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Abstract—Recently ride-sharing platforms have struggled with
a decreased supply of drivers, which has negatively impacted
their passengers, by subjecting them to long delays and extremely
high surge prices. An approach for mitigating these problems is
for service providers to facilitate and coordinate carpooling via
the recommendation of individually curated paths, not necessarily
the shortest, for drivers towards completing their chosen rides.
In this paper, we redesign the Weight Evolving Temporal graph
structure to efficiently encode large dynamic road networks with
temporal ride availability. Leveraging that graph structure, we
efficiently define a polynomial-time optimal route recommenda-
tion algorithm that increases carpooling opportunities, taking into
consideration the spatio-temporal constraints of both drivers and
rides in such a highly-dynamic setting. Finally, we use simulations
to demonstrate the effectiveness of these route recommendations,
on both the driver and passenger experience.

Index Terms—ride-sharing, carpool, routing, ride assignment,
temporal, evolving graph.

I. INTRODUCTION

As evident with the recent pandemic, the decrease in the
number of drivers in ommercial ride-sharing platforms, such
as Uber [7] and Lyft [10], led to price surges and increased
delays [1], [15]. This has led to increased negative emotions
towards these platforms [11], forcing companies to increasing
driver incentives [12] and bringing back carpool options [13],
in attempts to reduce prices. With the return of carpooling,
customers can benefit from reduced fares, but drivers may still
experience lower income and reduced gain due to wasted time
deadheading, i.e., circling around idly looking for the next
passenger [3]. In this work, we argue that there is a need for a
better model for coordinating ride-sharing in such platforms.

Although service providers cannot control drivers in crowd-
based platforms, they still have full access to current and
historical data on rider and driver availability. This data
can be used to recommend “better” ride choices for drivers,
accompanied by individually curated paths, not necessarily the
shortest, that would facilitate carpooling. In such a model,
drivers have the incentive to follow these recommendations,
as they increase their chances of picking up multiple rides
along their paths. Meanwhile, passengers have the incentive
to carpool, as they pay reduced fares for shared rides with a
delay that is constrained to some threshold of their choice.
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In the context of ride-sharing, the route recommendation
problem was defined in [21], in which drivers are recom-
mended routes that have highest probability of finding more
passengers, while remaining within their detour thresholds.
However, due to the highly dynamic nature of ride availability
in large road networks, efficient optimal route recommendation
algorithms are yet to be defined. In this paper, we address
that problem via the design of a temporal graph structure that
efficiently encodes both the dynamic road network properties
and the spatio-temporal ride availability over that network.
Thus, facilitating the definition of optimal route recommenda-
tion algorithms.

Contribution. The first contribution of this paper lies
in optimizing the design of the Weight Evolving Temporal
(WET) graph structure [2], in which both vertex and edge
weights evolve over time. In this work, we annotate the graphs
with ride frequency information obtained from past ride traces,
to represent the expected spatio-temporal ride availability in
the network. Index-based labeling is adopted to efficiently
retrieve and store these annotations, which allow for the
definition of polynomial-time optimal routing algorithms that
do not necessarily optimize for the shortest routes, but for the
maximum benefit to be expected from picking up future rides
along the route.

The second contribution lies in the definition of the optimal
Dual-Path (DP) routing algorithm, which is a 3-endpoint
routing algorithm that is well-suited for finding the optimal
combination of dual-paths. With the first path from a driver’s
current location to a ride’s pick up location, and the second
path leading to the ride’s drop off location. The algorithm
is theoretically proven to find optimal routes in polynomial
time, and it can be easily integrated into existing ride-sharing
platforms.

Finally, we briefly propose a model of ride assignment,
or rather recommendation, based on the results of these
routing algorithms, and evaluate the effectiveness of these
recommendations in simulated ride-sharing experiments. We
compare our model to typical driver choice models in ride-
sharing platforms; closest-first, max-revenue-first and least-
detour, and show that it is more beneficial for drivers (and
passengers) to heed the recommended paths.

Paper Outline. In Section II, we present our system model,
followed by the definitions of our data structures and routing
algorithms in Section III. In Section IV, we present our
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evaluation framework and discuss experimental results. Then,
we provide a brief review of related works in Section V and
conclude the paper with a discussion of future work.

II. ROUTE RECOMMENDATION MODEL IN RIDE SHARING

In this section, we start by defining the system model and
main definitions.

A. System Model

In typical crowd-based ride-sharing platforms, the service
provider acts as the broker between the passengers, represented
by their rides, and the drivers. Drivers are assumed to be
individual and rational participants, with personal schedules,
constraints, and utilities. They have the flexibility to choose
the rides to complete based on their personal preferences,
or to accept ride recommendations from the platform. More-
over, drivers have the opportunity to specify their schedule
constraints with the platform by indicating their destination
location, associated with their preferred latest arrival time
at that destination, implicitly defining their detour threshold.
This personal schedule information can be leveraged by the
platform to provide better individually-curated route and ride
recommendations for the drivers.

Rides are associated with single passengers, and each ride
is defined by its spatio-temporal endpoints, representing the
ride’s pick up and drop off location, as well as the threshold
of delay based on the passenger’s preferences. In this work,
we assume that the spatial endpoints of a ride may not be
negotiated, as opposed to its temporal constraints. Rides with
no flexibility, i.e., a zero-threshold of delay, expect to be picked
up right away and routed through the shortest path to their
destinations. On the other hand, rides with more flexibility,
i.e., with some maximum threshold on delay, tolerate longer
routes, possibly allowing drivers to complete other rides along
the way.

B. System Definitions

We start the definitions with that of the road network, on
which both the drivers and rides are active.

Definition 1: The Road Network is modeled as the graph,
G = (V,E,c), in which the set of vertices V represents the
various landmarks in the road network, and the set of edges
E represents the roads between these landmarks. The cost of
traversing the edge between pairs of locations is captured by
the cost function ¢: V x V — N

Rides arrive to the system in an online manner, with a
definition of endpoints and an optional threshold of delay.

Definition 2: A Ride Request, r; = < sloc,,, tloc,,, t,,,
flex,, >, represents the spatio-temporal endpoints of the ride
request. The spatial constraints are represented by the pick up
and dropoff locations, sloc,, € V and tloc,, € V respectively.
The temporal constraints are represented by the earliest pick
up time, t,, < T, and the delay threshold, flex,,.

"For the purposes of this work, the cost of an edge or path is measured
as the time it takes to traverse that path, which is equivalent to its shortest
distance. Time is modeled as a discrete sequence of time steps, with some
maximum value of 7", namely the recommendation period.
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Similarly, drivers join the platform in an online manner. If
a driver opts to share their spatial and temporal constraints,
we define it as the driver span. If not, then only the current
location of the driver is used in the routing process.

Definition 3: A Driver’s Span, d; = < slocgy,, tq,, tlocg,,
flexy, >, represents the spatio-temporal constraints of the
driver. These constraints are in the form of the start and
target locations, slocg, , tlocq, € V, associated with the earliest
departure time, ¢4, < T, and the detour threshold, flexg;, .

Definition 4: The Route Recommendation is the set of
spatio-temporal stops throughout their span of availability,
PRy, = {< slocg;,ta, >, < loc1,t; >, < loca,ta >, ...}.
The path starts with the current location of the driver, and then
each spatio-temporal stop could represent a pick up event, a
drop off event, or a recommended stop to visit for a possible
carpool opportunity.

Finally, we define the route recommendation problem.

Definition 5: Route Recommendation problem. Given a
driver and a ride, the route recommendation problem is defined
as that of finding the optimal driver recommendation from the
driver’s current (start) location to the ride’s drop off location,
passing by its pickup location. An optimal path is one which
maximizes the chances of the driver picking up other rides
(current or future) along the way.

III. ROUTING TO FACILITATE CARPOOLING

In this section, we start with the definition of Weight
Evolving Temporal graphs to effectively represent the dynamic
nature of the road network, and our proposed 3-endpoint
optimal polynomial-time routing algorithm with a discussion
on how to incorporate them into ride-sharing platforms to
facilitate carpooling.

A. WET Graph for Large Networks

We redefine the WET graph structure first defined in [2]
to include two main properties of realistic road networks; the
very large size of these networks and the temporally-varying
expected reward of visiting the nodes on such networks.

A Weight Evolving Temporal (WET) graph, over a recom-
mendation period T, is defined as GT = (V, E, §,w), in which
the set of temporal vertices V represents the various landmarks
in the mobility field and the set of edges E represents the
links, i.e., streets, between these landmarks. The cost function,
0:V xV — N, represents the duration of the shortest paths
between the two locations u,v € V. The temporal weight
function, w : V x N — R, represents expected reward of
visiting a vertex v € V' at some time unit 0 < ¢ < 7.

The novelty of the WET graph model lies in the temporal
weight function, which links the weight of a vertex to the
expected reward of visiting that specific location over time.
This allows for various node scoring models that are typically
encountered in dynamic networks, such as the reward for
completing a task at a specific location as in crowd sensing
platforms, and the probability of finding future rides to pick
up or the similarity of existing rides to an already committed
ride in ride-sharing platforms.
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Our first optimization to the WET graph structure lies in
tackling the extremely large pool of temporal weights on that
graph, which emerges from the large size of V' and the varying
ride expectations from these locations over the duration of a
day. We adopt an index-based approach to efficiently model
the temporally-evolving node weights by re-designing the node
weight function, w, as a HashMap with < key : (v,t), value :
R >, in which the value represents the past frequency of ride
pickups at that location, v € V/, at time step ¢t < T'.

The second optimization lies in the definition of the edge
cost function, § : V x V. — N. For the purposes of this
paper, the cost function is implemented using a HashMap with
< key : (u,v),value : R >, in which the value represents
the minimum duration to traverse the path between the two
locations in the key, u,v € V2.

B. Routing with Three Endpoints

Given a WET graph and a trio of spatio-temporal endpoints,
representing the driver’s current location and a ride’s end-
points, the objective of routing is to find the optimal path
between these endpoints that maximizes the overall chance
of picking up more rides along the way. In other words, and
without loss of generality, the objective is to maximize the total
expected reward collected by the driver from visiting various
WET graph vertices, while not violating the spatio-temporal
constraints of the ride.

To optimally find a path, we decompose the routing problem
into two parts. The first part is to find the set of optimal routes
between the first two endpoints, with the assumption that the
rider can withstand a delay in pick up. The second problem
complements the first one, by finding the set of optimal paths
between the second two endpoints, with the assumption that
the rider can be dropped off at their maximum drop off time.

Algorithm 1 Dual-Path routing algorithm

Input: < dloc, dt, sloc, t, tloc, flex >

Output: Optimal set of vertices along the trip

Retrieve GT = (V, E,§,w): Annotated WET graph

M1, Prevl = Algorithm2(< dloc, dt, sloc, t + flex >)
M2, Prev2 = Algorithm2(< tloc, t + flex, sloc, t >)
Choose ix with maz{M2[sloc|[ix] + M1[sloc][t+ flex —
1% —dt]

Backtrack from Prevl[sloc][t+ flex —i* —dt] to get P1
6: Backtrack from Prev2[sloc][i] to get P2

7: return R = reverse(P1) U P2

El I A

b4

We define the Dual-Path routing algorithm, as shown in
Algorithm 1, which is a combinatorial dynamic program that
builds up two tables of optimal paths between the three
endpoints, using Algorithm 2. The objective of Algorithm 2
is to compute the set of optimal paths between two spatio-
temporal endpoints, and it is a direct implementation of the
dynamic recurrence shown in (1), with the setup of the data
structures that save the results computed by that recurrence.

2Future work is on also representing the temporal variation of edge costs.
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OPT(v,t) = w(v, t)+

maa:{OPT(v,t -1), 0

0y {OPT (1.t = 61, 0))} |
,where OPT(v,t) represents the optimal reward that can

be collected by visiting vertex v € V on a WET graph G7 at
time 0 <t <T.

Algorithm 2 Dynamic program for reward-maximizing rout-
ing with two endpoints

Input: < sloc, t, tloc, flex >

Output: Routing table for routes from sloc to tloc

1: Retrieve GT = (V, E, §,w): Annotated WET graph
2: Set maxT =t + minDist(sloc, tloc) + flex

3: Create array M of size |V| x (mazT + 1)

4: Create array Prev of size |V| x (mazT + 1)

5: Set M[v][t] = —1,V(v, )

6: Set M[sloc][0] =0

7: for t =1 to mazT do

8:  for each vertex v € V do

9: for each vertex u € V s.t. (u,v) € E do

10: Choose u with maximum M [u][t — §(u, v)]
11: end for

12: M{v][t] = M[ux][t — §(u*,v)] + w(v,t + 1))
13: Prev[v][t] = ux

14:  end for

15: end for

16: return M, Prev

We note that for the computation of the second rewards
matrix M2, the path is reversed temporally, to allow for a
start from a fixed point of time. Thus, ensuring the optimality
of the result. To accommodate this, Algorithm 2 is tweaked
to allow for backward advancement in time if the endpoints
of the trip is reversed. After the optimal reward tables are
obtained, the optimal pick up point in time is chosen, ¢x. The
optimal pick up time is the value that maximizes the sum of
rewards obtained from the two segments meeting at the pick
up location, and it can be obtained by scanning the two tables
M1 and M2.

Finally, after the optimal pick up time is chosen, the reverse
path from the driver’s location to the pick up location is built,
P1, and the path from the pick up location to the drop off loca-
tion is built, P2. Both paths are built by backtracking through
the Prev tables. Finally, the combined path, which joins them
at time 7%, is the final result returned by the algorithm leading
to a total running time complexity of ©(mazT x |V|?).

C. Route Recommendation within the Platform

The theoretical definitions of the routing algorithms above
can be used in different contexts. In this section, we discuss
the main aspects of incorporating them into a ride-sharing
platform.
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Endpoints to use for the routing algorithms. Route
recommendations in the platform are requested in one of two
scenarios; (1) a driver already chose a ride and is requesting
a non-shortest path route to complete it, or (2) a driver is
considering a ride and needs to inquire about the carpooling
opportunities associated with that ride. Regardless of the
reason for route inquiry, when a route recommendation is
requested within the platform, the DP algorithm is executed.
The input to the DP algorithm is the driver’s current location
and current time, as well as the properties of the ride request
including its delay threshold. The output of the routing can
be used in various ways depending on the requirements and
design of the ride-sharing platform.

Pruning the graph to further improve efficiency. Al-
though our defined routing algorithms have a polynomial
running time complexity, it is a function of the number of
edges in the WET graph, which is extremely large. This could
lead to further delays when matching rides to drivers as the
platform is running in real-time.

To further optimize the running time of the routing algo-
rithms, the vertices of the WET graph are pruned based on
the input to the routing algorithm. To be more specific, as
the initial dynamic programming structure is being built in
Algorithm 2, all vertices that are not reachable within the trip
can be removed from the route computation process. Thus,
reducing the number of vertices to some k << |V, and
drastically improving the running time of the routing algorithm
to a complexity of ©(mazT x |k|?). Reachability can be
determined in constant running time, since all routes have
temporal constraints that can be used to explicitly identify
unreachable locations within these routes.

Leveraging the routes for ride recommendation. Al-
though ride assignment is not the focus of this paper, there
is an opportunity to define a simple approach for ride recom-
mendation that leverages the routing algorithm defined above.
If a driver is undecided on which ride to choose, the platform
can recommend a ride based on its carpooling potential. This
potential can be computed by executing the DP algorithm
multiple times on behalf of the driver; once for each feasible
ride. Finally, the ride that is associated with the route of highest
reward is recommended to the driver, with its recommended
route.

IV. PERFORMANCE EVALUATION

Although the routing algorithm defined in this paper is op-
timal, its effect on the quality of ride-sharing service requires
further evaluation. In this section, we use simulations to evalu-
ate the effect of drivers following their route recommendations
on the quality of service of the platform.

A. Experimental Setup

We developed a discrete event Java simulator with the
purpose of evaluating the effectiveness of various ride choice
and routing algorithms on the quality of service in ride-sharing
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platforms. All simulations were executed on a machine run-
ning macOS version 12.1, with 8-Core Intel Core i9 machine
and 32 GB of RAM.

1) Dataset: All ride information and driver spans are gen-
erated from real traces obtained from the San Francisco taxi
dataset [14]. This dataset contains GPS coordinates of approx-
imately 500 taxis collected over 30 days in the San Francisco
Bay Area. The location coordinates are time stamped and
are associated with the vacancy status of the taxi allows for
efficient retrieval of realistic ride information, as well as driver
information while deadheading.

2) Evaluation Metrics: For the purposes of this work, we
measure the ride-completion rate, which is the ratio between
completed rides and all rides arriving to the platform, and
the carpool factor, which is the average number of rides
picked up by a driver along a single trip. Moreover, we
measure the average delay in pick up per ride, as well as the
average detour encountered per driver for following the route
recommendations 3.

3) Ride-Choice Algorithms: In the experiments below, we
evaluate the effect of drivers following ride recommendations
while completing rides, as opposed to strictly using shortest
paths. Moreover, for ride-choice, we implement various algo-
rithms by which drivers can choose their rides, such as (1)
MaxCarpool, in which the route recommendation algorithm
is leveraged by the platform to recommend rides with higher
opportunities of carpooling. (2) ClosestPickup, in which the
drivers chooses the ride with the nearest pickup location
to their current one, and breaking ties based on the higher
revenue. (3) LeastDetour, in which the driver chooses the ride
that incurs no extra cost or delays to their original personal
schedules, and breaking ties based on the higher revenue. (4)
MaxRevenue, in which the driver chooses a reachable ride
with the maximum revenue associated with it, and minimizing
detour when breaking ties.

B. Efficacy Experiments

Since a theoretical analysis isn’t possible, we reverse en-
gineer optimal solutions, and then evaluate the performance
of the system in various settings. To be more specific, we
perform these experiments in a more controlled environment,
in which driver spans are randomly generated on a 10 x 10
Manhattan Grid. Then, for each driver span, two rides are
generated along that span, i.e., the spatio-temporal properties
of both rides fit within the spatio-temporal constraints of the
driver, with extra time to spare. In an optimal scenario, 100%
of the rides should be completed within a reasonable delay
threshold and driver detours. Moreover, the experiments are
designed such that further rides arrive earlier.

In the first experiment, we increase the number of drivers
roaming around the mobility field, and assign them all the
same detour threshold of 60, which means that each driver
can add up to 60 units of time to their typical shortest
path along their span. In Fig. 1, we demonstrate the effect

3We note that only a subset of the results are shown due to space limitations.
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Fig. 1. Positive impact of drivers following the route recommendations, as
opposed to shortest paths, even when they make their own ride choices.
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Fig. 2. An increased driver detour threshold leverages every bit of flexibility
available, allowing for better ride completion.

of riders following the platform’s ride recommendations, as
opposed to taking the shortest path with the various ride choice
algorithms.

In general, closest-first provides the minimum delay in
pickup and min-detour offers the minimum detours, but both
ride choices perform the worst in terms of ride completion and
revenue collected. Even with the optimal route recommenda-
tions, as demonstrated in Fig. la and Fig. lc, these greedy
models for choosing rides lead to missed opportunities for
drivers.

Following the route recommendations allow for almost
98% ride completion with minimal pick up delays, even
when drivers are greedily choosing the rides with maximum
revenue. Moreover, as Fig. 1c demonstrates, better ride choice
algorithms complete about 20% less rides when not coupled
with optimal routes.

In the second experiment, we evaluate the impact of in-
creased availability of drivers on the platform, even with
drivers following recommended ride choices and routes. For
all these experiments, 200 driver spans and 400 optimal rides
were reverse engineered over the 10 x 10 grid, similar to the
previous experiment. We vary the detour threshold of drivers
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Fig. 3. Route recommendations are effective in a dynamic online setting,
with a ride completion rate increase of about 45%.

from 10 to 90 units, and repeat the simulations for each
value. The results in Fig. 2 indicate that our defined route rec-
ommendation algorithm leverages almost every bit of detour
flexibility, allowing drivers to gain the most out of the rides
completed, while achieving up to 97% completion rate when
coupled with ride recommendation. Moreover, the coupling of
optimal rides and routes allow for a high completion rate, with
less detours and a slight increase in pickup delays.

C. Online Experiments

In these experiments, we use the traces of the first 28
days in the SF dataset to annotate a WET graph of 30,000
vertices. Then, the traces from the last day is used to generate
rides and driver spans in the simulated platform. Although
in that dataset, drivers did not have spans, we decided to
specify their spatio-temporal endpoints to effectively evaluate
the route recommendation in a highly-constrained scenario. To
add flexibility to the simulation, threshold values of 60 and 10
were added to the driver detour and ride delay respectively.

We run multiple simulations with a varying number of
drivers for a duration of 360 time units (representing 3 hours),
and focus on the effect of route recommendation on the
Carpool and MaxRevenue ride choices. As shown in Fig.
3, the number of rides completed is on average 45% more
when route recommendations are followed, with a minimal
effect on the pickup delay and driver detour. This is an
indication of the efficient routing, which leverages the detour
thresholds of drivers only when needed. Moreover, we measure
the carpool factor in the system, as shown in Fig. 3d, and
confirm that the carpooling opportunities is as high as 1.8
when recommendations are followed.

V. RELATED WORK

Existing work on ridesharing can be generally classified into
three main categories based on the model of driver availability
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in the system; taxi-based services [9], [19], dial-a-ride services
[6], and ride-sharing with private cars [8]. Ride-sharing in
platforms with private cars, usually referred to as dynamic
ridesharing, assumes that both riders and drivers have their
personal constraints and they join the platform at their own
accord. For most of these platforms, the work on ride-sharing
generally focuses on either ride assignments, route planning,
or a hybrid of both. Our work falls in the second category.

Ride Assignment. Most works that explore ride assignment
consider one-to-one matching, where a rider is matched to at
most one driver, and a driver is matched to at most one rider
at a time, as in [16]. Some works deviate from this model,
as in SHAREK [4], in which a rider is matched to a set of
drivers that they can choose from. Although our algorithms
can be used for ride assignment, the focus of this paper is on
the route planning aspect.

Routing Planning. The ridesharing works that focus on ride
assignment generally use the shortest path for routing their
matches [17]. Other routing algorithms are mostly studied in
taxi services with the goal of sending drivers to areas with the
greatest number of riders based on historical data to minimize
their idle time [19].

Another group of routing algorithms are based on inserting
the new ride (pick up and drop off locations) into an existing
route of a vehicle while optimizing for a certain objective [5],
[18]. However, this approach might not be as efficient long-
term. So based on that observation, Wang et. al designed a
dynamic programming algorithm that considers where rides
may appear in the nearest future such as next 90 minutes based
on historical data [20] to improve the routing results.

Recently, the problem of routing planning with detours have
been proposed in the context of ride-sharing. For example,
Yuen et. al proposed a routing recommendation algorithm
that maximizes the chance to find compatible rides with a
minimum detour using historical data [21]. Our work directly
contributes to this category.

VI. CONCLUSION

In this paper, we investigate the benefit of coordinating
carpooling within ride-sharing platforms with private drivers,
by recommending for drivers routes that maximize their
chances of picking up more rides along the way. We define an
optimized graph structure, namely Weight Evolving Temporal
(WET) graphs, which when annotated with ride availability
information, it can be used to define efficient and optimal
routing algorithms. Our simulations indicate the effectiveness
of route recommendations on the quality of service of the
ride-sharing platform, even when drivers make their own
choice of rides. For future work, we aim to develop more
efficient routing algorithms for WET graphs, and to define
more comprehensive ride assignment and incentive mechanims
to benefit both the drivers and passengers in the platform.
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