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Deep Reinforcement Learning with IoT System 

Characterization and Knowledge Adaptation  
 

 

Abstract—With many devices in the IoT big data system, 

the challenge arises on how to configure the devices based on 

the system constraints like the energy budget. The typical 

scenarios include many wearable health sensors or inter-of-

things. In this study, targeting this challenge, we propose a 

novel deep reinforcement learning framework for configuring 

the system for optimal operations, which automatically learns 

through actions and feedbacks. Our novel contributions are 

two-fold, which greatly boost the performance. First, we 

propose a system characterization approach that can extract 

the patterns of the system states of many devices to determine 

whether the system state has significant changes. Second, we 

propose a knowledge adaptation approach to determine when 

to update the learning buffer and how to select a learning 

batch. Further, we have investigated hyperparameters 

including learning rate, batch normalization and 

regularization methods, on deep reinforcement learning 

outcomes. Evaluated on a multi-device system setup, the 

proposed framework has demonstrated significant 

performance boosting with the novel designs. This study will 

greatly advance intelligent configuration for systems with 

many wearables or IoT devices, towards big data practices. 

Keywords—Deep Reinforcement Learning, Big Data, 

System Constraints, Optimization 

 

 

I. INTRODUCTION  

Smart devices like wearables and Internet of Things, are 
bringing emerging applications to many fields, such as 
smart health [1, 2], smart home and smart world [3, 4]. The 
wearable motion sensor can provide real-time physical 
activity type detection and energy expenditure tracking. 
And the Electrocardiogram monitor can provide real-time 
heart disease monitoring, to predict acute or manage chronic 
cardiac conditions.  

However, along with so many devices, there is a 
significant requirement on the energy budget towards long-
term applications. Nowadays, it is still challenging to 
support multiple devices for continuous and long-term 
monitoring applications, since these devices are usually 

energy hungry. In this study, targeting this challenge, we 
propose a novel deep reinforcement learning framework to 
optimally configure the devices for both energy 
optimization and performance maximization.  

The challenge, more specifically, arises from the 
complex relationships among the devices. With a number of 
devices and a center node that communicates with and 
controls the devices, the system dynamics are highly 
complex and manual configuration of the system is 
impractical. As shown in Fig. 1, multiple devices are 
wirelessly connected to the center node, and each device 
usually has its own energy budget and computing resources. 
The center is thus needed to effectively manage the tasks for 
the devices, while taking into account the crucial system 
constraints. 

There are some previously reported studies on multi-
device system optimization. To tackle such mixed integer 
programming problems [5, 6], traditional methods like 
dynamic programming [7, 8] and brand-and-bound 
algorithms [9] can be applied. Nevertheless, the computing 
complexity is high. The local search or other heuristic 
approaches [10-13] are then optional alternatives, but they 
still need a significant number of iterations for solution 
search. New approaches were also reported using deep 
reinforcement learning. Huang et. al., [14] proposed the 
edge-mobile network optimization approach based on deep 
reinforcement learning of the actions and device states, 
which shows promising performance on the system 
configuration. However, for deep reinforcement learning, 
the learning effectiveness is critical. We aim to enhance the 

This study is supported by NSF CAREER Award Grant, USA. 

Jiadao Zou and Qingxue Zhang (qxzhang@purdue.edu) are with Purdue 

School of Engineering and Technology, Indianapolis, Indiana, USA.             

Jiadao Zou 

Department of Electrical and Computer Engineering 

Purdue School of Engineering and Technology 

Indianapolis, IN, USA  

Qingxue Zhang, Senior Member, IEEE 

Department of Electrical and Computer Engineering 

Department of Biomedical Engineering 

Purdue School of Engineering and Technology 

Indianapolis, IN, USA  



intelligence of the deep reinforcement learning with more 
‘intelligence’ so that it can characterize the system states 
more effectively and remember the knowledge more 
efficiently.  

In this study, we propose a novel deep reinforcement 
learning framework, which automatically learns through 
actions and feedbacks. Our novel contributions are two-
fold, aiming to greatly boost the performance. First, we 
propose a system characterization approach that can extract 
the patterns of the system states to determine whether the 
system state has significant changes. Second, we propose a 
knowledge adaptation approach to determine when to 
update the learning buffer and how to select a learning 
batch. Further, we have investigated hyperparameters 
including learning rate, batch normalization and 
regularization methods, on deep reinforcement learning 
outcomes. Evaluated on a multi-device system setup, the 
proposed framework has demonstrated significant 
performance boosting with the novel designs. This study 
will greatly advance intelligent configuration for multi-
device systems, towards big data practices.   

 

II. METHODS 

In this section, we detail the proposed novel deep 
reinforcement learning architecture, for multi-device 
system configuration. 

A. System Diagram 

A system diagram is given in Fig. 2, where the deep 
reinforcement learning framework reads in the system state, 
generates actions, diversifies, and selects the action.  

More importantly, we propose a system characterizer to 
intelligently extract the patterns of the system and determine 
whether the system state has significant changes. We further 
propose a knowledge adaptation learning buffer which 
determines when to save and how to select a batch from the 
buffer.  

B. System Characterization 

The multi-device system state changes over time, and 
correspondingly, the deep reinforcement learning 
framework needs to learn from these state changes. 
However, usually the system states and actions are simply 
stored in the buffer for training the framework later. In such 
a case, there is no differentiation of contributions from the 
information saved in the buffer, meaning that some 
information stored may have limited contribution to the 
framework training due to redundancy.  

Therefore, we propose to extract the patterns from the 
system states, and leverage these patterns to determine 
where new knowledge needs to be stored in the buffer.  We 
have introduced the probability-based approach, Gaussian 
Mixture Model (GMM), to characterize the system states. 
GMM pre-assumes all the data points are from the mixture 
of a finite number of multivariate Gaussian distributions 
while the key parameters of mean and covariance are 
unknown. The GMM model is given in (1), where 𝜃 is the 
underlying distributions, ℎ is the measurement such as the 
channel gain for each device, and 𝜋𝑖 is the weighting factor 
if needed. GMM aims to estimate the underlying 
distributions of the current system information.  

𝑃(ℎ|𝜃)      =  ∑ 𝜋𝑖  𝑃𝑖(ℎ|𝜃)𝐶
𝑖=1       (1) 

 

C. Intelligent Learning Buffer for Knowledge Adaptation 

With the system characterization, the learning buffer can 
then be updated based on the detection of new system states, 
meaning that if new knowledge is detected, we then store it 
to the learning buffer. The new knowledge usually reflects 
significant system state changes and thus can contribute to 
the diversity of the training process, thereby improving the 
deep reinforcement learning outcomes. Three learning 
buffer updating strategies – loose similarity check, strict 
similarity check, and partial similarity check, are compared 
to comprehensively demonstrate the outcomes.  

We propose to further investigate an effective strategy 
to leverage the new knowledge in the buffer when 
generating the gradient for the deep actor neural network 
during the training process. We here consider two strategies: 
random batch, and random batch plus new knowledge. The 
former one selects randomly samples from the buffer; the 
latter one also selects randomly samples from the buffer but 
at the same time selects the new knowledge just stored. In 
such a case, random batch plus knew knowledge is expected 
to enhance the learning process of the proposed framework. 

D. Investigation on Hyperparameters 

We have further investigated the critical design 
parameters for the deep reinforcement learning framework. 
The learning rate of deep reinforcement learning is 
essential, since it is based on the rewarding feedback to 
update the parameters. It is of great importance to select an 
appropriate speed for the parameter search process. We 
therefore have different learning rates.  

The batch normalization usually scales the input or 
learned features to standardize them before feeding them 
into the next layer. It can normalize the contribution of a 
mini batch and make the learning process smoother. The 
dropout technique is a popular regularization approach and 
is expected to improve the generalization ability of the 
trained model. Therefore, we have also thoroughly studied 
the contribution of batch normalization and dropout 
regularization in the deep reinforcement learning process. 



E. Evaluation 

To evaluate the proposed deep reinforcement learning 
framework, we have created a complex database with 
random channel gains that has 1000 time points, and the first 
700 are used for training and remaining for testing. 15 
devices are connected to the center node, making a complex 
multi-device system with different energy budget and 
computing resources. Within each time window, each 
device can harvest the energy from the center node, and 
choose to upload the computing task to the center node or 
choose to perform the task by itself. The center node, within 
each time window, will transfer energy wirelessly to the 
devices, and handle the tasks uploaded by devices if there 
are. The goal is to maximize the computation rate of the 
whole system including the center and the devices, while 
making sure the energy constraint on the devices is met. We 
have run 15 trials per model setting to report the averaged 
performance.  

III. RESULTS 

We in this section detail the simulation results and 
demonstrate that the proposed deep reinforcement learning 
framework can effectively generate optimal configuration 
for the multi-device system. 

A. Overview of the Performance  

Fig. 3 shows the deep reinforcement learning outcomes 
for the training and testing phases, in time window 1-700, 
and 701-1000, respectively. The absolute computation rate 
and the rate normalized to the ground truth found by a 
traversal-search method are both given. We can observe that 
the absolute computation rate fluctuates over time due to 
both system state changes, and different actions generated. 
More informative illustration can be found from the 
normalized curve, in which the training part fluctuates 
between around 100% and 55%, indicating the learning 
process of the deep reinforcement learning framework. In 
the testing part, the normalized curve shows attractive 
performance – above 90%. 

B. Intelligent Learning Buffer 

 
TABLE I. Evaluation of different learning buffers. 

 

Note. Three learning buffer updating strategies – loose similarity 
check (A), strict similarity check (B), and partial similarity check 
(C). 

 

Three learning buffer updating strategies – loose 
similarity check (A), strict similarity check (B), and partial 
similarity check (C), are compared in Table I. For A, 90% 
of system characterization patterns need to fall within the 
range of the previously stored patterns in the learning buffer. 
For B, the similarity need is set as 100%. For C, at least one 
GMM distribution falls within the range specified by the 
current buffer. The performance is reported as performance 
improvement, by comparing to the previously reported 
state-of-the-art method in [14]. The comparison shows the 
loose similarity check (A) achieves the highest 
performance, due to its ability to check all the patterns and 
allow for some flexibility for each pattern.  

C. System Characterization 

Multiple learning patterns for system characterization 
are evaluated here. The window sizes are set as 20 (A), 10 
(B), and 50 (C) time points, respectively, as shown in Table 
II. The window size determines how much information is 
leveraged in the learning process. We found that 20-time 
points are the best case for scenario characterizing during 
deep reinforcement learning. It means that if the window 
size is too small, no enough information is evaluated, and if 
it is too big, the system status already changes significantly. 

 

TABLE II. Evaluation of different learning patterns. 

 

Notes. The system characterization window sizes are set as 20 (A), 
10 (B), and 50 (C) time points, respectively.  

D. Knowledge Management 

Further, when fetching a batch from the knowledge 
buffer for deep reinforcement learning model updating, we 
have designed two approaches – random fetch plus new 
knowledge (A) and random batch (B). As shown in Table 
III, the former achieves better performance because the new 
knowledge has been leveraged in batch learning, which is 
beneficial for calculating the model gradients for backward 
error propagation. 

TABLE III. Evaluation of different gradient generator 
methods.  

 

Notes. The deep learning gradient is generated based on random 
batch plus new knowledge (A) and only random batch (B), 
respectively.  

E. Hyperparameters 

We have evaluated the learning rate, data normalization, 
and model regularization, as shown in Table IV and V. The 
simulation indicates that a learning rate of 0.1 is better for 
the framework to find effective parameters and optimize the 
system performance. The batch normalization and dropout 
bring performance improvement for learning pattern A, i.e., 



when the window size for system characterization is 20-
time points. These comprehensive studies have determined 
the optimal combination of crucial design hyperparameters. 

TABLE IV. Evaluation of different learning rates. 

 

Note. The learning rate is set as 0.005 (A) and 0.1 (B), respectively.  

 

TABLE V. Evaluation of bath normalization and 
regularization. 

 

Notes. The batch normalization (BN) and dropout regularization 
(DO) have impact on the performance. Under learning pattern A, 
the BN and DO contribute positively to the performance. 

  

IV. CONCLUSION 

We in this study have proposed, developed, and 
evaluated a novel deep reinforcement learning framework. 
Compared to traditional deep reinforcement learning, our 
framework can boost the performance with two major 
contributions. First, the system characterization approach is 
proposed to analyze the system states. Second, the 
knowledge adaptation approach is proposed to determine 
when to update the learning buffer based on the system 
characterization results, and how to combine the historical 
knowledge and the new knowledge for effective learning. 
Further, we have studied the key design hyperparameters, 
and then determined the optimal combination. The 
framework has been evaluated on a complex multi-device 
configuration task and demonstrates promising 
effectiveness, compared to the state-of-the-art method. This 
study will greatly advance complex system configuration 
applications in the era of big data like wearable and IoT 
devices.  
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