

REDEN: Interactive Multi-Fitting Decomposition-based NMR Peak Picking Assistant

3

4 Mehdi Rahimi,^{1,†} Abigail Chiu,^{1,†} Andrea Estefania Lopez Giraldo,¹ Je-Hyun Yoon,² Woonghee
5 Lee^{1,*}

6

⁷ ¹ Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA

⁸ ²Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104

9

[†] Co-first authors

^{*}Correspondence: woonghee.lee@ucdenver.edu

12

13

14 **Abstract**

15 We present a new program REDEN (Residual Decomposition of NMR peaks) designed to perform
16 identification of peaks in NMR spectra. This integrated, cross-platform, open-source software
17 visually assists with explicit peak picking through decomposition of NMR peaks on the frequency
18 domain data. It provides a distinctive interactive workflow with iPick due to its integration with
19 the POKY suite, providing users with a seamless and efficient experience. The decomposition of
20 peaks operates in a chosen region of an NMR spectrum by multi-fitting simulated peaks with four
21 lineshape fitting options as support, Gaussian, Lorentzian, a fast/optimized Lorentzian, and
22 Pseudo-Voigt. Furthermore, REDEN provides a way to fine-tune for the users in two operating
23 modes (Basic and Advanced). REDEN is pre-built in the POKY suite, which is available from
24 <https://poky.clas.ucdenver.edu>.

25 **Keywords:** Peak decomposition; multi-fitting; graphical user interface; REDEN; POKY

26 **1. Introduction**

27 Biomolecular NMR (Nuclear Magnetic Resonance) is a versatile tool for the study of the structure,
28 dynamics, and interactions of biological molecules such as proteins, nucleic acids, and
29 carbohydrates. Biomolecular NMR research involves a variety of essential tasks, including
30 resonance assignments, structure determination, dynamic characterization, ligand binding studies,
31 protein-protein interaction investigations, and metabolomics. Among these attributes, a crucial
32 common trait is “signal detection”, which is the ability to distinguish signal from noise. “Peak
33 picking” represents a more specific type of signal detection that refers to the distinction of signals
34 from each other. It can affect the overall quality and reliability of outcomes especially since overall
35 signal-to-noise is one of major reasons causing unsatisfactory peak picking. It can make peak
36 picking a time-consuming and difficult process, particularly in multidimensional NMR spectra.
37 Nonetheless, advances in NMR instrumentation and software tools have improved the accuracy
38 and efficiency of peak picking in recent years.

39 We previously introduced an automated peak picking program called iPick, which is based on local
40 extrema of peaks with rigorous validation criteria accompanied with easy-to-use graphical user
41 interfaces (GUIs) (Rahimi et al., 2021). Still, because some peaks have lower intensity or
42 proximity compared to more intense peaks, they tend to get overshadowed, making them obscured
43 from regular peak picking. A few approaches have been introduced to overcome this challenge like
44 geometry based algorithm (Wurz & Guntert, 2017), line shape analysis (Waudby et al., 2016), and
45 signal modeling (Dudley et al., 2020). Nevertheless, peak integration has shown promising results
46 (Ahlner et al., 2013).

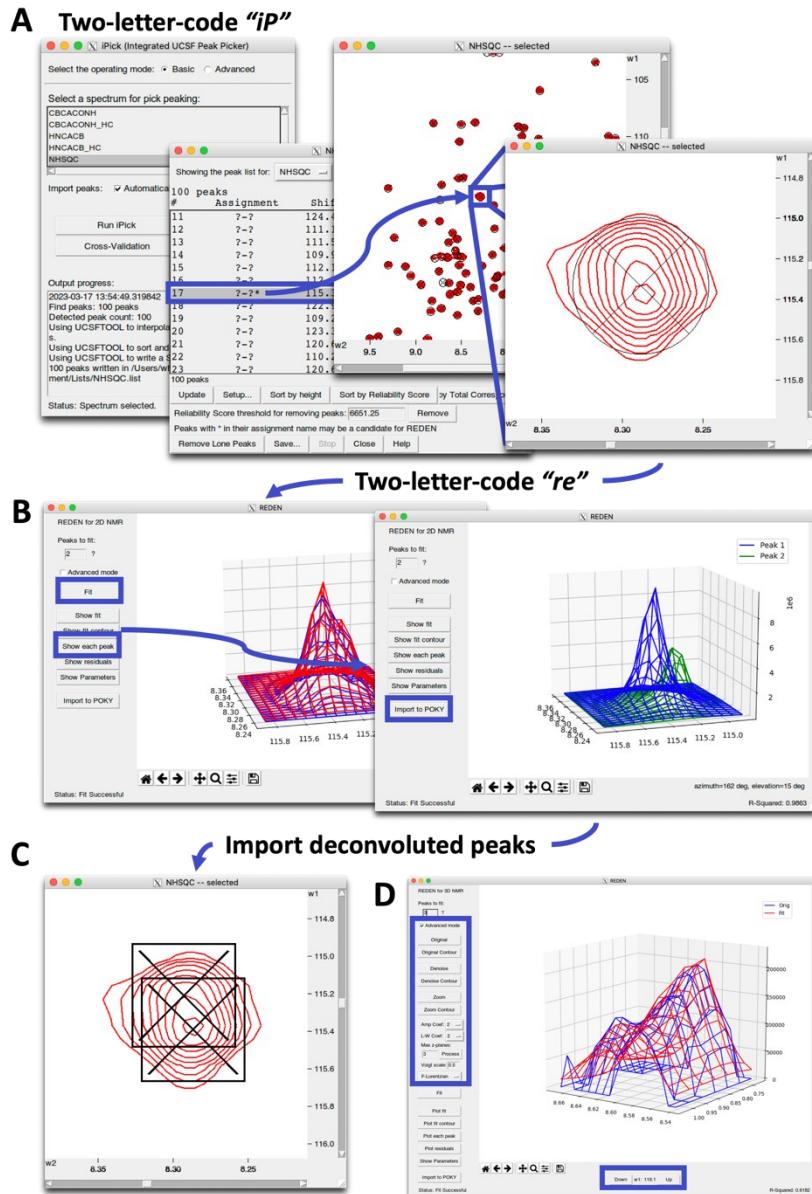
47 In recent years and based on proliferation of machine learning techniques, some approaches have
48 used such capabilities to build systems for identifying these shoulder peaks. A deep neural network

49 (DNN)-based approach (Li et al., 2021) and convolutional neural network (CNN) (Klukowski et
50 al., 2018) have been used to analyze 1D and 2D NMR spectra. Higher-dimensional NMR
51 techniques, such as 3D NMR, commonly used in the study of biomacromolecules such as proteins
52 and nucleic acids, remain challenging and insufficiently supported because they require more
53 interactive user intervention with the analysis program, such as navigating different planes through
54 the z-axis and rotating axes. Additionally, adopting these approaches may pose difficulties as each
55 requires the installation of new software that could conflict with user's operating system or pre-
56 existing libraries. Moreover, these approaches concentrate on scrutinizing an entire spectrum, an
57 endeavor that can be both time-consuming and unnecessary for many signals despite certain
58 spectral regions presenting challenges, such as peak pairs or crowded peak clusters only need to
59 be scrutinized. These issues can constitute a significant impediment for users analyzing spectra.
60 Since these standalone programs exist only for peak picking, other programs such as POKY must
61 be used in parallel to assemble the actual spectrum and study its structure and dynamics (Lee et
62 al., 2021). As a result, there is an urgent need to solve the difficulty of repeating not only the file
63 input and output for different programs, but also the full spectrum analysis of the deep learning-
64 based program itself.

65 In this situation, we introduce REDEN, one of the latest additions to the POKY suite, an integrated
66 plugin program that confronts these issues by offering a multi-fitting approach to identifying
67 hidden shoulder peaks in a crowded cluster. Thanks to its seamless integration with iPick in POKY,
68 REDEN provides users with a unique interactive workflow for multidimensional NMR spectra,
69 establishing it as a user-friendly solution for various applications such as proteomics and
70 metabolomics. The inclusion of REDEN in the Integrative NMR platform enhances its robustness

71 and flexibility, thus rendering it an effective choice for studying biomolecular structures and
72 functions (Lee et al., 2016).

73 **2. Implementation**


74 The REDEN software is written in Python 3 and can be run as a module for POKY. The user does
75 not need to prepare and import separate files for operating REDEN. While running through POKY,
76 REDEN will give the user the best experience via the cohesive integration with other preexisting
77 tools. Since the POKY suite is a cross-platform program, the user can run REDEN on Linux, Mac,
78 or Windows without the need for difficult installation steps. SBGrid (Morin et al., 2013) and
79 NMRbox (Maciejewski et al., 2017) provide the POKY suite to their subscribers, and REDEN is
80 also accessible from their service. Furthermore, a Singularity container version is available for
81 outdated operating systems.

82 **2.1. Initiating REDEN.**

83 The general workflow starts with user selecting a cluster on a spectrum either zooming in (arrow
84 keys, +/- keys, mouse wheels, etc) or by indications given in the iPick peak list window with an
85 asterisk flag (Fig. 1A). The iPick program (two-letter-code “*ip*”) is also a pre-existing module that
86 runs an efficient local extremum-based peak picking followed by the peak shape fitting of the
87 user’s choice from Gaussian, Lorentzian, and Pseudo-Voigt in the Integration Settings window
88 (two-letter-code “*it*”). The fitting by iPick is performed on picked peaks, but it does not decompose
89 multiple peaks clustered that are overshadowed and obscured. Still, it assesses the fitting quality
90 by calculating residuals from actuals subtracted by models. When a cluster is selected (viewed)
91 from either iPick’s suggestion or user’s choice, REDEN can be initiated by using the two-letter-
92 code “*re*”. This will open the main window of REDEN (Fig. 1B) showing the selected cluster. The
93 appropriate module will open automatically depending on whether it is a 2D or 3D NMR cluster.

94 2.2. Features of REDEN.

95 REDEN offers two modes of operation from its main window: "Basic" mode, which is the default
 96 (Fig. 1B), and "Advanced" mode, accessible by selecting the corresponding checkbox (Fig. 1D).

Fig. 1. The suggested workflow of REDEN GUI assisted by the iPICK peak picker. (A) A cluster flagged by the iPICK peak picker (two-letter-code "iP") is selected by the user for the further analysis using REDEN. (B) REDEN is executed (two-letter-code "re") and suggests two peaks for the cluster. It deconvolutes the cluster and fits two peaks in the *Basic* mode. (C) Fitted peaks can be simply imported back to POKY by clicking the "Import to POKY" button after the deconvolution process is completed. (D) A screenshot of the *Advanced* mode of 3D REDEN. The same workflow can be used to analyze a cluster in the 3D spectrum. Additional buttons for the Z-dimension navigation (*Down* and *Up*; blue box) left and right to the manual plane input box are offered for 3D REDEN.

97 **Basic mode.** In Basic mode, fitting a cluster of peaks is as simple as selecting the desired number
98 of peaks and clicking the "Fit" button. The default estimated number of peaks is the number
99 REDEN recognizes in that window by local maximum criterion. However, the user can easily
100 adjust this value to fit more peaks in that cluster to see if there is a peak hidden in the cluster. In
101 just a few seconds, the user can examine the fitting by manipulating the cluster and viewing it from
102 different angles via mouse movements. The results can be shown in various options. The overlay
103 of the actual data and fitting model can be summoned whenever the user clicks the "Show fit"
104 button from the left panel. In addition, users may want to see a 2D of the fit, so REDEN provides
105 an option to display a contour plot of the cluster and fitting by "Show fit contour". "Show each
106 peak" provides visuals of each of the peaks that REDEN recognizes. "Show residuals" is a residual
107 plot of the fitting. "Show Parameters" gives the fitting parameters, peak amplitude, linewidth,
108 skewness, and the peak center, of each identified peak. At the same time, parameters based on the
109 spectrum can be given such as volume, fit height, line widths, and data heights. Figures of these
110 options are available in the Supplementary document. If the fitting result is unsatisfactory, the user
111 can repeat the process with a different number of peaks to fit. R^2 is provided to evaluate the
112 goodness of fit. Users can see how it changes as parameters are changed and use this information
113 to find the best fit. Once the optimal peaks have been picked by the decomposition, the peaks and
114 their parameters can be effortlessly imported back into the spectrum via the "Import to POKY"
115 button (Fig. 1C). The process for decomposition peaks in 3D NMR is identical to that for 2D NMR,
116 as described earlier. The main distinction is that 3D NMR produces 4D data because it includes
117 additional peak intensity, so visualizing the data as a 3D plot will only display a single plane. To
118 address this, the 3D REDEN module includes supplementary buttons that enable users to navigate

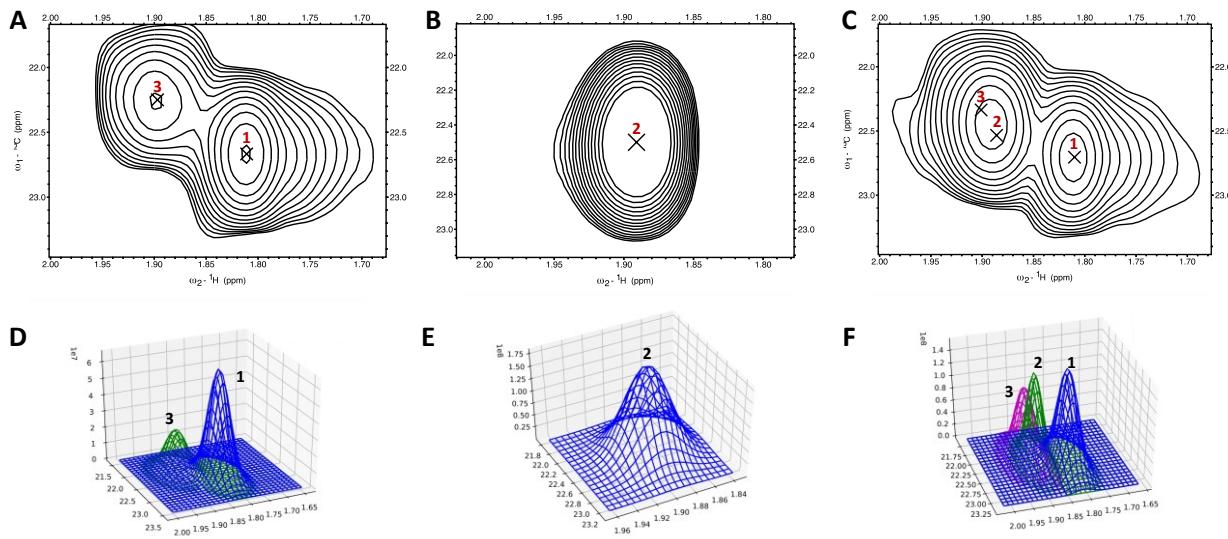
119 the third axis of the data which is essentially a stack of 2D planes (bottom-center of Fig. 1D; blue
120 box).

121 **Advanced mode.** REDEN's "Advanced" mode provides users with a wealth of data and extensive
122 fine-tuning capabilities (green box in Fig. 1D). This mode offers additional buttons for displaying
123 intermediate processing steps, including 3D and contour plots, which can be useful in defining a
124 cluster of peaks. Given the challenge of accurately identifying a cluster when peaks are closely
125 spaced, these intermediate plots offer insights into the processing steps that led to the result. If a
126 mistake was made in selecting a nearby cluster, the user can adjust the viewing window and re-run
127 REDEN as needed. Aside from the peak display options in the "Basic" mode described above, the
128 "Advanced" mode provides a way to display different aspects of the selected data region (buttons
129 in the green box of Fig. 1D). The user can see the intermediate steps that occurs throughout
130 REDEN calculation. First, "Original" and "Original Contour" show the fits on the original data
131 that the user selects. Next, "Denoise" and "Denoise Contour" shows the fits on the denoised data.
132 When one of these buttons is pressed, REDEN performs the wavelet denoising in real time and
133 use the cleaner data. Then, "Zoom" and "Zoom Contour" shows only the identified main cluster
134 while everything else including other nearby clusters are hidden. Buttons with the "Contour" in
135 the label show 2D contour plots, while the buttons without, show 3D mesh plots. REDEN uses
136 default values for fitting in the "Basic" mode, but sometimes the cluster is so out of shape that the
137 default values do not result in a good fit. In such cases, the user can adjust the "Amp Coef" (the
138 coefficient of amplitude) or "L-W Coed" (the coefficient of linewidths) parameters to attempt
139 another fit in the "Advanced" mode. Usually, just adjusting these parameters once will improve
140 the fit of the cluster.

141 **3D spectrum.** REDEN implements the axis order defined in the selected view window of POKY
142 for the 3D spectrum analysis. “Max z-planes” (also in blue box in the Fig. 1D) defines how many
143 planes through z-dimension will be used. Because REDEN applies this “Max z-planes” value to
144 navigate and capture the cluster, sometimes it is necessary to adjust it accordingly. If the cluster is
145 not identified, not a whole, or overlapped with the other cluster, REDEN will advise the user what
146 to do for identifying a cluster successfully. The user will need to zoom in, zoom out, or pan the
147 spectral view extent if x- and y-dimensions need to be adjusted. If z-dimension needs to be
148 adjusted, the user will use different value in the “Max z-planes” box.

149 **2.3. Lineshape fitting options.**

150 REDEN provides four lineshape fitting options: Gaussian, Lorentzian, a fast/optimized Lorentzian
151 (called "F-Lorentzian"), and Pseudo-Voigt (Zaghloul and Ali, 2012). Users can switch between
152 these options in the “Advanced” mode. A fitting optimization algorithm was used to minimize the
153 difference between the lineshape simulation and the data in a time efficient manner. The Sequential
154 Least Squares Programming (SLSQP) was chosen as the fitting optimization method due to its
155 advantageous for a moderate number of variables and constraints (Kraft, 1988). The “F-
156 Lorentzian” is a Lorentzian function that we formulated the multivariate_t function with NumPy’s
157 mathematics functions, while the “Lorentzian” is formulated with SciPy’s multivariate_t function.
158 The “Gaussian” is formulated with the SciPy’s multivariate_normal function. The “Pseudo-Voigt”
159 is the combination of Lorentzian and Gaussian functions with the linear combination scale between
160 them. By default, the Gaussian lineshape is used, as also employed in Basic mode, and the user
161 can change to one of other lineshapes to obtain the most satisfactory results without hassles in the
162 “Advanced” mode.


163 **3. Results and Discussion**

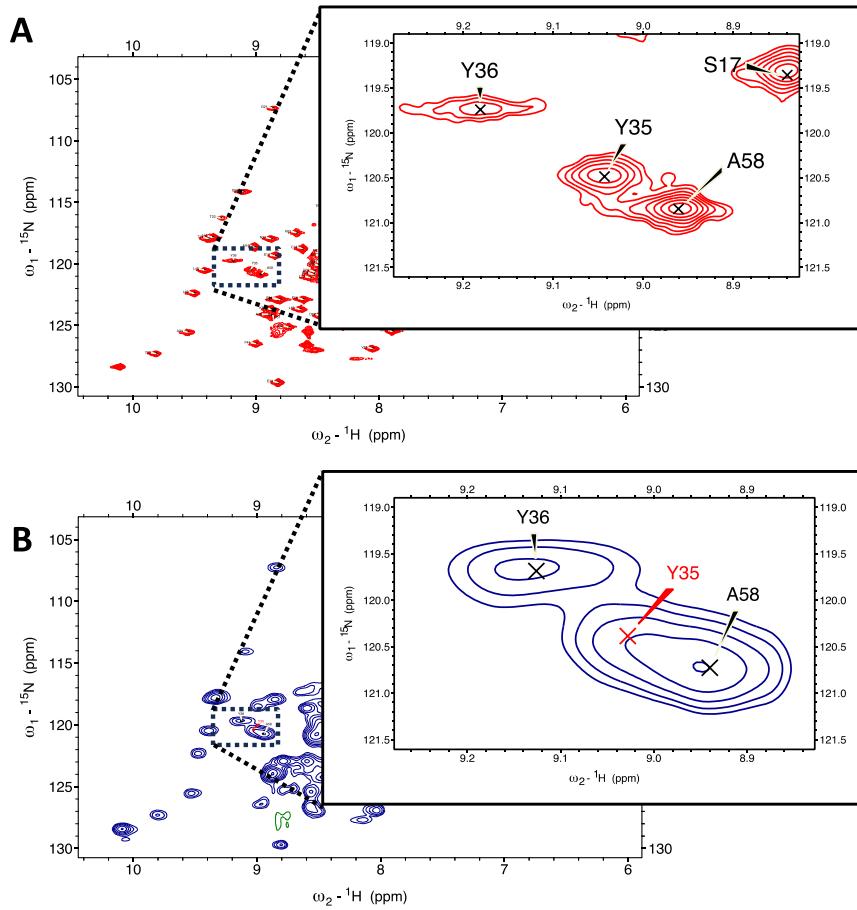
164 When it comes to real life application, it's highly probable that users can encounter some major
165 clusters that may be difficult for POKY's stock fitting. Here, we show how to tackle this issue via
166 REDEN with two examples, proteins and metabolites.

167 **3.1. REDEN testing on synthesized metabolite spectrum.**

168 To test out how well REDEN can perform, we synthesized a 2D $^1\text{H}, ^{13}\text{C}$ -HSQC NMR spectrum of
169 a metabolite mixture made of two standards, maslinic acid and bakuchiol found in the Biological
170 Magnetic Resonance Bank database (BMRB) (Romero et al., 2020). Maslinic acid and bakuchiol
171 were chosen as they have similar peak positions. The original data size of the compounds was at
172 1024×1024 . The spectral widths were 12.991 ppm and 165.058 ppm for the ^1H and ^{13}C dimensions,
173 respectively. The resolutions were 0.013 ppm/point and 0.161 ppm/point. For the best fitting
174 results by REDEN, the scales of the spectrum were doubled to 2048×2048 using a script in the
175 POKY Notepad titled “scale_spectrum_size_script.py” to make them 0.006 ppm/point and 0.081
176 ppm/point. Then, in each of the spectra, a cluster with similar positions were found as the main
177 target. REDEN was then used to pick the peaks in those clusters. After recording their position and
178 volumes, maslinic acid spectrum was concatenated onto bakuchiol spectrum via another script in
179 the POKY Notepad titled “concatenate_spectra_script2.py”. The spectra were collected under
180 different conditions, we wanted to match intensity levels between them. Thus, we used the scale
181 factor 2.4, the ratio between the highest volume of each compound. This scale factor created the
182 most elusive combination between the maslinic acid spectrum and bakuchiol spectrum. Then,
183 REDEN was performed using the Gaussian lineshape option on the same cluster region multiple
184 times in hopes of identifying the same peaks and volumes found from the maslinic spectrum and
185 bakuchiol spectrum. For troubleshooting, we would adjust the contour level, the position of the

186 cluster in window, and re-running REDEN multiple times to get the best decomposition prediction.
187 Figure 2 shows the results of the REDEN testing on bakuchiol and maslinic acid.

Fig. 2. Synthesizing a spectrum from bakuchiol and maslinic acid. (A) Target cluster with picked peaks in scaled spectrum of maslinic acid compound. (B) Target cluster with picked peaks in scaled spectrum of bakuchiol compound. (C) Target cluster with picked peaks in the synthesized concatenated spectrum of maslinic acid and bakuchiol. (D) REDEN's result of identifying peaks in maslinic acid spectrum (E) REDEN's result of identifying peaks in bakuchiol spectrum (F) REDEN's result of identifying peaks in the synthesized concatenated spectrum.


188 From the results (shown in Figure 2), REDEN exhibited an exceptional performance in effectively
189 decomposing peaks. The r^2 value of the Gaussian fit done by REDEN for Figure 2D was 0.9779.
190 The r^2 value of the Gaussian fit done by REDEN for Figure 2E was 0.9926. The r^2 value of the
191 Gaussian fit done by REDEN for Figure 2F was 0.9901. Although these numbers can be used as a
192 supplement, it is important to understand that high correlation values can also mislead to
193 overfitting. Therefore, users must carefully consider other factors when making decisions.
194 Unfortunately, the volumes in the standard spectra are not the same or like the volumes found in
195 the concatenated spectrum. There are no correlation or patterns either as to why the volumes of
196 those peaks are different. This is likely due to the nature of 2D NMR as it utilizes two resonances
197 and two magnetizations meaning that its relaxation time is longer. Figures of each of the standard
198 compound results can be found in the supplemental document.

199 **3.2. REDEN testing on experimental protein spectra.**

200 We tested REDEN on two 2D $^1\text{H}, ^{15}\text{N}$ -HSQC spectra of Nsp9 from SARS-CoV-2 that were
201 collected on 400MHz and 700MHz Bruker NMR spectrometers. The 700MHz spectrum was from
202 the Covid19-NMR (<https://covid19-nmr.de>) research partner, the Pastore group at King's College
203 London (E et al., 2021), and we acquired the 400MHz spectrum ourselves in the similar condition.
204 We expressed the Nsp9 protein in *E. coli* Bl21(DE3) using the pET28a-LIC-nsp9 plasmid (Littler
205 et al., 2020), with cells incubated in ^{15}N M9 labeled media (McIntosh & Dahlquist, 1990)
206 supplemented with Kanamycin at 200 rpm and 37°C until reaching an optical density of 0.9.
207 Isopropyl. β -d-1-thiogalactopyranoside was added at a final concentration of 0.5 mM to induce
208 expression, which was carried out at 37°C for 4 hours. Bacterial pellets were harvested,
209 resuspended in Lysis buffer (L buffer) containing 20mM HEPES at pH 7.0, 150mM NaCl, 20mM
210 Imidazole, 2mM MgCl₂, and 0.5mM TCEP, and then sonicated (20 pulses for 20 s ON at 60 W
211 and 40 s OFF) on ice with 1mg of Lysozyme and 1mg of DNAase. The lysate was centrifugated at
212 10,000 \times g for 45 minutes, filtrated through a membrane of 0.2 um and the flowthrough was applied
213 to a nickel affinity column (Hi-Trap chelating columns, GE Healthcare, Waukesha, WI, USA).
214 After washing with 5 volumes of L buffer and 5 volumes of L buffer with 100mM of imidazole,
215 the protein was eluted with 4 volumes of L buffer with 500mM Imidazole followed by His-tag
216 removal through overnight incubation with PreScission 3C protease (Z03092 ©GenScript) at 4°C.
217 Gel filtration (S75 16/60, GE HealthCare) was conducted using 50mM sodium phosphate pH 7.0,
218 150 mM NaCl, 1mM TCEP and 0.02% NaN₃. Nsp9 samples were prepared in 10% v/v D₂O
219 deionized water (151890 Sigma-Aldrich®) at 280 μ M for $^1\text{H}, ^{15}\text{N}$ -HSQC NMR spectrum
220 acquisition on a 400MHz Bruker BioSpin instrument at 298 K. NMR data were processed using

221 NMRPipe software (Delaglio et al., 1995), and data visualization was conducted using POKY (Lee
222 et al., 2021).

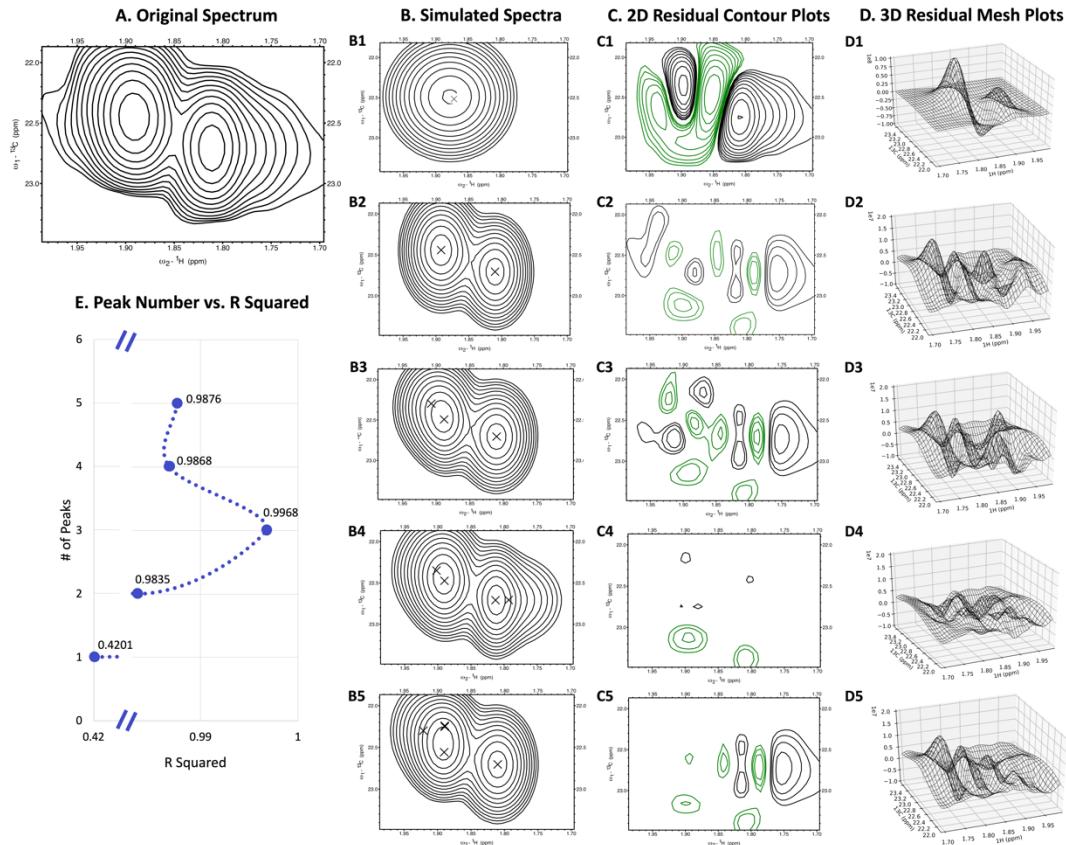
223 The size of the 700Mhz spectrum was 1024×2048 , and our spectrum was smaller after
224 automatically zero-filled (128×512). Neither zero-filling nor linear prediction could improve the
225 data quality. Therefore, we decided to apply the “scale_spectrum_size_script.py” in POKY
226 Notepad which scaled the spectrum size 1024×1024 in the frequency domain. We used the BMRB
227 entry number 50622 to assign spectra. The chemical shifts were loaded via the resonance tab in
228 the POKY suite. The downloaded assignments were then transferred onto the spectra via the
229 transfer and simulate tool (two-letter code “ta”) in the POKY suite. We found a cluster region that
230 could be a good example in the 400MHz spectrum as comparison to the 700MHz. Then, REDEN

Fig. 3. NSP9 spectra taken with a 700MHz Bruker instrument with a cryo-probe and the other with a 400MHz Bruker instrument with a room temperature probe (A) The 700MHz spectrum with assignments with a cluster focused for comparison. (B) In the 400MHz spectrum, REDEN was able to accurately identify the same peaks found in the same cluster as the 700MHz spectrum. The peak in red was not identified by the simple peak picking algorithm in the POKY suite.

231 was run on the cluster region with the Gaussian line shape option to see if it can correctly identify
 232 the peaks that should be in the same position as the ones in the 700MHz spectrum.
 233 Figure 3 shows the two spectra with differing quality. As a result, REDEN was able to accurately
 234 recover the peaks in that cluster which shows that low magnetization power of the NMR
 235 spectrometer can be overcome with peak decomposition. However, S17 peak was not recovered
 236 because it wasn't able to be captured by the low magnet power, temperature variations between
 237 400 MHz and 700 MHz, sample degradation or some unknown reasons. Still, for the peaks that

238 were obtained, REDEN was able perform flawlessly which further shows REDEN's powerful
239 advantage in the field of proteomics.

240 **3.3. Notable observations while troubleshooting**


241 In general, a cluster can be quite difficult to decompose especially when there are more than 10
242 peaks in the cluster. Not only does the user need to fit the whole cluster in the spectral window,
243 but the overall process can be quite time consuming due to the large cluster size. Thus, because of
244 this, it is possible for REDEN to give inaccurate parameter information based on the spectrum.
245 Because REDEN only uses a small cluster region in the spectrum, high-resolution data is essential
246 for better performance. In cases where the number of points in the spectrum is sparse, we
247 recommend users to use resolution enhancement methods like extrapolation on time domain data
248 such as zero-filling (Bartholdi & Ernst, 1973) and linear prediction (Ernst & Anderson, 2004), and
249 interpolation on the frequency domain data like nearest-neighbor algorithm for upscaling as we
250 have shown in this paper. This method can be easily accessible from POKY Notepad's
251 "scale_spectrum_size_script.py" as mentioned above. However, as the number of time-domain
252 points decreases, the lineshape observed in the Fourier spectrum becomes increasingly non-ideal,
253 with increasingly prominent truncation artifacts. Therefore, upscaling method will not be able to
254 rescue the data. It is recommended for users to run multiple times to get the best parameters with
255 low residuals even though it may be tedious. Also, because of 2D NMR spectra are not always
256 proportional to the concentration of samples, users should be cautious when utilizing the volume
257 calculated by REDEN. However, once an extrapolation technique like HSQC_0 is implemented for
258 raw spectra, it will be possible for REDEN to approximate the concentration based on the volume
259 with more confidence (Hu et al., 2011). Users may get better results by running multivariate
260 analysis methods like PCA with REDEN's decomposition power compared to traditional binning

261 or region-of-interest (ROI) approaches. Additionally, REDEN currently does not support full
262 automation on a whole spectrum which may increase significant running time. However, we highly
263 recommend that users pair REDEN with one of our automatic peak picking tools like iPick that
264 also provides a reliability score for each peak picked. So, users only need to focus on the major
265 clusters that are most likely to have hidden peaks that are overshadowed.

266 **3.4. Simulating a spectrum of modeled peaks and residuals**

267 We tested the performance of REDEN by running multiple fit numbers on the synthesized
268 concatenated spectrum of bakuchiol and maslinic acid from the BMRB database. A range of 1 – 5
269 peaks were fitted on a targeted cluster in the original concatenated spectrum. Then, to visualize
270 its residual plot, a new tool was created that makes simulated and residual spectra via the two-
271 letter-code “mr” in the POKY suite. This tool creates two-dimensional contour simulated and

272 residual spectrum of the original spectrum with its fitted peaks. 3D perspective plot was a tool
 273 created to visualize those in the POKY suite via two-letter code “3p”.

Fig. 4. Simulating a spectrum from concatenated mixture of bakuchiol and maslinic acid. (A) Target cluster of original mixture spectrum scaled to 2048×2048 (B) Target cluster of simulated mixture spectrum with peaks picked from a range of 1 – 5. (C) Target cluster of residual plot between original and simulated spectra. (D) Three-dimensional wireframe plots of residual plots. For D2-5, the Z-axis range are the same, but for D1, its Z-axis range 10 times larger. (E) Plot of each fitting and their R^2 value.

274 REDEN was done on the original spectrum to obtain the fitted picked peaks. Because REDEN
 275 always seeks the optimal parameters, the fit parameters from the previous fit were not used for the
 276 next fit number. The original spectrum with the fitted peaks were then used to create the two-
 277 dimensional simulated and residual contours as shown in Figure 4 as B and C. Three-dimensional
 278 wireframe plots of the residual contours were made from the 3D perspective plot tool in the POKY
 279 suite. The outcomes indicate that fitting three peaks yielded the highest R^2 value, as demonstrated
 280 in Figure 4E. This emphasizes the precision of REDEN in its predictions, rather than simply
 281 attempting to fit more peaks without proper evaluation.

282 Moreover, the current line shapes fall short of accurately modeling actual NMR signals perfectly,
283 which means that the volume cannot accurately reflect the concentration of the sample. Still, we
284 remain open to adopt where line shapes have high fidelity or when machine learning approaches
285 have been advanced to mitigate this limitation.

286 **4. Conclusion**

287 Our team has created REDEN, an intuitive tool designed for visually assisting picking of shoulder
288 peaks or smaller peaks that may be obscured by high-intensity neighboring peaks. One of the most
289 unique and powerful features of REDEN is its ability to use subregions in POKY interactively.
290 With this feature, users can pick even the smallest peaks that may be hidden by the neighboring
291 high-intensity peaks, making it an invaluable preference for researchers working with complex
292 data sets especially with metabolite spectral data. We show protein and metabolite data as examples
293 in this manuscript because we are more interested in biomolecules, but we believe REDEN can
294 also be applied to spectra from organic compounds and inorganic materials if lineshapes exhibit
295 characteristics that REDEN can handle. REDEN can also be coupled with POKY's latest addition,
296 TINTO (Two-dimensional Imaging for NMR sTrip Operation via CV; two-letter-code “*ti*” for 2D
297 and “*sp/SP/Sp*” for 3D) (Giraldo et al., 2023). By employing TINTO for peakless strip matching
298 via computer vision method, REDEN can aid in deciphering intricate regions during protein
299 assignments. Subsequently, versatile assigner, represented by two-letter code “*va*”, can be used for
300 semi-automatic residue assignments in conjunction with reference views using two-code “*ir*” for
301 supplementary referencing(Manthey et al., 2022). This interactive subregion capability sets
302 REDEN apart from other peak picking tools and makes it an essential addition to any researcher's
303 toolkit. This program is open-source and can be utilized as a plugin in POKY in conjunction with
304 the iPick peak picker. The latest version of POKY already includes REDEN and iPick, and it is

305 freely available to non-commercial users on Windows, Linux, and macOS, including Apple Silicon
306 CPUs (e.g., M1, M2). It is recommended to use peak picking software like iPick alongside with
307 REDEN as shown in this paper, and we also plan to make an interface to UnidecNMR to seek
308 greater synergies (Buchanan et al., 2022).

309 **5. Acknowledgements**

310 This work was supported by the National Science Foundation (Grant No. DBI-2051595 & DBI-
311 1902076 to W.L.) and the University of Colorado Denver. J.-H.Y is supported by NIH
312 R01AA027532 and Startup fund from University of Oklahoma. Authors appreciate Dr. Jamie
313 Rossjohn from Monash University for providing with pET28a-LIC-nsp9 plasmid. Authors also
314 appreciate the Annalisa Pastore group from King's College London and the Covid19-NMR
315 (<https://covid19-nmr.de>) for making high quality Nsp9 data available.

316 *Conflict of Interest:* none declared.

317 **References**

318 Ahlner, A., Carlsson, M., Jonsson, B.-H., & Lundström, P. (2013). PINT: a software for integration
319 of peak volumes and extraction of relaxation rates. *Journal of Biomolecular NMR*, 56(3),
320 191-202. <https://doi.org/10.1007/s10858-013-9737-7>

321 Bartholdi, E., & Ernst, R. R. (1973). Fourier spectroscopy and the causality principle. *Journal of*
322 *Magnetic Resonance* (1969), 11(1), 9-19. [https://doi.org/https://doi.org/10.1016/0022-2364\(73\)90076-0](https://doi.org/https://doi.org/10.1016/0022-2364(73)90076-0)

324 Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: a
325 multidimensional spectral processing system based on UNIX pipes. *J Biomol NMR*, 6(3),
326 277-293. <https://doi.org/10.1007/BF00197809>

327 Dudley, J. A., Park, S., MacDonald, M. E., Fetene, E., & Smith, C. A. (2020). Resolving
328 overlapped signals with automated FitNMR analytical peak modeling. *J Magn Reson*, 318,
329 106773. <https://doi.org/10.1016/j.jmr.2020.106773>

330 E, F. D., Puglisi, R., Korn, S. M., Alfano, C., Bellone, M. L., Piaz, F. D., Kelly, G., Monaca, E.,
331 Schlundt, A., Schwalbe, H., & Pastore, A. (2021). Backbone chemical shift spectral
332 assignments of SARS coronavirus-2 non-structural protein nsp9. *Biomol NMR Assign*,
333 15(2), 235-241. <https://doi.org/10.1007/s12104-021-10011-0>

334 Ernst, R. R., & Anderson, W. A. (2004). Application of Fourier Transform Spectroscopy to
335 Magnetic Resonance. *Review of Scientific Instruments*, 37(1), 93-102.
336 <https://doi.org/10.1063/1.1719961>

337 Giraldo, A. E. L., Werner, Z., Rahimi, M., & Lee, W. (2023). Breaking boundaries: TINTO in
338 POKY for computer vision-based NMR walking strategies. *Journal of Biomolecular NMR*.
339 <https://doi.org/10.1007/s10858-023-00423-6>

340 Hu, K., Westler, W. M., & Markley, J. L. (2011). Simultaneous quantification and identification of
341 individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero
342 (1)H-(13)C HSQC (HSQC(0)). *J Am Chem Soc*, 133(6), 1662-1665.
343 <https://doi.org/10.1021/ja1095304>

344 Klukowski, P., Augoff, M., Zieba, M., Drwal, M., Gonczarek, A., & Walczak, M. J. (2018).
345 NMRNet: a deep learning approach to automated peak picking of protein NMR spectra.
346 *Bioinformatics*, 34(15), 2590-2597. <https://doi.org/10.1093/bioinformatics/bty134>

347 Kraft, D. (1988). *A Software Package for Sequential Quadratic Programming*. Wiss.
348 Berichtswesen d. DFVLR. <https://books.google.com/books?id=4rKaGwAACAAJ>

349 Lee, W., Cornilescu, G., Dashti, H., Eghbalnia, H. R., Tonelli, M., Westler, W. M., Butcher, S. E.,
350 Henzler-Wildman, K. A., & Markley, J. L. (2016). Integrative NMR for biomolecular
351 research. *J Biomol NMR*, 64(4), 307-332. <https://doi.org/10.1007/s10858-016-0029-x>

352 Lee, W., Rahimi, M., Lee, Y., & Chiu, A. (2021). POKY: a software suite for multidimensional
353 NMR and 3D structure calculation of biomolecules. *Bioinformatics*, 37(18), 3041-3042.
354 <https://doi.org/10.1093/bioinformatics/btab180>

355 Li, D. W., Hansen, A. L., Yuan, C., Bruschweiler-Li, L., & Bruschweiler, R. (2021). DEEP picker
356 is a deep neural network for accurate deconvolution of complex two-dimensional NMR
357 spectra. *Nat Commun*, 12(1), 5229. <https://doi.org/10.1038/s41467-021-25496-5>

358 Littler, D. R., Gully, B. S., Colson, R. N., & Rossjohn, J. (2020). Crystal Structure of the SARS-
359 CoV-2 Non-structural Protein 9, Nsp9. *iScience*, 23(7), 101258.
360 <https://doi.org/10.1016/j.isci.2020.101258>

361 Maciejewski, M. W., Schuyler, A. D., Gryk, M. R., Moraru, II, Romero, P. R., Ulrich, E. L.,
362 Eghbalnia, H. R., Livny, M., Delaglio, F., & Hoch, J. C. (2017). NMRbox: A Resource for

363 Biomolecular NMR Computation. *Biophys J*, 112(8), 1529-1534.

364 <https://doi.org/10.1016/j.bpj.2017.03.011>

365 Manthey, I., Tonelli, M., Ii, L. C., Rahimi, M., Markley, J. L., & Lee, W. (2022). POKY software
366 tools encapsulating assignment strategies for solution and solid-state protein NMR data.

367 *Journal of Structural Biology*: X, 6, 100073.

368 <https://doi.org/https://doi.org/10.1016/j.jsbx.2022.100073>

369 McIntosh, L. P., & Dahlquist, F. W. (1990). Biosynthetic incorporation of 15N and 13C for
370 assignment and interpretation of nuclear magnetic resonance spectra of proteins. *Q Rev
371 Biophys*, 23(1), 1-38. <https://doi.org/10.1017/s0033583500005400>

372 Morin, A., Eisenbraun, B., Key, J., Sanschagrin, P. C., Timony, M. A., Ottaviano, M., & Sliz, P.
373 (2013). Collaboration gets the most out of software. *eLife*, 2, e01456.
374 <https://doi.org/10.7554/eLife.01456>

375 Rahimi, M., Lee, Y., Markley, J. L., & Lee, W. (2021). iPick: Multiprocessing software for
376 integrated NMR signal detection and validation. *J Magn Reson*, 328, 106995.
377 <https://doi.org/10.1016/j.jmr.2021.106995>

378 Romero, P. R., Kobayashi, N., Wedell, J. R., Baskaran, K., Iwata, T., Yokochi, M., Maziuk, D.,
379 Yao, H., Fujiwara, T., Kurusu, G., Ulrich, E. L., Hoch, J. C., & Markley, J. L. (2020).
380 BioMagResBank (BMRB) as a Resource for Structural Biology. *Methods Mol Biol*, 2112,
381 187-218. https://doi.org/10.1007/978-1-0716-0270-6_14

382 Waudby, C. A., Ramos, A., Cabrita, L. D., & Christodoulou, J. (2016). Two-Dimensional NMR
383 Lineshape Analysis. *Sci Rep*, 6, 24826. <https://doi.org/10.1038/srep24826>

384 Wurz, J. M., & Guntert, P. (2017). Peak picking multidimensional NMR spectra with the contour
385 geometry based algorithm CYPICK. *J Biomol NMR*, 67(1), 63-76.

386 <https://doi.org/10.1007/s10858-016-0084-3>

387