate normalized to the ground truth found by a
traversal-search method are both given. We can observe that
the absolute computation rate fluctuates over time due to
both system state changes, and different actions generated.
More informative illustration can be found from the
normalized curve, in which the training part fluctuates
between around 100% and 55%, indicating the learning
process of the deep reinforcement learning framework. In
the testing part, the normalized curve shows attractive
performance — above 90%.

B. Intelligent Learning Buffer

TABLE I. Evaluation of different learning buffers.

Learning Buffer

Performance Improvement

Learning Buffer A 8.8
Learning Buffer B -3.6
Learning Buffer C 0.4

Note. Three learning buffer updating strategies — loose similarity
check (A), strict similarity check (B), and partial similarity check

©.

Three learning buffer updating strategies — loose
similarity check (A), strict similarity check (B), and partial
similarity check (C), are compared in Table I. For A, 90%
of system characterization patterns need to fall within the
range of the previously stored patterns in the learning buffer.
For B, the similarity need is set as 100%. For C, at least one
GMM distribution falls within the range specified by the
current buffer. The performance is reported as performance
improvement, by comparing to the previously reported
state-of-the-art method in [14]. The comparison shows the
loose similarity check (A) achieves the highest
performance, due to its ability to check all the patterns and
allow for some flexibility for each pattern.

leg

0.9

roe

Absolute performance
Normalized performance

[4] 200 400 600 800 1000
Time
Fig. 3 The deep reinforcement learning framework
learning and testing process, in time window 1-

700, and 701-1000, respectively.

C. System Characterization

Multiple learning patterns for system characterization
are evaluated here. The window sizes are set as 20 (A), 10
(B), and 50 (C) time points, respectively, as shown in Table
II. The window size determines how much information is
leveraged in the learning process. We found that 20-time
points are the best case for scenario characterizing during
deep reinforcement learning. It means that if the window
size is too small, no enough information is evaluated, and if
it is too big, the system status already changes significantly.

TABLE II. Evaluation of different learning patterns.

Chracterization Performance Improvement
Learning Pattern A 8.8
Learning Pattern B -1.8
Learning Pattern C -0.9

Notes. The system characterization window sizes are set as 20 (A),
10 (B), and 50 (C) time points, respectively.

D. Knowledge Management

Further, when fetching a batch from the knowledge
buffer for deep reinforcement learning model updating, we
have designed two approaches — random fetch plus new
knowledge (A) and random batch (B). As shown in Table
I11, the former achieves better performance because the new
knowledge has been leveraged in batch learning, which is
beneficial for calculating the model gradients for backward
error propagation.

TABLE III. Evaluation of different gradient generator
methods.

Knowledge Management Performance Improvement

Learning Batch A 8.8

Learning Batch B -0.2

Notes. The deep learning gradient is generated based on random
batch plus new knowledge (A) and only random batch (B),
respectively.

E. Hyperparameters

We have evaluated the learning rate, data normalization,
and model regularization, as shown in Table IV and V. The
simulation indicates that a learning rate of 0.1 is better for
the framework to find effective parameters and optimize the
system performance. The batch normalization and dropout
bring performance improvement for learning pattern A, i.e.,

when the window size for system characterization is 20-
time points. These comprehensive studies have determined
the optimal combination of crucial design hyperparameters.

TABLE IV. Evaluation of different learning rates.

Learning Rate Performance Improvement
Learning Rate A -7.4

Learning Rate B 8.8

Note. The learning rate is set as 0.005 (A) and 0.1 (B), respectively.

TABLE V. Evaluation of bath normalization and

regularization.
BathMorm and Regularization Performance Improvement
Learning Pattern A, BN, DO 8.8
Learning Pattern A 0.0
Learning Pattern B, BN, DO -1.8
Learning Pattern B 0.7

Notes. The batch normalization (BN) and dropout regularization
(DO) have impact on the performance. Under learning pattern A,
the BN and DO contribute positively to the performance.

IV. CONCLUSION

We in this study have proposed, developed, and
evaluated a novel deep reinforcement learning framework.
Compared to traditional deep reinforcement learning, our
framework can boost the performance with two major
contributions. First, the system characterization approach is
proposed to analyze the system states. Second, the
knowledge adaptation approach is proposed to determine
when to update the learning buffer based on the system
characterization results, and how to combine the historical
knowledge and the new knowledge for effective learning.
Further, we have studied the key design hyperparameters,
and then determined the optimal combination. The
framework has been evaluated on a complex multi-device
configuration task and demonstrates promising
effectiveness, compared to the state-of-the-art method. This
study will greatly advance complex system configuration
applications in the era of big data like wearable and IoT
devices.

V. ACKNOWLEDGEMENT

This material is based upon work supported by the
National Science Foundation CAREER Award 2047849.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[11 J. Zou and Q. Zhang, ‘"eyeSay: Eye
Electrooculography Decoding with Deep Learning," in
2021 IEEE International Conference on Consumer
Electronics (ICCE), 2021: 1IEEE, pp. 1-3.

[2] J. Stauffer, Q. Zhang, and A. Comer, "Deep
Reconstruction Learning Towards Wearable
Biomechanical Big Data," in IEEE EMBS Conference
on Biomedical Engineering and Sciences (IECBES
2021),2020.

[3] J. C. Talwana and H. J. Hua, "Smart world of Internet
of Things (IoT) and its security concerns," in 2016
IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), 2016: IEEE, pp. 240-245.

[4] H. Ning et al., "From Internet to smart world," /EEE
Access, vol. 3, pp. 1994-1999, 2015.

[5] A. Lodi and A. Tramontani, "Performance variability
in mixed-integer programming," in Theory driven by
influential applications: INFORMS, 2013, pp. 1-12.

[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown,
"Automated configuration of mixed integer
programming solvers," in International Conference on
Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint
Programming, 2010: Springer, pp. 186-202.

[7] E. V. Denardo, Dynamic programming: models and
applications. Courier Corporation, 2012,

[8] S. M. Ross, Introduction to stochastic dynamic
programming. Academic press, 2014.

[9] S. Wahyuningsih and D. R. Sari, "Study of the Brand
and Bound Algorithm Performance on Traveling
Salesman Problem Variants," in Ist International
Conference on Mathematics and Mathematics
Education (ICMMEd 2020), 2021: Atlantis Press, pp.
204-211.

[10]M. Fischetti and A. Lodi, "Heuristics in mixed integer
programming," Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[11]E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B.
Dilkina, "Learning to branch in mixed integer
programming," in Proceedings of the AAAI
Conference on Artificial Intelligence, 2016, vol. 30,
no. 1.

[12]D. Gulezynski, B. Golden, and E. Wasil, "The multi-
depot split delivery vehicle routing problem: An
integer programming-based heuristic, new test
problems, and computational results," Computers &
Industrial Engineering, vol. 61, no. 3, pp. 794-804,
2011.

[13]A. M. Turhan and B. Bilgen, "Mixed integer
programming based heuristics for the Patient
Admission Scheduling problem," Computers &
Operations Research, vol. 80, pp. 38-49, 2017.

[14]L. Huang, S. Bi, and Y.-J. A. Zhang, "Deep
reinforcement learning for online computation
offloading in wireless powered mobile-edge
computing networks," IEEE Transactions on Mobile
Computing, vol. 19, no. 11, pp. 2581-2593, 2019.

