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a b s t r a c t

Many robotic systems locomote using gaits—periodic changes of internal shape, whose mechanical in-
teraction with the robot’s environment generate characteristic net displacements. Prominent examples
with two shape variables are the low Reynolds number 3-link ‘‘Purcell swimmer’’ with inputs of 2 joint
angles and the ‘‘ideal fluid’’ swimmer. Gait analysis of these systems allows for intelligent decisions to
be made about the swimmer’s locomotive properties, increasing the potential for robotic autonomy.
In this work, we present comparative analysis of gait optimization using two different methods. The
first method is variational approach of ‘‘Pontryagin’s maximum principle’’ (PMP) from optimal control
theory. We apply PMP for several variants of 3-link swimmers, with and without incorporation of
bounds on joint angles. The second method is differential–geometric analysis of the gaits based on
curvature (total Lie bracket) of the local connection for 3-link swimmers. Using optimized body-motion
coordinates, contour plots of the curvature in shape space give visualization that enables identifying
distance-optimal gaits as zero level sets. Combining and comparing results of the two methods enables
better understanding of changes in existence, shape and topology of distance-optimal gait trajectories,
depending on the swimmers’ parameters.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Robotic swimmers are a promising avenue of research. Both
small microswimmers and large scale swimmers have many
promising possible applications. Advances in technology for man-
ufacturing nano- and micro-systems have brought renewed in-
terest in simplified models of microswimmers and production of
microscopic robotic devices that could be applied in the medical
field (Feng & Cho, 2014; Gao et al., 2012; Kósa et al., 2008). Such
micro-robots would be able to provide targeted drug delivery,
tumor detection, assisted sperm motility, and even perform mini-
mally invasive surgical procedures. At the other end of size scale,
large, fast moving swimming robots can be useful in search and
rescue missions, maintenance operations within pipe systems of
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(N. Justus), izi@technion.ac.il (Y. Or), Ross.Hatton@oregonstate.edu (R.L. Hatton).

complex infrastructures, and surveillance or protection in marine
environments (Mirats Tur & Garthwaite, 2010).

The flow around microswimmers is governed by Stokes equa-
tions, which arise from the Navier–Stokes equations at the limit
of zero Reynolds number Re ! 0 (Cohen & Boyle, 2010; Happel &
Brenner, 1965). At very small Reynolds numbers, Re ⌧ 1, inertial
forces become negligible and the viscous forces are dominant.
This leads to a linear relationship between the body velocities
and the internal shape velocities (Koiller, Ehlers, & Montgomery,
1996). These unique attributes call for drastically different swim-
ming strategies than the ones used in the familiar motion of large
organisms.

Purcell suggested that the ‘‘simplest animal’’ that could swim
is the three-link swimmer (Purcell, 1977), comprised of three
thin rigid links connected by two rotary joints (Fig. 1(a)). By
alternately rotating the joint angles, this swimmer would be able
to propel itself in a low-Re environment. The series of shape
changes, or ‘‘gait’’ proposed by Purcell appears as a square in the
plane of shape variables (the joint angles) as shown in Fig. 1(b).
This gait results in motion along the mean orientation of the
central link. Becker, Koehler, and Stone (2003) formulated the dy-
namics of Purcell’s swimmer using slender-body theory (Batchelor,
1970; Cox, 1970) and found that the direction of net displacement
of the swimmer depends on the angular amplitude of the strokes.
For small amplitude the swimmer will move in one direction,
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Fig. 1. (a) Purcell’s three-link swimmer. (b) The square, circular and maximal
displacement gaits.

Fig. 2. Net-displacement over a period in the x direction as a function of the
gait amplitude ". Circular gait in blue full line and square gait in dashed’ green
line. X marks denote optimal amplitudes for maximal (purple) and minimal (red)
displacement for circular gait. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

but for larger amplitudes the translation will be in the opposite
direction (Fig. 2). This also implies the existence of an amplitude
of the gait that will result in maximal translation (marked with
a Purple X in Fig. 2). For very large amplitudes there is a second
maximum-displacement gait that will result in swimming in the
opposite direction (marked with a red X in Fig. 2).1 Importantly,
in robotic realizations of such swimmers, cf. Gutman and Or
(2016), one commonly has to account for practical bounds on
joint angles which may limit the stroke amplitude.

In contrast to small microswimmers whose motion is gov-
erned by viscous drag forces, the motion of large swimmers,
such as fish or eels, is governed mainly by inertial forces (Kanso,
Marsden, Rowley, & Melli-Huber, 2005; Melli, Rowley, & Rufat,
2006). A common simplified mathematical model for such swim-
mers is that of ‘‘perfect fluid’’ that assumes potential flow in a
inviscid fluid and allows for an added mass effect (Lamb, 1993).
Notably, using this model for a swimmer in an unbounded fluid
domain that dictates symmetry and conservation laws leads to
first order equations of motion that give a linear relation between
the body velocities and internal shape velocities. Therefore, mo-
tion analysis of an inertial swimmer under this ‘‘perfect fluid’’
model can be done using the same mathematical methods as
in the case of a microswimmer, despite the differences in the

1 We note that maximizing displacement per cycle is not a true ‘‘optimal
control’’ problem for the systems considered in this paper, because per-cycle
displacement does not account for the different amounts of time or energy con-
sumed by ‘‘large’’ or ‘‘small’’ gaits. Displacement-maximizing gaits do, however,
have a distinct mathematical structure and exist in close proximity to speed and
efficiency maximizing gaits (Hatton, Dear, & Choset, 2017), and so are therefore
an interesting topic of study.

physics of the mechanism creating the motion (Kanso et al.,
2005; Morgansen, Triplett, & Klein, 2007). Previous works have
examined the reduction of inertia-driven ‘‘perfect fluid’’ dynamics
into a first order system (Hatton & Choset, 2013; Kanso et al.,
2005; Virozub, Wiezel, Wolf, & Or, 2019).

The common basis for the small-scale microswimmers and
large-scale ‘‘perfect fluid’’ swimmers is that their motion can be
described by a ‘‘principal kinematic’’ structure (Hatton & Choset,
2013), where the body velocities are linearly related to the shape
velocities. Based on the Lie-group structure of rigid-body mo-
tion, this locomotion principle is not unique to swimming and is
shared by other models of robotic locomotion induced by internal
shape changes, such as the terrestrial snake (Marvi et al., 2014)
and some wheeled robots (Shammas, Choset, & Rizzi, 2007; Yona
& Or, 2019).

Optimization of design and actuation of low-Re swimmers has
been a subject of several recent studies. One approach to gait
optimization was taken in Hatton and Choset (2011), where geo-
metric mechanics techniques based on Lie brackets were used to
provide an approximation of the net displacement for locomoting
systems. These approximations are then used to search for the
optimal gait. Historically, the approximation error has limited
this analysis to small shape changes. Recent works by Hatton
and Choset (2015) show that the choice of body coordinates can
significantly reduce the approximation error. This allowed them
to find gaits maximizing displacement per cycle of the three-link
swimmer by examining zero-contour lines of the total Lie bracket,
as well as gaits for maximal energetic efficiency which also max-
imize displacement per time at a given effort level (Ramasamy &
Hatton, 2019).

Another important approach for finding optimal gait trajecto-
ries is using variational methods of optimal control, namely Pon-
tryagin’s maximum principle (PMP) Pontryagin (1987), Bryson
and Ho (1975), Clarke (2013), Liberzon (2011). This approach has
been vastly applied in several practical fields such as aerospace
applications (Ben-Asher, 2010; Niknam, Kheiri, & Abdi Sobouhi,
2022; Serra, Yanez, & Frueh, 2021) and computer vision (Kimia,
Tannenbaum, & Zucker, 1994), as well as biology (Rosa & Torres,
2018; Sharp, Burrage, & Simpson, 2021) and quantum dynam-
ics (Bonnard & Sugny, 2012; Boscain, Sigalotti, & Sugny, 2021).
For Purcell’s three-link microswimmer model, the PMP method
has been applied in Wiezel and Or (2016b), and analytically
reproduced the maximum displacement-per-cycle gait found in
previous works (Hatton & Choset, 2013; Tam & Hosoi, 2007)
using different approaches. The gait in Wiezel and Or (2016b) was
found using a polar representation of the shape variables and so
is not suitable for closed curves with a general shape. Another
limitation of the PMP formulation in Wiezel and Or (2016b) is
that it did not allow for bounds on the shape variables, which
commonly exist in any practical application.

Extension of the maximum principle to account for inequality
constraints on state variables have been presented in several
works, e.g. Ben-Asher (2010), Chang (1961), Dubovitskii and Mi-
lyutin (1968), Hartl, Sethi, and Vickson (1995) and Speyer and
Bryson (1968). This extension has also been recently incorporated
in optimal control for specific applications such as autonomous
transportation and vehicles (Ben-Asher & Rimon, 2021; Ritzmann,
Christon, Salazar, & Onder, 2019; Zhou, Chung, Bhaskar, & Cho-
lette, 2019), energy management systems (Lee, Kim, Siegel, &
Stefanopoulou, 2021; Nguyen, Vo-Duy, Antunes, & Trovão, 2021),
and aerospace systems (Cots, Gergaud, & Goubinat, 2018; Mall &
Taheri, 2020).

A different variant of optimal control, which has significance
for computational aspects, is the discrete-time PMP (Bolt’yanskii,
1975; Dubovitskii, 1978; Holtzman, 1966). In particular, sev-
eral works have focused on systems evolving on Lie groups,
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and development of discrete integrators that preserve group in-
variants and thus avoid cumulative integration error (Kobilarov
& Marsden, 2011; Phogat, Chatterjee, & Banavar, 2018; Saccon,
Hauser, & Aguiar, 2013). This method can incorporate bounds
on input and state variables due to its discrete nature. For Pur-
cell’s three-link microswimmer model, the recent work (Kadam,
Phogat, Banavar, & Chatterjee, 2021) considered the iso-holonomic
problem of finding gaits that minimize energy expenditure under
given net displacement per cycle under given state bounds, by
employing discrete-time PMP on a Lie group.

The goal of this work is to revisit the kinematic models of
three-link swimmers and explore optimal gait trajectories of joint
angle inputs for achieving maximal net displacement per cycle,
with possible bounds on joint angles. We make a comparative
analysis of two different methods. The first method is based on
necessary conditions of variational calculus, using PMP within
the framework of optimal control. It requires solving a two-point
boundary-value problem which reduces to a simple ‘‘shooting’’
solution of a scalar variable. The method captures locally-optimal
smooth gait trajectories for maximal positive displacement. How-
ever, for some swimmer’s model parameter it fails to find a
smooth trajectory of large-amplitude gait for maximizing nega-
tive displacement, whereas a non-smooth locally-optimal gait can
be found when state bounds are incorporated.

The second method is based on differential geometry and
on using an approximate solution (formally a truncated Baker-
Campbell-Hausdorff series) to the net-displacement-per-cycle
equations. This approximation allows the net displacement over a
gait cycle to be computed as the volume integral of a scalar height
function over the region enclosed by the gait trajectory. Through
a principled choice of coordinates for the system (in particular,
selecting a body frame at a nonlinearly weighted average of
the link positions instead of being attached to a link), we have
previously shown that this approximation can be made usefully
accurate over large-amplitude motions of the joints (Hatton &
Choset, 2011).

In particular, a very accurate approximation of gait trajectories
that maximize displacement per cycle is obtained by the loops
of zero-level curves of the scalar height function. Upon varying
swimmer’s parameters, changes in height function landscape and
in topology of its zero-level curves give a graphical explanation
to the change in shape and nature of such gait trajectories. In
particular, junction points in the zero-level curves preclude ex-
istence of locally-optimal trajectories, and state bounds become
necessary in order to obtain non-smooth optimal gaits that avoid
the junction points. Overall, the two methods reconcile together
to combine a rigorous variational formulation with graphical
visualization of the changes in shape and nature of optimal gaits.

The structure of the paper is as follows. In the next section,
we present two models of swimmers: Purcell’s swimmer and the
‘‘perfect fluid’’ swimmer. In Section 3 we offer the formulation of
the optimal control problem using PMP, and show our solutions
for the models with and without joint angle bounds, as well
as cases where this formulation fails to find smooth optimal
gaits. Next, in Section 4 we review the geometric analysis of gaits
introduced in Hatton and Choset (2011). In Section 5 we compare
the results of the two methods. The closing section contains
discussion and conclusion.

2. Mathematical models of three-link kinematic swimmers

We begin by formulating the dynamics of two models of
3-link swimmers. The swimmer model consists of three thin rigid
links with lengths l0, l1, l2, where l1 = l2. The links are connected
by two rotary joints whose angles are denoted by �1 and �2
(see Fig. 1(a)). The shape of the swimmer is denoted by the

vector � = (�1,�2)T . It is assumed that the swimmer’s motion
is confined to a plane. The planar position of the middle link’s
center is (x, y) and its orientation angle is ✓ . The velocity of the
central link in an inertial frame is denoted by q̇b = (ẋ, ẏ, ✓̇ ). The
velocity of the ith link is described by the linear velocity of its
center and the links angular velocity !i, which are augmented in
the vector vi = (ẋi, ẏi,!i) 2 R3. We denote the body velocities
by q̊ = (vx, vy, ✓̇ ). These are the velocities of the central link
expressed in a reference frame attached to the central link. We
show below that for each of the models, the relation between the
shape velocities and the body velocities can be written as:
�q = A(�)�̇ (1)

also known as the kinematic reconstruction equation (Bloch,
2003). In order to obtain the velocities in an inertial frame we
multiply by a rotation matrix:

q̇b = R(✓ )�q = R(✓ )A(�)�̇ = G(✓ ,�)�̇ (2)

While in this work we only consider planar three-link models,
this form can also be generalized to multi-link models and to
spatial swimmers using three rotation angles (Wu et al., 2021).

In the rest of this section, we give a short review on how to
write the relation (1) for both swimmer models.

2.1. Purcell’s swimmer

The first swimmer model we consider is ‘‘Purcell’s swimmer’’,
in which the system is submerged in an unbounded fluid do-
main whose motion is governed by Stokes equations (Happel &
Brenner, 1965). Here, we briefly summarize how to find the local
connection for Purcell’s swimmer. More in-depth derivations can
be found using inertial-frame and link-frame methods described
in Ramasamy and Hatton (2019) and Wiezel and Or (2016a).

First, the velocity of each link through the fluid is written using
Jacobian matrices Ji relating overall swimmer body velocity and
joint velocities to individual link velocities:

vi = Ji

q̊
�̇

�
(3)

Resistive force theory is used to calculate the force on each link
as being linearly proportional to that link’s velocity vi through a
resistance matrix Di :

Fi = �Divi (4)

Then, forces on each link can be mapped back into the body
frame of the swimmer using a dual adjoint-inverse mapping and
summed together to obtain net load on the body Fb:

Fb =
2X

i=0

JTi Fi =
 

2X

i=0

�JTi DiJi

!
q̊
�̇

�
(5)

At low Reynolds numbers, net forces on the swimmer are zero
because it is at quasistatic equilibrium. This allows us to write
Eq. (5) as nonholonomic constraints on velocities:

Fb = Cq(�)q̊ + C�(�)�̇ = 0 (6)

This allows us to solve for the viscous local connection:

q̊ = �C�1
q C��̇ = A(�)�̇ (7)

2.2. Perfect fluid swimmer

The second swimmer we consider is the ‘‘perfect fluid’’ swim-
mer model (Fig. 3), whose dynamics are constructed by assuming
inviscid and irrotational potential flow. In Virozub et al. (2019),
analysis for sinusoidal input was done and motion experiments
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Fig. 3. The three-link ‘‘perfect fluid’’ swimmer model (Virozub et al., 2019).

were performed with a controlled robotic swimmer in order to
validate this model. Each link is assumed to be an ellipse with
principal radii of ai, bi and density ⇢, which has mass mi and
moment of inertia Ii. The swimmer is submerged in an unbounded
domain of ideal fluid with equal density ⇢.

The kinetic energy of the system can be written as a sum of
the kinetic energies of the individual links:

T = 1
2

X

i

vTi Mivi (8)

where

Mi =
" mi 0 0

0 mi 0
0 0 Ii

#
+ ⇡⇢

2

4
b2i 0 0
0 a2i 0
0 0 1

8 (a
2
i � b2i )

3

5

The first term in Mi represents the inertia of the link while the
second term represents the added mass effect due to accelerating
the displaced fluid around the swimmer (Kanso et al., 2005).

Using the link Jacobian to relate body-frame velocity and joint
velocity to individual link velocity as in (3), we can rewrite the
kinetic energy in terms of these two quantities:

T = 1
2


q̊
�̇

�T  Mbb Mbs
MT

bs Mss

�
q̊
�̇

�
(9)

where all blocksMbb,Mbs,Mss are functions of the shape variables
� only.

Using generalized coordinates q = (qb,�), the system’s dy-
namic equations of motion can be written using Lagrange’s for-
mulation (Hand & Finch, 1998) as

d
dt

✓
@T
@q̇

◆
� @T
@q

= Fq, (10)

where Fq is a vector of generalized forces. In matrix form, this
equation reads as

M(q)q̈ + b(q, q̇) = Fq. (11)

The system’s inertia matrix M(q) in (11) has tight relation to
the block matrices in (9) due to invariance of the dynamics with
respect to rigid body transformations, which induces conserva-
tion of generalized momentum variables, see Hatton and Choset
(2013), Shammas et al. (2007) and Virozub et al. (2019). Assuming
that the swimmer starts from rest, q(0) = 0, this momentum
conservation can be reduced to a first-order relation between
body velocity and shape changes as (see Kanso et al., 2005):

Mbb(�)q̊ + Mbs(�)�̇ = 0 (12)

The body velocities can now be written in the form of Eq. (1) with
A(�) = �M�1

bb Mbs.

3. Optimal control using PMP

Applying periodic input of shape changes (gaits) to the swim-
mer models presented above, results in net motion per cycle,
which can be obtained by integrating (2) over a period. Impor-
tantly, the kinematic relation (2) is time-invariant, and corre-
sponds to a geometric relation

dqb = G(✓ ,�)d�. (13)

This implies that for any geometric shape of gait trajectory �(s),
the resulting net body motion �qb generated by this gait is
independent of rescaling the time-rate s(t) of the input (Kelly
& Murray, 1995). One may seek for optimal gaits that maximize
per-cycle displacement (Hatton & Choset, 2013). In order to find
gaits that maximize per-cycle displacement of the swimmer mod-
els presented, we apply methods of variational optimal control,
which lead to the PMP (Bryson & Ho, 1975). We first present the
formulation of a general solution via PMP and the formulation for
our problems with dynamics (1), with and without state bounds.
Next, we present the optimal gaits found using this method for
both of the swimmer models and the influence of changes in
problem’s bounds and model parameters on the optimal solution.

3.1. Formulation of OCP

We start with a short description of the optimal control prob-
lem and PMP solution for a model with the dynamics in (1).

For an optimal control problem

(OCP)

8
>>><

>>>:

max J = ´ tf0 g(z,u) s.t.
ż = f(z,u) 8t 2 [0, tf ],
u 2 U 8t 2 [0, tf ],
z(0) = z0,

(14)

where z 2 Rn is the state of the system and u is the control input,
we define a costate vector � 2 Rn and the Hamiltonian will be

H(z,u, �) = �T f + g (15)

Pontryagin’s Maximum Principle (PMP) states that a necessary
condition for obtaining the optimal control input trajectory u⇤(t)
with associated state trajectory z⇤(t) is that it maximizes the
Hamiltonian:

u⇤(z, �) = argmax
u2U

H(z,u, �). (16)

Thus, an optimal input can be found by solving

Hu = @H
@u

= E0 (17)

.
The Maximum Principle requires solving an ODE with two-

point boundary conditions.

Singular arcs
In problems where the Hamiltonian is linear in the input, the

optimal input cannot be found from (17). In many cases, this im-
plies a ‘‘bang–bang’’ solution where the control switches between
the upper and lower bounds. The switching is determined by the
sign of Hu. In some cases, when Hu can vanish for a finite time,
the solution follows a singular arc and can be determined by the
time derivatives:
dk

dtk
Hu = E0 (18)

After an even number of derivatives k, the input u appears and
can be extracted.
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Bounded state
When formulating the maximum principle with inequality

bounds on the state variables, we follow the direct adjoining
approach (Hartl et al., 1995; Speyer & Bryson, 1968). For an
inequality bound in the form:

w(z, t)  0 (19)

with time derivatives

wk(z, t) = dkw
dtk

(20)

The Hamiltonian is defined as

H̃(z,u, �, ⌫) = �T f + g + ⌫w (21)

where ⌫ is an additional multiplier, and

⌫w⇤(z, t) = 0 (22)

so that ⌫ = 0 whenever the bound is inactive (w(z, t) < 0), while
w(z, t) = 0 and ⌫ > 0 whenever the bound is active.

A time interval [⌧1, ⌧2] is called a bounded interval if w(z, t) =
0 for t 2 [⌧1, ⌧2] (the bound is active). ⌧1 and ⌧2 are the entry
time and exit time, respectively.

Whenever the bound is inactive (w(z, t) < 0), the solution
is found through Hu = E0 (or its time derivatives (18) in the
case of a singular arc). When the bound is active, w(z, t) = 0
and its time derivatives determine the control input u⇤. Gen-
erally, the costate variables as well as the Hamiltonian do not
necessarily change continuously at entry time and exit time and
additional necessary conditions can be written that determine the
discontinuity (Speyer & Bryson, 1968). But, if the control input
is discontinuous over the entry or exit time, u⇤(⌧�) 6= u⇤(⌧+),
then the costate variables and Hamiltonian must be continuous,
�(⌧�) = �(⌧+), H̃⇤(⌧�) = H̃⇤(⌧+) (Hartl et al., 1995) (⌧� and ⌧+

denote the left and right limits, respectively).

3.2. OCP for three-link swimmer

We now formulate the displacement-per-cycle maximizing
control problem for a three-link kinematic swimmer and find
the solution. Whereas the formulation in Wiezel and Or (2016b)
used polar representation of the shape variables, here we write a
more general formulation in order to allow for non-polar gaits.
For the three-link kinematic swimmer, we define the state as
z = [�1,�2, ✓]T , with the dynamics:

ż =

2

4
�̇1
�̇2
✓̇

3

5 =
" u1

u2
p(�1,�2)u1 + q(�1,�2)u2

#
(23)

with the input vector u = [u1, u2]T = [�̇1, �̇2]T . The cost function
is the net-displacement over a period in the x-direction:

J = x(tf ) = ´ tf0 ẋdt = ´ tf0 g(�1,�2, ✓ )u1 + h(�1,�2, ✓ )u2dt
(24)

The Hamiltonian H is given by:

H(z,u, �) = gu1 + hu2 + �1u1 + �2u2 + �3(pu1 + qu2) (25)

where � is the vector of costate variables with dynamics:

�̇ = �@H
@z

=
" �g�1u1 � h�1u2 � �3(p�1u1 + q�1u2)

�g�2u1 � h�2u2 � �3(p�2u1 + q�2u2)
�g✓u1 � h✓u2

#
(26)

with subscripts denoting partial derivatives, for example: g�1 =
@g
@�1

. The Hamiltonian is linear in u1, u2, and the control inputs do
not appear in the derivative:

Hu = @H
@u

=


g + �1 + �3p
h + �2 + �3q

�
(27)

Since we may have Hu = 0 for a finite time period, the opti-
mal control following a singular arc may be found by requiring
that the time derivatives Ḣu and Ḧu vanish as well. Substituting
(23) and (26) into the derivative of (27) we have the first-order
derivative as:

Ḣu =


u2
�u1

�  (z,�)z }| {
(g�2 � h�1 + g✓q � h✓p + �3p�1 � �3q�1 ) (28)

Dismissing the trivial solution of zero control input, the require-
ment of Ḧu = 0 reduces to the scalar equation d

dt (z, �) = 0,
which leads to an equation in the form:

A(�, ✓ , �3)u1 + B(�, ✓ , �3)u2 = 0 (29)

The last equations gives the angle of the local tangent to the gait’s
curve d�2

d�1
. Due to the time invariance property of the motion,

Eq. (13), one only needs this tangent in order to construct the
geometric shape of the optimal gait trajectory �(s). Therefore,
we arbitrarily choose time-scaling u2

1 + u2
2 = 1 and write the

controls as u1 = B/
p
A2 + B2, u2 = �A/

p
A2 + B2. The final time

tf is unspecified. Due to the symmetries of our system (Gutman
& Or, 2016), we may restrict our analysis to one quarter of the
gait (from �1 = �2 to �1 = ��2) and invoke symmetry. The
total displacement will be four times the displacement over the
quarter gait. Because the rotation angle is known only at the
initial time ✓ (0) = 0 and ✓ (tf ) is unknown, using transversality
conditions (Bryson & Ho, 1975) we have �3(tf ) = 0. We also have
the boundary conditions on the shape variables �1(0) = �2(0),
�1(tf ) = ��2(tf ). The costate variables �1, �2 do not appear in
the solution (29) and we do not need to solve for them. Using
the relation Ḣu = 0 we can find �3(0) as a function of the
state variables. We are left with a system of four ODEs for the
variables (�1,�2, ✓ , �3) where all but �1 are known at the initial
time t = 0. Using the shooting method we can find �1(0) that
results in �3(tf ) = 0 with the relation �1(tf ) = ��2(tf ) defining
the final time.

Solution with bounded joint angle
Assume a practical bound on the joint angles |�i|  b. Over

a finite time interval with a non-zero control input, only the
bound on one joint angle can be active, while the other joint
angle is varying. Using the symmetry properties of the swimmer,
we only consider one quadrant of the gait where only one joint
may reach the bound. Therefore, it is sufficient to consider only a
single, scalar state bound of the form (19). For our demonstration,
we will assume, without loss of generality, that the only bound
is �2  b. We define

w(z, t) = �2 � b  0 (30)

Assuming �2(0) < b, the optimal gait starts on the singular arc
and the control is found from (29). On the bound �2 = b we have
ẇ = u2 = 0 which leads to u1 = ±1. The entry to the bound ⌧1
is the time when the singular arc reaches the bound �2 = b. We
determine the exit time ⌧2 using the shooting method to satisfy
the end condition �2(tf ) = �1(tf ). This means that we must solve
for �1, �2 as well and ascertain the discontinuities at the entry
and exit times. As stated earlier, the discontinuity of the control
inputs at the entry and exit point implies continuity of the costate
variables and the Hamiltonian. The transversality conditions lead
to �1(0) = ��2(0) and �1(tf ) = �2(tf ). We can find �1(0) from
Hu(0) = E0.

3.3. Maximum-displacement gaits for three-link swimmers

We now present the solutions of the maximum displacement-
per-cycle control problem for the three-link swimmer models

5
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Fig. 4. Maximal displacement per cycle gait (purple) and second optimal gait
with bounds of �i  3.6 [rad] (red) and �i  3.1 [rad] (blue) for Purcell’s
swimmer. The dashed lines are the corresponding optimal circular gaits. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

presented above, and the influence of input bounds and swim-
mers’ parameters on existence and topology of optimal solutions.
The method presented in the previous section results in a set
of differential equations. These are solved using Matlab’s ode45
function. Event functions detect crossing the bounds or reaching
the final time at �1 = ��2. When a bound is reached, the
simulation continues along the bound until a exit time ⌧2. The
initial value �1(0) = �2(0) and the exit time ⌧2 are found using
fzero function to satisfy �1(tf ) = �2(tf ) and �3(tf ) = 0

Purcell’s swimmer
For Purcell’s three-link swimmer model, a gait for maximal

displacement was presented in Wiezel and Or (2016b) using
a polar representation of the shape variables. The optimal gait
(seen in purple in Fig. 4) is identical to that found numerically
in Tam and Hosoi (2007). Restricting to circular gaits, one can
see (Fig. 2) that there exists a second optimal amplitude, that
when followed in the same direction (counter-clockwise) will
give a net-displacement in the opposite direction with a greater
absolute value. Hence, it is reasonable to expect a second, general,
large amplitude, displacement-maximizing trajectory that would
result in translation in the opposite direction. Our attempts to
find a second displacement-maximizing gait for Purcell’s swim-
mer using PMP failed for the unbounded problem. Nevertheless,
when applying bounds of b = 3.2 [rad] to the problem, the gait
shown in red in Fig. 4 is found. Gaits for some smaller bounds are
also shown in Fig. 4. Curiously, this method fails to find a solution
for larger bounds. In Section 4 we attempt to use geometric
analysis to explain this failure and why the unbounded problem
does not have a solution.

Perfect fluid swimmer
The maximum-displacement-per-cycle gait for a perfect fluid

swimmer model with elliptical links having radii ratio of ↵ =
ai/bi = 0.2 and links’ length ratio ⌘ = 1/3 is presented
in Fig. 5(a). The gait is qualitatively similar to that found for
Purcell’s swimmer and can also be found by the polar formulation
in Wiezel and Or (2016b). Here too, we can expect to find a
second, large-angle gait that results in opposite displacement of
the swimmer, X < 0. However, for a swimmer with this specific
geometry, the unbounded OCP had no solution for such gait. Once
again, when imposing bounds on the joint angles, a gait with
X < 0 is found for the perfect fluid swimmer as well. Fig. 5(a)
shows the second displacement-maximizing gait with joint angle
bounds of |�i|  3.2. Unlike Purcell’s swimmer, for the perfect
fluid model we found certain parameter values that would yield
a second displacement-maximizing solution without imposing

Fig. 5. Maximal displacement gaits for perfect fluid swimmer with (a) ⌘ =
1/3 (red curve achieved only with bounded joints) and (b) ⌘ = 1/2. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

bounds. By changing the link length ratio to ⌘ = 1/2, a second
solution emerged to the unbounded problem, that corresponds
to a second gait. Both gaits for the swimmer with ⌘ = 1/2 are
shown in Fig. 5(b).

Applying PMP reveals maximal displacement gaits for the
swimmer models. However, sometimes it fails to find an optimal
solution, unless appropriate bounds on joint angles are incorpo-
rated, which enable finding optimal gait trajectories containing
pieces along the bounds. In order to get a better understand-
ing of the influence of joint angle bounds on the existence
of displacement-maximizing gaits, in the following section we
re-examine the kinematic swimmer models using a geometric
approach.

4. Geometric analysis of gaits

In order to have better insight into the behavior of the kine-
matic models and understand the changes in the optimal gaits,
we now review a geometric approach to the analysis of such
swimmers (Hatton & Choset, 2010). This approach uses a gener-
alization of Stokes’ theorem to capture the relationship between
the geometry of a gait’s trajectory through shape space and
the displacement it produces. For the purposes of this paper,
a key result of the geometric approach is that the maximum-
displacement-per-cycle gaits described in the previous section
approximately follow the zero-contour of the curvature (aug-
mented curl) of the local connection, such that the shape of the
zero contour can be used to predict the existence and form of the
maximum-displacement-per-cycle gaits.

4.1. Using Stokes’ theorem for measuring net displacement

As a preliminary to discussing the geometric locomotion for-
mulation, we first give a brief review of Stokes’ theorem. Let S be
an oriented smooth surface that is bounded by a simple, closed,
smooth boundary curve � with positive orientation. Also, let F be
a vector field. Stokes’ theorem states that the line integral along
the closed curve � on the vector field F is equal to the integral of
the curl of that vector field over a surface bounded by the curve,‰
�
F · dr =

¨
S
curl F · dS (31)

Intuitively, curl Fmeasures howmuch F changes ‘‘across’’ the gait,
such that the contribution from flowing along one side of the gait
is not undone by flowing back along the opposite side of the gait.

6
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Fig. 6. The height function plot for Purcell’s swimmer. Positive regions are in
shades of blue and negative regions in shades of yellow. The zero level curve is
the dashed black line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Next, we show how the same logic as underlies Stokes’ the-
orem can be applied in order to approximate the net displace-
ment of the swimmer. The dynamic equations of motion for the
three-link swimmers, as given in (2), are

q̇ = G (�, ✓) �̇ = R(✓ )A (�) �̇ (32)

The net displacement of the swimmer over a period is equal to
the line integral over the gait,

�q =
‰
�
R(✓ )A (�) (33)

This line integral can be approximately converted to a surface
integral in a manner similar to Stokes’ theorem by evaluating the
curvature of the local connection over the surface �a as in Ra-
masamy and Hatton (2016), giving the ‘‘corrected Body Velocity
Integral’’ (cBVI)

�q ⇡ exp
¨
�a

DA = exp
¨
�a

dA � [A1,A2] (34)

Here, dA is the exterior derivative of the local connection (the
generalized row-wise curl), and [A1,A2] is a local Lie bracket term
that corrects for noncommutativity as the swimmer translates
and rotates through space (e.g. if the system rotates counter-
clockwise before moving forward and/or clockwise before moving
backward, then the influence of the R(✓ ) term means that the
‘‘forward’’ and ‘‘backward’’ motions will be tilted slightly ‘‘left-
ward’’.) This bias is captured to first order by the Lie bracket,
which evaluates for planar translation and rotation as

[A1,A2] =

2

4
Ay
1A

✓
2 � Ay

2A
✓
1

Ax
2A

✓
1 � Ax

1A
✓
2

0

3

5 (35)

The exp operator in (34) converts the cBVI from an ‘‘average
body velocity’’ to a displacement by flowing with the cBVI as
body velocity for unit time. If the rotational component of the
cBVI is zero, the components of exp cBVI are the same as those
of the cBVI; if the rotational component is non-zero, then the
exponential flow is curved commensurately, approximating the
net rotation as having been evenly distributed along the system’s
motion.

4.2. Height functions and displacement-per-cycle maximizing gaits

Using the generalized Stokes’ theorem, we have a good ap-
proximation of the net displacement of the swimmer over a gait.

By plotting the x-integrand in (34) as a height function Hx (�) =
DAx(�), we can identify sign-definite areas of the shape plane. A
positive area that is encircled by the gait (in a counter-clockwise
direction) will result in positive net displacement of the swimmer
in the x direction. In Fig. 6 a contour plot of the height function
for the three-link swimmer is presented. In order to maximize the
displacement of the swimmer, the gait should enclose a region of
the height function that is as sign-definite as possible. Obviously,
this will be accomplished by following the zero level curve that
separates the positive and negative regions. The zero level curve
for the symmetric three-link swimmer, represented in Fig. 6 by
a dashed closed curve, is functionally identical to the optimal
gait found using PMP in Wiezel and Or (2016b) and numerically
in Tam and Hosoi (2007).

4.3. Minimum perturbation body frames

Note that our geometric approach involves two approxima-
tions for handling the noncommutativity induced by the R(✓ )
term: the Lie bracket that makes a first-order approximation of
the results of mixing intermediate translation and rotation within
a cycle by identifying whether forward/backward motion was
on-average preceded by clockwise/counterclockwise motion; and
the exponential map that takes the net rotation over a cycle as
having been evenly distributed over the course of the motion.
If these approximations are not accurate, then the approximated
net displacement will have some residual error.

A core finding from our prior work (Bass, Ramasamy, & Hatton,
2022; Hatton & Choset, 2011, 2015) is that the choice of body
frame coordinates affects the magnitude of this residual error,
and in particular that the error correlates to the norm of the local
connection A. For example, body frames attached to outer links
have large A values and so experience large motions in response
to shape changes. These motions accrue considerable error, both
because they rotate outside of the sin(✓ ) ⇡ ✓ linear approxima-
tion for rotation and because they have significant translations
while in these heavily-rotated configurations. Conversely, frames
such as those attached to the center of mass and oriented to align
with the mean of the link angles have small A values, and this
experience small motions that stay within the valid domains of
the approximations. (Note that the ‘‘large’’ and small’’ motions
under mentioned here are the intermediate motions; the net rigid
body motion is independent of the choice of body frame.)

For the examples in this paper, we placed the body frame at
a location q̄b = (x̄, ȳ, ✓̄ ) found through our algorithm in Hatton
and Choset (2011, 2015), which identifies a weighted average of
the link positions and orientations that variationally minimizes
the average norm of A over the region of the shape space under
consideration.

5. Explaining changes in optimal gaits using geometric analy-
sis

After reviewing the geometric method for gait analysis, we can
now revisit the cases where optimal gaits derived by PMP anal-
ysis depend on varying the swimmer’s parameters and/or state
bounds. By using the minimum perturbation coordinates and
plotting the height function for the models discussed here, we
get a better understanding of the way changes in the gait affect
the displacement. Moreover, we can see that topological changes
in the zero-level curves induce formation of junction points for
which the variational equations underlying PMP method become
singular.
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5.1. ‘‘Reverse optimum’’ for Purcell’s swimmer

First, we revisit the case of the symmetric three-link swimmer
and show a contour plot of the height function Hx under the
minimum-perturbation coordinates. Fig. 7(a) shows the height
function for the perfect fluid swimmer at larger amplitudes of up
to 6 [rad]. In this plot, an additional zero level curve can be seen
in amplitudes of around 3 [rad]. The junctions, which can clearly
be seen on the curve, explain the failure of the PMP method to
find an optimal gait. These junctions mean that there is no unique
solution to the unbounded optimal control problem presented.

5.2. The perfect fluid swimmer

For the perfect fluid model we found two gaits with opposite
displacement directions for a link length ratio of ⌘ = 1/2, but
were unable to find a second, reverse direction, optimal gait for
a ratio of ⌘ = 1/3 without applying bounds to the joint angles.
Height functions for both cases are presented in Fig. 7. In Fig. 7(c),
showing the height function for ⌘ = 1/2, the two zero-level
curves can be seen in black dashed lines. These curves correspond
to the two optimal gaits found using PMP (Fig. 5(b)). For ⌘ =
1/3, the height function in Fig. 7(a) shows the first zero level
curve representing the optimal gait which was found using PMP
(Fig. 5(a)), while the second zero level curve has junctions, once
again explaining the failure of PMP to find the second optimal gait
for the unbounded problem.

Using the geometric method as presented here to plot the
height function for the displacement of a swimmer gives in-
sight on the optimal gait and offers an explanation for the cases
where the PMP method fails to find an optimal gait, as well as
topological changes in the optimal gaits.

6. Conclusion

In this paper we examined and compared different meth-
ods of finding displacement-maximizing gaits for two models of
3-link swimmers. We presented the two swimmer models: Pur-
cell’s three-link swimmer, and the ‘perfect fluid’ swimmer. We
formulated the optimal control problem for a general case of a
three link swimmer with two joint angle inputs. We presented
the solution using PMP and also considered the case where there
are bounds on the joint angles. In some cases, we found that
the PMP method fails to find the maximum displacement gait for
unbounded joint angles. We then reviewed the geometric analysis
approach to finding such gaits. Observing the results from this
method offered an explanation for the failures of PMP and to the
unexplained changes in the optimal gait. Junctions seen in the
zero level curve mean there is no unique solution to the optimal
control problem, which causes PMP to diverge. Adding bounds to
the problem allowed us to avoid these junctions. The geometric
method gives insight into the changes in the distance-optimal
gait due to changes in the swimmer model and parameters. We
now briefly discuss limitations of our work and sketch some
possible directions for future extensions of the research. First, the
methods used in this paper for displacement-maximizing gaits
can be applied to finding energy-optimal gaits as well (Ramasamy
& Hatton, 2019; Tam & Hosoi, 2007). Second, the work may be ex-
tended to time-dependent swimmer models, such as a swimmer
with elastic joints (Passov (Gutman) & Or, 2012) and a magnet-
ically actuated swimmer (Gutman & Or, 2014), (El Alaoui-Faris,
Pomet, Régnier, & Giraldi, 2020; Zoppello, De Simone, Alouges, &
Giraldi, 2018). Swimmers with multiple joints are another avenue
of research (Giraldi, Martinon, & Zoppello, 2013; Marchello,
Morandotti, Shum, & Zoppello, 2022; Ramasamy & Hatton, 2017).

Fig. 7. Height functions for ‘‘perfect fluid’’ swimmer with ↵ = 0.2 (a) ⌘ = 1/3.
Junctions can be seen in the larger zero level curves (dashed black lines). (b) The
corresponding PMP solutions. (c) ⌘ = 1/2. Two loops of zero level curves can be
seen, corresponding to the two optimal gaits found via PMP . (d) Corresponding
PMP solutions. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

In Alouges, DeSimone, Giraldi, Or, and Wiezel (2019) energy-
optimal gaits were found for an N-link swimmer assuming small
amplitudes of the joint angles. This could possibly be extended
to large amplitudes by applying PMP method. Finally, the results
found here can be applied to real robotic micro swimmers in
order to verify the validity of the results (El Alaoui-Faris et al.,
2020; Jang, Gutman, Stucki, Seitz, Wendel-García, Newton, Pokki,
Ergeneman, Pané, & Or others, 2015; Wu et al., 2021).

Acknowledgments

The authors wish to thank the anonymous reviewers for their
useful and important suggestions. YO also thanks Prof. Joseph
Ben-Asher from Technion for guidance and fruitful discussions.

References

Alouges, F., DeSimone, A., Giraldi, L., Or, Y., & Wiezel, O. (2019). Energy-optimal
strokes for multi-link microswimmers: Purcell’s loops and taylor’s waves
reconciled. New Journal of Physics, 21(4), Article 043050.

Bass, C., Ramasamy, S., & Hatton, R. L. (2022). Characterizing error in noncom-
mutative geometric gait analysis. In 2022 international conference on robotics
and automation (ICRA) (pp. 9845–9851). IEEE.

Batchelor, G. (1970). Slender-body theory for particles of arbitrary cross-section
in Stokes flow. Journal of Fluid Mechanics, 44(3), 419–440.

Becker, L. E., Koehler, S. A., & Stone, H. A. (2003). On self-propulsion of micro-
machines at low Reynolds number: Purcell’s three-link swimmer. Journal of
Fluid Mechanics, 490, 15–35.

Ben-Asher, J. Z. (2010). Optimal control theory with aerospace applications.
American institute of aeronautics and astronautics.

Ben-Asher, J. Z., & Rimon, E. D. (2021). Time optimal trajectories for a car-like
mobile robot. IEEE Transactions on Robotics.

Bloch, A. M. (2003). Nonholonomic mechanics. In Nonholonomic mechanics and
control (pp. 207–276). Springer.

8

http://refhub.elsevier.com/S0005-1098(23)00384-9/sb1
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb1
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb1
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb1
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb1
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb2
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb2
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb2
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb2
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb2
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb3
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb3
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb3
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb4
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb4
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb4
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb4
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb4
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb5
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb5
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb5
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb6
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb6
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb6
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb7
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb7
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb7


O. Wiezel, S. Ramasamy, N. Justus et al. Automatica 158 (2023) 111223

Bolt’yanskii, V. G. (1975). The method of tents in the theory of extremal
problems. Russian Mathematical Surveys, 30(3), 1.

Bonnard, B., & Sugny, D. (2012). Optimal control with applications in space and
quantum dynamics. American Institute of Mathematical Sciences.

Boscain, U., Sigalotti, M., & Sugny, D. (2021). Introduction to the pontryagin
maximum principle for quantum optimal control. PRX Quantum, 2(3), Article
030203.

Bryson, A. E., & Ho, Y. C. (1975). Applied optimal control: optimization, estimation,
and control. New York: Hemisphere.

Chang, S. S. (1961). Optimal control in bounded phase space. New York University,
College of Engineering, no. 1238.

Clarke, F. (2013). Functional analysis, calculus of variations and optimal control (p.
264). Springer.

Cohen, N., & Boyle, J. H. (2010). Swimming at low reynolds number: a beginners
guide to undulatory locomotion. Contemporary Physics, 51(2), 103–123. http:
//dx.doi.org/10.1080/00107510903268381, [Online]. Available.

Cots, O., Gergaud, J., & Goubinat, D. (2018). Direct and indirect methods in
optimal control with state constraints and the climbing trajectory of an
aircraft. Optimal Control Applications & Methods, 39(1), 281–301.

Cox, R. G. (1970). The motion of long slender bodies in a viscous fluid part 1,
general theory. Journal of Fluid Mechanics, 44, 791–810.

Dubovitskii, A. Y. (1978). The discrete principle of the maximum. Avtomatika i
Telemekhanika, (10), 55–71.

Dubovitskii, A. Y., & Milyutin, A. A. (1968). Necessary conditions for a weak
extremum in optimal control problems with mixed constraints of the
inequality type. USSR Computational Mathematics and Mathematical Physics,
8(4), 24–98.

El Alaoui-Faris, Y., Pomet, J.-B., Régnier, S., & Giraldi, L. (2020). Optimal actuation
of flagellar magnetic microswimmers. Physical Review E, 101(4), Article
042604.

Feng, Jian, & Cho, S. (2014). Mini and micro propulsion for medical swimmers.
Micromachines, 5(1), 97–113. http://dx.doi.org/10.3390/mi5010097, [Online].
Available.

Gao, W., Kagan, D., Pak, O. S., Clawson, C., Campuzano, S., Chuluun-Erdene, E.,
et al. (2012). Cargo-towing fuel-free magnetic nanoswimmers for targeted
drug delivery. Small, 8(3), 460–467.

Giraldi, L., Martinon, P., & Zoppello, M. (2013). Controllability and optimal strokes
for n-link microswimmer. In 52nd IEEE conference on decision and control (pp.
3870–3875). IEEE.

Gutman, E., & Or, Y. (2014). Simple model of a planar undulating magnetic
microswimmer. Physical Review E, 90(1), Article 013012.

Gutman, E., & Or, Y. (2016). Symmetries and gaits for Purcell’s three-link
microswimmer model. IEEE Transactions on Robotics, 32(1), 53–69.

Hand, L. N., & Finch, J. D. (1998). Analytical mechanics. Cambridge University
Press.

Happel, J., & Brenner, H. (1965). Low Reynolds number hydrodynamics.
Prentice-Hall.

Hartl, R. F., Sethi, S. P., & Vickson, R. G. (1995). A survey of the maximum
principles for optimal control problems with state constraints. SIAM Review,
37(2), 181–218. http://dx.doi.org/10.1137/1037043, [Online]. Available.

Hatton, R. L., & Choset, H. (2010). Optimizing coordinate choice for locomoting
systems. In 2010 IEEE international conference on robotics and automation (pp.
4493–4498). IEEE.

Hatton, R. L., & Choset, H. (2011). Geometric motion planning: The local connec-
tion, stokes’ theorem, and the importance of coordinate choice. International
Journal of Robotics Research, 30(8), 988–1014.

Hatton, R. L., & Choset, H. (2013). Geometric swimming at low and high reynolds
numbers. IEEE Transactions on Robotics, 29(3), 615–624.

Hatton, R., & Choset, H. (2015). Nonconservativity and noncommutativity in loco-
motion. The European Physical Journal Special Topics, 224(17–18), 3141–3174.
http://dx.doi.org/10.1140/epjst/e2015-50085-y, [Online]. Available.

Hatton, R. L., Dear, T., & Choset, H. (2017). Kinematic cartography and the
efficiency of viscous swimming. IEEE Transactions on Robotics, 33(3), 523–535.
http://dx.doi.org/10.1109/tro.2017.2653810, [Online]. Available.

Holtzman, J. (1966). Convexity and the maximum principle for discrete systems.
IEEE Transactions on Automatic Control, 11(1), 30–35.

Jang, B., Gutman, E., Stucki, N., Seitz, B. F., Wendel-García, P. D., Newton, T., et al.
(2015). Undulatory locomotion of magnetic multilink nanoswimmers. Nano
Letters, 15(7), 4829–4833.

Kadam, S., Phogat, K. S., Banavar, R. N., & Chatterjee, D. (2021). Exact iso-
holonomic motion of the planar purcell’s swimmer. IEEE Transactions on
Automatic Control, 67(1), 429–435.

Kanso, E., Marsden, J. E., Rowley, C. W., & Melli-Huber, J. B. (2005). Locomotion
of articulated bodies in a perfect fluid. Journal of Nonlinear Science, 15(4),
255–289.

Kelly, S. D., & Murray, R. M. (1995). Geometric phases and robotic locomotion.
Journal of Robotic Systems, 12(6), 417–431.

Kimia, B., Tannenbaum, A., & Zucker, S. (1994). On optimal control methods
in computer vision and image processing. In Geometry-driven diffusion in
computer vision (pp. 307–338). Springer.

Kobilarov, M. B., & Marsden, J. E. (2011). Discrete geometric optimal control on
lie groups. IEEE Transactions on Robotics, 27(4), 641–655.

Koiller, J., Ehlers, K., & Montgomery, R. (1996). Problems and progress in
microswimming. Journal of Nonlinear Science, 6(6), 507–541.

Kósa, G., Jakab, P., Hata, N., Jólesz, F., Neubach, Z., Shoham, M., et al. (2008).
Flagellar swimming for medical micro robots: theory, experiments and
application. In 2nd IEEE RAS & EMBS international conference on biomedical
robotics and biomechatronics (BioRob) (pp. 258–263). IEEE.

Lamb, H. (1993). Hydrodynamics. Cambridge University Press.
Lee, S., Kim, Y., Siegel, J. B., & Stefanopoulou, A. G. (2021). Optimal control for

fast acquisition of equilibrium voltage for li-ion batteries. Journal of Energy
Storage, 40, Article 102814.

Liberzon, D. (2011). Calculus of variations and optimal control theory: A
concise introduction. Princeton University Press, http://dx.doi.org/10.1515/
9781400842643, [Online]. Available.

Mall, K., & Taheri, E. (2020). Unified trigonometrization method for solving
optimal control problems in atmospheric flight mechanics. In AIAA scitech
2020 forum (p. 0022).

Marchello, R., Morandotti, M., Shum, H., & Zoppello, M. (2022). The N-link
swimmer in three dimensions: Controllability and optimality results. Acta
Applicandae Mathematicae, 178(1), 1–25.

Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R. L., et al. (2014).
Sidewinding with minimal slip: Snake and robot ascent of sandy slopes.
Science, 346(6206), 224–229, [Online]. Available: https://science.sciencemag.
org/content/346/6206/224.

Melli, J. B., Rowley, C. W., & Rufat, D. S. (2006). Motion planning for an articulated
body in a perfect planar fluid. SIAM Journal on Applied Dynamical Systems,
5(4), 650–669.

Mirats Tur, J. M., & Garthwaite, W. (2010). Robotic devices for water main in-
pipe inspection: A survey. Journal of Field Robotics, 27(4), 491–508, [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20347.

Morgansen, K. A., Triplett, B. I., & Klein, D. J. (2007). Geometric methods for
modeling and control of free-swimming fin-actuated underwater vehicles.
IEEE Transactions on Robotics, 23(6), 1184–1199.

Nguyen, B.-H., Vo-Duy, T., Antunes, C. H., & Trovão, J. P. F. (2021). Multi-objective
benchmark for energy management of dual-source electric vehicles: An
optimal control approach. Energy, 223, Article 119857.

Niknam, M. R., Kheiri, H., & Abdi Sobouhi, N. (2022). Optimal control of satellite
attitude and its stability based on quaternion parameters. Computational
Methods for Differential Equations, 10(1), 168–178.

Passov (Gutman), E., & Or, Y. (2012). Dynamics of Purcell’s three-link mi-
croswimmer with a passive elastic tail. The European Physical Journal E, 35(8),
1–9.

Phogat, K. S., Chatterjee, D., & Banavar, R. N. (2018). A discrete-time pontryagin
maximum principle on matrix lie groups. Automatica, 97, 376–391.

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC Press.
Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics,

45(1), 3–11.
Ramasamy, S., & Hatton, R. L. (2016). Soap-bubble optimization of gaits. In 2016

IEEE 55th conference on decision and control (CDC) (pp. 1056–1062). IEEE.
Ramasamy, S., & Hatton, R. L. (2017). Geometric gait optimization beyond two

dimensions. In 2017 American control conference (ACC) (pp. 642–648).
Ramasamy, S., & Hatton, R. L. (2019). The geometry of optimal gaits for

drag-dominated kinematic systems. IEEE Transactions on Robotics, 35(4),
1014–1033.

Ritzmann, J., Christon, A., Salazar, M., & Onder, C. (2019). Fuel-optimal power
split and gear selection strategies for a hybrid electric vehicle. SAE technical
paper, Tech. Rep..

Rosa, S., & Torres, D. F. (2018). Optimal control of a fractional order epidemic
model with application to human respiratory syncytial virus infection. Chaos,
Solitons & Fractals, 117, 142–149.

Saccon, A., Hauser, J., & Aguiar, A. P. (2013). Optimal control on lie groups: The
projection operator approach. IEEE Transactions on Automatic Control, 58(9),
2230–2245.

Serra, R., Yanez, C., & Frueh, C. (2021). Tracklet-to-orbit association for maneu-
vering space objects using optimal control theory. Acta Astronautica, 181,
271–281.

Shammas, E. A., Choset, H., & Rizzi, A. A. (2007). Geometric motion planning
analysis for two classes of underactuated mechanical systems. International
Journal of Robotics Research, 26(10), 1043–1073.

Sharp, J. A., Burrage, K., & Simpson, M. J. (2021). Implementation and acceleration
of optimal control for systems biology. Journal of the Royal Society Interface,
18(181), Article 20210241.

Speyer, J. L., & Bryson, A. E. (1968). Optimal programming problems with a
bounded state space. American Institute of Aeronautics and Astronautics, 6(8),
1488–1491. http://dx.doi.org/10.2514/3.4793, [Online]. Available.

9

http://refhub.elsevier.com/S0005-1098(23)00384-9/sb8
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb8
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb8
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb9
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb9
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb9
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb10
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb10
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb10
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb10
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb10
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb11
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb11
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb11
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb12
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb12
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb12
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb13
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb13
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb13
http://dx.doi.org/10.1080/00107510903268381
http://dx.doi.org/10.1080/00107510903268381
http://dx.doi.org/10.1080/00107510903268381
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb15
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb15
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb15
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb15
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb15
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb16
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb16
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb16
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb17
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb17
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb17
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb18
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb19
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb19
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb19
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb19
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb19
http://dx.doi.org/10.3390/mi5010097
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb21
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb21
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb21
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb21
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb21
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb22
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb22
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb22
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb22
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb22
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb23
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb23
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb23
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb24
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb24
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb24
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb25
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb25
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb25
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb26
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb26
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb26
http://dx.doi.org/10.1137/1037043
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb28
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb28
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb28
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb28
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb28
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb29
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb29
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb29
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb29
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb29
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb30
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb30
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb30
http://dx.doi.org/10.1140/epjst/e2015-50085-y
http://dx.doi.org/10.1109/tro.2017.2653810
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb33
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb33
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb33
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb34
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb34
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb34
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb34
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb34
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb35
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb35
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb35
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb35
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb35
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb36
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb36
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb36
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb36
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb36
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb37
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb37
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb37
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb38
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb38
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb38
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb38
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb38
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb39
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb39
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb39
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb40
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb40
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb40
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb41
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb42
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb43
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb43
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb43
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb43
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb43
http://dx.doi.org/10.1515/9781400842643
http://dx.doi.org/10.1515/9781400842643
http://dx.doi.org/10.1515/9781400842643
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb45
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb45
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb45
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb45
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb45
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb46
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb46
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb46
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb46
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb46
https://science.sciencemag.org/content/346/6206/224
https://science.sciencemag.org/content/346/6206/224
https://science.sciencemag.org/content/346/6206/224
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb48
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb48
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb48
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb48
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb48
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20347
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb50
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb50
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb50
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb50
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb50
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb51
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb51
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb51
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb51
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb51
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb52
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb52
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb52
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb52
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb52
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb53
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb53
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb53
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb53
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb53
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb54
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb54
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb54
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb55
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb56
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb56
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb56
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb57
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb57
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb57
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb58
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb58
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb58
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb59
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb59
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb59
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb59
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb59
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb60
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb60
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb60
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb60
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb60
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb61
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb61
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb61
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb61
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb61
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb62
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb62
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb62
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb62
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb62
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb63
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb63
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb63
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb63
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb63
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb64
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb64
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb64
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb64
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb64
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb65
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb65
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb65
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb65
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb65
http://dx.doi.org/10.2514/3.4793


O. Wiezel, S. Ramasamy, N. Justus et al. Automatica 158 (2023) 111223

Tam, D., & Hosoi, A. E. (2007). Optimal stroke patterns for Purcell’s three-link
swimmer. Physical Review Letters, 98(6), Article 068105.

Virozub, E., Wiezel, O., Wolf, A., & Or, Y. (2019). Planar multi-link swimmers:
Experiments and theoretical investigation using perfect fluid model. Robotica,
37(8), 1289–1301.

Wiezel, O., & Or, Y. (2016a). Optimization and small-amplitude analysis of
purcell’s three-link microswimmer model. Proceedings of the Royal Society
of London, Series A (Mathematical and Physical Sciences), 472(2192), Article
20160425.

Wiezel, O., & Or, Y. (2016b). Using optimal control to obtain maximum displace-
ment gait for Purcell’s three-link swimmer. In Decision and control (CDC),
2016 IEEE 55th conference on (pp. 4463–4468). IEEE.

Wu, J., Jang, B., Harduf, Y., Chapnik, Z., Avci, O. B., Chen, X., et al.
(2021). Helical klinotactic locomotion of two-link nanoswimmers with
dual-function drug-loaded soft polysaccharide hinges. Advanced Science, Ar-
ticle 2004458, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/advs.202004458.

Yona, T., & Or, Y. (2019). The wheeled three-link snake model: singularities
in nonholonomic constraints and stick–slip hybrid dynamics induced by
coulomb friction. Nonlinear Dynamics, 95(3), 2307–2324.

Zhou, Y., Chung, E., Bhaskar, A., & Cholette, M. E. (2019). A state-constrained
optimal control based trajectory planning strategy for cooperative freeway
mainline facilitating and on-ramp merging maneuvers under congested
traffic. Transportation Research Part C (Emerging Technologies), 109, 321–342.

Zoppello, M., De Simone, A., Alouges, F., & Giraldi, L. (2018). Modeling and
steering magneto-elastic micro-swimmers inspired by the motility of sperm
cells, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche.
Matematiche e Naturali, 96(s3), 12.

Oren Wiezel received the Bachelor of Engineering de-
gree from the Mechanical engineering department in
Ben-Gurion University of the Negev in 2013 and his
Ph.D. from the Technion Israel institute of Technology
in 2020. He is currently working at Foretellix as a
control algorithms engineer.

Suresh Ramasamy is a Senior Data Scientist at CVS
Health. He received his Ph.D. degree in Robotics from
Oregon State University, his M.S. degree in Mechanical
Engineering from Carnegie Mellon University, and his
B.Tech. degree in Mechanical Engineering from Indian
Institute of Technology—Gandhinagar.

Nathan Justus is a robotics Ph.D. candidate at Oregon
State University. He studies the geometry of gait-based
locomotion, specializing in swimming systems. He is
interested in work that builds towards point-to-point
autonomy for robots that use body shape changes to
locomote.

Yizhar Or is an Associate Professor of Mechanical
Engineering atthe Technion, Israel. He received his B.Sc.
(2001) and Ph.D. (2007, direct track) in Mechanical En-
gineering, Technion, following post-doctoral research of
Control and Dynamical Systems at California Institute
of Technology. Yizhar’s research interests are nonlin-
ear dynamics, mechanics and control of underactuated
robotic locomotion.

Ross L. Hatton is an Associate Professor of Robotics
and Mechanical Engineering at Oregon State University,
where he directs the Laboratory for Robotics and Ap-
plied Mechanics. He received Ph.D. and M.S. degrees in
Mechanical Engineering from Carnegie Mellon Univer-
sity, following an SB in the same from Massachusetts
Institute of Technology.

10

http://refhub.elsevier.com/S0005-1098(23)00384-9/sb67
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb67
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb67
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb68
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb68
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb68
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb68
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb68
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb69
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb70
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb70
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb70
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb70
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb70
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202004458
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202004458
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202004458
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb72
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb72
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb72
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb72
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb72
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb73
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74
http://refhub.elsevier.com/S0005-1098(23)00384-9/sb74

	Geometric analysis of gaits and optimal control for three-link kinematic swimmers
	Introduction
	Mathematical models of three-link kinematic swimmers
	Purcell's swimmer
	Perfect fluid swimmer

	Optimal control using PMP
	Formulation of OCP
	Singular arcs
	Bounded state

	OCP for three-link swimmer
	Solution with bounded joint angle

	Maximum-displacement gaits for three-link swimmers
	Purcell's swimmer
	Perfect fluid swimmer


	Geometric analysis of gaits
	Using Stokes' Theorem for Measuring Net Displacement
	Height Functions and Displacement-Per-Cycle Maximizing Gaits
	Minimum Perturbation Body Frames

	Explaining changes in optimal gaits using geometric analysis
	``Reverse optimum'' for Purcell's swimmer
	The perfect fluid swimmer

	Conclusion
	Acknowledgments
	References


