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Geometric Mechanics of Contact-Switching Systems
Hari Krishna Hari Prasad1, Ross L. Hatton2, and Kaushik Jayaram1,⇤

Abstract—Discrete and periodic contact switching is a key
characteristic of steady-state legged locomotion. This paper
introduces a framework for modeling and analyzing this contact-
switching behavior through the framework of geometric mechan-
ics on a toy robot model that can make continuous limb swings
and discrete contact switches. The kinematics of this model
form a hybrid shape-space and by extending the generalized
Stokes’ theorem to compute discrete curvature functions called
stratified panels, we determine average locomotion generated by
gaits spanning multiple contact modes. Using this tool, we also
demonstrate the ability to optimize gaits based on the system’s
locomotion constraints and perform gait reduction on a complex
gait spanning multiple contact modes to highlight the method’s
scalability to multilegged systems.

I. INTRODUCTION

Animals and robots achieve locomotion by generating
environment-relevant, periodic body deformations. Tools from
the field of geometric mechanics [1, 2] have been a popular
choice for modeling these interactions and generating optimal
gaits [3, 4] in a wide variety of biological and robophysical
systems [5, 6]. This framework relies on the notion that
deformations within a system (i.e., shape changes) directly
correlate to changes in its world position as often is the case
with quasi-static locomotion with continuous environment-
appendage contact. This relationship is mathematically de-
scribed as the local connection [3] and has been successfully
applied to the study of various modes of limbless locomotion
in drag-dominated environments such as during slithering [5],
swimming [7, 8], and burrowing [9] to name a few.

Recently, the geometric framework has been extended to
analyze the locomotion of a variety of legged animals and
robots. Zhao et al. [10] demonstrate that legged locomotion
without slipping is always principally kinematic when the
intermittent ground contact sequence is modeled as a function
of body shape. As a result, the piece-wise holonomic nature
of legged walking allows for cyclic shape changes to produce
net locomotion similar to slithering and Stokesian swimming.
However, as noted in [11], “The challenges of extending
geometric mechanics to quadrupedal systems lie in the fact
that these systems periodically make and break contact with
the environment.” These discrete and periodic appendage-
environment interactions result in multiple local connections
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Fig. 1: Overview of this work: (a) Hybrid dynamics of legged
locomotion are a challenge for typical geometric mechanics
tools. (b) The simplest illustrative formulation of a quasistatic
legged locomotion system - a two-footed model. (c) The
stratified locomotion panel framework presented in this work
and its application for generating net body displacement over a
gait cycle. (d) The piecewise holonomic trajectory (above) and
the net displacement (below) of a two-footed contact switching
system undergoing a single gait cycle.

which distinguish it from the other modalities discussed above
and limit the direct application of the established geometric
mechanics framework.

To overcome the limitation imposed by contact-switching,
one approach recasts the undulatory locomotion with leg
retraction and protraction as a fluid-like problem with the
nonlinearities of foot–ground interactions leading to acquired
drag anisotropy and thus models multilegged locomotion as
frictional swimming using existing tools [12]. In an alternate
approach, Chong et al. [11] use biological observations to
prescribe a leg-contact sequence a priori utilizing a single
continuous phase variable. A similar approach prescribes a
second continuous phase variable to model body undulations.
By coupling them together, these phases represent continuous
shapes that form a single toroidal shape-space amenable to
the geometric framework and capture the discontinuous aspect
of legged locomotion through the prescribed leg-contact tra-
jectory [13, 14]. Extending this approach, recent works from
Chong et al. [15, 16] combine multiple local connections in
multi-link limbless and legged robots into a two-dimensional
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form by partitioning a single locomotion period into empiri-
cally observed contact regions using appropriate shape basis
functions. This allows them to compute displacement strengths
from the discrete difference between system constraints in
adjacent curvature-free modes, and optimize gait sequences
by determining transitioning points that maximize net motion
accrued in each contact state. However, this method is limited
as the authors point out [15], “Simply choosing the local
optima as the transitional points can lead to problems such as
self-intersection gait paths or gait paths with extremely large
perimeters”.

To address these limitations, we propose an alternate well-
conditioned formulation for optimizing gaits in hybrid systems
utilizing the chain of forms approach [17] - a unified frame-
work for integrating differential forms that mix continuous
curvature with sharp corners, similar to how proper functions
and Dirac delta functions can be meaningfully integrated
together.

Specifically, to take advantage of this framework, we model
the contact-switching nature of kinematic legged locomotion
using a hybrid shape-space consisting of both discrete and
continuous shape dimensions. For such a hybrid system, we
show that the local curvature undergoes a discrete reduction
into stratified panels motivated by the nomenclature from non-
linear geometric control [18]. Thus, the key advantage of this
formulation is that it only relies on contact-switching rather
than the exact sequence or specific model of ground contact
and thereby enables broader generalization. For example,
unlike the above-mentioned approaches, our framework can be
readily extended to analyze the locomotion of robots operating
under constraints different from biological systems such as
those able to choose arbitrary foot timing patterns or have the
ability to modulate contact using adhesion mechanisms [19].

To illustrate our methodology, we use a two-footed toy
model inspired by peg-legged walkers [20] to develop and
present a new geometric mechanics framework relevant for
gait generation and analysis of contact-switching systems
in §II. Extensions of this no-slip approach to model
contact-switching systems with slipping or specific ground
interactions are outlined at the end of this section for the
sake of completeness while not specifically being the focus
of this manuscript. We then describe our proposed stratified
panel method for drawing gaits and compute optimal gaits
subject to constraints (costs) associated with leg swinging
and contact switching in §III. We define our objective
function for gait optimization as the ratio of the displacement
accrued relative to the system’s effort over a locomotion
cycle where both quantities are differential forms. The path
cost metric (numerator) is obtained as a surface integral of
the two-form curvature functions, while the shape change
cost (denominator) is calculated through a closed line integral
of a quadratic form. Thus, by leveraging the chain of forms

approach, we avoid the ill-conditioned problem formulation
noted during previous gait optimization methods [15]. We
also demonstrate the scalability of this approach for modeling
complex gaits spanning multiple contact states in §IV-A
by introducing a generalized gait coordinate system and
illustrating the same with a three-contact system example.

Finally, we discuss the broader applicability of this work
in the context of other state-of-the-art approaches and
conclude by hinting at exciting future directions in §V.
The code repository for this work can be found here: https:
//github.com/Animal-Inspired-Motion-And-Robotics-Lab/
Paper-Geometric-Mechanics-of-Contact-Switching-Systems.

II. TWO-FOOT, CONTACT-SWITCHING LOCOMOTION

As the first step towards describing the geometric
mechanics-based, stratified panel framework for quasistatic
legged locomotion, we consider a two-footed toy robot model
as the simplest instantiation of contact-switching walking (Fig.
1). We additionally note that our choice to focus on legged
locomotion without slipping in this manuscript enables us
to generate a minimal template-style [21] locomotion model
which is sufficient to model the contact-switching mechanics
of walking and explore geometric properties of periodic actu-
ation in a hybrid shape-space.

A. System Description

Our contact-switching model illustrated in Fig. 2(a), is a
planar system with two legs of length r constrained diametri-
cally opposite to each other and attached to the system’s body
frame, gb = (x, y, ✓) 2 SE (2) (group of planar rigid-body
motions). For simplicity of analysis, we constrain the body to
move with only translations and no rotations (g✓b = 0).1The
robot is driven by a single rate-limited servo rotor controlling
the leg angle, ↵, relative to the gxb direction with symmetric
bounds (|↵max| = ⇡

2 ).

Fig. 2: (a) A two-footed, contact-switching model moving its
diametrically-coupled legs g1 and g2 in its body frame gb
with leg angles ↵ and ⇡ + ↵ respectively. The pinned right
foot-tip is highlighted and its trajectory is shown with a solid
trace. (b) The locomotion submanifolds arising from different
combinations of contacting legs are organized into levels based
on the number of legs pinned at any given time. Submanifolds,
S; and S12 are degenerate cases that produce no motion. (c)
The system’s hybrid shape-space consists of a continuous rotor
angle (↵), and a discrete foot contact state (�). Multiple body
configurations within the shape-space are illustrated.

To signify a foot making and breaking contact with its
environment, we define a binary contact variable for each
foot, ci 2 {0, 1}. The state ci = 1 represents the robot
maintaining contact with the ground via a freely rotating pin
joint at its ith foot (also referred to as the stance phase during

1In a more physically realistic scenario, one could instead model the feet
and body as each being subject to resistive friction forces, which would result
in a model with the same structure but with more complicated expressions in
the constraints as demonstrated in prior work [13, 22].

https://github.com/Animal-Inspired-Motion-And-Robotics-Lab/Paper-Geometric-Mechanics-of-Contact-Switching-Systems
https://github.com/Animal-Inspired-Motion-And-Robotics-Lab/Paper-Geometric-Mechanics-of-Contact-Switching-Systems
https://github.com/Animal-Inspired-Motion-And-Robotics-Lab/Paper-Geometric-Mechanics-of-Contact-Switching-Systems
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legged locomotion). In contrast, the state ci = 0 represents
the ith foot’s aerial (or frictionless sliding or swing) phase
which produces no system motion. Furthermore, by following
the previously established conventions for multi-legged robots
[18], the system’s current locomotion state (or submanifold,
S) is denoted as Sij....

B. Kinematic Reconstruction using the Geometric Mechanics

Framework during locomotion without slipping

To compute the kinematics of the system by determining
its local connection, we parameterize the robot using SE(2)
frames as: gb at the body center, gi at the ith leg’s foot-tip
and the corresponding leg angle ↵i (sum of the rotor angle,
↵, and a offset angle of the leg). We then compute the Jacobian
relating leg velocity, �

gi to the body velocity, �
gb and the rotor

velocity, ↵̇ as:

0

B@

�
gxi
�
gyi
�
g✓i

1

CA =

0

@
cos (↵i) sin (↵i) 0 0

� sin (↵i) cos (↵i) r r
0 0 1 1

1

A

0

BBB@

�
gxb
�
gyb
�
g✓b
↵̇

1

CCCA

(1)

We apply the no-slip condition [20] at each foot contact (i.e.,
�
gxi =

�
gyi = 0 and ignore �

g✓i to obtain the Pfaffian constraint
matrix during Si submanifold locomotion as:
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Body motion can occur only if a single foot is hinged to the
ground (i.e. either c1 = 1 during S1 or c2 = 1 during S2) but
not both (i.e. c1 = c2 = 1 during S12). Hence, submanifolds
that involve only one leg in contact are considered in our
analysis as shown in Fig. 2(b). Reorganizing (2), we obtain
the kinematic reconstruction equation [3] for the two-footed
system during Si in the form �

g = �A(↵)↵̇ as:
 �

gxb
�
gyb

!
= �

✓
�r sin (↵i)
r cos (↵i)

◆
↵̇ (3)

Substituting the leg angles, ↵1 = ↵ and ↵2 = ⇡ + ↵ (due
to the mechanical coupling), we obtain two local connections,
A1 and A2, corresponding to S1 and S2 respectively as:

A1(↵) =

✓
�r sin (↵)
r cos (↵)

◆
;A2(↵) =

✓
r sin (↵)

�r cos (↵)

◆
(4)

Thus, to fully specify our two-footed system, we require two
distinct connections, one for each motion-viable submanifold.
This stratified formulation of the contact-switching kinematics
follows directly from geometric control of legged locomo-
tion [18] and represents a distinct departure from previous
geometric modeling of multilegged walking [6, 11, 13] or
limbless slithering [8, 23] where a single local connection
was sufficient. Therefore, the pin constraint resulting from
hybrid motion makes connection vector fields conservative for
any number of dimensions, and singular in shape directions
unrelated to the pinned leg supporting the claim that legged
locomotion without slipping is principally kinematic [10].

For classes of quasistatic locomotion systems undergoing
slipping, the corresponding local connections can be obtained
by balancing the forces on the system computed using the
resistive force theory (RFT) approach [24] instead of applying
the no-slip condition [20] as indicated above. We refer the
readers to published recent literature on geometric modeling
of slipping locomotion on hard ground using an ansatz friction
model [25, 26] and on fluid-like substrates [11, 12, 15] using
granular RFT [27] for details of applying these methods to
obtain descriptions similar to (1) and (3). However, we note
that these approaches, typically require additional information
about the contact models, friction coefficients, leg sequencing,
etc. to accurately estimate motion, drawing attention away
from the contact-switching nature of such locomotion and is
therefore, currently outside the scope of this work.

C. Contact-switching Interpolation Extension

In order to leverage existing tools to analyze systems with
stratified kinematics, we introduce a single, switching-mode
(or hybrid) local connection (Ãi$j) which combines multiple
distinct local connections (Ai and Aj). To accomplish this in
our case, we introduce a discrete contact shape variable, � 2
{�1, 1} \ Z and an interpolated contact shape, �̃ 2 [�1, 1] \
R to smoothly interpolate between the two vector fields. To
complete the formulation, we define a continuous version,2 c̃i,
of our previous defined contact states, ci, for each leg (shown
in Fig. 3a) as:

c̃1(�̃) =
1 + cos ⇡

2 (�̃ + 1)

2
, c̃2(�̃) =

1� cos ⇡
2 (�̃ + 1)

2
(5)

As the next step, we define the switching-mode local
connection, Ã1$2 (shorthanded hereafter as Ã) as:

Ã1$2(↵, �̃) = c̃1(�̃)A1(↵) + c̃2(�̃)A2(↵) (6)

The discrete version of the switching-mode connection is a
piecewise function (either A1 or A2) based on the discrete
contact shape (�) as highlighted in Fig. 3(b).

D. Stratified Panel Method Simplification - The Switching Flux

Using the switching-mode local connection (6), we compute
the system’s displacement, z�, over a given gait cycle, � 2 �,
by a generalized Stokes’ Theorem based surface integral [3]
as:

z� =

¨
�a

�
 
@Ã(2)

@↵
� @Ã(1)

@�̃

!
d↵ d�̃ (7)

where �a is the signed region of the shape-space enclosed
by �, and Ã(1) and Ã(2) are the two columns in Ã. Since
rotations (2) are disabled in this system, (7) does not include
the first-order Lie bracket. The associated integrands (Fig.
3c) called constraint curvature functions (CCFs [3], or height
functions) quantify the displacement strength over an infinites-
imal cycle at each point in the shape space. Since switching
contact does not cause motion, mathematically, Ã(2) is a null
vector, and enables us to obtain a simpler formulation of the

2A continuous version of the hybrid local connection is introduced to
formally simplify Stokes’ surface integration to a discrete case in §II-D
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Fig. 3: (a) The interpolated contact-state functions, c̃1 and
c̃2 aid in formulating a continuously changing, locomotion
submanifold, S1$2 and the corresponding (b) interpolated
connection vector fields (each submanifold is highlighted);
followed by (c) constraint curvature functions in translational
coordinates obtained from Stokes’ surface integral, (d) the
stratified panels that encode displacement accrued from in-
finitesimal gaits at each ↵ (vertical strips), and (e) finally,
a collapsed one-dimensional representation of the stratified
panel.

CCFs specific to hybrid locomotion systems called stratified

panels (Figs. 3d and 3e) as:
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The stratified panel (dz) is, therefore, the flux line along
↵ representing the infinitesimal switching flux and the dis-
placement obtained by an infinitesimal gait centered about ↵
between submanifolds Si and Sj is simply the stratified panel
(i.e. the difference between their local connections, -(Ai-Aj))

multiplied by the infinitesimal leg excursion. Furthermore, (9)
indicates that the choice of a contact interpolation function,
c̃i in (5), provided it is at least differentiable once, does
not affect the stratified panel and consequently the resultant
displacement.

III. STRATIFIED PANEL METHOD FOR MOTION
ESTIMATION AND OPTIMAL GAIT GENERATION

So far, we have demonstrated that the integral around a gait
loop with one continuous variable and one switched variable is
equal to the integral along the corresponding stratified panel.
We use this principle to illustrate our procedure for motion
estimation and gait optimization in the following subsections.

A. Motion Estimation

We choose a sample discrete gait (parameterized by time, ⌧ )
switching between foot extremal positions (↵� and ↵+, Fig.
4a). To compute motion over a cycle, this gait is transposed
onto the system’s stratified panels (9) along the x (dzx) and
y (dzy) coordinate axes respectively as shown in Fig. 4b.
We observe that the dzx stratified panel is anti-symmetric
about ↵ = 0, indicating that no net motion is accrued along
that direction (zx� = 0) for symmetric gaits. On the other
hand, the symmetric dzy stratified panel indicates equal (due
to the mechanical coupling) displacement in the y-direction
is obtained during each contact phase. The net displacement
(Fig. 4c) accrued over the above gait-cycle, z�, is simply the
integration of the stratified panels along ↵ and aligns with
the robot center’s trajectory (Fig. 4d) computed using the
boundary integral [3].

Fig. 4: (a) The rotor angle shape change in a discrete gait as
function of the time period ⌧ (highlighted regions denote the
active contact state), (b) x and y-displacement stratified panels
are embedded with a discrete gait that swings each leg from
↵� to ↵+ in each contact state, (c) the corresponding trajectory
of the system in SE (2) obtained by a boundary integral, and
(d) the net displacement is computed by integrating along the
stratified panel from ↵� to ↵+ and is plotted as a vertical line.
The limb excursions in this gait are shown as circular sectors
for each limb (colored to denote each level-one, contact state)
at the initial SE (2) position of the system.

B. Optimal Gait Generation

One of the strengths of the geometric approach for gait
synthesis is the ability to generate optimal gaits subject to
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locomotion constraints typically formulated as cost functions
involving performance metrics such as maximizing forward
speed, minimizing the cost of transport, etc. To illustrate the
gait optimization procedure, we choose locomotion effective-
ness (Ey

�) as the cost function to be maximized and define it
as the ratio of the SE (2) displacement accrued by the robot’s
center (z�) to the benefit function associated with changing
the shape-space (J�) over a single gait cycle.

As discussed in §II-C, the displacement per cycle can be
found from the surface integral of the constraint curvature
(including the line and point integrals of the “creases” and
corners induced by discrete changes in the contact state). We
take the cost as the time taken to complete a gait cycle at
normalized instantaneous effort, which under our model of a
rate-limited servo corresponds to the pathlength of the cycle
in the space of joint angles.3

For our system operated by a constant rate servo and
translating along the Y direction, locomotion effectiveness
(Ey

�) is a measure of average speed dependent on leg speed
(s), leg amplitude (↵̂), and foot contact-switching time (T�)
as:

Ey
� =

zy�
J�

=
zy�
T�

=
2r [sin↵]↵

+

↵�

2s�1 [↵]↵
+

↵� + 2T�

=
r sin ↵̂

T↵ + T�
(10)

For ease of calculations, we assume the servo motor speed
is fixed at half a revolution per second and the leg length r
is 1 unit. Fig. 5 depicts the optimal swing amplitude solution
(↵̂⇤) that maximizes locomotion effectiveness as a function
of switch time ratios (T↵

T�
) to validate our intuition about the

behavior of rate-limited, contact-switching systems — if the
system is capable of relatively fast contact switches over leg
swings (high T↵

T�
), then it is preferable to make many small

leg excursions (smaller ↵̂⇤) for maximizing effectiveness; else
it is better to make few large leg swings (larger ↵̂⇤).

Fig. 5: The optimal swing amplitude ↵̂⇤ and the optimal speed
in y-direction Ey

� for the two-footed, contact switching system
are plotted as functions of the ratio between constant leg swing
and contact switch times, T↵

T�
. The optimal swing amplitudes of

the system are shown as mini leg excursion insets at extremal
values of T↵

T�
.

IV. GENERALIZATION TO SYSTEMS SWITCHING BETWEEN
MULTIPLE (THREE AND ABOVE) CONTACTS

In this section, we extend our results so far to contact-
switching, multi-footed systems and describe a procedure for

3For more detailed physical models, the pathlength calculation can be
weighted with a quadratic form/Riemannian metric to reflect configuration-
dependent relationships between motor speed and motor effort [28, 17].

reducing the resulting complex gaits spanning multiple sub-
manifolds in a high dimensional shape space using stratified
panels.

A. Three-footed, contact switching system

Specifically, a three-footed robot is chosen as an illustrative
example as it increases the number of locomotion submani-
folds by one relative to the two-footed robot and introduces
three stratified panels as there are ways to choose two contact
states to switch between. Similar to our previous system (Sec.
II-A), the three-footed robot is a planar system with three
legs of length r attached to the system’s body frame and
constrained to be symmetrically distributed around the body
(i.e., 120° offset between each leg). All previous assumptions
carry over and enable only body translations produced by leg
swings in level one submanifolds, S1, S2, and S3. Further-
more, we assume switching between any two submanifolds
accrues the same cost. Therefore, the natural embedding of the
three-footed system in R3 resembles an equilateral, triangular
prism with the rectangular faces encoding the stratified panels
between two submanifold edges (Fig. 6).

Following analysis in Sec. II, we derive the three local con-
nections (A1, A2, and A3 during S1, S2 and S3 respectively)
and three stratified panels (dz12, dz23, and dz31) representing
the infinitesimal, contact-switching kinematics of our system
(Fig. 6).

B. Gait Coordinate System

Using stratified panels as a natural gait coordinate system
[29] allows us to decompose a complex gait spanning multiple
locomotion submanifolds into a sum of sub-gaits in each
stratified panel for motion estimation. For this process of
gait reduction (and the reverse gait lifting), counter-clockwise
gaits are considered positive and �̂ij (↵�,↵+) correspond to
sub-gaits spanning the manifolds Si and Sj with a swing
range between ↵� and ↵+. The robot’s trajectory is obtained
using the boundary integral as before using the knowledge of
currently active submanifold as the gait progresses.

To demonstrate the strength of our method, we choose an
example complex gait (�123) that spans all valid locomotion
submanifolds of our three-footed system (Fig. 6) and decom-
pose it into a gait-space representation (which may not be
unique operations) as:

�123 ! �̂12

⇣
�⇡

4
,
⇡

4

⌘
� �̂23

⇣⇡
4
,
⇡

2

⌘
+ �̂31

⇣
�⇡

2
,�⇡

4

⌘
(11)

V. DISCUSSION

To summarize, in this work, we modeled the no-slip contact-
switching quasi-static locomotion from a geometric mechanics
perspective using the simplest instantiation of a hybrid system
— a two-footed toy robot with one continuous limb swing
shape variable and one discrete foot contact shape variable,
a departure from previous work [6, 11, 13]. Leveraging the
piece-wise holonomic nature of walking [10], we derived
unique local connections for each contact submanifold and
proved that the curvature of connection vector fields for a
contact-switching system (typically computed from general-
ized Stokes’ theorem) is simply the difference between those
local connections. These discrete-curvature functions called
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Fig. 6: The natural R3 embedding of a three-footed system (inset) resembles a triangular prism due to a cyclic, continuous
shape, ↵, and a discrete shape � encoding three locomotion submanifolds, S1, S2, and S3. The embedding is opened along
↵ and unfurled along � to result in a shape-space similar to the two-footed system in §II. From the working coordinates, the
process of breaking down a multi-submanifold spanning, complex gait is shown sequentially from left to right. The gait is
first broken down into sub-gaits in each panel and then each sub-gait is used to estimate the net displacement accrued by the
system over a gait cycle. The swing ranges of each leg over a gait cycle are shown as highlighted circular sectors on the right.

stratified panels encode the infinitesimal displacement strength
in a hybrid shape-space and when integrated over a gait period
estimate the average motion over that cycle. We also demon-
strated the ability to optimize the above gaits based on user-
defined locomotion constraints. Furthermore, these stratified
panels represent a natural gait coordinate system that can
reduce high-dimensional complex gaits into lower-dimensional
sub-gaits enabling us to potentially scale our approach to
multilegged systems which we illustrated by extending our
analysis to a three-footed system. Thus, using the stratified
panels, our work has extended the use of generalized Stokes’
theorem [3] to classes of systems with hybrid shape-spaces
consisting of both continuous and discrete shapes such as
animals and robots walking without slipping [20].

While the current results are promising, we envision a
number of improvements and exciting future directions and a
few are listed below. Our two- and three-footed systems pro-
vided useful insights into the stratified nature of the constraint
curvature, but do not account for the variety of morphologies in
sprawled multilegged systems. For example, many robots and
animals have distinct hip joints with independently articulated
legs. As the next steps, we aim to extend the current results
to multi-disk multilegged systems that more closely replicate
real systems. With such a model, we wish to generate optimal
gait trajectories and evaluate them experimentally.

State-of-the-art legged robotic systems have recently
demonstrated impressive locomotion feats such as agile and
robust locomotion over complex human-made and natural
terrains, relying on computational intelligence from efficient
onboard processing [30]. However, a majority of these tech-
niques like model predictive control still remain intractable
for insect-scale robots and this is where we envision major
applications of our work. We believe future flavors of the
geometric, average locomotion models (or geometric reduced
order models) like the one presented in this paper will lay
the foundation for building efficient motion planners requiring
minimal computational resources, and are especially attractive

for miniature robotic systems [31, 32]. We envision such mod-
els are critical for enabling predictive controllers in miniature
robots to enable them to approach performances similar to
their larger counterparts [33, 30]. These robots can use odom-
etry [34] to build coarse approximations of the stratified panels
leading to online gait synthesis (or even geometric model dis-
covery, by extension). Similarly, these methods can be used to
generate data-driven, principally kinematic models of animal
walking to provide new insights into biological locomotion
[10], which can then inspire new robot designs with enhanced
locomotion capabilities (e.g., omnidirectional maneuverability
enabled by shape-morphing robots like CLARI [35]).
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