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ABSTRACT

The transition from laminar to turbulent flow is of great in-
terest since it is one of the most difficult and unsolved prob-
lems in fluids engineering. The transition processes are signif-
icantly important because the transition has a huge impact on
almost all systems that come in contact with a fluid flow by al-
tering the mixing, transport, and drag properties of fluids even
in simple pipe and channel flows. Generally, in most transporta-
tion systems, the transition to turbulence causes a significant in-
crease in drag force, energy consumption, and, therefore, operat-
ing cost. Thus, understanding the underlying mechanisms of the
laminar-to-turbulent transition can be a major benefit in many
ways, especially economically. There have been substantial pre-
vious studies that focused on testing the stability of laminar flow
and finding the critical amplitudes of disturbances necessary to
trigger the transition in various wall-bounded systems, including
circular pipes and square ducts. However, there is still no fun-
damental theory of transition to predict the onset of turbulence.
In this study, we perform direct numerical simulations (DNS) of
the transition flows from laminar to turbulence in a channel flow.
Specifically, the effects of different magnitudes of perturbations
on the onset of turbulence are investigated. The perturbation
magnitudes vary from 0.001 (0.1%) to 0.05 (5%) of a typical tur-
bulent velocity field, and the Reynolds number is from 5,000 to
40,000. Most importantly, the transition behavior in this study
was found to be in good agreement with other reported studies
performed for fluid flow in pipes and ducts. With the DNS re-
sults, a finite amplitude stability curve was obtained. The crit-
ical magnitude of perturbation required to cause transition was
observed to be inversely proportional to the Reynolds number for
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the magnitude from 0.01 to 0.05. We also investigated the tem-
poral behavior of the transition process, and it was found that
the transition time or the time required to begin the transition
process is inversely correlated with the Reynolds number only
for the magnitude from 0.02 to 0.05, while different temporal be-
havior occurs for smaller perturbation magnitudes. In addition
to the transition time, the transition dynamics were investigated
by observing the time series of wall shear stress. At the onset
of transition, the shear stress experiences an overshoot, then de-
creases toward sustained turbulence. As expected, the average
values of the wall shear stress in turbulent flow increase with
the Reynolds number. The change in the wall shear stress from
laminar to overshoot was, of course, found to increase with the
Reynolds number. More interestingly was the observed change in
wall shear stress from the overshoot to turbulence. The change in
magnitude appears to be almost insensitive to the Reynolds num-
ber and the perturbation magnitude. Because the change in wall
shear stress is directly proportional to the pumping power, these
observations could be extremely useful when determining the re-
quired pumping power in certain flow conditions. Furthermore,
the stability curve and wall shear stress changes can be consid-
ered robust features for future applications, and ultimately in-
terpreted as evidence of progress toward solving the unresolved
fluids engineering problem.

Keywords: Laminar-to-turbulent transition, direct numeri-
cal simulation, channel flow

1. INTRODUCTION

Since Reynolds’ phenomenal experiments in 1883, the
laminar-to-turbulent transition in wall-bounded flows (i.e., pipe,
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channel, or boundary layer) has intrigued many scientists and
engineers over the past 140 years [1]. The principal issue is that
laminar flow subjected to a small finite perturbation eventually
becomes turbulent in practice despite its linear stability in the-
ory [2—4]. It has been observed in pipe flow that the turbulent
flow arises due to separate patches emerging across the laminar
flow. The transition seems to occur only when these patches in-
vade the laminar flow. This is quite unexpected since one might
expect the flow to turn turbulent at once rather than separating
into distinct patches. These observations led to more detailed
investigations to understand the mechanism of the turbulent tran-
sition process [5, 6].

Most of the previous studies have investigated the laminar-
to-turbulent transition in circular ducts or pipes because of its
extensive applications. Thus, we begin by discussing the charac-
teristics of the transition process in pipe flows. Reynolds found
that the onset of turbulence directly depends on the dimension-
less parameter called the Reynolds number (Re). This parame-
ter represents the ratio of inertia force to viscous force. He ob-
served that the transition process in pipe flows naturally occurs at
Re ~=2300. However, he also reported that laminar flow could be
maintained up to Re ~ 13,000 [1]. Other studies afterwards man-
aged to achieve laminar flows up to Re ~ 100,000 [7]. A laminar
state can be maintained at such high Reynolds numbers only by
minimizing external factors, such as heat transfer, surface rough-
ness, vibration, noise, and disturbances. Laminar flow can also
be achieved at such high Reynolds numbers by allowing settling
times until the disturbance decays [8]. In related studies, the ef-
fect of inlet disturbances on the transition was investigated both
experimentally and numerically to understand the mechanism of
the transition process. Darbyshire and Mullin experimentally in-
troduced inlet disturbance via injection and suction to determine
a critical magnitude of the disturbance required to cause the tur-
bulent transition in pipe flows. The transition process was found
to be directly dependent on both the Reynolds number and the
magnitude of disturbance [9]. This study showed that laminar
flow is very sensitive to perturbation magnitudes. The subse-
quent study showed that the physical length of the perturbation
flow field also played a role in the transition [10]. These findings
allowed Mullin and Peixinho to experimentally uncover a scaling
law, indicating that the critical perturbation magnitude required
to trigger the laminar-to-turbulent transition scales as 1/Re for a
limited range of Reynolds numbers [11]. The flow is found to be
globally stable below this range, while it is very sensitive to inlet
disturbance above the critical magnitude. It is also numerically
observed for pipe flows [12].

There are two types of localized states, which are puffs (tran-
sition) and slugs (turbulent) [13]. Puffs are formed due to large
perturbation magnitudes, while slugs are formed due to unsta-
ble boundary layers. Puffs are observed right below the criti-
cal or transitional Reynolds number, while slugs could be ob-
served at higher Reynolds numbers [9]. For pipe flows, puffs are

found to replicate without any changes at the critical Reynolds
number [14—-17], which are known as equilibrium puffs [13].
Recently, the puffs and slugs were investigated numerically for
square ducts, showing characteristics similar to pipe flows [18].

For channel flows, the transition appears naturally at Re ~
5,772 [19, 20]. It has been reported that the forming mecha-
nism of the localized turbulent patches is similar to that of cir-
cular and rectangular ducts [21,22]. Interestingly, although the
Reynolds number of the channel flow is much smaller than the
critical Reynolds number (Re & 5,772), the localized turbulent
patches generated by the inlet disturbance could grow separately
and spread into extended spatial regions, leading to the global in-
stability [23]. However, despite the great efforts of the previous
studies, the transition dynamics in a wall-bounded channel flow
have not yet been fully characterized.

In this study, we perform a direct numerical simulation
(DNS) to study the transition process in a wall-bounded chan-
nel flow. We aim to uncover a scaling law, such as 1/Re, for
wall-bounded channel flows by identifying the critical perturba-
tion magnitude required to cause the turbulent transition for a
certain range of the Reynolds number. We will also address the
temporal and dynamical behaviors of the transition process. The
paper is organized as follows: the problem formulation, results
and discussion, and conclusions.

2. PROBLEM FORMULATION

We consider an incompressible Newtonian fluid flow. The
flow geometry is a wall-bounded channel domain. The x, y and
z coordinates are aligned with the streamwise, wall-normal and
spanwise directions, respectively. A no-slip boundary condition
is applied at both top and bottom walls, and periodic boundary
conditions are applied in the x and z directions. The periods
are same as the box dimensions in the corresponding directions,
i.e. L, and L, respectively. Half-channel height, i.e., L = Ly, is
chosen as the length scale for the non-dimensionalization of all
lengths in the geometry. The velocity scale is the laminar cen-
terline velocity U = 3/2Up, where U, is the bulk velocity in the
laminar flow. We applied a constant Uj, equal to 2/3U. Time ¢ is
scaled with L/U, and pressure p with pU?, where p is the fluid
density. The non-dimensional governing equations are given as:

V-u=0, (1)
Jdu 1

—+u-Vu=—-Vp+—VZu. 2
5 +u-Vu p+Re u 2)

Here, the Reynolds number Re = UL/ v, where V is the kinematic
viscosity of the fluid.

Simulations were performed using the open source-code
ChannelFlow, a spectral code for an incompressible Navier-
Stokes flow in channel geometries, which is written and main-
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tained by John Gibson [24]. We focus on the domain L, X L, x L,
=27 x 2 x . A numerical grid system was generated on
N, X Ny X N, (in x, y, and z) meshes, where a Fourier-Chebyshev-
Fourier spectral spatial discretization was applied to all variables.
For a mesh convergence study, a typical resolution used was
(Ny,Ny,N;) = (64, 81, 76). A constant time step Af was chosen
to satisfy the Courant-Friedrichs-Lewy (CFL) stability condition.
A typical Ar = 0.01. Simulations have been successfully per-
formed for low Reynolds numbers as well as high Reynolds num-
bers [25-27]. In this study, we introduce different magnitudes of
a perturbation field (random field) to laminar flow (parabolic pro-
file) and then use it as an initial flow field. This divergence-free
random field was readily generated by ChannelFlow. The pertur-
bation magnitudes ranged from 0.001 (0.1%) to 0.05 (5%) of a
typical turbulent velocity field. Reynolds number was considered
from 3,000 to 40, 000.

3. RESULTS AND DISCUSSION

We first consider the temporal and dynamical behaviors of
the transition process based on the wall shear stress. Fig. 1(a)
shows the temporal evolution of the area-averaged wall shear
stress T,, at Reynolds numbers from 5,000 to 40,000, where the
perturbation magnitude of 0.02 was applied to the laminar flow
(7w = 2). The inset zooms in at the beginning of the process. In
an early stage of the process, flows tend to stay near the lam-
inar state. Because of the strong perturbation magnitude, the
flows then start to experience a transition as the wall shear stress
sharply increases and then reaches an overshoot, which is usu-
ally called a strong burst followed by decreasing toward sus-
tained turbulence [25]. It is clearly seen that the transition dy-
namics depend on the Reynolds number, where the change in the
wall shear stress from laminar to overshoot increases with the
Reynolds number. Prior to investigating the dependence of the
transition process on the Reynolds number, we investigated the
dependency of the wall shear stress of sustained turbulence on
the Reynolds number. Fig. 1(b) shows the time-averaged val-
ues of the wall shear stress during sustained turbulent flows (i.e.
t > 2,000) as a function of the Reynolds number. The turbu-
lent wall shear stress 7,,,,, increases with the Reynolds number,
which is quantatively in good agreement with the previous sim-
ulation results [26].

To investigate the overshoot or strong burst during the tran-
sition process, Fig. 2(a) shows the burst wall shear stress, T,,, pyrst
which is the change in the wall shear stress from laminar to over-
shoot, as a function of the Reynolds number for various perturba-
tion magnitudes. The change in the wall shear stress from lami-
nar to overshoot is found to increase with the Reynolds number.
Interestingly, the burst wall shear stress values appear to be in-
dependent of the perturbation magnitude. To better illustrate this
intriguing behavior, Fig. 2(b) shows the burst wall shear stress
Twburse @S @ function of the perturbation magnitude for various
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FIGURE 1. (a) Time evolution of the wall shear stress 7,, when intro-

ducing the perturbation magnitude of 0.02 to the laminar flow (7,, = 2)
at different Reynolds numbers ranging from 5,000 to 40,000. The inset
zooms in at the beginning of the transition process. (b) The time-average
values of the wall shear stress during turbulent flows 7, (i.€., for
t > 2,000 in (a)) at different Reynolds numbers.

Reynolds numbers. It is clearly observed that the burst wall shear
stress is almost insensitive to the perturbation magnitude.

More interestingly, we find another intriguing behavior of
the wall shear stress from the overshoot to turbulence. Fig. 3
shows the difference between the burst wall shear stress Ty,
and the turbulent wall shear stress 7, as a function of the
Reynolds number for various perturbation magnitudes. The dif-
ference T, pyurst — Twrurp SEEMS to be almost insensitive to both
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FIGURE 2. The burst wall-shear stress, T, is the change in the
wall shear stress from laminar to overshoot. (a) 7, p,r; as a function
of the Reynolds number for various perturbation magnitudes and (b)
Ty, burst @ a function of the perturbation magnitude for various Reynolds
numbers.

the Reynolds number and the perturbation magnitude. Because
the change in the wall shear stress is directly proportional to the
pumping power of the flow system, these observations could be
useful when determining the required pumping power in fluid
flow systems involving the laminar-to-turbulent transition.

To provide a deeper understanding of the transition process,
we investigated the transition time as a function of the Reynolds
number and the perturbation magnitude. The transition time was
defined as a time when the wall shear stress becomes 10% larger
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FIGURE 3. The difference between the burst wall shear stress T, jy-st
and the turbulent wall shear stress 7,5, as a function of the Reynolds
number for various perturbation magnitudes.

than the laminar value, i.e. when 7,, > 2.2. The choice of the
cutoff wall shear stress for the transition time was tested with
5% and 15%, giving an almost identical trend. Fig. 4(a) shows
the transition time for magnitudes from 0.001 to 0.01. It was
found that the transition time in this magnitude range behaves
inconsistently as the Reynolds number increases; particularly for
very small magnitudes, such as 0.001 and 0.0025. This could re-
sult from the fact that the perturbation magnitudes are too small
to cause a consistent transition trend to the laminar state at high
Reynolds numbers. Fig. 4(b) shows the transition time for mag-
nitudes from 0.02 to 0.05, where there is a clear, consistent trend
as the Reynolds number increases. The transition time in this
magnitude range monotonically decreases as the Reynolds num-
ber. In addition, the transition time also decreases with increas-
ing the perturbation magnitude. It is expected as the laminar-to-
turbulent transition is very sensitive to the perturbation magni-
tude.

Lastly and most importantly, Fig. 5 shows the finite-
amplitude stability curve for a wall-bounded channel flow, which
suggests the critical perturbation magnitude at a given Reynolds
number. The critical magnitude is the minimum perturbation
magnitude required to cause the laminar-to-turbulent transition.
These results were obtained by increasing the perturbation mag-
nitude at a fixed Reynolds number until the transition was ob-
served. It is found that the critical magnitude is inversely cor-
related to the Reynolds number up to Re = 10,000, while all
the flows at higher Reynolds numbers exhibit the transition even
with the smallest magnitude (0.001) considered in this study. To
uncover a scaling law, the inset shows the log-log scale of the

Copyright © 2022 by ASME



6000 .
—3§—Mag = 0.001 (a)
—§—Mag = 0.0025
5000 - Mag = 0.005 - i
—§—Mag = 0.0075
—§—Mag = 0.01 il
QE) 4000 1
=
=]
-2 3000+ ]
R
w
=] —\
<
-
£~ 2000 1
1000 1
3 I
3 L
= .
10000 15000 20000 25000 30000 35000 40000
Re
100 : : P
(b) —e—Mag = 0.02
—&—Mag = 0.03
90 Mag = 0.04
—&—Mag = 0.05
80
)
= 70- g
o)
=
=
& 60r 1
<
-
=
50¢-
° \&\*\9\6_6\‘

30 -
10000 15000 20000 25000 30000 35000 40000

Re

FIGURE 4. Transition time as a function of Reynolds number for the
perturbation magnitude (a) from 0.001 to 0.01 and (b) from 0.02 to 0.05.

critical magnitude in the range of the Reynolds number from
Re = 3,000 to Re = 7,000. It is clearly observed that the crit-
ical perturbation magnitude scales as 1/Re for this range, which
is the same scaling law of 1/Re for a typical pipe flow [9]. This
scaling law can introduce a clear stability line that separates the
laminar and turbulent regions for this range of Reynolds number.
This stability curve can also be considered a robust feature for
future applications.

4. CONCLUSION
Direct numerical simulation of the laminar-to-turbulent tran-
sition in a wall-bounded channel flow has been carried out. The
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FIGURE 5. The critical perturbation magnitude required to trigger the
laminar-to-turbulent transition at a given Reynolds number. The inset is
for the range of the Reynolds number from 3,000 to 7,000 on the log-log
scale to clearly show the scaling of 1/Re. The laminar region lies below
the red line, while the turbulent region lies above.

transition to turbulence was simulated by introducing a finite
magnitude of perturbation velocity fields to the laminar flow and
using it as an initial flow field. We consider the magnitude rang-
ing from 0.001 (0.1%) to 0.05 (5%) of a typical turbulent velocity
field and the Reynolds number up to 40,000. For the transition
dynamics, it was observed that the burst wall shear stress, which
is the increase in the wall shear stress from laminar to overshoot,
is directly proportional to the Reynolds number but insensitive
to the perturbation magnitude. More intriguingly, the change in
the wall shear stress from the overshoot to turbulence is insensi-
tive to both the Reynolds number and perturbation magnitude.
Considering the direct relationship between the change in the
wall shear stress and the pumping power for the flow system,
these observations could be useful for determining the pumping
power in fluid flow systems involving the transition. Upon fur-
ther investigation of the temporal behavior of the transition, other
interesting findings were observed. First, the transition time is
inversely correlated with the Reynolds number only for the mag-
nitude from 0.02 to 0.05, while inconsistent temporal behavior
occurs for smaller perturbation magnitudes. Secondly and most
importantly, the finite-amplitude stability curve for a channel
flow was shown to uncover the scaling law for a wall-bounded
channel flow, where the critical magnitude scales as 1/Re for
3,000 < Re < 10,000. Therefore, there is a clear demarcation
between the laminar and turbulent regions. The stability curve
and wall shear stress changes can be considered robust features
and ultimately interpreted as evidence of progress toward better
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understanding the underlying mechanisms of the transition pro-
cess in a wall-bounded channel flow.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support
from the University of Nebraska-Lincoln UCARE (Undergrad-
uate Creative Activities & Research Experiences) program,
the National Science Foundation (OIA-1832976 and CBET-
2142916), the Nebraska EPSCoR FIRST Award grant, and the
Collaboration Initiative at the University of Nebraska. The di-
rect numerical simulation code used here was developed and dis-
tributed by John Gibson at the University of New Hampshire.
This work was completed utilizing the Holland Computing Cen-
ter of the University of Nebraska, which receives support from
the Nebraska Research Initiative.

REFERENCES

[1] Reynolds, O., 1883. “Xxix. an experimental investigation
of the circumstances which determine whether the motion
of water shall be direct or sinuous, and of the law of resis-
tance in parallel channels”. Philosophical Transactions of
the Royal Society of London(174), pp. 935-982.

[2] Grossmann, S., 2000. “The onset of shear flow turbulence”.
Reviews of Modern Physics, 72(2), p. 603.

[3] Manneville, P., 2015. “On the transition to turbulence of
wall-bounded flows in general, and plane couette flow in
particular”. European Journal of Mechanics-B/Fluids, 49,
pp- 345-362.

[4] Draad, A. A., Kuiken, G., and Nieuwstadt, F., 1998.
“Laminar—turbulent transition in pipe flow for newtonian
and non-newtonian fluids”. Journal of Fluid Mechanics,
377, pp. 267-312.

[5] Mullin, T., 2011. “Experimental studies of transition to tur-
bulence in a pipe”. Annual Review of Fluid Mechanics, 43,
pp. 1-24.

[6] Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J.,
2007. “Turbulence transition in pipe flow”. Annual Review
of Fluid Mechanics, 39, pp. 447-468.

[7] Pfeninger, W., 1961. “Transition experiments in the inlet
length of tubes at high reynolds numbers”. Boundary Layer
and Flow Control, pp. 970-980.

[8] Warhaft, Z., 1997. An introduction to thermal-fluid engi-
neering: the engine and the atmosphere. Cambridge Uni-
versity Press.

[9] Darbyshire, A., and Mullin, T., 1995. “Transition to tur-
bulence in constant-mass-flux pipe flow”. Journal of Fluid
Mechanics, 289, pp. 83—114.

[10] Hof, B., De Lozar, A., Kuik, D. J., and Westerweel, J.,
2008. “Repeller or attractor? selecting the dynamical

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

model for the onset of turbulence in pipe flow”. Physical
Review Letters, 101(21), p. 214501.

Peixinho, J., and Mullin, T., 2006. “Decay of turbulence in
pipe flow”. Physical Review Letters, 96(9), p. 094501.
Wu, X., Moin, P., Adrian, R. J., and Baltzer, J. R., 2015.
“Osborne reynolds pipe flow: Direct simulation from lam-
inar through gradual transition to fully developed turbu-
lence”. Proceedings of the National Academy of Sciences,
112(26), pp. 7920-7924.

Wygnanski, I. J., and Champagne, F., 1973. “On transition
in a pipe. part 1. the origin of puffs and slugs and the flow
in a turbulent slug”. Journal of Fluid Mechanics, 59(2),
pp- 281-335.

Nishi, M., Unsal, B., Durst, F., and Biswas, G., 2008.
“Laminar-to-turbulent transition of pipe flows through
puffs and slugs”. Journal of Fluid Mechanics, 614,
pp- 425-446.

Wygnanski, 1., Sokolov, M., and Friedman, D., 1975. “On
transition in a pipe. part 2. the equilibrium puff”. Journal
of Fluid Mechanics, 69(2), pp. 283-304.

Bandyopadhyay, P. R., 1986. “Aspects of the equilibrium
puff in transitional pipe flow”. Journal of Fluid Mechanics,
163, pp. 439-458.

Priymak, V., and Miyazaki, T., 2004. “Direct numerical
simulation of equilibrium spatially localized structures in
pipe flow”. Physics of Fluids, 16(12), pp. 4221-4234.
Khan, H. H., Anwer, S. F., Hasan, N., and Sanghi, S., 2021.
“Laminar to turbulent transition in a finite length square
duct subjected to inlet disturbance”. Physics of Fluids,
33(6), p. 065128.

Sano, M., and Tamai, K., 2016.
to turbulence in channel flow”.
pp. 249-253.

Orszag, S. A., 1971. “Accurate solution of the orr—
sommerfeld stability equation”. Journal of Fluid Mechan-
ics, 50(4), pp. 689-703.

Carlson, D. R., Widnall, S. E., and Peeters, M. F., 1982.
“A flow-visualization study of transition in plane poiseuille
flow”. Journal of Fluid Mechanics, 121, pp. 487-505.
Xiong, X., Tao, J., Chen, S., and Brandt, L., 2015. “Tur-
bulent bands in plane-poiseuille flow at moderate reynolds
numbers”. Physics of Fluids, 27(4), p. 041702.

He, S., and Seddighi, M., 2013. “Turbulence in transient
channel flow”. Journal of Fluid Mechanics, 715, pp. 60—
102.

Gibson, J. E, 2014. Channelflow: A spectral Navier-
Stokes simulator in C++. Tech. rep., U. New Hampshire.
Channelflow.org.

Davis, E. A., and Park, J. S., 2020. “Dynamics of lami-
nar and transitional flows over slip surfaces: effects on the
laminar—turbulent separatrix”. Journal of Fluid Mechanics,
894.

“A universal transition
Nature Physics, 12(3),

Copyright © 2022 by ASME

€202 1dy 61 UO Jasn uosipe|y uisuoosip JO Aussenun Aq Jpd 681 ¥6-2202209WI-0¥0B0 LI800A/Z822869/070V0 L L8OOA/00.98/2202303INIAPd-sBupesdoid/3OFINI/B10°dwse  uoioajjooje)bipawse//:dly woly papeojumoq



[26] Davis, E. A., Mirfendereski, S., and Park, J. S., 2021. “On
the comparison of flow physics between minimal and ex-
tended flow units in turbulent channels”. Fluids, 6(5),
p. 192.

[27] Rogge, A. J., and Park, J. S., 2022. “On the underlying
drag-reduction mechanisms of flow-control strategies in a
transitional channel flow: temporal approach”. Flow, Tur-
bulence and Combustion, 108, pp. 1001-1016.

Copyright © 2022 by ASME

€202 1dy 61 UO Jasn uosipe|y uisuoosip JO Aussenun Aq Jpd 681 ¥6-2202209WI-0¥0B0 LI800A/Z822869/070V0 L L8OOA/00.98/2202303INIAPd-sBupesdoid/3OFINI/B10°dwse  uoioajjooje)bipawse//:dly woly papeojumoq



