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A B S T R A C T   

Developing a cost-effective, efficient, and eco-friendly electrocatalyst made from non-noble materials for the 
hydrogen evolution reaction (HER) is challenging. This research paper presents an application of the nickel 
sulfide (Ni3S2) nanowires-filled multiwalled carbon nanotubes (CNTs) synthesized on carbon cloth (CC) 
(Ni3S2@CNTs/CC) as an efficient HER electrocatalyst. The performance of Ni3S2@CNTs/CC as a working elec
trode was examined for its hydrogen evolution ability. In a 1.0 M KOH solution, Ni3S2@CNTs/CC requires 
cathodic overpotentials of 381 mV and 549 mV to generate current densities of 10 mA/cm2 and 100 mA/cm2, 
respectively. Electrochemical impedance measurements showed a low charge transfer resistance value of 3.3 Ω 
for Ni3S2@CNTs/CC. 

The evaluation of the electrochemically active surface area revealed that Ni3S2@CNTs/CC has more electro
chemical active sites and a higher roughness factor than pristine CC. Most importantly, the current density of 
Ni3S2@CNTs/CC did not significantly degrade after 3000 CV cycles and 12 h of constant HER. These findings 
suggest that Ni3S2@CNTs/CC is a cost-effective, highly functional, and stable electrode material for HER in a 
strongly alkaline medium.   

1. Introduction 

According to projections, global energy consumption is expected to 
reach 30 TW (30 × 1012 Watts) by 2050 [1]. As a result of the high 
energy demand, the depletion of fossil fuel supply and carbon dioxide 
emissions from their use are global pressing concerns. Therefore, 
extensive research has been conducted to develop renewable and clean 
energy alternatives to address these challenges. Hydrogen (H2) is a 
promising option among the potential clean energy fuel sources due to 
its high energy density, carbon emission-free nature, and abundant do
mestic sources [2–5], which have stimulated interest in hydrogen as an 
alternative clean energy fuel. 

Hydrogen production through biomass pyrolysis is a promising 
method wherein natural organic materials are heated and gasified at a 
temperature range of 500–900 ◦C under 0.1–0.5 MPa pressure [6]. 
Gasification is also an encouraging technique where specific gasification 
agents transform biomass into a gaseous mixture, such as CO2 and H2 
[7]. Other methods, such as biomass combustion, bio-photolysis, steam 

reforming, and photo fermentation, are also available for hydrogen 
production [8]. Although these methods could yield H2 from 4 g/kg to 
190 g/kg feedstock, they face challenges such as catalyst deactivation, 
costly reactor requirements, and CO2 emission, limiting their industrial 
utilization. Furthermore, H2 production from solar and wind-powered 
processes is intermittent because they are seasonally dependent. 
Hence, there is a pressing need for an affordable, emission-free, and 
industrially applicable technique for green H2 production. 

HER via water electrolysis is considered one of the easiest and 
cleanest ways to produce pure H2, and it is also the most feasible method 
to produce highly pure H2 [9–11]. Currently, only a small percentage, 
around 4 %, of hydrogen produced globally for industrial purposes 
comes from water electrolysis. The majority, approximately 96 %, is 
obtained through conventional non-renewable methods [12,13]. The 
slow kinetics of HER and significant energy loss during the process are 
the primary reasons for the low production of H2 through water elec
trolysis. The standard potential for water electrolysis is 1.23 V; however, 
the practical potential for water electrolysis is higher than the 
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theoretical value due to the kinetic barrier [14]. The overpotential is the 
difference between the experimental and standard potentials for water 
electrolysis. Fortunately, engineering the catalyst can help reduce the 
overpotential and make the process more efficient [15]. Platinum (Pt) 
and Pt-based materials are considered the best electrocatalysts for HER 
as they require minimal overpotential [16]. However, their high cost 
and limited availability on Earth hinder their industrial use. Therefore, it 
is crucial to develop an effective, cost-efficient, and abundantly avail
able HER catalyst to achieve affordable, scalable, and sustainable pro
duction of H2. 

Non-noble metal-based materials are becoming increasingly popular 
due to their low cost and easy availability, and nickel (Ni) is one of the 
most promising options for HER electrocatalysis [17–19]. Because Ni 
has similar chemical properties to Pt, Ni and Ni-based materials, such as 
binary, ternary, and composite alloys, have been extensively explored as 
electrode materials for HER [20,21]. Some of the most notable Ni-based 
electrode materials include nickel phosphide [22–24], sulfide [25–28], 
chalcogenide [29,30], and selenides [31–34]. 

Among Ni-based electrocatalysts, nickel sulfide alloy has demon
strated superior electrocatalysis ability in alkaline environments 
compared to other binary Ni alloys, and different phases of nickel sulfide 
have been studied to determine their HER activity [35–37]. Nickel sul
fide exists in different phases, and because the HER activity is 
phase-dependent, considerable attention has been given to exploring the 
phase-dependent HER activity of nickel sulfide [38–42]. Among its three 
most stable phases (Ni3S2, NiS, and NiS2), due to its large electro
chemically active surface area and high conductivity, Ni3S2 has the 
highest HER electrocatalytic activity [25]. 

Electrocatalysts must meet certain requirements to catalyze the HER 
process effectively. They should have many reaction sites, be chemically 
and mechanically stable, have good electrical conductivity, and be cost- 
effective. The substrate used to load the electrocatalysts should not 
interfere with their inherent characteristics or cause the loss or over- 
representation of HER activity. Previous research has used glassy car
bon electrodes and binder materials like Nafion to load the electro
catalyst materials [43–46]. However, this approach has some 
limitations, such as hindering the electrocatalytic active sites of the 
materials, requiring extra material for device fabrication, and increasing 
the series resistance, which can lead to reduced HER activity. Moreover, 
creating such electrode materials requires a precisely controlled envi
ronment, which can be inconvenient. Carbon cloth (CC) is a superior 
alternative to glassy carbon for many reasons, including its high flexi
bility, good conductivity, high mechanical and chemical stabilities, low 
cost, and abundant availability. CC can also be functionalized with 
various functional electrocatalysts that can be directly used without 
modifying or destroying the materials’ primordial characteristics as an 
electrode. Therefore, CC is a suitable substrate (working electrode) 
alternative for HER electrode materials [47,48]. 

Combining Ni3S2 with carbon nanotubes (CNTs) is expected to have 
a positive effect on the HER process. Ni3S2 alone and its composites have 
been widely studied for HER [49–56], but there has been no report on 
using Ni3S2 encapsulated inside CNTs for HER. When a material is filled 
inside a CNT, it becomes more stable and is protected from degradation. 
Additionally, the filling material can strengthen the CNT and prevent 
CNT’s deformation, making the composite suitable for use in extreme 
environments, such as strong alkaline solutions. In this work, Ni3S2 
nanowires encapsulated inside multiwalled CNTs were directly synthe
sized on CC using a simple one-step chemical vapor deposition process. 
The synthesized material is termed as Ni3S2@CNTs/CC and has been 
tested for the first time as the electrode for HER. The Ni3S2@CNTs/CC 
has shown high efficiency for hydrogen production from HER in a 
strongly alkaline medium. 

2. Experimental 

2.1. Reagents and materials 

Nickel nanoparticles (Ni NPs) (40 nm, 99.9 %) were purchased from 
US Research Nanomaterials, Inc. Woven carbon fiber cloth (CC) with a 
thickness of 330 μm was purchased from the Fuel Cell Store. Isopropyl 
alcohol (IPA) was obtained from Fisher Scientific. The precursor for 
carbon and sulfur was thiophene (C4H4S), purchased from Acros Or
ganics. For HER measurements, 1.0 M KOH electrolyte was prepared 
from potassium hydroxide (≥85 %, pellets) purchased from Sigma- 
Aldrich and mixed with Milli-Q water. All the materials were used as 
received. 

2.2. Material synthesis 

Our published work [57] details the synthesis technique of 
Ni3S2@CNTs/CC. Firstly, Ni NPs were mixed with IPA at a concentration 
of 40 g/L and placed in an ultrasonication bath for 5 min to create a 
uniform suspension. Next, the catalyst solution was loaded onto small 
CC pieces of 2 cm × 1.5 cm using the dip-coating method. The 
catalyst-loaded CC was then heated on a hot plate at 150 ◦C for 5 min to 
evaporate the IPA. Afterward, the CC was transferred to a horizontal 
tube furnace and heated at 600 ◦C for 30 min with Ar gas flowing at 200 
sccm. H2 flow was then added to the system at 120 sccm for 15 min. 
Following this, the H2 flow was stopped, and the system’s temperature 
was raised to the synthesis temperature of 1000 ◦C. At this point, the Ar 
flow was increased to 1700 sccm, and the H2 flow (at 120 sccm) was 
resumed. However, the H2 was flown from a different path (bubbler 
containing thiophene) to carry the thiophene into the reaction chamber. 
The synthesis was conducted for 20 min. Finally, the H2 flow was 
stopped, the Ar flow was reduced to 200 sccm, and the chamber was 
cooled to room temperature to collect the samples. 

2.3. Morphology and structure characterization techniques 

The scanning electron microscopy (SEM) images were acquired using 
a field emission scanning electron microscope (FESEM) JEOL JSM- 
6330F and JSM-F100 Schottky FESEM. Transmission electron micro
scopy (TEM) images were acquired using FEI Tecnai F30 TEM and 
Tecnai G2 20 U-Twin high-resolution TEM. Siemens Diffraktometer 
D5000 (Cu Kα radiation, λ = 1.54 Å) was used to acquire the X-ray 
diffraction (XRD) pattern of powder form Ni3S2@CNTs. 

2.4. Electrochemical measurements 

A standard three-electrode system connected to a potentiostat (CH 
Instruments, Inc. Texas) with a homemade electrochemical cell was used 
to measure the HER activity of CC and the as-synthesized Ni3S2@CNTs/ 
CC at room temperature. All the electrocatalytic measurements were 
evaluated in a strongly alkaline 1.0 M KOH solution (electrolyte). The 
reference and counter electrodes used in the experiment were Ag/AgCl 
(1 M Na2SO4) and graphite rod, respectively. Ar gas at a constant flow 
rate was purged into the electrolyte 20 min before starting the mea
surement and during all the electrochemical measurements to degas the 
system. All the potentials reported in this paper are converted to a 
reversible hydrogen electrode (vs. RHE) using the equation E (V vs. 
RHE) = E (V vs. Ag/AgCl) + 0.2 V + 0.059 × pH (pH = 14.0). Linear 
sweep voltammetry (LSV) was performed at a scan rate of 5 mV/s. 
Because of the ohmic resistance of the electrolyte, the as-measured 
current would not reflect the intrinsic behavior of the electrocatalyst. 
To solve the problem, 100 % iR correction was applied to the measured 
LSV by measuring the electrolyte resistance (Rs) from electrochemical 
impedance spectroscopy (EIS). EIS experiments were performed at a 
frequency range (high to low) from 100 kHz to 0.1 Hz. The as-obtained 
EIS data were fitted using the same CHI software. Tafel parameters were 
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Fig. 1. (a) Low magnification SEM image of woven CC. (b) High magnification SEM image showing Ni3S2@CNTs synthesized on CC. (c) Low magnification TEM 
image of a single Ni3S2@CNT showing the continuous Ni3S2 nanowire filled inside the CNT. (d) High-resolution TEM image of a Ni3S2@CNT showing highly 
graphitized CNT walls and the crystalline Ni3S2 core. (e) X-ray diffraction pattern of powder Ni3S2@CNTs. 
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Fig. 2. (a) Linear sweep voltammograms of pristine CC and Ni3S2@CNTs/CC (normalized to geometrical surface area). (b) Corresponding Tafel plots of CC and 
Ni3S2@CNTs/CC. (c), (d) Cyclic voltammograms of pristine CC and Ni3S2@CNTs/CC used for calculating Cdl. (e) Scan rate dependence of the current densities of 
pristine CC and Ni3S2@CNTs/CC. (f) Linear sweep voltammetry normalized to ECSA. Inset: ECSA normalized Tafel extrapolation for ECSA normalized exchange 
current density. 
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calculated based on the standard Tafel equation, η = a + bLog(J), where 
η(V) represents the applied overpotential, J(mA/cm2) the resulting 
current density, b(V/dec) the Tafel slope and a(V) the intercept. The 
durability of Ni3S2@CNTs/CC was measured using chronoamperometry 
at a constant potential for 12 h. The cyclic stability test was conducted 
using cyclic voltammetry (CV) using the same sample for the 1st and the 
2nd 1500 CV cycles. For measuring the electrochemical active surface 
area (ECSA), double layer capacitance (Cdl) was calculated by per
forming CV scans in the non-faradaic potential region from 20 mV/s to 
200 mV/s at 20 mV/s intervals. Initially, all current values are 
normalized to the geometric surface area of the respective electrodes 
(current density). Subsequently, they are further normalized to the 
calculated ECSA. Electrodes and the electrochemical system were acti
vated by performing at least 15 CV cycles at a scan rate of 50 mV/s 
before starting the electrochemical measurement. 

3. Results and discussion 

3.1. Physical characterization of the catalysts 

Fig. 1(a) displays an SEM image of the pristine CC, which consists of 
a stack of carbon fiber threads that can be loaded with Ni NPs. Fig. 1(b) 
shows the SEM image of Ni3S2@CNTs that have been synthesized onto 
the CC substrate. SEM inspection reveals that the Ni3S2@CNTs are 
strongly connected to the carbon threads, and the vast majority of the Ni 
NPs have participated in the growth of the Ni3S2@CNTs. A layer of 
Ni3S2@CNTs, with a length of 20–30 μm, covers the CC substrate. Fig. 1 
(c) shows a single CNT that has been entirely filled with Ni3S2 nanowire. 
Most of the Ni3S2@CNTs appear straight, while some are curved. Usu
ally, Ni3S2@CNTs are slightly tapered, with the thicker end (the root) 
commonly sealed with a sphere of carbon-encapsulated nickel sulfide. 
Fig. 1(d) displays a high-resolution TEM image of a Ni3S2@CNT that 
demonstrates the CNT walls’ high crystallinity, with a lattice spacing of 
0.34 nm, corresponding to the (002) plane of graphitic carbon. The 
lattice separation of 0.28 nm found in the filler material matches well 
with the d-spacing of (110) plane of rhombohedral Ni3S2, a heazle
woodite phase (a = 5.745 Å and c = 7.135 Å). Further, XRD measure
ment was performed on the powder form Ni3S2@CNTs and shown in 
Fig. 1 (e). The diffraction patterns at 2θ values of 21.75◦, 31.10◦, 37.77◦, 
38.27◦, 49.73◦, 50.12◦, 54.61◦, 55.16◦, 69.27◦, 73.04◦, and 77.89◦

correspond to (101), (110), (003), (021), (113), (211), (104), (122), 
(131), (214), and (401) planes of rhombohedral Ni3S2. The appearance 
of a diffraction peak at a 2θ value of 26.36◦ represents the (002) plane of 
CNT. The three peaks at 2θ values of 44.50◦, 51.84◦, and 76.36◦ corre
spond to the (111), (200), and (220) planes of unreacted nickel crystal 
remained at the root of Ni3S2@CNTs. The specific surface area (BET) of 
the CC and Ni3S2@CNTs/CC was measured to be 21.7 m2/g and 26.6 
m2/g, respectively. The synthesis of Ni3S2@CNTs on CC led to a slight 
increase in the specific surface area. Additional information regarding 
the Ni3S2@CNTs’ comprehensive structural analysis and other physical 
characteristics can be found in our earlier work [57]. The SEM images of 
Ni3S2@CNTs post-HER testing are shown in ESI Figure S1 (c)–(e). The 
low-magnification SEM image (Figure S1(c)) reveals that many 
Ni3S2@CNTs collapsed onto the CC while the rest are still freely sticking 
out of the CC. The collapsing of Ni3S2@CNTs on CC could be from the 
wetting effect of free-standing CNTs [58]. The high-magnification SEM 
images (Figures S1(d) and (e)) of the single Ni3S2@CNTs reveal that the 
Ni3S2 nanowires are still encapsulated in the CNTs even after the HER 
test, indicating that the Ni3S2 nanowires are well protected by the CNTs 
during the HER test. The robust and enduring nature of Ni3S2@CNTs 
made the HER process stable (see the electrocatalysis performance to
wards HER below). 

3.2. Electrocatalysis performance towards HER 

The as-synthesized Ni3S2@CNTs/CC was used as a working electrode 

to investigate its catalytic activity towards HER without modification. 
Fig. 2(a) shows the LSV (normalized to geometrical surface area) of 
Ni3S2@CNTs/CC and pristine CC recorded at a scan rate of 5 mV/s. It is 
evident from the polarization curve that pristine CC shows inferior HER 
activity, while Ni3S2@CNTs/CC exhibits significant HER activity with 
high current density. Quantitatively, Ni3S2@CNTs/CC requires over
potentials of −381 mV and −137 mV to generate current densities of 10 
mA/cm2 (η10) and 1 mA/cm2 (onset overpotential, η1), respectively. The 
current density obtained at the maximum applied potential for CC was 
less than 7.5 mA/cm2. It is important to note that the onset overpotential 
of pristine CC is −500 mV, 3.6 times higher than that of the 
Ni3S2@CNTs/CC. Also, the LSV of Ni3S2@CNTs/CC shows that a current 
density of 100 mA/cm2 can be achieved at an overpotential of −549 mV. 
Therefore, we conclude that the Ni3S2-filled CNTs synthesized on CC 
enhance the HER activity by facilitating the electron transfer process, 
allowing for easy electrolyte diffusion, and increasing the reaction sites. 

To investigate the kinetics of the HER, the Tafel plot (Fig. 2(b)) was 
derived from corresponding LSV (normalized by geometrical surface 
area) curves. This plot reveals the rate-determining step (RDS) during 
HER. Slope values of ~30 mV/decade, ~40 mV/decade, and ~120 mV/ 
decade of a Tafel plot indicate the Heyrovsky, Tafel, and Volmer as RDS, 
respectively, during the HER process. The Tafel slope of Ni3S2@CNTs/ 
CC (167 mV/dec) is smaller than that of CC (210 mV/dec). A Tafel slope 
of >120 mV/dec in an alkaline medium primarily indicates that the 
water dissociation step controls the reaction, and the RDS is the electron 
transfer reaction (i.e., the Volmer step, [59,60]. This result agrees with 
the electrochemical process in alkaline conditions, where the Volmer 
step is the RDS [61,62]. The exchange current density (Jo), which rep
resents the reaction rate under equilibrium conditions (η = 0), was ob
tained by Tafel extrapolation for CC and Ni3S2@CNTs/CC (Figure S1 
(a)). It was found to be 6.3 × 10−2 mA/cm2 for Ni3S2@CNTs/CC, which 
is 63 times higher than 1 × 10−3 mA/cm2 of CC. Since the increase in Jo 
value indicates that the corresponding material is efficient in producing 
hydrogen on the surface [63], therefore, the Ni3S2@CNTs/CC is more 
efficient than CC in producing hydrogen on the surface. 

The CNT shells of the Ni3S2@CNTs play dual roles in the overall HER 
process. The CNT layers can catalyze the electrolyte, electrochemically 
allowing the electrolyte to reach the active filler material (Ni3S2), while 
concurrently protect the filler material. Specifically, the outer layer of 
CNTs acts as a protective shield, effectively shielding the electrochem
ically active Ni3S2 from direct contact with the electrolyte, preventing 
the loss of active Ni3S2 material. This enables the efficient HER process 
to continue for an extended period of operation. Moreover, the encap
sulated nickel sulfide nanowire can significantly increase the adsorption 
energy of hydrogen atoms on the CNTs by improving the electrical 
conductivity of the CNT layers [64]. The H2O molecules in the electro
lyte were first adsorbed to the active sites of CNT (C atom). Subse
quently, these H2O molecules are transferred to the filler material 
(Ni3S2) through a reactive process driven by the transfer of electrons 
originating from the CNT [65]. Furthermore, the nanopores or defects 
within the carbon nanotube layer can provide a pathway for the diffu
sion of electrolyte [66] so the electrolyte can reach the Ni3S2, which will 
facilitate the HER process. Due to the favorable adsorption of OH− and 
the recombination of H+ into H2 at the active C atom of CNT and Ni3S2 
sites, Ni3S2@CNTs efficiently catalyze the decomposition of H2O into 
OH− and, consequently, the production of H2. As a result, a synergistic 
catalytic process occurs, wherein Ni3S2@CNTs collectively enhance H2 
generation through the HER, as described by the following equations 
[67].  

H2O + M + e− → MHads + OH−

MHads + H2O + e− → H2 + M + OH−

MHads + MHads → 2 M + H2                                                                   

(M = catalyzer, Hads = adsorbed hydrogen)                                               
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Fig. 3. Nyquist plot of (a) pristine CC and Ni3S2@CNTs/CC at −477 mv. Inset: zoom-in area with smaller frequency. (b), (c) Bode plots of pristine CC and 
Ni3S2@CNTs/CC. (d)–(f) Potential dependent Nyquist and Bode plots of Ni3S2@CNTs/CC. 
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To accurately evaluate the relative HER activity, the electrochemi
cally active surface area (ECSA) was measured for both pristine CC and 
Ni3S2@CNTs/CC. Because the charging current (ic) is equal to the 
product of the electrochemical double layer capacitance (Cdl) and the 
scan rate (ν), as in equation (1) [68,69].  

ic = νCdl                                                                                        (1) 

Cdl can be estimated by calculating the slope of the ic vs. ν graph. 
Accordingly, the ECSA is given by equation (2). 

ECSA =
Cdl

Cs
(2)  

where Cs is the specific capacitance. 
So, a graph of 

(Ja−Jc
2

)
at mid-potential vs. scan rates was plotted, and 

the slope corresponding to Cdl was determined. Ja and Jc represent the 
anodic and cathodic current density, respectively. 

Fig. 2(c) and (d) show the CV measurements of the Ni3S2@CNTs/CC 
and CC recorded in the non-faradaic potential region at scan rates 
20–200 mV/sec in an interval of 20 mV/sec. The scan rate dependence 
of the current densities 

(Ja−Jc
2

)
at mid-potential of 0.843 V for pristine CC 

and Ni3S2@CNTs/CC is shown in Fig. 2(e). Based on Fig. 2(e), the Cdl of 
pristine CC and Ni3S2@CNTs/CC is 0.41 mF/cm2 and 1.44 mF/cm2, 
respectively. To quantitatively compare the ECSAs of Ni3S2@CNTs/CC 
and CC, a specific capacitance value of 0.118 mF/cm2 [70] was used in 
equation (2). The calculated ECSAs for Ni3S2@CNTs/CC and CC are 
12.2 cm−2 and 3.47 cm−2, respectively. The ECSA of the 
Ni3S2@CNTs/CC is 3.51 times that of pristine CC. We believe that the 
microstructure of Ni3S2 nanowire-filled CNTs grown on CC increases the 
ECSA of Ni3S2@CNTs/CC, promoting the HER activity afterward. 
Furthermore, the ratio of ECSA to the geometric area can describe the 
roughness factor (RF) [69]. Because the ECSA is higher for 
Ni3S2@CNTs/CC, it is evident that the Ni3S2@CNTs/CC possess a much 
higher surface roughness than pristine CC. The calculated RF was 1.15 
for CC and 4.06 for Ni3S2@CNTs/CC, respectively. Therefore, the 
increased roughness factor of Ni3S2@CNTs/CC is another determinant 
responsible for its better HER catalytic activity than CC. Also, the ECSA 
was used to obtain the ECSA normalized current density, from which the 
ECSA normalized exchange current density was calculated [71,72]. The 
linear sweep voltammetry normalized to the ECSA (Fig. 2(f)) shows that 
Ni3S2@CNTs/CC has much higher current density than CC at the same 
potential, indicating that Ni3S2@CNTs/CC has significantly better 
intrinsic HER activity than CC. Furthermore, the exchange current 
density normalized to ECSA has been calculated using the ECSA 
normalized Tafel extrapolation (Fig. 2(f), inset). The ECSA normalized 
exchange current density for CC and Ni3S2@CNTs/CC is found to be 3.1 
× 10−3 mA/cm2 and 1.77 × 10−2 mA/cm2, indicating that the enhanced 
HER of the Ni3S2@CNTs/CC is mainly from the catalyzing ability of the 
Ni3S2@CNTs. Thus, according to the above observations, the substantial 
improvement of intrinsic HER activity of Ni3S2@CNTs/CC can be 
attributed to the synthesized Ni3S2@CNTs on CC. 

During the HER process, EIS measurement was used to determine the 
electron transfer kinetics of pristine CC and Ni3S2@CNTs/CC. The 
electrode impedance indicates the resistance encountered while trans
ferring charges, and a smaller impedance value suggests a more favor
able HER process. Specifically, a smaller charge transfer resistance (Rct) 
represents better HER ability. The kinetics of charge transfer for pristine 
CC and Ni3S2@CNTs/CC was investigated using EIS at an overpotential 
of −477 mV. The corresponding Nyquist and Bode plots are presented in 
Fig. 3. As shown in the figure, a semicircle in the high to low-frequency 
region can describe the charge transfer process (charge transfer resis
tance) for both CC and Ni3S2@CNTs/CC. The charge transfer resistance 
(Rct) is related to the diameter of the semicircular portion of the Nyquist 
diagrams, and a smaller diameter means a faster electron transfer pro
cess and, ultimately, better HER activity [73,74]. Fig. 3(a) shows that 
the Rct for Ni3S2@CNTs/CC is much smaller than that of pristine CC. To 

quantitatively estimate the Rct, the measured EIS data were fitted using a 
Randles circuit (Figure S1(b), inset), which includes a charge transfer 
resistance (Rct) in parallel with a series combination of double-layer 
capacitance (Cdl) and constant phase element (CPE) and then jointly 
in series with a solution resistance (Rs). The fitted results show that the 
working electrodes (CC and Ni3S2@CNTs/CC) exhibited similar solution 
resistance (Rs = 2.6 Ω), specifying identical reaction conditions. The 
fitted Rct of pristine CC at the same overpotential of −477 mV was 82.2 
Ω, whereas that of Ni3S2@CNTs/CC was 3.3 Ω. The lower charge 
transfer resistance of Ni3S2@CNTs/CC compared to pristine CC is 
indicative of better HER ability. 

The synthesized Ni3S2@CNTs facilitate the charge transfer process in 
the electrolyte due to their smaller charge transfer resistance. To 
confirm that the synthesized Ni3S2@CNTs are responsible for the 
measured HER activity, we obtained the Rct at the same overpotential 
(−200 mV vs. RHE) as used for measuring Ni NPs on CC [75] (Figure S1 
(b)). The Rct obtained for Ni3S2@CNTs/CC is much smaller (29.21 Ω) 
compared to that of Ni NPs on CC (>400 Ω). Additionally, the Rct of 
multi-walled CNTs is higher than that of Ni3S2@CNTs/CC (Table 1). The 
overpotential previously reported for multiwalled carbon nanotubes is 
also higher than for Ni3S2@CNTs/CC (Table 2). Therefore, we believe 
that the HER activity of our material is due to the harmonization of 
Ni3S2@CNTs microstructure synthesized on CC rather than just Ni NPs 
or CNTs (if any remaining Ni NPs exist). Furthermore, the HER param
eters obtained for Ni3S2@CNTs/CC are comparable or superior to the 
best-matched work reported previously [76] (Tables 1 and 2). 

Fig. 3(b) and (c) display Bode plots for pristine CC and Ni3S2@CNTs/ 
CC. To calculate the relaxation time, we used the plot of Log (Fre
quency/Hz) vs. -phase/degree and found the reciprocal of the fre
quency/Hz for the -phase/degree peak. Comparing the two samples, 
Ni3S2@CNTs/CC had a lower relaxation time (0.031 s) than pristine CC 
(0.21 s) and exhibited a faster electron transfer rate at the lowest fre
quency (0.1 Hz) due to its lower impedance (|Z|) value. 

A potential dependent EIS study was executed to illustrate the 

Table 1 
Comparison of Rct from EIS of different samples for HER.  

Sample Rct (ohm) Electrolyte Ref. 

Ni3S2@CNTs/CC 3.3 @ −477 mV 
29.21 @ −200 mV 

1 M KOH This work. 

Ni NP-carbon paper >400 @ −200 mV 1 M KOH [75] 
MWCNT/GC 

MWCNTs@CU 
>2000 @ −200 mV 
>2500 @ −100 mV 

0.1 M KCl 
0.5 M H2SO4 

[78] 
[79] 

Ni3S2(55 %)/MWCNT-NC 244 @ −400 mV 1 M KOH [76]  

Table 2 
Comparison of the overpotential of different samples for HER.  

Samples Overpotential (mV) Electrolyte Ref. 

Ni3S2@CNTs/CC 381 mV @ 10 mA/cm2 1 M KOH This 
work. 

MWCNTs ~600 mV @ 10 mA/cm2 0.5 M H2SO4 [78] 
MWCNTs 686 mV @ 10 mA/cm2 0.5 M H2SO4 [80] 
1/MWCNT 571 mV @ 10 mA/cm2 0.5 M H2SO4 [81] 
iMWCNTs 440 mV @ onset 0.5 M H2SO4 [82] 
Ni3S2(55 %)/MWCNT- 

NC 
400 mV @ 1.2 mA/cm2 1 M KOH [76]  

Table 3 
Rs, Rct, Z, Cdl, and relaxation time from EIS best fit of Ni3S2@CNTs/CC at 
different cathodic overpotentials.  

η (mV) Rs (Ω) Rct (Ω) |Z| (Ω) Cdl (mF/cm2) Relaxation Time (sec) 

−327 2.6 7.9 2.85 1.15 0.068 
−377 2.6 5.5 2.52 1.13 0.046 
−427 2.6 4.0 2.31 1.12 0.038 
−477 2.6 3.3 2.20 1.12 0.031  
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relative enhancement of HER activity of Ni3S2@CNTs/CC. Fig. 3(d)–(f) 
show the Nyquist and Bode plots of Ni3S2@CNTs/CC in the potential 
scope of −327 mV to −477 mV. The Rs, Rct, and Cdl were obtained by 
fitting the corresponding Nyquist plot and listed in Table 3. We observed 
that the diameter of the semicircle decreases with the increase of the 
cathodic overpotentials. Bode plots also showed that the phase angle 
and total impedance become smaller at higher applied cathodic poten
tials. Also, the relaxation time decreases with increased applied cathodic 
overpotential. The decreased Rct, phase angle, impedance, and relaxa
tion time with the increasing cathodic overpotential denotes superior 
hydrogen evolution at a higher applied bias. Furthermore, visual 
observation also confirmed that hydrogen bubble evolution is more 
vigorous at the electrode surface in LSV towards higher cathodic over
potentials. The decreased value of charge transfer resistance and relax
ation time with increasing overpotentials in Nyquist and Bode plots 
could be attributed to the porous structure on the electrode surface and 
the excellent kinetics of the HER process by Ni3S2@CNTs/CC [77]. The 
experimental results indicate that Ni3S2@CNTs/CC is an efficient elec
trode material for HER electrocatalysis in a strongly alkaline solution. 

For commercial use, it is important for a catalyst to be not only active 
but also stable and durable. To test the long-term stability of 
Ni3S2@CNTs/CC, a total of 3000 CV cycles in the potential range of 
0.223 V to −0.427 V vs. RHE at a scan rate of 30 mV/sec was performed. 
The LSV curves of Ni3S2@CNTs/CC before and after the 1st and 2nd 
1500 CV cycles were compared, as shown in Fig. 4(a). It can be clearly 
seen from the LSV that Ni3S2@CNTs/CC is significantly stable for more 
than 3000 CV cycles, indicating its excellent stability as an electro
catalyst for HER. 

The durability of Ni3S2@CNTs/CC was tested using the chro
noamperometric technique for 12 h at a constant potential of −477 mV. 
Throughout the entire test, there was significant H2 bubbling at the 
surface of Ni3S2@CNTs/CC. Fig. 4(b) shows the time-dependent current 
density (i-t curve) at constant potential and LSV curves (inset) of 
Ni3S2@CNTs/CC before and after 12 h of constant (i-t) measurement. 
The current density was almost constant for 12 h, with only a slight 
decrease after ~2.5 h. The LSV curve (Fig. 4(b), inset) after 12 h showed 
that the overpotential needed to provide 10 mA/cm2 of current density 
was almost identical, indicating the excellent durability of 
Ni3S2@CNTs/CC. Furthermore, no significant degradation in the cata
lytic activity of Ni3S2@CNTs/CC is also supported by the EIS and ECSA 
measurements (Figure S2 (a)–(c), Table S1) after the 12-h test. These 
results suggest that Ni3S2@CNTs/CC is an efficient, stable, and durable 
electrocatalyst for HER in a strong alkaline solution. 

4. Conclusion 

In summary, Ni3S2 nanowires-filled carbon nanotubes were synthe
sized using a simple one-step CVD method on CC substrates. The elec
trochemical hydrogen evolution ability of the synthesized Ni3S2@CNTs 
was investigated and compared with pristine CC under strongly alkaline 
condition (1.0 M KOH) by employing LSV, CV, and EIS techniques. The 
stability and durability of Ni3S2@CNTs/CC were also investigated. The 
results showed that Ni3S2@CNTs/CC has superior HER performance, 
including higher stability, higher durability, higher electrochemical 
active surface area, lower charge transfer resistance, lower impedance, 
and lower relaxation time than pristine CC. It is worth mentioning that 
few materials demonstrate a better HER property in alkaline solution, 
and Ni3S2@CNTs/CC stood out as one of the few electrode materials for 
cost-effective hydrogen evolution reactions. 
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