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ABSTRACT: Artificial enzymes such as nanozymes and DNAzymes are
economical and stable alternatives to natural enzymes. By coating Au nanoparticles
(AuNPs) with a DNA corona (AuNP@DNA), we amalgamated nanozymes and
DNAzymes into a new artificial enzyme with catalytic efficiency 5 times higher
than AuNP nanozymes, 10 times higher than other nanozymes, and significantly
greater than most of the DNAzymes on the same oxidation reaction. The AuNP@
DNA demonstrates excellent specificity as its reactivity on a reduction reaction
does not change with respect to pristine AuNP. Single-molecule fluorescence and
force spectroscopies and density functional theory (DFT) simulations indicate a
long-range oxidation reaction initiated by radical production on the AuNP surface,
followed by radical transport to the DNA corona, where the binding and turnover of substrates take place. The AuNP@DNA is
named coronazyme because of its natural enzyme mimicking capability through the well-orchestrated structures and synergetic
functions. By incorporating different nanocores and corona materials beyond DNAs, we anticipate that the coronazymes represent
generic enzyme mimics to carry out versatile reactions in harsh environments.

■ INTRODUCTION

Enzymes are natural catalysts with exceptional reactivity and
substrate selectivity. However, their applications are limited
since enzymes suffer from insufficient stability under operating
conditions, narrow substrate scope, and high costs. Over the
past decade, artificial enzymes such as nanozymes1−5 and
DNAzymes6−10 have been developed to overcome the
limitations of natural enzymes. While nanozymes usually
comprise stable and affordable metals or metal oxides as core
materials, DNAzymes employ versatile and programmable
DNA fragments as essential components to catalyze enzymatic
reactions. Chimera enzymes have been assembled using the
structures of nanozymes and DNAzymes.11,12 However, these
chimera assemblies only demonstrate incremental improve-
ment in catalytic functions without synergistically integrating
the core activities of respective artificial enzymes. Recently
biomolecules, e.g., DNA, have been coated on nanozymes to
enhance biocompatibility and control substrate accessibil-
ity,11,13,14 but they do not directly participate in catalytic
reactions.

In contrast, catalytic reactions are carried out by DNA
templates in DNAzymes, which are most promising among all
biomaterials because of their fully programmable structure and
versatile interactions with many ligands,8,9,11 including metals.
Similar to the well-known protein corona, the decoration of
DNA on nanoparticles readily forms a DNA corona.15−23 The
noncatalytic roles of the DNA corona24,25 during nanozyme
catalysis remain unclear since controversial observations exist
among DNA-based biohybrid nanozymes: some studies
suggest that DNAs inhibit the catalytic activities of parent

nanoparticles because of their hindrance to surface sites26,27

while others suggest that DNAs could enhance catalytic
reactivity by facilitating substrate adsorption.28,29

In this work, we discovered that a DNA corona decorating a
5 nm AuNP directly catalyzes an oxidation reaction per se
(Figure 1a and Supporting Information Section S3), an
unprecedented phenomenon that breaks the boundary
between DNAzymes and nanozymes. Despite being the most
stable element on the periodic table, gold surprisingly mimics a
wide range of natural enzymes such as oxidase, peroxidase,
catalase, and nuclease. Consequently, AuNPs were most
intensively investigated as a nanozyme material. Here, a
DNA hairpin consisting of two poly(adenosine) internal loops
in its stem was prepared, which could strongly bind to AuNPs
to form the DNA corona. To avoid the ubiquitous
heterogeneity in single particles, single-molecule spectrosco-
py30 was used to probe fluorogenic reactions occurring on the
AuNP@DNA. We detailed the reaction mechanism by
dissecting the two components, the DNA corona and AuNP
nanocore, using single-molecule kinetics. Due to the presence
of the DNA corona, the AuNP@DNA exhibited better
catalytic reactivity (kcatn, n is the number of reaction sites)
and superior reaction selectivity (KM, the Michaelis constant)
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compared to pristine 5 nm AuNPs or other nanozymes.
Furthermore, its efficiency (kcatn/KM) is higher than most of
the DNAzymes working on the same amplex red (AR)
substrate. Using DFT calculations and single-molecule force
spectroscopy, we revealed the role and function of the DNA
corona during coronazyme catalysis. Our results indicate that
an enzyme mimicking reactivity is initiated at the nanocore of
the AuNP@DNA while carried out remotely within the DNA
corona, hence the name coronazyme. Such a remote catalysis
mechanism is widely applicable for more efficient designs of
artificial enzymes by separately optimizing structures and
functions of the nanocores and corona phases.

■ EXPERIMENTAL SECTION

Synthesis of Poly(A)-Functionalized AuNPs. The sequences of
oligonucleotides are listed in Supporting Information Table S1. The
synthesis of a poly(A)-DNA template contained three major steps
(Supporting Information Section S3): (1) the synthesis of
oligonucleotides (ppd1.1−ppd1.5); (2) pairing up ppd1.2−ppd1.3
and ppd1.4−ppd1.5; and (3) ligation among ppd1.1, annealed
ppd1.2−ppd1.3, and annealed ppd1.4−ppd1.5.

The citrate-capped Au colloidal solution was mixed with poly(A)-
DNA in the 1:10 mole ratio. The mixture was kept at −80 °C for ∼15
min, during which a ligand exchange process occurred by replacing
citrate with adenine of the DNA. The mixture was then rapidly
thawed at room temperature to redistribute particles in the solution.
Ultraviolet−visible (UV−vis) spectra and transmission electron
microscopy (TEM) images of the as-prepared sample are shown in
Supporting Information Figures S2 and S3. The surface-bound DNA
corona prevents aggregation and well suspends the AuNP@DNA in
solution.
Ensemble Catalytic Reactions. Two fluorogenic reactions were

used in this work to determine the catalytic performances of
nanozymes. They are (1) the N-deacetylation of AR oxidation by
H2O2 to generate the high-fluorescence product resorufin (RF),
acetate, and water; and (2) the N-deoxygenation of resazurin (RZ)
reduction by NH2OH to generate RF and nitrite. Ensemble catalysis
was carried out to confirm the effective catalytic conversions on
AuNPs by measuring the fluorescence spectra and absorption of RF
(Supporting Information Section S4).
Single-Molecule Fluorescence Microscopy and Data Anal-

yses. Detailed procedures of single-molecule catalysis and data
analyses are provided in Supporting Information Sections S6 and S7.
Briefly, nanozymes were immobilized within a homemade micro-
fluidic chamber, which was assembled between a microscope slide and
a piece of coverslip. This chamber was connected to a syringe pump
for the continuous supply of reaction mixture (20 μL/min) and
placed under a TIR fluorescence microscope during the reaction
(Supporting Information Figure S10). Then, 0.1−1.8 μM AR and 60

mM H2O2 were dispersed in 50 mM pH 7.4 phosphate buffer for the
AR oxidation reaction, while 0.05−0.6 μM RZ and 1 mM NH2OH
were dispersed in 50 mM pH 7.4 phosphate buffer for the RZ
reduction reaction. A 532 nm continuous wave laser beam
(DragonLaser) of ∼8 mW was focused onto an area of ∼35 × 35
μm2 to excite the fluorescence of the product RF. The fluorescence
emission signals were collected using a 100× N.A. 1.49 oil immersion
objective (UAPON 100xOTIRF, Olympus) and filtered using a
longpass (Chroma, ET542lp) and a bandpass (Chroma ET575/50 m)
filter. The resulting signals were captured with an sCMOS camera
(Photometrics Prime 95B) through Olympus CellSens Dimension
software at a frame rate of 33 fps. The images were then analyzed
using ThunderSTORM,31,32 an ImageJ plugin program, in combina-
tion with a home-written Matlab program to localize the positions of
individual fluorescent product molecules (Supporting Information
Section S7.1 and Figure S11). AuNPs (40 nm) were visible because of
their photoluminescence signals (Supporting Information Figure
S14B), therefore an additional background subtraction step was
taken before further analysis.
Single-Molecule Mechanochemical Experiments and Data

Analysis. The DNA−AuNP and DNA−reaction substrate inter-
actions were investigated in a dual-trap laser-tweezer instrument,33 as
described in Supporting Information Section S5. The laser-tweezer
setup (Supporting Information Figure S8) contained a ligated 1558
bp dsDNA handle to the left and a 2391 bp dsDNA handle to the
right of the synthesized DNA hairpin. To evaluate the interaction
between poly(A)-DNA and AuNPs, the AuNP@DNA construct was
tethered between the two beads after bringing the DNA-conjugated
streptavidin-coated polystyrene bead close to the antidig antibody-
coated bead. To evaluate the interaction between poly(A)-DNA and
reaction substrates, the DNA construct was first tethered as described
above, and then, AR, RZ, or RF with desired concentrations was
supplied to the chamber. Tension on the DNA construct was
developed when the two optically trapped beads were moved apart by
steering one of the trapping lasers. Upon moving two beads apart, the
tethered DNA was stretched. The tension produced on the DNA−
AuNP/substrate conjugate was calculated based on the spring
constant of each trap and the displacement of the bead from the
center of the trap. The FX curves were recorded through a LabView
program (National Instruments, Austin, TX) at 1 kHz with a loading
rate of 5.5 pN/s (in the 10−30 pN force range), and data treatment
was performed using Matlab (The MathWorks) and Igor (Wave-
Metrics) programs.
Theoretical Calculations. The interactions between DNA and

substrate molecules were investigated using DFT calculations.
Calculation procedures are detailed in Supporting Information
Section S10. Briefly, all of the calculations were performed with the
Gaussian16 package at the B3LYP-D3BJ/6-31++G** level. Fre-
quency calculations were performed at the same theoretical level to
guarantee that all of the structures obtained were local minima (no

Figure 1. Single-molecule fluorogenic reaction on the AuNP@DNA coronazyme. (a) Schematic of the AuNP@DNA. A DNA hairpin binds to a 5
nm Au nanosphere through the two poly(adenosine) strands in the internal loop of its stem (see Supporting Information 3.1 for details). (b) N-
Deacetylation of AR generates a fluorescent product resorufin (RF, emission ∼ 583 nm), in a 50 mM pH 7.4 sodium phosphate buffer. (c) Scheme
of the single-molecule reactivity measurement. Nanozymes are immobilized on the surface with reactants constantly flowing over. A 532 nm laser is
configured in total internal reflection geometry to excite RFs generated on the nanozymes. An ultrasensitive sCMOS camera captures the emission
signals.
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imaginary frequencies) on the potential energy surfaces. An SMD
model described the solvation effects with the dielectric constant ε =
2.4. The visual illustration of the interactions between the substrate
and the bases was produced with the method of an independent
gradient model based on Hirshfeld partition (IGMH) implemented in
the Multiwfn 3.8 program package.

■ RESULTS AND DISCUSSION

Single-Molecule Peroxidase Kinetics of AuNP@DNA
Coronazymes. AuNPs are a peroxidase mimic. Hence, we
used AR, a well-known fluorogenic substrate for peroxidase, to
determine its catalytic performances (Figure 1b, inset, and
Supporting Information Section S4.1). In the presence of
H2O2 and a 5 nm AuNP, the nonfluorescent AR readily
converts to a highly fluorescent molecule RF with its emission
at ∼583 nm (Figure 1b). Single-molecule catalysis was carried
out inside a microfluidic chamber, in which nanozymes were
pre-immobilized (Figure 1c and Supporting Information
Section S6). The formation of the reaction product RF in a
50 mM sodium phosphate buffer (pH 7.4) at 25 °C was seen
as reoccurring fluorescence bursts at the same location because
RF was only generated on the surface of the nanozyme one at a
time. There were multiple nanozymes in the ∼35 × 35 μm2

field of view, so superlocalization imaging was performed to
ensure the correct assignment of RF molecules to their parent
nanozymes. Briefly, the centroids of each emission spot within
a frame were fitted to two-dimensional Gaussians to achieve
tens of nanometer resolution (Figure 2a). The nearest-
neighbor searching was performed across consecutive frames
to assign centroids of RF to different nanozymes (Supporting
Information Section S7.1). The waiting time, τ, between two
consecutive RF formations from the same nanozyme depicts a
single-reaction turnover time (Figure 2b). The statistical values

of many τ on the same nanozyme reflect the catalytic
properties of the nanozyme.

The average turnover rate ⟨τ⟩−1 (⟨⟩ denotes averaging) at
the 5 nm AuNP increases with increasing AR concentration
until its saturation point (Figure 2c, black). The [AR]-
dependent reactivity well matches with modified Michaelis−
Menten kinetics

= [ ] + [ ]k n S K S/( )1
cat M (1)

In which kcat is the rate constant for a single reactive site, n is
the number of reactive sites within one nanozyme, KM is the
Michaelis−Menten constant, and [S] is the substrate
concentration (Supporting Information Section S7.5). For
the 5 nm AuNP, kcatn and KM are 0.031 ± 0.001 s−1 and 0.21 ±
0.02 μM, respectively. The catalytic efficiency kcatn/KM equals
0.15 ± 0.01 s−1

μM−1, lower than that of natural peroxidase
HRP34 (∼2.84 s−1

μM−1). Surprisingly, adding the DNA
corona to the AuNP significantly enhanced the peroxidase
reactivity (Figure 2c, red; see Supporting Information and ref
23 for detailed preparation). The saturation reactivity for the
AuNP@DNA is higher than that of the original 5 nm AuNP.
By fitting the curve with eq 1, it is found that the kcatn and KM

are 0.0360 ± 0.0003 s−1 and 0.048 ± 0.002 μM, respectively. A
significant decrease of KM indicates that the AR interacts with
the AuNP@DNA much stronger than the 5 nm AuNP.
Moreover, the AuNP@DNA exhibited the similar activity
heterogeneity as its parent 5 nm AuNP35 (Supporting
Information Section S7.6). Overall, the catalytic efficiency
(kcatn/KM) has a 5 times increase to 0.75 ± 0.03 s−1

μM−1,
suggesting that the AuNP@DNA is a much more efficient
catalyst than its parent AuNP (Figure 2d). To the best of our
knowledge, this is one of the highest catalytic efficiencies
among all of the reported nanozymes for AR oxidation.

Figure 2. Single-molecule AR oxidation. (a) Localizing an RF molecule by fitting its emission signal to a two-dimensional Gaussian function. The
localization error is 6.5 nm. (b) Extraction of reaction waiting time τ for a single catalyst. Nanozymes are identified by grouping the RFs in
consecutive frames using the nearest-neighbor method. The dark time before the generation of a fresh RF is the waiting time τ for a single turnover.
(c) Dependence of the single-catalyst turnover rate ν on the AR concentration for the nanozyme-catalyzed reaction. [H2O2] = 60 mM. The error
bars depict standard errors of the mean. Each data point is an average of more than 80 nanozymes. (d) Comparison of the catalytic efficiency for
the 5 nm AuNP against the AuNP@DNA.
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Long-Range Oxidation of AR within the DNA Corona.

It is worth noting that the reactivity in a single AuNP@DNA
fluctuates over time instead of being steady (Supporting
Information Section S8). The fluctuating reactivity for a single
nanozyme is known as “dynamic disorders”,36−39 a process
hidden from conventional measurements. Interestingly, such
fluctuations are not random. A catalytic “memory effect” seen
as the autocorrelation decays for the waiting time τ series
reflects the underlying surface restructuring of the nanoparticle
during catalysis35,36 (Figure 3a). The product of the decay
constant and average turnover time provides the correlation
time for the nanozymes, which is related to the time scale for
the surface restructuring. This correlation time is dependent on
the reaction turnover for the 5 nm AuNP because of the
adsorbate−surface interactions:40 high substrate concentration
simultaneously results in rapid reaction turnover and faster
surface restructuring; hence, a linear dependence is seen
(Figure 3b, black). Strikingly, the turnover rate-dependent
surface restructuring no longer exists for the AuNP@DNA
(Figure 3b, red). The lack of turnover rate dependence
indicates that the adsorbate−surface interactions do not exist
in the AuNP@DNA. This constant reactivity fluctuation seen
in the AuNP@DNA is likely due to the conformational
dynamics of the surrounding DNA since the fluctuation rate

matches with the previously reported values for the conforma-
tional changes.41,42

Based on the constant fluctuation rate and the decreased KM

for the AuNP@DNA, we proposed a long-range reaction
mechanism that occurs within the DNA corona (Supporting
Information Section S7.3). The oxidation of AR starts with a
reversible homolytic O−O bond cleavage of H2O2 on AuNPs
to generate •OH radicals. These radicals oxidize the DNA
bases at their proximity, converting them into radical cations.
Subsequent charge (hole) transfer steps occur after the initial
base oxidation43−46 until the charge reaches the DNA-bound
AR. Lastly, AR converts to RF through two consecutive one-
electron transfer processes, reducing the DNA base to its
original state. To act as an effective catalyst, the AuNP serves
as the radical initiation center, while the DNA corona
functions as a radical transporter and a substrate binder that
can be distally located away from the AuNP core. Compared to
a natural enzyme such as HRP, the AuNP mimics the ferric
center, while the DNA corona mimics the surrounding peptide.
Unlike HRP, where only one ferric center and one reactive site
exist, the nanocore provides multiple sites to generate •OH
radicals, whereas the charge transfer within the DNA corona
converts multiple remote bases into reactive centers. There-
fore, the DNA and AuNP synergistically contribute to the
enhanced reactivity of the AuNP@DNA coronazyme.

Figure 3. Oxidation reaction occurs in the DNA corona phase. (a) Autocorrelation function Cτ(t) of the microscopic reaction time τ from a single
AuNP@DNA catalyzing the oxidation of 800 nM AR. The x-axis is a conversion from the turnover index to reaction time using the average
turnover time of each nanozyme and averaged over >80 nanozymes. Solid curves are single exponential fits with decay constants of 163 ± 25 and
269 ± 22 s for the 5 nm AuNP and AuNP@DNA, respectively. (b) Dependence of the reactivity fluctuation rates on the turnover rates of the 5 nm
AuNP and AuNP@DNA in AR oxidation. The y-axis is the inverse of the reactivity fluctuation correlation time obtained from Cτ(t). Solid lines are
linear fits reflecting the adsorbate−surface interactions. (c) AR (400 nM) oxidation by a 40 nm AuNP@DNA. The 40 nm AuNPs are visible
because of their photoluminescence signals. Red crosses are the centroids of generated RFs by fitting their emission signals with two-dimensional
Gaussian functions. (d) Intensity versus time trajectory for the single 40 nm AuNP@DNA marked by the arrow in panel (c). Fluorescence intensity
is integrated after subtracting the background emission signal from the 40 nm AuNP.
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Another direct evidence supporting the long-range catalysis
within the AuNP@DNA is the fluorescence quenching on a 40
nm AuNP. The 40 nm AuNP also has peroxidase reactivity by
catalyzing the AR oxidation. Although its reactivity is apparent
at the ensemble level, no fluorescence spot is seen at the single-
molecule level because fluorophore RFs are quenched at the
AuNP surface47−49 (Supporting Information Section S9).
Surrounding the 40 nm AuNP with the DNA corona, however,
restores the fluorescence emission of RFs (Figure 3c,d),
suggesting that the RF formation occurs within the DNA
corona rather than on the AuNP surface. The residence times
of RF on the 5 nm AuNP@DNA and 40 nm AuNP@DNA are
nearly the same (Figure S14), further supporting the direct

formation of RF within the DNA corona as it is known that RF
desorption from the Au surface is dependent on the size of
nanoparticles.50 Previously, to facilitate sensing or chemical
catalysis, complicated procedures have been designed to avoid
the fluorescence quenching on larger AuNP without much
success.51−54 The use of DNA corona provides a facile
approach to achieve this function.
Selectivity Enhancement within the DNA Corona.

The fact that AuNPs can catalyze various enzymatic reactions
indicates that a pristine AuNP lacks substrate specificity
because different substrate molecules can adsorb and be
activated on a AuNP surface. To determine the impact of the
DNA corona on reaction specificity, we performed a

Figure 4. DNA corona phase does not participate in the dehydrogenase-mimicking reaction. (a) Dependence of the single-catalyst turnover rate ν

on [RZ] for the nanozyme-catalyzed reaction in a 50 mM pH 7.4 sodium phosphate buffer at 25 °C. A total of 195 bare AuNPs and 167 DNA@
AuNPs were measured; [NH2OH] = 1 mM. Inset: chemical equation of the N-deoxygenation RZ reduction. (b) Dependence of the reactivity
fluctuation rates on the turnover rates of the 5 nm AuNP and AuNP@DNA in RZ reduction.

Figure 5. DFT calculation of the binding between DNA base pairs and reaction substrates (AR, RZ, and RF). Optimized structure and IGMH
(independent gradient model based on Hirshfeld partition) map for AR-CG, AR-AT, RZ-CG, RZ-AT, RF-CG, and RF-AT. The values shown are
binding energies in kcal/mol.
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dehydrogenase-mimicking reaction in comparison to the AR
oxidation. RZ, a nonfluorescent phenoxazine dye, is catalyti-
cally converted to the same RF in the presence of nanozymes
and NH2OH35,55 (Figure 4a inset). Using the same single-
molecule microscopy, we found that the [RZ]-dependent
reactivity also followed the Michaelis−Menten kinetics in a 50
mM sodium phosphate buffer (pH 7.4). kcatn and KM for the 5
nm AuNP are 0.047 ± 0.002 s−1 and 0.31 ± 0.02 μM,
respectively, giving a catalytic efficiency (kcatn/KM) at 0.15 ±
0.01 s−1

μM−1. As a nanozyme, the 5 nm pristine AuNP
exhibits almost identical catalytic efficiency in RZ reduction
and AR oxidation, thus lacking specificity. After adding the
DNA corona to the AuNP, the kcatn and KM become 0.019 ±
0.001 s−1 and 0.10 ± 0.01 μM, respectively, giving a catalytic
efficiency at 0.18 ± 0.02 s−1

μM−1. Unlike the AR oxidation, no
catalytic efficiency enhancement is seen, suggesting that the
DNA corona does not favor the RZ reduction.

Notably, the reactivity fluctuation analyses show a clear
dependence on the turnover rate during the RZ reduction
(Figure 4b). The surface restructuring rate for both the 5 nm
AuNP and AuNP@DNA increases linearly with an increasing
turnover rate. This result strongly suggests that the RZ
reduction only occurs on the AuNP surface. Since the DNA

corona does not directly participate in the reaction, its
presence blocks the available surface sites on the AuNP,
leading to decreased reactivity. Likewise, the lower surface
restructuring rate across the concentration range is due to the
surface passivation by the adsorbed DNA corona (Supporting
Information Section S7.4).
Origin of Reactivity and Selectivity Enhancement

within the DNA Corona. To investigate the interaction
mechanism between the DNA corona and substrate molecules,
we performed DFT calculations at the B3LYP-D3BJ level
(Supporting Information Section S10). Electrostatic potential
(ESP) calculation indicates that AR and RZ may interact with
all four bases (Supporting Information Figure S15). The
binding energies for AR on base pairs A−T, C−G, and the
gold binding bases A−A are −38.6, −46.1, and −31.0 kcal/
mol, respectively (Figures 5, S17, and S18), suggesting that AR
tends to strongly adsorb on the DNA corona. DFT calculation
indicates that the A−T base pair adopts a planar structure
under normal conditions. However, its planarity would
undergo a topographic change after AR binding (Supporting
Information Figure S19). The significant binding affinities of
AR to DNA bases justify our single-molecule observation in
which the 5 nm Au surface becomes less preferred by the AR

Figure 6. Determining the interactions between reaction substrates and the DNA corona using single-molecule force spectroscopy. (a) Schematic
of an optical-tweezer setup. The corona DNA connects to two DNA handles, which are tethered by 1064 nm laser-trapped beads through the
biotin/streptavidin links (see the Supporting Information and ref 23 for details). (b, c) Examples of FX curves for the AR and DNA hairpin
interactions. DNA unfolds as the tensile force accumulates (red traces) and refolds after the force is reduced (black traces). A hysteresis may exist
as the DNA-bound substrate delays the refolding (see blowup insets). Percentages of molecules that show hysteresis in FX curves for various
substrates interacting with the DNA construct with (d−g) poly(A) and (h−k) random sequences in internal loops. A total of 17 DNAs were
measured. Control means no substrate.
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molecules during catalysis. As a comparison, the RZ−DNA
corona interactions are substantial but noticeably weaker than
AR−DNA. The binding energies on base pairs A−T, C−G,
and A−A are −24.2, −35.4, and −17.7 kcal/mol, respectively
(Figures 5, S17, and S18). The relatively lower binding
energies for RZ justify the enhanced reaction selectivity of AR
over RZ: the DNA corona is more favorable toward the AR
adsorption, and the reaction occurs directly on DNA bases.
Hence, stronger binding is favorable for enriching the reactant
AR around reactive sites, resulting in enhanced oxidation
efficiency. On the contrary, the DNA corona acts as a physical
filter for RZ reduction, preventing the RZ substrate from
accessing the reactive sites. The product RF has binding
energies on base pairs A−T, C−G, and A−A at −25.8, −33.6,
and −21.2 kcal/mol, respectively. Therefore, a significant
binding energy loss exists for the AR → RF oxidation: the loss-
of-affinity principle facilitates the product displacement.56 No
significant binding energy change exists for the RZ reduction
to RF. Thus, the catalytic efficiency for the RZ reduction
remains the same in the presence of the DNA corona.

To confirm these substrate−DNA corona interactions, we
carried out single-molecule force spectroscopy using a dual-
trap optical-tweezer setup (Figure 6a).57 The DNA structure
unfolds when force is increased (Figure 6b,c, red), while it
refolds after the force is released (Figure 6b,c, black), giving a
reversible force−extension (FX) curve. The sudden change in
FX curves marks the unfolding of the DNA structure. Among
the 17 tested DNAs, 29% feature an apparent hysteresis after
the AR adsorption (Figure 6d). In comparison, without any
ligand (control, Figure 6g), hysteresis is insignificant (5%).
This hysteresis suggests that AR can bind to the DNA
structure, which delays the refolding of DNA. In another
comparison, neither RZ nor RF features the same hysteresis
(Figure 6e,f), suggesting that their binding affinities to DNAs
are weaker. To probe the location of the AR binding, we
randomized AuNP-binding single-stranded poly(adenosine) to
scrambled sequences, CAACATATCAACCTCAAGGAG and
GAATCACTCTAACTATACAAC. Hysteresis was again
observed only for AR (Figure 6c,h−k), suggesting that the
binding occurs at the duplex region of the DNA structure
(Figure 6a). These results aligned well with the DFT
calculation (Figure 5), which showed preferential binding of
the AR to DNA base pairs instead of unpaired bases.

■ CONCLUSIONS

Based on the experimental and simulation results, we discover
that the AuNP@DNA demonstrates much increased catalytic
efficiency and substrate specificity relative to pristine AuNPs.
Its efficiency (0.75 s−1

μM−1) is also higher than natural HRP
enzymes (average 0.28 s−1

μM−1), most DNAzymes (averaged
at 0.63 s−1

μM−1), and >10 times higher than nanozymes
(averaged at 0.06 s−1

μM−1, Supporting Information Table S3)
catalyzing the AR → RF reaction. The pivotal component in
the AuNP@DNA composite is the DNA corona, which serves
as the scaffold for catalytic transformation. A DNA corona
selectively filters substrates in the reaction mixture, offering
high binding affinities to desired molecules. Individual bases on
the DNA serve as reactive sites after the substrate binding,
while the DNA strand serves as the media to transport
radicals/charges generated remotely on the surface of a
nanocore. Moreover, the DNA corona features binding energy
loss after product formation, accelerating the reaction turn-
overs. Such orchestrated structure and synergistic function

closely mimic those of enzymes; therefore, we name this new
device a “coronazyme”. Unlike previous redox catalysis
(enzyme/nanozyme/DNAzyme) in which a cascade of redox
pairs is closely coupled at the reaction site, coronazyme
decouples the cascade by a long-range hole/charge transfer in
the corona phase. The separate locations relieve the require-
ment for a single reaction site with multiple functionalities.
This, therefore, facilitates modular evolvement of better
catalysts by adopting the best material for each function
instead of using a single material with multiple but subpar
properties. We envision that optimizing the morphology of the
nanoparticle core and the structure of the DNA corona will
further improve the performances of coronazymes.
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M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and
STORM data analysis and super-resolution imaging. Bioinformatics
2014, 30, 2389−2390.

(33) Mao, H.; Luchette, P. An integrated laser-tweezers instrument
for microanalysis of individual protein aggregates. Sens. Actuators, B
2008, 129, 764−771.

(34) Gorris, H. H.; Walt, D. R. Mechanistic Aspects of Horseradish
Peroxidase Elucidated through Single-Molecule Studies. J. Am. Chem.
Soc. 2009, 131, 6277−6282.

(35) Xu, W.; Kong, J. S.; Yeh, Y.-T. E.; Chen, P. Single-molecule
nanocatalysis reveals heterogeneous reaction pathways and catalytic
dynamics. Nat. Mater. 2008, 7, 992−996.

(36) Lu, H. P.; Xun, L.; Xie, X. S. Single-Molecule Enzymatic
Dynamics. Science 1998, 282, 1877−1882.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c12367
J. Am. Chem. Soc. 2023, 145, 5750−5758

5757

https://doi.org/10.1038/s41467-018-03903-8
https://doi.org/10.1038/s41467-018-03903-8
https://doi.org/10.1038/s41929-021-00609-x
https://doi.org/10.1038/s41929-021-00609-x
https://doi.org/10.1039/C8CS00457A
https://doi.org/10.1039/C8CS00457A
https://doi.org/10.1021/acs.chemrev.8b00672?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00672?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.9b00140?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.9b00140?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-021-04225-4
https://doi.org/10.1038/s41586-021-04225-4
https://doi.org/10.1002/ange.200800960
https://doi.org/10.1093/nar/gkw634
https://doi.org/10.1093/nar/gkw634
https://doi.org/10.1093/nar/gkw634
https://doi.org/10.1039/c2cc33390b
https://doi.org/10.1039/c2cc33390b
https://doi.org/10.1039/c2cc33390b
https://doi.org/10.1016/S1074-5521(98)90006-0
https://doi.org/10.1016/S1074-5521(98)90006-0
https://doi.org/10.1016/j.bios.2019.111578
https://doi.org/10.1016/j.bios.2019.111578
https://doi.org/10.1016/j.bios.2019.111578
https://doi.org/10.1007/s12274-022-4793-5
https://doi.org/10.1007/s12274-022-4793-5
https://doi.org/10.1007/s12274-022-4793-5?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s12274-016-1354-9
https://doi.org/10.1007/s12274-016-1354-9
https://doi.org/10.1021/acsami.8b16075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.8b16075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c13116?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c13116?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/382607a0
https://doi.org/10.1038/382607a0
https://doi.org/10.1038/382607a0
https://doi.org/10.1038/nmat2442
https://doi.org/10.1038/nmat2442
https://doi.org/10.1126/science.aad4925
https://doi.org/10.1126/science.aad4925
https://doi.org/10.1021/ar500081k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500081k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500081k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nsr/nwx134
https://doi.org/10.1093/nsr/nwx134
https://doi.org/10.1093/nsr/nwx134
https://doi.org/10.1021/ja003290s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja003290s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja003290s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp511448e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp511448e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp511448e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c02251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c02251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms10241
https://doi.org/10.1038/ncomms10241
https://doi.org/10.1021/acs.nanolett.9b02647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.9b02647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/ange.201105121
https://doi.org/10.1002/ange.201105121
https://doi.org/10.1002/smll.201001886
https://doi.org/10.1002/smll.201001886
https://doi.org/10.1002/smll.201001886
https://doi.org/10.1002/smll.201001886
https://doi.org/10.1021/acs.analchem.5b03926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b03926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C5NR04176G
https://doi.org/10.1039/C5NR04176G
https://doi.org/10.1126/science.1153529
https://doi.org/10.1126/science.1153529
https://doi.org/10.1126/science.1153529
https://doi.org/10.1093/bioinformatics/btu202
https://doi.org/10.1093/bioinformatics/btu202
https://doi.org/10.1016/j.snb.2007.09.052
https://doi.org/10.1016/j.snb.2007.09.052
https://doi.org/10.1021/ja9008858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9008858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nmat2319
https://doi.org/10.1038/nmat2319
https://doi.org/10.1038/nmat2319
https://doi.org/10.1126/science.282.5395.1877
https://doi.org/10.1126/science.282.5395.1877
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c12367?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(37) Min, W.; English, B. P.; Luo, G.; Cherayil, B. J.; Kou, S. C.; Xie,
X. S. Fluctuating Enzymes: Lessons from Single-Molecule Studies.
Acc. Chem. Res. 2005, 38, 923−931.

(38) Ye, R.; Mao, X.; Sun, X.; Chen, P. Analogy between Enzyme
and Nanoparticle Catalysis: A Single-Molecule Perspective. ACS
Catal. 2019, 9, 1985−1992.

(39) Roeffaers, M. B. J.; De Cremer, G.; Uji-i, H.; Muls, B.; Sels, B.
F.; Jacobs, P. A.; De Schryver, F. C.; De Vos, D. E.; Hofkens, J. Single-
molecule fluorescence spectroscopy in (bio)catalysis. Proc. Natl. Acad.
Sci. 2007, 104, 12603−12609.

(40) Imbihl, R.; Ertl, G. Oscillatory kinetics in heterogeneous
catalysis. Chem. Rev. 1995, 95, 697−733.

(41) Long, X.; Parks, J. W.; Bagshaw, C. R.; Stone, M. D. Mechanical
unfolding of human telomere G-quadruplex DNA probed by
integrated fluorescence and magnetic tweezers spectroscopy. Nucleic
Acids Res. 2013, 41, 2746−2755.

(42) Lee, M.; Kim, S. H.; Hong, S.-C. Minute negative superhelicity
is sufficient to induce the B-Z transition in the presence of low
tension. Proc. Natl. Acad. Sci. 2010, 107, 4985−4990.

(43) Genereux, J. C.; Barton, J. K. Mechanisms for DNA Charge
Transport. Chem. Rev. 2010, 110, 1642−1662.

(44) O’Neil, M. A.; Barton, J. K. DNA Charge Transport:
Conformationally Gated Hopping through Stacked Domains. J. Am.
Chem. Soc. 2004, 126, 11471−11483.

(45) Renaud, N.; Berlin, Y. A.; Lewis, F. D.; Ratner, M. A. Between
Superexchange and Hopping: An Intermediate Charge-Transfer
Mechanism in Poly(A)-Poly(T) DNA Hairpins. J. Am. Chem. Soc.
2013, 135, 3953−3963.

(46) Ratner, M. Electronic motion in DNA. Nature 1999, 397, 480−
481.

(47) Cannone, F.; Chirico, G.; Bizzarri, A. R.; Cannistraro, S.
Quenching and Blinking of Fluorescence of a Single Dye Molecule
Bound to Gold Nanoparticles. J. Phys. Chem. B 2006, 110, 16491−
16498.

(48) Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.;
Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.;
Möller, M.; Gittins, D. I. Fluorescence Quenching of Dye Molecules
near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys.
Rev. Lett. 2002, 89, No. 203002.

(49) Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldmann, J.; Muñoz
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