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Tropical ecosystems store over half of the world’s aboveground live

carbon as biomass, and water availability plays a key role inits distribution.
Although precipitation and temperature are shifting across the tropics,
their effect on biomass and carbon storage remains uncertain. Here we

use empirical relationships between climate and aboveground biomass
content to show that the contraction of humid regions, and expansion of
those with intense dry periods, results in substantial carbon loss from the
neotropics. Under alow emission scenario (Representative Concentration
Pathway 4.5) this could cause a net reduction of aboveground live carbon of
~14.4-23.9 PgC (6.8-12%) from 1950-2100. Under a high emissions scenario
(Representative Concentration Pathway 8.5) net carbon losses could double
across the tropics, to~28.2-39.7 PgC (13.3-20.1%). The contraction of
humid regions in South America accounts for ~40% of this change. Climate
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mitigation strategies could prevent half of the carbon losses and help
maintain the natural tropical net carbon sink.

Tropical ecosystems span 54 million km?, storing over 50% of the world’s
aboveground live carbon as biomass'™. Precipitation and tempera-
ture are the underlying variables driving processes that directly and
indirectly influence the amount of carbon assimilation and storage
intropical ecosystems. Under a stable climate, warm and wet climate
zones house carbon-rich tropical forests, while more arid climate
zones store lower amounts of carbon as biomass. Climate changes
may disrupt these steady-state patterns, shifting the capacity of these
ecosystems to assimilate and store carbon—and potentially releasing
some of the ~-193-229 Pg of aboveground carbon stored in the tropics
tothe atmosphere’* Even a partial release of this carbon would accel-
erate global warming.

How much carbontropical biomes will store in the future remains
an open question. With climate change, tropical biomes could either
gain or lose carbon throughout this century*™. Major uncertainties in
current projections relate to how Earth System Models (ESMs) repre-
sentinteractionsamong droughts, heat stress and CO, fertilizationin
carbon-rich forested ecosystems>**°, For example, some ESMs lack
the ability to mimic natural disturbances related to drought-, wind- and

heat-related tree mortality'>'"*>. Most ESMs are also overly sensitive to
CO, fertilization'"*, which minimizes modelled climate change effects
on forest carbon dynamics. Empirical relationships between vegeta-
tion structure and climate can thus provide valuable insights into the
potential effects of climate change on the distribution of tropical
biomes and their future carbon storage capacity.

Empirical models capture the equilibrium outcome of complex
interactions and processes lacking in most ESMs. Recent studies have
applied the empirical relationships between precipitation and cur-
rent biome distributions to model climate-induced shifts in humid
tropical forests during the coming century both in the Amazon'® and
globally”. Other studies have used the relationship between precipita-
tion, potential evapotranspiration and biome distribution to predicta
substantial expansion of drylands this century', as well as decreases
in aboveground biomass (AGB) in seasonally dry tropical forests”.

Inthis study, we use empirical climate relationships and AGB data
(Baccinietal.?, Xuetal.*and Santoro and Cartus®’) to quantify the scale
of potential changes in tropical AGB and carbon that can be expected
under climate change, following the 4.5 and 8.5 Representative
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Fig. 1| Distribution of climatic zones in the tropics for historic and future 30- the distribution and limits of the climatic zones in the period 1950-1979. Climate

year time periods (1950-1979,1980-2009, 2010-2039, 2040-2069 and 2070- data from CRU v.4.04 (ref. ) for 19950-2009 and from CMIP5 projections*®* for
2099) under RCP 4.5. Colours represent the climatic zones. Contour linesin the 2010-2099 under RCP4.5.
maps and grey dashed lines in the scatterplots are plotted for reference to show
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Fig.2|Individual model projections of precipitationand MCWD under RCP
4.5.Dotsrepresent each model’s mean historic (1950-1979) climate for each
climatic zone. Connected arrowheads represent average climate at the end of
the century (2070-2099). The black shapes correspond to the average climate
from allmodels. Models used are listed in Supplementary Table 1. Climate data
for1950-2009 are from CRU v.4.04 (ref. **). Data for 2010-2099 are from CMIPS
projections*** under RCP 4.5.

Concentration Pathways (RCPs). We address the following questions:
(1) What are the relationships between current climatic zones (from
hyperarid to humid) and biomass across the entire tropics? (2) What
are the predicted changes in distribution of these climatic zones dur-
ing the twenty-first century? (3) What are the expected changes in
biomass and carbon stocks associated with those projected changes?
Ourassumption is that AGB is currently at equilibrium with climate'®"”
and that vegetation will equilibrate to match projected climate changes
at some time in the future. Based on this approach, we can estimate
how much carbon may be gained or lost by the end of this century
throughout the tropics. We used two different methods to estimate AGB
changes: thefirstis a discrete model based onaverage biomassineach
climate zone and the second is a continuous model based on quantile
regression forests (Methods). For simplicity, our results focus on the
discrete model, using RCP 4.5 as our current pathway, while comment-
ing briefly on the quantile regression forests and RCP 8.5 predictions.
For complete results, refer to Extended Data Figs. 1-4.

Climate change and climatic zones in the tropics
We categorized climatic zones based on their location in the climate
space, defined by average annual precipitation and the maximum cli-
matological water deficit (MCWD)—ameasure of how temperature and
precipitation influence the intensity of the dry season or dry periods
(Methods) (Fig. 1 (lower panel) and Supplementary Table 2). From
1980-2009, about one third (-34.1%) of the tropics was characterized
by a humid climate, where tropical forests are common (Supplementary
Table 3). Almost half (-45.3%) of the tropics was in the humid seasonal,
drysubhumid and semiarid climate zones, where seasonally dry tropical
forests, savannas and grasslands dominate. Arid and hyperarid zones
covered the remaining ~20.5%, occupied mostly by deserts and sea-
sonal grasslands.

Climate model results point to an ongoing shift in the climate
space of the tropics, primarily driven by increased MCWD (Figs.1and
2 and Extended Data Figs. 1and 2), with all climate models projecting
moreintense dry periodsinbothscenarios RCP 4.5 (Fig.2) and RCP 8.5
(Extended DataFig.2 and Supplementary Fig.1). Theincreasein MCWD
is more severe in arid lands compared with wetter climatic zones. In
contrast, projected changes in precipitation are more variable across

models and climatic zones. For instance, more than one-third of the
Coupled Model Intercomparison Project Phase 5 (CMIPS5) climate
models predict less precipitationin the wettest tropical regions (that
is, humid zone with mean annual precipitation (MAP) above 1,700 mm,
or humidyp»1700), but most predict increased precipitation for all other
climatic zones. Regionally, decreases in precipitation are concentrated
inthe Americas, whileincreases are more widespreadin Africa, Asiaand
Oceania (Supplementary Fig. 2). Overall, the magnitude of changesin
precipitation (that is, the length of the arrows in Fig. 2) is lower com-
pared to MCWD, regardless of the direction of change.

The drier and hotter climate in the tropics results in an overall
loss of humid climate zones and associated gainsin arid zones (Fig. 3).
Our results suggest that historical climatic changes (1950-2009) have
already favoured a slight expansion of hyperarid, arid and semiarid
areas (1.5%) over the dry subhumid and three humid climate zones
(Fig. 3 and Supplementary Table 4).

As climate changes further, humid climate zones (humidyp- 1 700,
humidyp <1700 and humid seasonal) are projected to shrink from 48.9%
(1950-1979) t0 46.1% (2040-2069) and 45.7% (2070-2099) of the trop-
ics. From1950-2099, the humidyp 1 700 and humidyp <1 700 ZONes could
declineby1.1and 2.8% respectively, while humid seasonal areas could
expand by 0.6%. A 4.2% reduction in the Americas accounts for most
of the projected decline in the humidyp. 1700 (typically occupied by
rainforests), in contrasttoaprojected 0.6% expansion in tropical Africa.

The net changes in area of each climate zone are relatively small
compared with the many shifts in their distribution during the study
period. On average, 19.6% of the tropics shifted its climate zone at
some point between 1950-1979 and 2070-2099 (Fig. 3 and Table 1).
For instance, the humidyap <1700 has a predicted net change in area
of 2.8% from 1950-2100, but about 42.4% of its historic (1950-1979)
area will change climate zones at least once by 2100. For the humid
seasonal and dry subhumid zones, ~34% of the area will change. Even
in climatic zones with fewer shifts, we find that ~10% of the region will
change to a different climatic zone by the end of the century. Moreo-
ver, about 6.9% of the tropics will experience more than one shiftin
equilibrium climate from 1950-2100, mostly in the humid seasonal
and humidyp -1 700 climate zones. Thus, relatively small net changes
in area (1950-2100) may mask complex dynamics, including where
large swaths of a given climatic zone are projected to transition to or
fromother climatic zones by 2100. Most of these transitions are likely
to favour drier climatic zones (Table 1).

Changes in aboveground biomass and carbon

Given that the climate space determines much of the AGB distribution
(thatis, higher rainfalland MCWD are associated with higher biomass)
(Fig.4a), changesinthe climate space may lead to changes in the equi-
librium biomass (Fig. 4b). Climatic conditions over the past 50 years
point to a total decrease in equilibrium biomass of -3.09 + 2.62 PgC,
representing -1.5% of total carbonin 1950 (Fig.4b and Supplementary
Table 5). These small changes in biomass and carbon are due mainly
to losses in arid and semiarid zones that shifted to drier climates.
Most potential carbon losses from 1950-2009 were concentrated in
Africa (Fig. 5).

Accordingto our discrete model, future changes in climate under
RCP 4.5 will probably force additional transitions from higher to lower
biomass climate zones. We find an expected net reduction in equilib-
rium AGB carbon of about —14.38 + 2.38 PgC, representinga—6.8 + 1.1%
loss compared to1950 (-0.1 PgC yr™). Using a quantile regression for-
est (QRF) modelling approach, we found similar spatial and temporal
patterns but higher absolute losses (Supplementary Tables 7 and 8).
For instance, from 1950-2100 the QRF approach projected C losses
of —23.88 +2.35 PgC (Extended Data Fig. 3b). These higher projected
losses were mainly attributed to regions (pixels) that moved to alower
equilibrium biomass but stayed within the same climatic zone. In our
discrete approach, these regions were projected to maintain the same
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Fig. 3| Percentage changes in area covered by each climatic zone from1950-2099. Climate data for 1950-2009 are from CRU v.4.04 (ref. *°). Data for 2010-2099 are

from CMIP5 projections*®*” under RCP 4.5.

equilibrium biomass. The expected changes (losses and gains) in area
for the different climatic zones are fairly constant between 1950 and
2100, withno abrupt changes in the rate of net carbon losses.

By 2100, the largest potential AGB and carbon losses are likely to
occur with the contraction of humid climates, where carbon-dense
evergreen and drought deciduous forests store ~157.02 PgC
(155.55-158.39 PgC)—the largest fraction (74%) of the carbon pool in
thetropics. These humid climatic zones would lose more carbon than
any other zone (-8.44 and -10.58 PgCin humidyp - 1 700 and NUMidyap <1700,
respectively). The largest carbonincreases are in semiarid and humid
seasonal regions (+1.03 and +2.53 PgC, respectively). However, these
increases are too small to offset the much larger expected losses of
equilibrium AGB and carbon from more humid climatic zones. With the
QRF model, losses from the humidy,p -1 700 and humidyap 1 700 climatic
zones are around -15.15and -9.1 PgC, respectively.

Shifts in the tropical average distribution of climatic zones mask
important changes in biomass within specific tropical regions. For
instance, projected net biomass changes in the humidy,p. 700 reflect
losses in the Americas and Asia (-8.36 and —1.04 PgC, respectively)
being compensated by gainsin Africa (+1 PgC). In fact, total equilibrium
carbonlosses for the Americas could be as high as -10.5 PgC by the end
of the century, while losses in Africa and Asia are smaller (-2.07 and
-1.74 PgC, respectively). Potential carbon gains are concentrated in the
humid seasonalzone in Asiaand the Americas, and in the humidyp- 1700
in Africa. Regional patterns of C changes were similar between our
two methods (that is, the discrete method and the QRF), but our QRF
approach shows higher Clossesinall regions.

The variation in climate predictions in the models drives some
uncertainty in changes in equilibrium biomass. Under the RCP 8.5
scenario, the equilibrium carbon losses nearly double compared to
those of RCP 4.5, corresponding to losses of about -28.24 +2.24 PgC,
or-13.3 +1.1% of pantropical Cin1950 (-0.19 PgC yr™) (Supplementary
Table 6 and Extended Data Figs. 3c and 4). In the QRF model, carbon
losses under RCP 8.5 reach -39.71 £ 2.23 PgC, or -20.1 + 1.3% of pan-
tropical C in 1950 (-0.26 PgC yr') (Extended Data Fig. 4d). Changes

Table 1| Changes in climatic zones over the study period
(baseline 1950-1979)

Climatic zone Changed Unchanged Changeto Changetoa

area (%) area (%) amorearid more humid
zone (%) zone (%)

(1) Hyperarid 49 951 - 3.4

(2) Arid 151 84.9 37 3.0

(3) Semiarid 1.2 88.8 4.6 17

(4) Dry subhumid 34.0 66.0 247 17

(5) Humid 34.3 65.7 23.8 15

seasonal

(6) HuMidyyap 1700 424 57.6 307 71

(7) Humidyaps1700 10.3 897 6.9 -

All climatic 19.6 80.4 - -

zones

Columns 2 and 3: area (%) of each climatic zone that changed, or is projected to change (or
not), at some point between 1950 and 2100. Columns 4 and 5: area (%) of each climatic zone
that changed, or is projected to change, to a more arid or more humid zone by 2100. Climate
data from CRU v.4.04 (ref. “°) for 1950-2009 and from CMIP5 projections*®*’ for 2010-2099
under RCP 4.5.

in carbon (by region and climate zone) are similar to those observed
inthe RCP 4.5 scenario, but of greater magnitude. The largest carbon
losses are inthe humidyap- 700 and humidyp <1 700 Climate zonesin the
Americas, which togetherlose —20.81+ 1.4 PgCor-25.9 +1.5 PgC (based
onthe QRF results).

Discussion

Our results show that climate change is driving alarge part of the trop-
ics out of its historical biomass equilibrium, primarily by increasing
dry-season severity. Regions with a humid climate and high AGB con-
centrations today will likely experience more severe dry seasons by
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Fig. 4 |Biomass and biomass changes across the tropicsunder RCP4.5. a,
Average AGB density (from the three AGB datasets)***° of each pixel (colour
scale) across the tropics in Mg ha™ plotted in climate space (P versus MCWD).
Numbersindicate the average AGB density and numbers in parentheses indicate
the confidence limits (from non-parametric bootstrapping) for the AGB density
ineach climatic zone. The number in the right bottom corner corresponds to the
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humidyp <700 (151.3 (145.3-156.2) Mg Ha™). b, Changes in carbon (Pg) by climatic
zone from1950-2099. Bar height is the average total Cin each timeframe + the
bootstrapped confidence limits (that is, average of 1,000 samples of predicted

C for each timestep). Climate data come from CRU v.4.04 (ref. **) for 19950-2009
and from CMIPS5 projections*®* for 2010-2099 under RCP 4.5.
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Fig. 5| Changesin carbonin the tropics under RCP 4.5. a, Changesin carbon
levels (in Pg) by pixel. The contour lines in a correspond to the distribution of

the climatic zones in 1950 as shown in Fig. 1. b, Changes in carbon levels (in Pg)
by climatic zone and by region from1950-2099 (only three timesteps labelled
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for readability). Bar height is the average total Cin each timeframe + the
bootstrapped confidence limits (that is, average of 1,000 samples of predicted C
for each timestep). Climate data from CRU v.4.04 (ref. *) for 1950-2009 and from
CMIP5 projections*®*’ for 2010-2099 under RCP 4.5.

2100. These climatic changes could eventually lead to losses between
14.4 and 23.9 PgC (0.1-0.16 PgC yr™) across the tropics under RCP
4.5. The lower estimate is from a discrete empirical model, while the
higher estimate is from a QRF that captures changes in equilibrium
biomass driven by smaller changesin climate. Predicted carbon losses

are even higher if CO, emissions follow the worst-case scenario (RCP
8.5). According to predictions for RCP 8.5 using the QRF approach,
carbon losses could be as high as 39.7 PgC (0.26 PgC yr™). For com-
parison, the net tropical carbon sink of intact tropical forests averaged
0.08-0.78 PgC yr ' from2000-2014%. Gross carbonlosses (including
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all types of disturbances) from tropical forests over the same period
were estimated at 0.81-0.88 PgC yr™ (ref. ™).

Estimates from our discrete model indicate that carbon losses
areconcentrated inthe Americas (10.5 PgC), where the humid regions
shrink by 4.2%. Changes in Africa and Asia are much smaller because
they contain less carbon and the projected regional drying is less
severe. This divergent redistribution of climatic zones resultsinarela-
tively small decreasein total carbon throughout the African continent.
In Asia, the projected redistribution of climatic zones and changes in
biomass are even smaller.

Our predicted declines in equilibrium AGB and tropical carbon
stocks generally agree with observed trends in carbon losses attrib-
uted to climate change, particularly droughts®?*. In intact forests,
forinstance, field-based observations and predictionsindicate recent
or near-term declines in biomass accumulation during episodic
droughts®?. The reduction in carbon sequestration in these intact
forestswas associated with extreme droughts®*?°, when air temperature
was often substantially higher than historical values. Several studies
also predict that forest degradation and fires willincrease carbon losses
in humid tropical regions, which can accelerate during unusually dry
and warm years>*>%,

Because our empirical approach does not capture other potential
effects of future climate changes (for example, direct temperature
effects, lightning or wind throw)**~** or anthropogenic factors (for
example, changes in fire, deforestation and forest degradation pat-
terns)****%, itlikely underestimates changesin tropical carbon stocks.
Conversely, natural and anthropogenic biomass recovery (forest thick-
ening, CO, fertilization, reforestation and afforestation initiatives)'****
processes, which are not captured here, could partially mitigate our
predicted carbonlosses.

Although we found that dry-warm future conditions would likely
reduce carbonstorage, many ESMs predict long-termincreasesin AGB
in tropical forests'. CO, fertilization is the main process accounting
for these differences between our empirical approach and ESMs. The
debate about CO, fertilizationis stillongoing, with some observational
evidence of CO, fertilization increasing tropical forest carbon stocks**
whilerecent field-based studies suggest that the rate of carbon gainis
slowing'>**?®, Moreover, other processes that reduce the vegetation
carbonsinkare frequently misrepresented in ESMs, including nutrient
limitation, drought vulnerability, plant mortality, biomass turnover and
fire disturbance*>*"%3%40 Here, we estimate important carbon losses
based on the historic association between climate and biotic factors,
butwe donotaccount for potential novel effects of CO, fertilization on
the relationship between climate, AGB and carbon stocks.

In regions dominated by tropical savannas, some studies pre-
dictincreased carbon stocks due to (CO, fertilization-driven) woody
encroachment®**!, We also predict slight carbon increases in the cli-
mate zone associated with savannas, but primarily due to the expan-
sion of savannaclimate zones into historically forested regions. Even if
woody encroachment became more commonin this expanded savanna
climate zone, the increase in biomass would be much less than that of
the forests they replaced. Changes in fire frequency and intensity will
also play a key role in carbon dynamics and the potential for woody
encroachment in savannas®?%, More frequent and more intense fires
are predicted under climate change—adirect threat to tree saplings and
woody plant growth that could trigger major carbon losses.

Accordingto our estimates, 5.9-9.8 PgC would be lost from tropi-
cal vegetation for each 1°C increase in global temperature (under
the RCP 4.5 scenario). Temperature directly affects carbon storage
and it is likely that tropical forests are already nearing a temperature
threshold*****2, Photosynthesis (and hence carbon uptake) saturates
with smallincreases in temperature* in tropical forest ecosystems—a
process that could accelerate if higher temperatures are accompanied
by more intense droughts that reduce soil moisture and allow more
frequent and intense fires.

Although we predicted small net changes in climate zone
extents under future climate, this result masks complex shifts in
their spatial distribution over time. Despite only modest (<10%)
changes in the total area of each zone, we find that 19.6% of the
entire tropics will move into another climate space and almost
42.4% of the humid zone (MAP <1,700) typically occupied by sea-
sonal or transitional forests will change its equilibrium climate
at least once before 2100. During these transitions, gross carbon
emissions from vegetation diebacks could be much larger than
the net equilibrium loss of ~14.4-23.9 PgC presented here. Plant
adaptations to future climatic conditions could also modify the
empirical relationship between biomass and climate, thus reduc-
ing carbon losses. Improving estimates of how rapidly plants could
adapt to new climatic conditions represents a key area for future
research.

The changes in tropical biomass predicted here could further
increase atmospheric CO, concentrations, prompting positive vegeta-
tion-atmosphere feedbacks. The humid climate zones predicted to
experience the greatest losses are also home to dense tropical forests
responsible for about 22% of net terrestrial carbon sequestration®. As
these zones shrink, we willnot only lose their standing stock but alsoan
important part of the terrestrial carbon sink. Tropical biomass dynam-
icsmay also beinfluenced by climate changes due to the biophysical
effects of CO, fertilization and deforestation**. For instance, forests
inthe eastern Amazon, where large biomass losses are expected, exert
a strong positive feedback on precipitation through CO,-induced
changes in stomatal conductance. Decreased biomass could there-
fore reduce precipitation in the same region and further accelerate
carbon losses**.

Ongoing (and oftenirreversible) human-induced changesinbio-
mass, including land-cover change, forest degradation and ecosystem
fragmentation, are causing large and rapid losses of carbon through-
out the tropics®*?***, For instance, carbon losses from deforestation
and forest degradation were about —0.07 PgC yr™ in the Brazilian
Amazon alone from 2010-2019*, compared with -0.17 PgC yr™in
the entire Amazon basin from 2001-2015*. The interactions between
anthropogenic disturbances and climate change could resultin addi-
tional important losses of carbon stocks and areduction (or reversal)
of the natural tropical carbon sink®>?*, Protecting key biomes and
their associated carbon stocks will therefore require reducing the rate
of such anthropogenic disturbances in addition to lowering global
GHG emissions. Moreover, our analyses demonstrate that reducing
GHG emissions from RCP 8.5 to 4.5 would mitigate climate-driven
carbonlosses by about a half.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41558-023-01600-z.
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Methods

Climate data

We characterized the climate across the pantropical region from 1950
102099, divided into five -30-year timesteps. We refer to these periods
as historic (1950-1979), current (1980-2009) and future (2010-2039,
2040-2069 and 2070-2099).

Climate datafor thehistoricand current timeframes were obtained
from the Climatic Research Unit (CRU) v.4.04 (ref. **) at 0.5° x 0.5°
resolution. Future climate data were obtained from the CMIP5 mul-
timodel ensemble, downscaled globally to 0.5° spatial resolution**.
We selected simulation results from 16 ESMs (Supplementary Table 1)
forthe RCP4.5and RCP 8.5 emission scenarios, correspondingto CO,e
atmospheric concentrations of 650 and >1,000 ppm, respectively.
Usingthe average precipitation and MCWD of the model simulations,
we then estimated the future distribution of climate spaces and AGB
changes. The upper and lower quartiles of the model simulations
provided estimates of the uncertainty in AGB predictions, which arise
fromuncertainties in the climate predictions.

Climate space and AGB changes

We used an adapted version of the climatic space concept (defined
in Malhi et al."® and Silva de Miranda et al.*®), which places pixelsin a
two-dimensional matrix defined by precipitation and MCWD. We then
assigned an AGB value to each pixel to create anew ‘bioclimatic space’
concept that associates the original climate with its corresponding
AGB. Within this matrix we defined seven climate categories, based
on aridity index (Al) categories that strongly correlate with AGB con-
tent. Here, the Al is calculated as the ratio of precipitationand MCWD
and classified based on amodified Al classification developed for use
withthe MCWD (Supplementary Table 2); we refer to these categories
as climatic zones. MCWD is estimated as the maximum cumulative
deficit between precipitation (that is, water supply) and potential
evapotranspiration (PET, that is, water demand) within a year. As in
Castanho et al.”’, we used the FAO-56 Penman-Monteith equation to
estimate PET, available from the SPEIR package®.

We estimated the average AGB (with confidence limits obtained
through non-parametric bootstrapping) within each climatic zone
using three AGB maps: Baccinietal.?, Xu etal.”and the European Space
Agency (ESA) Biomass Climate Change Initiative dataset™. The Xu et al.
and ESA AGB maps are from 2010, whereas the Baccini AGB data is
based onsatellite and light detection and ranging data for 2007-2008.
To calculate the average AGB, we first excluded all pixels with anthro-
pogenic land covers (croplands, herbaceous cover, mosaics where
cropland or herbaceous cover was >50%, grasslands, and urban and
bare areas), as mapped by the ESA land-cover change product for the
year 2010. All other land-cover classes were included in our analysis.
The result is an empirically based representation of the average AGB
of natural vegetation throughout the tropical climate space. Average
AGB density differs substantially among the various climatic zones. We
then quantified changesin AGB based on the established relationships
between AGB and climate. Moving from one climatic zone to another
over time represents a shift in the equilibrium AGB. The equilibrium
AGB of any pixelis assigned based on which climatic zone in the climate
space it falls into in the historic and future climate scenarios. Pixels
with atleast 60% of their area covered by permanent water bodies were
excluded fromall analyses. We also used the ESA land-cover dataset to
identify these water bodies.

Uncertainty analysis

The main sources of uncertainty in our final AGB and carbon predic-
tions come from the CMIPS5 climate predictions, the AGB climate
model and the AGB datasets. To propagate the uncertainty from all
of these sources, we generated 1,000 samples of future AGB for each
pixel in each time frame. For each sample, we (1) randomly sampled
a set of future climate conditions for each pixel to determine the

corresponding climatic zone; (2) selected one AGB dataset; and (3)
sampled from the biomass distribution of the selected climatic zone
based on the chosen biomass dataset. We used these samples to cal-
culate the average and the variance in total AGB for each time frame.

Quantile regression forests and biomass changes

In addition to our discrete model, we used QRF to establish the rela-
tionship between AGB (from each dataset) and climate, and to predict
future AGB under changing climate. The QRF were trained with the
three AGB datasets mentioned earlier (Baccini et al.?, Xu et al.” and
Santoro and Cartus (ESA)*°), using precipitation and MCWD from
the current period (1980-2009) as predictors. The forest size was
300 trees, with a minimum leaf node size of 10. The models showed
good performance for both the training and validation data, with an
R?, coefficient of variation, from out-of-bag data of 0.82, 0.86 and
0.81 for the Baccini, Xu and ESA datasets, respectively. For predic-
tions under the future climate, we built a QRF for each AGB dataset.
QRF give the conditional quantiles of AGB predictions from random
forests. Quantile random forests were used to estimate the distribu-
tion of AGB values for each combination of explanatory variables. To
account for this uncertainty, we took random samples from these dis-
tributions when making predictions for changes in AGB. We used the
R package ranger*° to fit the random forest and predict the quantiles.
Thefigures presented in the main manuscript (Figs. 1-5) are from the
discrete method, while results from the QRF approach are reported
in the supplementary materials (Supplementary Tables 7 and 8 and
Extended DataFigs.1-4).

Climaticzones

The Al is a widely used numerical indicator of climatic water deficit,
which is divided into five categories of aridity: hyperarid, arid, semi-
arid, dry subhumid and humid®. The thresholds for the climatic zones
definedinthis study (Supplementary Table 2) are modified from those
defined in Middleton and Thomas® due to two key differences in our
approach. First, the thresholds defined in Al (precipitation (P)/PET)
were converted to P/water deficit (P/WD) (where WD is P - PET), so the
climatic zones could be represented in our climatic space (precipita-
tion versus MCWD). Second, we use the MCWD—a direct indicator of
theintensity and length of the dry season—instead of the annual mean
of water availability or water deficit. Finally, we divided the humid
category into humid and humid seasonal zones. To separate large pre-
cipitation differences and depict a higher resolution of climatic char-
acteristics, we further subdivided the modified humid category into
a climatic zone with precipitation higher than 1,700 mmyr™ (that is,
humidy,p.1-00) and another with precipitation lower than1,700 mmyr™
(that is, humidy,p . -00)- The precipitation threshold (1,700 mm yr™)
was defined based on previously published thresholds'”*?, which vary
between1,500-2,000 mmyr™.

Data availability

CRU v.4.04 data can be downloaded from the CRU website (https://
crudata.uea.ac.uk/cru/data/hrg/). Downscaled climate data from
the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-
model ensemble canbe downloaded from https://gdo-dcp.uclinl.org/
downscaled_cmip_projections/dcplnterface.html. Global biomass
datais available from https://developers.google.com/earth-engine/
datasets/catalog/WHRC_biomass_tropical)?, https://doi.org/10.5281/
zenodo.4161694 (ref.?) and https://catalogue.ceda.ac.uk/uuid/5f331c4
18e9f4935b8eb1b836f8a91b8 (ref.?°). MODIS Land Cover datais avail-
able at https://Ipdaac.usgs.gov/products/mcd12qlv006/. Continent
borders are fromthe Environmental Systems Research Institute’s World
Continents shapefiles v.10.3 (http://gis.ucla.edu/geodata/dataset/con-
tinent_In)*>. Preprocessed input data (as specified in the manuscript),
partial results and final predictions of changes inareaand biomass are
available in a public repository via Dryad**.
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Code availability
Relevant R scripts used to process the data and perform the analyses
are availablein a public repository via Dryad**.
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