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Abstract—Recently ride-sharing platforms have struggled with
a decreased supply of drivers, which has negatively impacted
their passengers, by subjecting them to long delays and extremely
high surge prices. An approach for mitigating these problems is
for service providers to facilitate and coordinate carpooling via
the recommendation of individually curated paths, not necessarily
the shortest, for drivers towards completing their chosen rides.
In this paper, we redesign the Weight Evolving Temporal graph
structure to efficiently encode large dynamic road networks with
temporal ride availability. Leveraging that graph structure, we
efficiently define a polynomial-time optimal route recommenda-
tion algorithm that increases carpooling opportunities, taking into
consideration the spatio-temporal constraints of both drivers and
rides in such a highly-dynamic setting. Finally, we use simulations
to demonstrate the effectiveness of these route recommendations,
on both the driver and passenger experience.

Index Terms—ride-sharing, carpool, routing, ride assignment,
temporal, evolving graph.

I. INTRODUCTION

As evident with the recent pandemic, the decrease in the

number of drivers in ommercial ride-sharing platforms, such

as Uber [7] and Lyft [10], led to price surges and increased

delays [1], [15]. This has led to increased negative emotions

towards these platforms [11], forcing companies to increasing

driver incentives [12] and bringing back carpool options [13],

in attempts to reduce prices. With the return of carpooling,

customers can benefit from reduced fares, but drivers may still

experience lower income and reduced gain due to wasted time

deadheading, i.e., circling around idly looking for the next

passenger [3]. In this work, we argue that there is a need for a

better model for coordinating ride-sharing in such platforms.

Although service providers cannot control drivers in crowd-

based platforms, they still have full access to current and

historical data on rider and driver availability. This data

can be used to recommend “better” ride choices for drivers,

accompanied by individually curated paths, not necessarily the

shortest, that would facilitate carpooling. In such a model,

drivers have the incentive to follow these recommendations,

as they increase their chances of picking up multiple rides

along their paths. Meanwhile, passengers have the incentive

to carpool, as they pay reduced fares for shared rides with a

delay that is constrained to some threshold of their choice.

This work is supported by the National Science Foundation, USA, under
Grants IIS-1907855 and CSR-1755788.

In the context of ride-sharing, the route recommendation

problem was defined in [21], in which drivers are recom-

mended routes that have highest probability of finding more

passengers, while remaining within their detour thresholds.

However, due to the highly dynamic nature of ride availability

in large road networks, efficient optimal route recommendation

algorithms are yet to be defined. In this paper, we address

that problem via the design of a temporal graph structure that

efficiently encodes both the dynamic road network properties

and the spatio-temporal ride availability over that network.

Thus, facilitating the definition of optimal route recommenda-

tion algorithms.

Contribution. The first contribution of this paper lies

in optimizing the design of the Weight Evolving Temporal

(WET) graph structure [2], in which both vertex and edge

weights evolve over time. In this work, we annotate the graphs

with ride frequency information obtained from past ride traces,

to represent the expected spatio-temporal ride availability in

the network. Index-based labeling is adopted to efficiently

retrieve and store these annotations, which allow for the

definition of polynomial-time optimal routing algorithms that

do not necessarily optimize for the shortest routes, but for the

maximum benefit to be expected from picking up future rides

along the route.

The second contribution lies in the definition of the optimal

Dual-Path (DP) routing algorithm, which is a 3-endpoint

routing algorithm that is well-suited for finding the optimal

combination of dual-paths. With the first path from a driver’s

current location to a ride’s pick up location, and the second

path leading to the ride’s drop off location. The algorithm

is theoretically proven to find optimal routes in polynomial

time, and it can be easily integrated into existing ride-sharing

platforms.

Finally, we briefly propose a model of ride assignment,

or rather recommendation, based on the results of these

routing algorithms, and evaluate the effectiveness of these

recommendations in simulated ride-sharing experiments. We

compare our model to typical driver choice models in ride-

sharing platforms; closest-first, max-revenue-first and least-

detour, and show that it is more beneficial for drivers (and

passengers) to heed the recommended paths.

Paper Outline. In Section II, we present our system model,

followed by the definitions of our data structures and routing

algorithms in Section III. In Section IV, we present our
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evaluation framework and discuss experimental results. Then,

we provide a brief review of related works in Section V and

conclude the paper with a discussion of future work.

II. ROUTE RECOMMENDATION MODEL IN RIDE SHARING

In this section, we start by defining the system model and

main definitions.

A. System Model

In typical crowd-based ride-sharing platforms, the service

provider acts as the broker between the passengers, represented

by their rides, and the drivers. Drivers are assumed to be

individual and rational participants, with personal schedules,

constraints, and utilities. They have the flexibility to choose

the rides to complete based on their personal preferences,

or to accept ride recommendations from the platform. More-

over, drivers have the opportunity to specify their schedule

constraints with the platform by indicating their destination

location, associated with their preferred latest arrival time

at that destination, implicitly defining their detour threshold.

This personal schedule information can be leveraged by the

platform to provide better individually-curated route and ride

recommendations for the drivers.

Rides are associated with single passengers, and each ride

is defined by its spatio-temporal endpoints, representing the

ride’s pick up and drop off location, as well as the threshold

of delay based on the passenger’s preferences. In this work,

we assume that the spatial endpoints of a ride may not be

negotiated, as opposed to its temporal constraints. Rides with

no flexibility, i.e., a zero-threshold of delay, expect to be picked

up right away and routed through the shortest path to their

destinations. On the other hand, rides with more flexibility,

i.e., with some maximum threshold on delay, tolerate longer

routes, possibly allowing drivers to complete other rides along

the way.

B. System Definitions

We start the definitions with that of the road network, on

which both the drivers and rides are active.

Definition 1: The Road Network is modeled as the graph,

G = (V,E, c), in which the set of vertices V represents the

various landmarks in the road network, and the set of edges

E represents the roads between these landmarks. The cost of

traversing the edge between pairs of locations is captured by

the cost function c : V × V → N 1.

Rides arrive to the system in an online manner, with a

definition of endpoints and an optional threshold of delay.

Definition 2: A Ride Request, ri = < slocri , tlocri , tri ,
flexri >, represents the spatio-temporal endpoints of the ride

request. The spatial constraints are represented by the pick up

and dropoff locations, slocri ∈ V and tlocri ∈ V respectively.

The temporal constraints are represented by the earliest pick

up time, tri < T , and the delay threshold, flexri .

1For the purposes of this work, the cost of an edge or path is measured
as the time it takes to traverse that path, which is equivalent to its shortest
distance. Time is modeled as a discrete sequence of time steps, with some
maximum value of T , namely the recommendation period.

Similarly, drivers join the platform in an online manner. If

a driver opts to share their spatial and temporal constraints,

we define it as the driver span. If not, then only the current

location of the driver is used in the routing process.

Definition 3: A Driver’s Span, di = < slocdi
, tdi

, tlocdi
,

flexdi
>, represents the spatio-temporal constraints of the

driver. These constraints are in the form of the start and

target locations, slocdi , tlocdi ∈ V , associated with the earliest

departure time, tdi
< T , and the detour threshold, flexdi

.

Definition 4: The Route Recommendation is the set of

spatio-temporal stops throughout their span of availability,

PRdi
= {< slocdi

, tdi
>, < loc1, t1 >, < loc2, t2 >, ...}.

The path starts with the current location of the driver, and then

each spatio-temporal stop could represent a pick up event, a

drop off event, or a recommended stop to visit for a possible

carpool opportunity.

Finally, we define the route recommendation problem.

Definition 5: Route Recommendation problem. Given a

driver and a ride, the route recommendation problem is defined

as that of finding the optimal driver recommendation from the

driver’s current (start) location to the ride’s drop off location,

passing by its pickup location. An optimal path is one which

maximizes the chances of the driver picking up other rides

(current or future) along the way.

III. ROUTING TO FACILITATE CARPOOLING

In this section, we start with the definition of Weight

Evolving Temporal graphs to effectively represent the dynamic

nature of the road network, and our proposed 3-endpoint

optimal polynomial-time routing algorithm with a discussion

on how to incorporate them into ride-sharing platforms to

facilitate carpooling.

A. WET Graph for Large Networks

We redefine the WET graph structure first defined in [2]

to include two main properties of realistic road networks; the

very large size of these networks and the temporally-varying

expected reward of visiting the nodes on such networks.

A Weight Evolving Temporal (WET) graph, over a recom-

mendation period T , is defined as GT = (V,E, δ, ω), in which

the set of temporal vertices V represents the various landmarks

in the mobility field and the set of edges E represents the

links, i.e., streets, between these landmarks. The cost function,

δ : V × V → N , represents the duration of the shortest paths

between the two locations u, v ∈ V . The temporal weight

function, ω : V × N → �, represents expected reward of

visiting a vertex v ∈ V at some time unit 0 ≤ t ≤ T .

The novelty of the WET graph model lies in the temporal

weight function, which links the weight of a vertex to the

expected reward of visiting that specific location over time.

This allows for various node scoring models that are typically

encountered in dynamic networks, such as the reward for

completing a task at a specific location as in crowd sensing

platforms, and the probability of finding future rides to pick

up or the similarity of existing rides to an already committed

ride in ride-sharing platforms.
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Our first optimization to the WET graph structure lies in

tackling the extremely large pool of temporal weights on that

graph, which emerges from the large size of V and the varying

ride expectations from these locations over the duration of a

day. We adopt an index-based approach to efficiently model

the temporally-evolving node weights by re-designing the node

weight function, ω, as a HashMap with < key : (v, t), value :
R >, in which the value represents the past frequency of ride

pickups at that location, v ∈ V , at time step t ≤ T .

The second optimization lies in the definition of the edge

cost function, δ : V × V → N . For the purposes of this

paper, the cost function is implemented using a HashMap with

< key : (u, v), value : R >, in which the value represents

the minimum duration to traverse the path between the two

locations in the key, u, v ∈ V 2.

B. Routing with Three Endpoints

Given a WET graph and a trio of spatio-temporal endpoints,

representing the driver’s current location and a ride’s end-

points, the objective of routing is to find the optimal path

between these endpoints that maximizes the overall chance

of picking up more rides along the way. In other words, and

without loss of generality, the objective is to maximize the total

expected reward collected by the driver from visiting various

WET graph vertices, while not violating the spatio-temporal

constraints of the ride.

To optimally find a path, we decompose the routing problem

into two parts. The first part is to find the set of optimal routes

between the first two endpoints, with the assumption that the

rider can withstand a delay in pick up. The second problem

complements the first one, by finding the set of optimal paths

between the second two endpoints, with the assumption that

the rider can be dropped off at their maximum drop off time.

Algorithm 1 Dual-Path routing algorithm

Input: < dloc, dt, sloc, t, tloc, flex >
Output: Optimal set of vertices along the trip

1: Retrieve GT = (V,E, δ, ω): Annotated WET graph

2: M1, P rev1 = Algorithm2(< dloc, dt, sloc, t+ flex >)

3: M2, P rev2 = Algorithm2(< tloc, t+ flex, sloc, t >)

4: Choose i∗ with max{M2[sloc][i∗]+M1[sloc][t+flex−
i ∗ −dt]

5: Backtrack from Prev1[sloc][t+flex− i∗−dt] to get P1
6: Backtrack from Prev2[sloc][i∗] to get P2
7: return R = reverse(P1) ∪ P2

We define the Dual-Path routing algorithm, as shown in

Algorithm 1, which is a combinatorial dynamic program that

builds up two tables of optimal paths between the three

endpoints, using Algorithm 2. The objective of Algorithm 2

is to compute the set of optimal paths between two spatio-

temporal endpoints, and it is a direct implementation of the

dynamic recurrence shown in (1), with the setup of the data

structures that save the results computed by that recurrence.

2Future work is on also representing the temporal variation of edge costs.

OPT (v, t) = ω(v, t)+

max

{
OPT (v, t− 1),

max(u,v)∈E{OPT (u, t− δ(u, v))}
} (1)

,where OPT (v, t) represents the optimal reward that can

be collected by visiting vertex v ∈ V on a WET graph GT at

time 0 ≤ t ≤ T .

Algorithm 2 Dynamic program for reward-maximizing rout-

ing with two endpoints

Input: < sloc, t, tloc, flex >
Output: Routing table for routes from sloc to tloc

1: Retrieve GT = (V,E, δ, ω): Annotated WET graph

2: Set maxT = t+minDist(sloc, tloc) + flex
3: Create array M of size |V | × (maxT + 1)
4: Create array Prev of size |V | × (maxT + 1)
5: Set M [v][t] = −1, ∀(v, t)
6: Set M [sloc][0] = 0
7: for t = 1 to maxT do
8: for each vertex v ∈ V do
9: for each vertex u ∈ V s.t. (u, v) ∈ E do

10: Choose u∗ with maximum M [u][t− δ(u, v)]
11: end for
12: M [v][t] = M [u∗][t− δ(u∗, v)] + ω(v, t+ tp1)
13: Prev[v][t] = u∗
14: end for
15: end for
16: return M,Prev

We note that for the computation of the second rewards

matrix M2, the path is reversed temporally, to allow for a

start from a fixed point of time. Thus, ensuring the optimality

of the result. To accommodate this, Algorithm 2 is tweaked

to allow for backward advancement in time if the endpoints

of the trip is reversed. After the optimal reward tables are

obtained, the optimal pick up point in time is chosen, i∗. The

optimal pick up time is the value that maximizes the sum of

rewards obtained from the two segments meeting at the pick

up location, and it can be obtained by scanning the two tables

M1 and M2.

Finally, after the optimal pick up time is chosen, the reverse

path from the driver’s location to the pick up location is built,

P1, and the path from the pick up location to the drop off loca-

tion is built, P2. Both paths are built by backtracking through

the Prev tables. Finally, the combined path, which joins them

at time i∗, is the final result returned by the algorithm leading

to a total running time complexity of Θ(maxT × |V |2).
C. Route Recommendation within the Platform

The theoretical definitions of the routing algorithms above

can be used in different contexts. In this section, we discuss

the main aspects of incorporating them into a ride-sharing

platform.
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Endpoints to use for the routing algorithms. Route

recommendations in the platform are requested in one of two

scenarios; (1) a driver already chose a ride and is requesting

a non-shortest path route to complete it, or (2) a driver is

considering a ride and needs to inquire about the carpooling

opportunities associated with that ride. Regardless of the

reason for route inquiry, when a route recommendation is

requested within the platform, the DP algorithm is executed.

The input to the DP algorithm is the driver’s current location

and current time, as well as the properties of the ride request

including its delay threshold. The output of the routing can

be used in various ways depending on the requirements and

design of the ride-sharing platform.

Pruning the graph to further improve efficiency. Al-

though our defined routing algorithms have a polynomial

running time complexity, it is a function of the number of

edges in the WET graph, which is extremely large. This could

lead to further delays when matching rides to drivers as the

platform is running in real-time.

To further optimize the running time of the routing algo-

rithms, the vertices of the WET graph are pruned based on

the input to the routing algorithm. To be more specific, as

the initial dynamic programming structure is being built in

Algorithm 2, all vertices that are not reachable within the trip

can be removed from the route computation process. Thus,

reducing the number of vertices to some k << |V |, and

drastically improving the running time of the routing algorithm

to a complexity of Θ(maxT × |k|2). Reachability can be

determined in constant running time, since all routes have

temporal constraints that can be used to explicitly identify

unreachable locations within these routes.

Leveraging the routes for ride recommendation. Al-

though ride assignment is not the focus of this paper, there

is an opportunity to define a simple approach for ride recom-

mendation that leverages the routing algorithm defined above.

If a driver is undecided on which ride to choose, the platform

can recommend a ride based on its carpooling potential. This

potential can be computed by executing the DP algorithm

multiple times on behalf of the driver; once for each feasible

ride. Finally, the ride that is associated with the route of highest

reward is recommended to the driver, with its recommended

route.

IV. PERFORMANCE EVALUATION

Although the routing algorithm defined in this paper is op-

timal, its effect on the quality of ride-sharing service requires

further evaluation. In this section, we use simulations to evalu-

ate the effect of drivers following their route recommendations

on the quality of service of the platform.

A. Experimental Setup

We developed a discrete event Java simulator with the

purpose of evaluating the effectiveness of various ride choice

and routing algorithms on the quality of service in ride-sharing

platforms. All simulations were executed on a machine run-

ning macOS version 12.1, with 8-Core Intel Core i9 machine

and 32 GB of RAM.

1) Dataset: All ride information and driver spans are gen-

erated from real traces obtained from the San Francisco taxi

dataset [14]. This dataset contains GPS coordinates of approx-

imately 500 taxis collected over 30 days in the San Francisco

Bay Area. The location coordinates are time stamped and

are associated with the vacancy status of the taxi allows for

efficient retrieval of realistic ride information, as well as driver

information while deadheading.

2) Evaluation Metrics: For the purposes of this work, we

measure the ride-completion rate, which is the ratio between

completed rides and all rides arriving to the platform, and

the carpool factor, which is the average number of rides

picked up by a driver along a single trip. Moreover, we

measure the average delay in pick up per ride, as well as the

average detour encountered per driver for following the route

recommendations 3.

3) Ride-Choice Algorithms: In the experiments below, we

evaluate the effect of drivers following ride recommendations

while completing rides, as opposed to strictly using shortest

paths. Moreover, for ride-choice, we implement various algo-

rithms by which drivers can choose their rides, such as (1)

MaxCarpool, in which the route recommendation algorithm

is leveraged by the platform to recommend rides with higher

opportunities of carpooling. (2) ClosestPickup, in which the

drivers chooses the ride with the nearest pickup location

to their current one, and breaking ties based on the higher

revenue. (3) LeastDetour, in which the driver chooses the ride

that incurs no extra cost or delays to their original personal

schedules, and breaking ties based on the higher revenue. (4)

MaxRevenue, in which the driver chooses a reachable ride

with the maximum revenue associated with it, and minimizing

detour when breaking ties.

B. Efficacy Experiments

Since a theoretical analysis isn’t possible, we reverse en-

gineer optimal solutions, and then evaluate the performance

of the system in various settings. To be more specific, we

perform these experiments in a more controlled environment,

in which driver spans are randomly generated on a 10 × 10
Manhattan Grid. Then, for each driver span, two rides are

generated along that span, i.e., the spatio-temporal properties

of both rides fit within the spatio-temporal constraints of the

driver, with extra time to spare. In an optimal scenario, 100%
of the rides should be completed within a reasonable delay

threshold and driver detours. Moreover, the experiments are

designed such that further rides arrive earlier.

In the first experiment, we increase the number of drivers

roaming around the mobility field, and assign them all the

same detour threshold of 60, which means that each driver

can add up to 60 units of time to their typical shortest

path along their span. In Fig. 1, we demonstrate the effect

3We note that only a subset of the results are shown due to space limitations.
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(a) Route recommendations lead to
almost optimal ride completion.

(b) Route recommendations lead to
minimal pickup delays.

(c) Shortest paths don’t reach opti-
mal completion rates.

(d) Shortest paths lead to an increase
in pickup delays.

Fig. 1. Positive impact of drivers following the route recommendations, as
opposed to shortest paths, even when they make their own ride choices.

(a) Following recommended rides
and routes allow for almost optimal
ride completion rate.

(b) Almost no delays with increased
detour.

Fig. 2. An increased driver detour threshold leverages every bit of flexibility
available, allowing for better ride completion.

of riders following the platform’s ride recommendations, as

opposed to taking the shortest path with the various ride choice

algorithms.

In general, closest-first provides the minimum delay in

pickup and min-detour offers the minimum detours, but both

ride choices perform the worst in terms of ride completion and

revenue collected. Even with the optimal route recommenda-

tions, as demonstrated in Fig. 1a and Fig. 1c, these greedy

models for choosing rides lead to missed opportunities for

drivers.

Following the route recommendations allow for almost

98% ride completion with minimal pick up delays, even

when drivers are greedily choosing the rides with maximum

revenue. Moreover, as Fig. 1c demonstrates, better ride choice

algorithms complete about 20% less rides when not coupled

with optimal routes.

In the second experiment, we evaluate the impact of in-

creased availability of drivers on the platform, even with

drivers following recommended ride choices and routes. For

all these experiments, 200 driver spans and 400 optimal rides

were reverse engineered over the 10× 10 grid, similar to the

previous experiment. We vary the detour threshold of drivers

(a) Completion rate increases. (b) Delays are minimally affected.

(c) Detour flexibility is leveraged
only when needed.

(d) Carpool factor is almost at
the maximum of 2 passengers per
driver.

Fig. 3. Route recommendations are effective in a dynamic online setting,
with a ride completion rate increase of about 45%.

from 10 to 90 units, and repeat the simulations for each

value. The results in Fig. 2 indicate that our defined route rec-

ommendation algorithm leverages almost every bit of detour

flexibility, allowing drivers to gain the most out of the rides

completed, while achieving up to 97% completion rate when

coupled with ride recommendation. Moreover, the coupling of

optimal rides and routes allow for a high completion rate, with

less detours and a slight increase in pickup delays.

C. Online Experiments

In these experiments, we use the traces of the first 28

days in the SF dataset to annotate a WET graph of 30, 000
vertices. Then, the traces from the last day is used to generate

rides and driver spans in the simulated platform. Although

in that dataset, drivers did not have spans, we decided to

specify their spatio-temporal endpoints to effectively evaluate

the route recommendation in a highly-constrained scenario. To

add flexibility to the simulation, threshold values of 60 and 10
were added to the driver detour and ride delay respectively.

We run multiple simulations with a varying number of

drivers for a duration of 360 time units (representing 3 hours),

and focus on the effect of route recommendation on the

Carpool and MaxRevenue ride choices. As shown in Fig.

3, the number of rides completed is on average 45% more

when route recommendations are followed, with a minimal

effect on the pickup delay and driver detour. This is an

indication of the efficient routing, which leverages the detour

thresholds of drivers only when needed. Moreover, we measure

the carpool factor in the system, as shown in Fig. 3d, and

confirm that the carpooling opportunities is as high as 1.8
when recommendations are followed.

V. RELATED WORK

Existing work on ridesharing can be generally classified into

three main categories based on the model of driver availability
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in the system; taxi-based services [9], [19], dial-a-ride services

[6], and ride-sharing with private cars [8]. Ride-sharing in

platforms with private cars, usually referred to as dynamic

ridesharing, assumes that both riders and drivers have their

personal constraints and they join the platform at their own

accord. For most of these platforms, the work on ride-sharing

generally focuses on either ride assignments, route planning,

or a hybrid of both. Our work falls in the second category.

Ride Assignment. Most works that explore ride assignment

consider one-to-one matching, where a rider is matched to at

most one driver, and a driver is matched to at most one rider

at a time, as in [16]. Some works deviate from this model,

as in SHAREK [4], in which a rider is matched to a set of

drivers that they can choose from. Although our algorithms

can be used for ride assignment, the focus of this paper is on

the route planning aspect.

Routing Planning. The ridesharing works that focus on ride

assignment generally use the shortest path for routing their

matches [17]. Other routing algorithms are mostly studied in

taxi services with the goal of sending drivers to areas with the

greatest number of riders based on historical data to minimize

their idle time [19].

Another group of routing algorithms are based on inserting

the new ride (pick up and drop off locations) into an existing

route of a vehicle while optimizing for a certain objective [5],

[18]. However, this approach might not be as efficient long-

term. So based on that observation, Wang et. al designed a

dynamic programming algorithm that considers where rides

may appear in the nearest future such as next 90 minutes based

on historical data [20] to improve the routing results.

Recently, the problem of routing planning with detours have

been proposed in the context of ride-sharing. For example,

Yuen et. al proposed a routing recommendation algorithm

that maximizes the chance to find compatible rides with a

minimum detour using historical data [21]. Our work directly

contributes to this category.

VI. CONCLUSION

In this paper, we investigate the benefit of coordinating

carpooling within ride-sharing platforms with private drivers,

by recommending for drivers routes that maximize their

chances of picking up more rides along the way. We define an

optimized graph structure, namely Weight Evolving Temporal

(WET) graphs, which when annotated with ride availability

information, it can be used to define efficient and optimal

routing algorithms. Our simulations indicate the effectiveness

of route recommendations on the quality of service of the

ride-sharing platform, even when drivers make their own

choice of rides. For future work, we aim to develop more

efficient routing algorithms for WET graphs, and to define

more comprehensive ride assignment and incentive mechanims

to benefit both the drivers and passengers in the platform.
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