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Net loss of biomass predicted for tropical 
biomes in a changing climate

Maria del Rosario Uribe    1,2  , Michael T. Coe    3, Andrea D. A. Castanho    3, 
Marcia N. Macedo    3, Denis Valle    4 & Paulo M. Brando    1,2,5 

Tropical ecosystems store over half of the world’s aboveground live 
carbon as biomass, and water availability plays a key role in its distribution. 
Although precipitation and temperature are shifting across the tropics, 
their effect on biomass and carbon storage remains uncertain. Here we 
use empirical relationships between climate and aboveground biomass 
content to show that the contraction of humid regions, and expansion of 
those with intense dry periods, results in substantial carbon loss from the 
neotropics. Under a low emission scenario (Representative Concentration 
Pathway 4.5) this could cause a net reduction of aboveground live carbon of 
~14.4–23.9 PgC (6.8–12%) from 1950–2100. Under a high emissions scenario 
(Representative Concentration Pathway 8.5) net carbon losses could double 
across the tropics, to ~28.2–39.7 PgC (13.3–20.1%). The contraction of 
humid regions in South America accounts for ~40% of this change. Climate 
mitigation strategies could prevent half of the carbon losses and help 
maintain the natural tropical net carbon sink.

Tropical ecosystems span 54 million km2, storing over 50% of the world’s 
aboveground live carbon as biomass1–3. Precipitation and tempera-
ture are the underlying variables driving processes that directly and 
indirectly influence the amount of carbon assimilation and storage 
in tropical ecosystems. Under a stable climate, warm and wet climate 
zones house carbon-rich tropical forests, while more arid climate 
zones store lower amounts of carbon as biomass. Climate changes 
may disrupt these steady-state patterns, shifting the capacity of these 
ecosystems to assimilate and store carbon—and potentially releasing 
some of the ~193–229 Pg of aboveground carbon stored in the tropics 
to the atmosphere1,2. Even a partial release of this carbon would accel-
erate global warming.

How much carbon tropical biomes will store in the future remains 
an open question. With climate change, tropical biomes could either 
gain or lose carbon throughout this century4–11. Major uncertainties in 
current projections relate to how Earth System Models (ESMs) repre-
sent interactions among droughts, heat stress and CO2 fertilization in 
carbon-rich forested ecosystems5,6,8–10. For example, some ESMs lack 
the ability to mimic natural disturbances related to drought-, wind- and 

heat-related tree mortality12,13. Most ESMs are also overly sensitive to 
CO2 fertilization14,15, which minimizes modelled climate change effects 
on forest carbon dynamics. Empirical relationships between vegeta-
tion structure and climate can thus provide valuable insights into the 
potential effects of climate change on the distribution of tropical 
biomes and their future carbon storage capacity.

Empirical models capture the equilibrium outcome of complex 
interactions and processes lacking in most ESMs. Recent studies have 
applied the empirical relationships between precipitation and cur-
rent biome distributions to model climate-induced shifts in humid 
tropical forests during the coming century both in the Amazon16 and 
globally17. Other studies have used the relationship between precipita-
tion, potential evapotranspiration and biome distribution to predict a 
substantial expansion of drylands this century18, as well as decreases 
in aboveground biomass (AGB) in seasonally dry tropical forests19.

In this study, we use empirical climate relationships and AGB data 
(Baccini et al.2, Xu et al.3 and Santoro and Cartus20) to quantify the scale 
of potential changes in tropical AGB and carbon that can be expected 
under climate change, following the 4.5 and 8.5 Representative 
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Fig. 1 | Distribution of climatic zones in the tropics for historic and future 30-
year time periods (1950–1979, 1980–2009, 2010–2039, 2040–2069 and 2070–
2099) under RCP 4.5. Colours represent the climatic zones. Contour lines in the 
maps and grey dashed lines in the scatterplots are plotted for reference to show 

the distribution and limits of the climatic zones in the period 1950–1979. Climate 
data from CRU v.4.04 (ref. 45) for 1950–2009 and from CMIP5 projections46,47 for 
2010–2099 under RCP 4.5.
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Concentration Pathways (RCPs). We address the following questions: 
(1) What are the relationships between current climatic zones (from 
hyperarid to humid) and biomass across the entire tropics? (2) What 
are the predicted changes in distribution of these climatic zones dur-
ing the twenty-first century? (3) What are the expected changes in 
biomass and carbon stocks associated with those projected changes? 
Our assumption is that AGB is currently at equilibrium with climate16,17 
and that vegetation will equilibrate to match projected climate changes 
at some time in the future. Based on this approach, we can estimate 
how much carbon may be gained or lost by the end of this century 
throughout the tropics. We used two different methods to estimate AGB 
changes: the first is a discrete model based on average biomass in each 
climate zone and the second is a continuous model based on quantile 
regression forests (Methods). For simplicity, our results focus on the 
discrete model, using RCP 4.5 as our current pathway, while comment-
ing briefly on the quantile regression forests and RCP 8.5 predictions. 
For complete results, refer to Extended Data Figs. 1–4.

Climate change and climatic zones in the tropics
We categorized climatic zones based on their location in the climate 
space, defined by average annual precipitation and the maximum cli-
matological water deficit (MCWD)—a measure of how temperature and 
precipitation influence the intensity of the dry season or dry periods 
(Methods) (Fig. 1 (lower panel) and Supplementary Table 2). From 
1980–2009, about one third (~34.1%) of the tropics was characterized 
by a humid climate, where tropical forests are common (Supplementary 
Table 3). Almost half (~45.3%) of the tropics was in the humid seasonal, 
dry subhumid and semiarid climate zones, where seasonally dry tropical 
forests, savannas and grasslands dominate. Arid and hyperarid zones 
covered the remaining ~20.5%, occupied mostly by deserts and sea-
sonal grasslands.

Climate model results point to an ongoing shift in the climate 
space of the tropics, primarily driven by increased MCWD (Figs. 1 and 
2 and Extended Data Figs. 1 and 2), with all climate models projecting 
more intense dry periods in both scenarios RCP 4.5 (Fig. 2) and RCP 8.5 
(Extended Data Fig. 2 and Supplementary Fig. 1). The increase in MCWD 
is more severe in arid lands compared with wetter climatic zones. In 
contrast, projected changes in precipitation are more variable across 

models and climatic zones. For instance, more than one-third of the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) climate 
models predict less precipitation in the wettest tropical regions (that 
is, humid zone with mean annual precipitation (MAP) above 1,700 mm, 
or humidMAP > 1700), but most predict increased precipitation for all other 
climatic zones. Regionally, decreases in precipitation are concentrated 
in the Americas, while increases are more widespread in Africa, Asia and 
Oceania (Supplementary Fig. 2). Overall, the magnitude of changes in 
precipitation (that is, the length of the arrows in Fig. 2) is lower com-
pared to MCWD, regardless of the direction of change.

The drier and hotter climate in the tropics results in an overall 
loss of humid climate zones and associated gains in arid zones (Fig. 3). 
Our results suggest that historical climatic changes (1950–2009) have 
already favoured a slight expansion of hyperarid, arid and semiarid 
areas (1.5%) over the dry subhumid and three humid climate zones  
(Fig. 3 and Supplementary Table 4).

As climate changes further, humid climate zones (humidMAP > 1,700, 
humidMAP < 1,700 and humid seasonal) are projected to shrink from 48.9% 
(1950–1979) to 46.1% (2040–2069) and 45.7% (2070–2099) of the trop-
ics. From 1950–2099, the humidMAP > 1,700 and humidMAP < 1,700 zones could 
decline by 1.1 and 2.8% respectively, while humid seasonal areas could 
expand by 0.6%. A 4.2% reduction in the Americas accounts for most 
of the projected decline in the humidMAP > 1,700 (typically occupied by 
rainforests), in contrast to a projected 0.6% expansion in tropical Africa.

The net changes in area of each climate zone are relatively small 
compared with the many shifts in their distribution during the study 
period. On average, 19.6% of the tropics shifted its climate zone at 
some point between 1950–1979 and 2070–2099 (Fig. 3 and Table 1). 
For instance, the humidMAP < 1,700 has a predicted net change in area 
of 2.8% from 1950–2100, but about 42.4% of its historic (1950–1979) 
area will change climate zones at least once by 2100. For the humid 
seasonal and dry subhumid zones, ~34% of the area will change. Even 
in climatic zones with fewer shifts, we find that ~10% of the region will 
change to a different climatic zone by the end of the century. Moreo-
ver, about 6.9% of the tropics will experience more than one shift in 
equilibrium climate from 1950–2100, mostly in the humid seasonal 
and humidMAP > 1,700 climate zones. Thus, relatively small net changes 
in area (1950–2100) may mask complex dynamics, including where 
large swaths of a given climatic zone are projected to transition to or 
from other climatic zones by 2100. Most of these transitions are likely 
to favour drier climatic zones (Table 1).

Changes in aboveground biomass and carbon
Given that the climate space determines much of the AGB distribution 
(that is, higher rainfall and MCWD are associated with higher biomass) 
(Fig. 4a), changes in the climate space may lead to changes in the equi-
librium biomass (Fig. 4b). Climatic conditions over the past 50 years 
point to a total decrease in equilibrium biomass of −3.09 ± 2.62 PgC, 
representing ~1.5% of total carbon in 1950 (Fig. 4b and Supplementary 
Table 5). These small changes in biomass and carbon are due mainly 
to losses in arid and semiarid zones that shifted to drier climates. 
Most potential carbon losses from 1950–2009 were concentrated in  
Africa (Fig. 5).

According to our discrete model, future changes in climate under 
RCP 4.5 will probably force additional transitions from higher to lower 
biomass climate zones. We find an expected net reduction in equilib-
rium AGB carbon of about −14.38 ± 2.38 PgC, representing a −6.8 ± 1.1% 
loss compared to 1950 (−0.1 PgC yr−1). Using a quantile regression for-
est (QRF) modelling approach, we found similar spatial and temporal 
patterns but higher absolute losses (Supplementary Tables 7 and 8). 
For instance, from 1950–2100 the QRF approach projected C losses 
of −23.88 ± 2.35 PgC (Extended Data Fig. 3b). These higher projected 
losses were mainly attributed to regions (pixels) that moved to a lower 
equilibrium biomass but stayed within the same climatic zone. In our 
discrete approach, these regions were projected to maintain the same 
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Fig. 2 | Individual model projections of precipitation and MCWD under RCP 
4.5. Dots represent each model’s mean historic (1950–1979) climate for each 
climatic zone. Connected arrowheads represent average climate at the end of 
the century (2070–2099). The black shapes correspond to the average climate 
from all models. Models used are listed in Supplementary Table 1. Climate data 
for 1950–2009 are from CRU v.4.04 (ref. 45). Data for 2010–2099 are from CMIP5 
projections46,47 under RCP 4.5.
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equilibrium biomass. The expected changes (losses and gains) in area 
for the different climatic zones are fairly constant between 1950 and 
2100, with no abrupt changes in the rate of net carbon losses.

By 2100, the largest potential AGB and carbon losses are likely to 
occur with the contraction of humid climates, where carbon-dense 
evergreen and drought deciduous forests store ~157.02 PgC 
(155.55−158.39 PgC)—the largest fraction (74%) of the carbon pool in 
the tropics. These humid climatic zones would lose more carbon than 
any other zone (−8.44 and −10.58 PgC in humidMAP > 1,700 and humidMAP < 1,700, 
respectively). The largest carbon increases are in semiarid and humid 
seasonal regions (+1.03 and +2.53 PgC, respectively). However, these 
increases are too small to offset the much larger expected losses of 
equilibrium AGB and carbon from more humid climatic zones. With the 
QRF model, losses from the humidMAP > 1,700 and humidMAP < 1,700 climatic 
zones are around −15.15 and −9.1 PgC, respectively.

Shifts in the tropical average distribution of climatic zones mask 
important changes in biomass within specific tropical regions. For 
instance, projected net biomass changes in the humidMAP > 1,700 reflect 
losses in the Americas and Asia (−8.36 and −1.04 PgC, respectively) 
being compensated by gains in Africa (+1 PgC). In fact, total equilibrium 
carbon losses for the Americas could be as high as −10.5 PgC by the end 
of the century, while losses in Africa and Asia are smaller (−2.07 and 
−1.74 PgC, respectively). Potential carbon gains are concentrated in the 
humid seasonal zone in Asia and the Americas, and in the humidMAP > 1,700 
in Africa. Regional patterns of C changes were similar between our 
two methods (that is, the discrete method and the QRF), but our QRF 
approach shows higher C losses in all regions.

The variation in climate predictions in the models drives some 
uncertainty in changes in equilibrium biomass. Under the RCP 8.5 
scenario, the equilibrium carbon losses nearly double compared to 
those of RCP 4.5, corresponding to losses of about −28.24 ± 2.24 PgC, 
or −13.3 ± 1.1% of pantropical C in 1950 (−0.19 PgC yr−1) (Supplementary 
Table 6 and Extended Data Figs. 3c and 4). In the QRF model, carbon 
losses under RCP 8.5 reach −39.71 ± 2.23 PgC, or −20.1 ± 1.3% of pan-
tropical C in 1950 (−0.26 PgC yr−1) (Extended Data Fig. 4d). Changes 

in carbon (by region and climate zone) are similar to those observed 
in the RCP 4.5 scenario, but of greater magnitude. The largest carbon 
losses are in the humidMAP > 1,700 and humidMAP < 1,700 climate zones in the 
Americas, which together lose −20.81 ± 1.4 PgC or −25.9 ± 1.5 PgC (based 
on the QRF results).

Discussion
Our results show that climate change is driving a large part of the trop-
ics out of its historical biomass equilibrium, primarily by increasing 
dry-season severity. Regions with a humid climate and high AGB con-
centrations today will likely experience more severe dry seasons by 
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from CMIP5 projections46,47 under RCP 4.5.

Table 1 | Changes in climatic zones over the study period 
(baseline 1950–1979)

Climatic zone Changed 
area (%)

Unchanged 
area (%)

Change to 
a more arid 
zone (%)

Change to a 
more humid 
zone (%)

(1) Hyperarid 4.9 95.1 – 3.4

(2) Arid 15.1 84.9 3.7 3.0

(3) Semiarid 11.2 88.8 4.6 1.7

(4) Dry subhumid 34.0 66.0 24.7 1.7

(5) Humid 
seasonal

34.3 65.7 23.8 1.5

(6) HumidMAP < 1,700 42.4 57.6 30.7 7.1

(7) HumidMAP > 1,700 10.3 89.7 6.9 –

All climatic 
zones

19.6 80.4 – –

Columns 2 and 3: area (%) of each climatic zone that changed, or is projected to change (or 
not), at some point between 1950 and 2100. Columns 4 and 5: area (%) of each climatic zone 
that changed, or is projected to change, to a more arid or more humid zone by 2100. Climate 
data from CRU v.4.04 (ref. 45) for 1950–2009 and from CMIP5 projections46,47 for 2010–2099 
under RCP 4.5.
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2100. These climatic changes could eventually lead to losses between 
14.4 and 23.9 PgC (0.1–0.16 PgC yr−1) across the tropics under RCP 
4.5. The lower estimate is from a discrete empirical model, while the 
higher estimate is from a QRF that captures changes in equilibrium 
biomass driven by smaller changes in climate. Predicted carbon losses 

are even higher if CO2 emissions follow the worst-case scenario (RCP 
8.5). According to predictions for RCP 8.5 using the QRF approach, 
carbon losses could be as high as 39.7 PgC (0.26 PgC yr−1). For com-
parison, the net tropical carbon sink of intact tropical forests averaged 
0.08–0.78 PgC yr−1 from 2000–201421. Gross carbon losses (including 
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Fig. 4 | Biomass and biomass changes across the tropics under RCP 4.5. a, 
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scale) across the tropics in Mg ha−1 plotted in climate space (P versus MCWD). 
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humidMAP < 1,700 (151.3 (145.3–156.2) Mg Ha−1). b, Changes in carbon (Pg) by climatic 
zone from 1950–2099. Bar height is the average total C in each timeframe ± the 
bootstrapped confidence limits (that is, average of 1,000 samples of predicted 
C for each timestep). Climate data come from CRU v.4.04 (ref. 45) for 1950–2009 
and from CMIP5 projections46,47 for 2010–2099 under RCP 4.5.
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CMIP5 projections46,47 for 2010–2099 under RCP 4.5.
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all types of disturbances) from tropical forests over the same period 
were estimated at 0.81–0.88 PgC yr−1 (ref. 21).

Estimates from our discrete model indicate that carbon losses 
are concentrated in the Americas (10.5 PgC), where the humid regions 
shrink by 4.2%. Changes in Africa and Asia are much smaller because 
they contain less carbon and the projected regional drying is less 
severe. This divergent redistribution of climatic zones results in a rela-
tively small decrease in total carbon throughout the African continent. 
In Asia, the projected redistribution of climatic zones and changes in 
biomass are even smaller.

Our predicted declines in equilibrium AGB and tropical carbon 
stocks generally agree with observed trends in carbon losses attrib-
uted to climate change, particularly droughts22–24. In intact forests, 
for instance, field-based observations and predictions indicate recent 
or near-term declines in biomass accumulation during episodic 
droughts25–27. The reduction in carbon sequestration in these intact 
forests was associated with extreme droughts23,26, when air temperature 
was often substantially higher than historical values. Several studies 
also predict that forest degradation and fires will increase carbon losses 
in humid tropical regions, which can accelerate during unusually dry 
and warm years3,23,28.

Because our empirical approach does not capture other potential 
effects of future climate changes (for example, direct temperature 
effects, lightning or wind throw)8,29–33 or anthropogenic factors (for 
example, changes in fire, deforestation and forest degradation pat-
terns)24,34,35, it likely underestimates changes in tropical carbon stocks. 
Conversely, natural and anthropogenic biomass recovery (forest thick-
ening, CO2 fertilization, reforestation and afforestation initiatives)10,36,37 
processes, which are not captured here, could partially mitigate our 
predicted carbon losses.

Although we found that dry-warm future conditions would likely 
reduce carbon storage, many ESMs predict long-term increases in AGB 
in tropical forests10. CO2 fertilization is the main process accounting 
for these differences between our empirical approach and ESMs. The 
debate about CO2 fertilization is still ongoing, with some observational 
evidence of CO2 fertilization increasing tropical forest carbon stocks25,26 
while recent field-based studies suggest that the rate of carbon gain is 
slowing12,25,26. Moreover, other processes that reduce the vegetation 
carbon sink are frequently misrepresented in ESMs, including nutrient 
limitation, drought vulnerability, plant mortality, biomass turnover and 
fire disturbance11,14,15,37,38,39,40. Here, we estimate important carbon losses 
based on the historic association between climate and biotic factors, 
but we do not account for potential novel effects of CO2 fertilization on 
the relationship between climate, AGB and carbon stocks.

In regions dominated by tropical savannas, some studies pre-
dict increased carbon stocks due to (CO2 fertilization-driven) woody 
encroachment3,9,41. We also predict slight carbon increases in the cli-
mate zone associated with savannas, but primarily due to the expan-
sion of savanna climate zones into historically forested regions. Even if 
woody encroachment became more common in this expanded savanna 
climate zone, the increase in biomass would be much less than that of 
the forests they replaced. Changes in fire frequency and intensity will 
also play a key role in carbon dynamics and the potential for woody 
encroachment in savannas28,38. More frequent and more intense fires 
are predicted under climate change—a direct threat to tree saplings and 
woody plant growth that could trigger major carbon losses.

According to our estimates, 5.9–9.8 PgC would be lost from tropi-
cal vegetation for each 1 °C increase in global temperature (under 
the RCP 4.5 scenario). Temperature directly affects carbon storage 
and it is likely that tropical forests are already nearing a temperature 
threshold26,39,42. Photosynthesis (and hence carbon uptake) saturates 
with small increases in temperature43 in tropical forest ecosystems—a 
process that could accelerate if higher temperatures are accompanied 
by more intense droughts that reduce soil moisture and allow more 
frequent and intense fires.

Although we predicted small net changes in climate zone 
extents under future climate, this result masks complex shifts in 
their spatial distribution over time. Despite only modest (<10%) 
changes in the total area of each zone, we find that 19.6% of the 
entire tropics will move into another climate space and almost 
42.4% of the humid zone (MAP < 1,700) typically occupied by sea-
sonal or transitional forests will change its equilibrium climate 
at least once before 2100. During these transitions, gross carbon 
emissions from vegetation diebacks could be much larger than 
the net equilibrium loss of ~14.4–23.9 PgC presented here. Plant 
adaptations to future climatic conditions could also modify the 
empirical relationship between biomass and climate, thus reduc-
ing carbon losses. Improving estimates of how rapidly plants could 
adapt to new climatic conditions represents a key area for future  
research.

The changes in tropical biomass predicted here could further 
increase atmospheric CO2 concentrations, prompting positive vegeta-
tion–atmosphere feedbacks. The humid climate zones predicted to 
experience the greatest losses are also home to dense tropical forests 
responsible for about 22% of net terrestrial carbon sequestration22. As 
these zones shrink, we will not only lose their standing stock but also an 
important part of the terrestrial carbon sink. Tropical biomass dynam-
ics may also be influenced by climate changes due to the biophysical 
effects of CO2 fertilization and deforestation44. For instance, forests 
in the eastern Amazon, where large biomass losses are expected, exert 
a strong positive feedback on precipitation through CO2-induced 
changes in stomatal conductance. Decreased biomass could there-
fore reduce precipitation in the same region and further accelerate  
carbon losses44.

Ongoing (and often irreversible) human-induced changes in bio-
mass, including land-cover change, forest degradation and ecosystem 
fragmentation, are causing large and rapid losses of carbon through-
out the tropics23,24,34. For instance, carbon losses from deforestation 
and forest degradation were about −0.07 PgC yr−1 in the Brazilian 
Amazon alone from 2010–201924, compared with −0.17 PgC yr−1 in 
the entire Amazon basin from 2001–201534. The interactions between 
anthropogenic disturbances and climate change could result in addi-
tional important losses of carbon stocks and a reduction (or reversal) 
of the natural tropical carbon sink8,12,24. Protecting key biomes and 
their associated carbon stocks will therefore require reducing the rate 
of such anthropogenic disturbances in addition to lowering global 
GHG emissions. Moreover, our analyses demonstrate that reducing 
GHG emissions from RCP 8.5 to 4.5 would mitigate climate-driven 
carbon losses by about a half.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-023-01600-z.
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Methods
Climate data
We characterized the climate across the pantropical region from 1950 
to 2099, divided into five ~30-year timesteps. We refer to these periods 
as historic (1950–1979), current (1980–2009) and future (2010–2039, 
2040–2069 and 2070–2099).

Climate data for the historic and current timeframes were obtained 
from the Climatic Research Unit (CRU) v.4.04 (ref. 45) at 0.5o × 0.5o 
resolution. Future climate data were obtained from the CMIP5 mul-
timodel ensemble, downscaled globally to 0.5° spatial resolution46,47. 
We selected simulation results from 16 ESMs (Supplementary Table 1) 
for the RCP 4.5 and RCP 8.5 emission scenarios, corresponding to CO2e 
atmospheric concentrations of 650 and >1,000 ppm, respectively. 
Using the average precipitation and MCWD of the model simulations, 
we then estimated the future distribution of climate spaces and AGB 
changes. The upper and lower quartiles of the model simulations 
provided estimates of the uncertainty in AGB predictions, which arise 
from uncertainties in the climate predictions.

Climate space and AGB changes
We used an adapted version of the climatic space concept (defined 
in Malhi et al.16 and Silva de Miranda et al.48), which places pixels in a 
two-dimensional matrix defined by precipitation and MCWD. We then 
assigned an AGB value to each pixel to create a new ‘bioclimatic space’ 
concept that associates the original climate with its corresponding 
AGB. Within this matrix we defined seven climate categories, based 
on aridity index (AI) categories that strongly correlate with AGB con-
tent. Here, the AI is calculated as the ratio of precipitation and MCWD 
and classified based on a modified AI classification developed for use 
with the MCWD (Supplementary Table 2); we refer to these categories 
as climatic zones. MCWD is estimated as the maximum cumulative 
deficit between precipitation (that is, water supply) and potential 
evapotranspiration (PET, that is, water demand) within a year. As in 
Castanho et al.19, we used the FAO-56 Penman–Monteith equation to 
estimate PET, available from the SPEI R package49.

We estimated the average AGB (with confidence limits obtained 
through non-parametric bootstrapping) within each climatic zone 
using three AGB maps: Baccini et al.2, Xu et al.3 and the European Space 
Agency (ESA) Biomass Climate Change Initiative dataset20. The Xu et al. 
and ESA AGB maps are from 2010, whereas the Baccini AGB data is 
based on satellite and light detection and ranging data for 2007–2008. 
To calculate the average AGB, we first excluded all pixels with anthro-
pogenic land covers (croplands, herbaceous cover, mosaics where 
cropland or herbaceous cover was >50%, grasslands, and urban and 
bare areas), as mapped by the ESA land-cover change product for the 
year 2010. All other land-cover classes were included in our analysis. 
The result is an empirically based representation of the average AGB 
of natural vegetation throughout the tropical climate space. Average 
AGB density differs substantially among the various climatic zones. We 
then quantified changes in AGB based on the established relationships 
between AGB and climate. Moving from one climatic zone to another 
over time represents a shift in the equilibrium AGB. The equilibrium 
AGB of any pixel is assigned based on which climatic zone in the climate 
space it falls into in the historic and future climate scenarios. Pixels 
with at least 60% of their area covered by permanent water bodies were 
excluded from all analyses. We also used the ESA land-cover dataset to 
identify these water bodies.

Uncertainty analysis
The main sources of uncertainty in our final AGB and carbon predic-
tions come from the CMIP5 climate predictions, the AGB climate 
model and the AGB datasets. To propagate the uncertainty from all 
of these sources, we generated 1,000 samples of future AGB for each 
pixel in each time frame. For each sample, we (1) randomly sampled 
a set of future climate conditions for each pixel to determine the 

corresponding climatic zone; (2) selected one AGB dataset; and (3) 
sampled from the biomass distribution of the selected climatic zone 
based on the chosen biomass dataset. We used these samples to cal-
culate the average and the variance in total AGB for each time frame.

Quantile regression forests and biomass changes
In addition to our discrete model, we used QRF to establish the rela-
tionship between AGB (from each dataset) and climate, and to predict 
future AGB under changing climate. The QRF were trained with the 
three AGB datasets mentioned earlier (Baccini et al.2, Xu et al.3 and 
Santoro and Cartus (ESA)20), using precipitation and MCWD from 
the current period (1980–2009) as predictors. The forest size was 
300 trees, with a minimum leaf node size of 10. The models showed 
good performance for both the training and validation data, with an 
R2, coefficient of variation, from out-of-bag data of 0.82, 0.86 and 
0.81 for the Baccini, Xu and ESA datasets, respectively. For predic-
tions under the future climate, we built a QRF for each AGB dataset. 
QRF give the conditional quantiles of AGB predictions from random 
forests. Quantile random forests were used to estimate the distribu-
tion of AGB values for each combination of explanatory variables. To 
account for this uncertainty, we took random samples from these dis-
tributions when making predictions for changes in AGB. We used the 
R package ranger50 to fit the random forest and predict the quantiles. 
The figures presented in the main manuscript (Figs. 1–5) are from the 
discrete method, while results from the QRF approach are reported 
in the supplementary materials (Supplementary Tables 7 and 8 and 
Extended Data Figs. 1–4).

Climatic zones
The AI is a widely used numerical indicator of climatic water deficit, 
which is divided into five categories of aridity: hyperarid, arid, semi-
arid, dry subhumid and humid51. The thresholds for the climatic zones 
defined in this study (Supplementary Table 2) are modified from those 
defined in Middleton and Thomas51 due to two key differences in our 
approach. First, the thresholds defined in AI (precipitation (P)/PET) 
were converted to P/water deficit (P/WD) (where WD is P − PET), so the 
climatic zones could be represented in our climatic space (precipita-
tion versus MCWD). Second, we use the MCWD—a direct indicator of 
the intensity and length of the dry season—instead of the annual mean 
of water availability or water deficit. Finally, we divided the humid 
category into humid and humid seasonal zones. To separate large pre-
cipitation differences and depict a higher resolution of climatic char-
acteristics, we further subdivided the modified humid category into 
a climatic zone with precipitation higher than 1,700 mm yr−1 (that is, 
humidMAP > 1,700) and another with precipitation lower than 1,700 mm yr−1 
(that is, humidMAP < 1,700). The precipitation threshold (1,700 mm yr−1) 
was defined based on previously published thresholds17,52, which vary 
between 1,500–2,000 mm yr−1.

Data availability
CRU v.4.04 data can be downloaded from the CRU website (https://
crudata.uea.ac.uk/cru/data/hrg/). Downscaled climate data from 
the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-
model ensemble can be downloaded from https://gdo-dcp.ucllnl.org/
downscaled_cmip_projections/dcpInterface.html. Global biomass 
data is available from https://developers.google.com/earth-engine/
datasets/catalog/WHRC_biomass_tropical)2, https://doi.org/10.5281/
zenodo.4161694 (ref. 3) and https://catalogue.ceda.ac.uk/uuid/5f331c4
18e9f4935b8eb1b836f8a91b8 (ref. 20). MODIS Land Cover data is avail-
able at https://lpdaac.usgs.gov/products/mcd12q1v006/. Continent 
borders are from the Environmental Systems Research Institute’s World 
Continents shapefiles v.10.3 (http://gis.ucla.edu/geodata/dataset/con-
tinent_ln)53. Preprocessed input data (as specified in the manuscript), 
partial results and final predictions of changes in area and biomass are 
available in a public repository via Dryad54.
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Code availability
Relevant R scripts used to process the data and perform the analyses 
are available in a public repository via Dryad54.
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Extended Data Fig. 1 | Distribution of climatic zones in the tropics for Historic 
and Future 30-year time periods (1950–1979, 1980–2009, 2010–2039,  
2040–2069, and 2070–2099). Colors represent the climatic zones. Contour 
lines in the maps and gray dashed lines in the scatterplots are plotted for 

reference to show the distribution and limits of the climatic zones in the period 
1950–1979. Climate data from CRU v.4.0445 for 1950–2009 and from CMIP5 
projections46,47 for 2010–2099 under RCP 8.5.

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-023-01600-z

Extended Data Fig. 2 | Individual model projections of precipitation and 
MCWD under RCP 8.5. Dots represent each model’s mean Historic (1950–1979) 
climate for each climatic zone. Connected arrowheads represent average climate 
at the end of the century (2070–2099). The black shapes correspond to the 

average climate from all models. Models used are listed in Supplementary Table 
1. Climate data from CRU v.4.0445 for 1950–2009 and from CMIP5 projections46,47 
for 2010–2099 under RCP 8.5.
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Extended Data Fig. 3 | Biomass and biomass changes across the tropics under all scenarios. Changes in carbon (Pg) in the tropics by pixel predicted from (a, c) our 
climatic zone averaging method and (b, d) quantile regression forest from 1950–2099. Climate data from CRU 4.0445 for 1950–2009 and from CMIP5 projections46,47 for 
2010–2099 under RCP 4.5 (a, b) and RCP 8.5 (c, d).
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Extended Data Fig. 4 | Changes in carbon (Pg) in the tropics under RCP 8.5. Changes in carbon (Pg) by climatic zone from 1950–2099 for the entire tropics (a) and 
for each region (b). Climate data from CRU 4.0445 for 1950–2009 and from CMIP5 projections46,47 for 2010–2099 under RCP 8.5.
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