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Abstract— We present a novel general model that unifies the
kinematics of constant curvature and constant twist continuum
manipulators. Combining this kinematics with energy-based
physics, we derive a linear mapping from actuator configuration
to manipulator deformation that is analogous to traditional
robot forward kinematics. Our model generalizes across ma-
nipulators with different sizes, types of bending, and types
of actuators, without the need for parameter re-fitting. The
combination of generality and linearity makes the model useful
for control and planning algorithms. Finally, our model is shown
to be accurate through experimental validation on manipulators
with pneumatic artificial muscles.

I. INTRODUCTION

While the motion of traditional robots comes from their
discrete joints, a continuum manipulator moves by deform-
ing along its entire arc. These manipulators are typically
composed of multiple actuators bound together compliantly
or by rigid skeleton. When the actuators are activated, the
interplay of forces within the manipulator creates stretching,
bending, and sometimes twisting of the whole manipulator.
These actuators commonly take the form of tendons or wires
actuated by pulleys, pneumatic or hydraulic artificial muscles
which change length when inflated, or shaped memory alloys
which deform when electricity is applied.

The design space of possible actuator routings and skele-
ton geometry is infinitely large. Within this space, a common
configuration consists of a few segments connected in series,
where each section is composed of actuators that are arranged
parallel to each other and the base-curve of the manipu-
lator. The manipulator cross-section geometry is consistent
throughout the length of each section (Fig 1). The simple
geometry of these manipulators makes their kinematics an-
alytically tractable: using entirely geometric methods, the
configuration of the actuators can be algebraically mapped to
the length, curvature, and bending plane of the manipulator.
Prior work has developed models for use in control and
motion planning, which has enabled applications in surgical
robots, manipulation, and inspections [1].

However, most bending continuum manipulators lack a
torsional degree of freedom, and thus are incapable of
separately controlling position and orientation, or performing
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Fig. 1: Manipulators that exhibit constant bending and
twisting. Left to right: Planar, spatial, and helical arms.
Top: Physical systems with Apriltags attached for motion
capture. Bottom: Model (dashed) versus measured (solid)
geometry. All shown axes are in meters. The same model
and parameters were used for all above experiments.

motion primitives such as wrapping. Inspired by natural
models such as cephalopod tentacles and twisting vines,
recent works [2][3][4] have shown that helically routing
actuators at a constant pitch and diameter drastically enlarges
the manipulator workspace by enabling constant twisting: a
combination of bending and torsion.

This relatively simple design change invalidates constant
curvature kinematics, thus requiring the use of the far more
complex models such as Cosserat rod mechanics. [3][5]. The
use of numerical integration makes Cosserat rod mechanics
general and inclusive of non-constant deformation; however,
it also makes them opaque. The reliance on integration
to solve for manipulator deformation makes the approach
computationally expensive for use in control and planning
algorithms, which require repetitive kinematic solutions.

In this work, we derive an extension of constant curvature
kinematics to include constant twist, while maintaining the
simplicity of the approach. Paired with an energy-based
physics model, we produce a linear mapping between the
actuator lengths and the deformed state of an unloaded ma-20
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nipulator. Combined, this results in a model that is analogous
to traditional robot forward kinematics.

This paper is structured as follows. Section II begins with
an overview of kinematics, physics, and hybrid modeling
approaches. Section III reviews Cosserat-rod kinematics and
derives the kinematic relation that unifies constant curvature
kinematics to include constant twist. Section IV derives
our novel equilibrium model. Section V presents results
comparing the model to measured manipulator deformation
from experiments. Finally, we end with a discussion of
results and considerations of future work in Section VI.

II. PRIOR WORK

The best established class of continuum manipulator mod-
els are models that assume constant curvature [6], which
parameterize manipulator deformations by their length, cur-
vature, and bending-plane. By assuming perfect knowledge
of actuator lengths, the kinematics problem is reduced to
pure geometry, thus enabling the development of models
that, albeit nonlinear, function similarly to traditional robot
forward kinematics.

These models have proven useful for implementation in
control and planning applications. However, they rely on
an extrinsic parameterization of manipulator geometry. The
notions of bending planes and tangent circles exist within a
broader embedding space, and are specific to the structure
of the manipulator. Thus, they do not generalize well to
changes in manipulator design, such as additional actuators,
or helically routed actuators. While recent works [2] have
developed purely geometric kinematic models for constant
twist manipulators, these models still parameterize the twist-
ing geometry extrinsically as a winding radius and pitch.
Therefore they suffer from the same lack of generality as
models for constant curvature manipulators.

Cosserat rod kinematics present an alternative formulation
of kinematics [5][7]. By representing rod geometry intrinsi-
cally as the body-frame spatial velocity of a frame moving
along the length of a rod, Cosserat rod kinematics is able
to generalize to manipulators of arbitrary designs, including
ones with non-constant deformation. While this requires nu-
merical integration in the general case, restricting the model
to constant deformation makes the kinematics analytically
integrable. Thus, recent works have begun to apply this
intrinsic parameterization to constant curvature kinematics
[8] to derive more general models. The generalization of this
parameterization to constant twist kinematics is natural, but
has not yet been formulated in the literature. Thus, there
does not currently exist a general form of constant twist
kinematics.

A general constant deformation kinematics allows for the
simplification of physics-based models. In [9], the authors
derived a linear mapping from tendon tensions to actuator
deformation analogous to traditional forward kinematics.
Combining physics-based methods with constant curvature
kinematics lead to the development of a model applicable
to manipulators with an arbitrary number of actuators while
maintaining the simplicity of linearity. More recently, in [8]

the authors instead focus on how manipulator behavior arises
from geometry between individual actuators. Similar to [9],
force-moment-balances are solved for within a manipulator
with constant curvature kinematics. This time, by formu-
lating the physics upon individual actuator mechanics the
model generalizes across manipulators with different designs
without the need for parameter re-fitting.

Due to the lack of a general constant twist kinematics, a
similar work that applies physics-based modeling to constant
twist manipulators does not yet exist. Thus, in this work
we present the first generalized formulation of constant-twist
kinematics, which we use to derive the first physics-based
model applied specifically to constant-twist manipulators.

III. ACTUATOR KINEMATICS

We begin with a review of the Cosserat-rod parameteriza-
tion of rod geometry to provide background and establish our
notation. We then present a re-framing of constant curvature
kinematics that leads to a straightforward derivation of a
model of manipulator geometry at unloaded equilibrium.

A. Individual Rod Kinematics

In 3D Cosserat-rod theory, a rod is characterized by its
center-line curve in 3D space p(s) 2 R3 and its material
orientation R(s) 2 SO(3). The reference parameter s 2
[0, 1] denotes the location of the current position along the
length of the arm; ie, p(0) is the position at the base of the
rod while p(1) the position at the tip.

The positions and orientations of frames along the rod can
be combined into a single 6-DOF pose g(s), and element
of the Lie group SE(3), whose matrix representation is a
homogeneous transformation matrix. We denote the matrix
representation of a Lie group or Lie algebra element with
⇢(·):

⇢(g(s)) =


R(s) p(s)
0 1

�
(1)

Alongside the poses g(s), we consider its rate of change
along the length of the rod:

@

@s
⇢(g) = ⇢(ġ) = ⇢(g)⇢(

ë
g) (2)

where the twist-vector
ë
g(s) is an element of the Lie

algebra se(3) - a vector
⇥
v !

⇤T that contains the body-
frame linear and angular velocities v and !. The matrix
representation is:

⇢(
ë
g(s)) =


⇢(!(s)) v(s)

0 0

�
(3)

where ⇢(!) is the skew-symmetric matrix representation
of an angular velocity in so(3).

The rate of change ë
g(s) alone can parameterize a rod’s

poses g(s) along the entire rod for all s. In general, body-
frame twistsëg(s) along the length of the rod can be converted
to world-frame and numerically integrated to recover the rod
geometry. In the special case where the ë

g(s) =
ë
g is constant
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Fig. 2: Let gA(·) and gB(·) refer to poses along actuators
A and B. Assuming constant curvature means assuming the
cross-section geometry BgBA is uniform throughout the arm.
This enables relating the twist-vectors of different actuators
ë
gA and ë

gB as the velocities of segments on different paths
(blue and yellow) that lead to the same destination.

over s, this integration can be done analytically through
exponentiation.

g(s) = g(0) � exp(s ë
g) (4)

Or, in matrix representation, with expM as the standard
matrix exponential:

⇢(g(s)) = ⇢(g(0)) � expM (s ⇢(
ë
g)) (5)

As an example, consider the twist-vector ëg0 of an actuator
in its neutral configuration. In its neutral state, we assume
an actuator takes on its free-contraction length with zero
shearing, torsion, or bending. This free-contraction length
l(q) can be experimentally measured as a function of the
actuator input q, such as muscle pressure or tendon pul-
ley angle. The actuator’s neutral twist-vector ë

g0 is thus⇥
l(q) 0 0 0 0 0

⇤T . Integrating this quantity along the
unit interval [0, 1] recovers the positions along the unde-
formed rod.

Any rod with a constant twist-vector ëg that deviates from
this neutral configuration ë

g0 must therefore entail deforma-
tion. The difference ë

g � ë
g0 gives the deformation vector

�
ë
g =

⇥
� �y �z ⌧ !y !z

⇤T , which respectively con-
tains the stretch, y- and z-shearing, x-curvature (torsion), and
y- and z- curvature. We will later combine this deformation
vector with physical laws to calculate quantities such as force
and elastic energy.

Having covered both the twist-vector parameterization of
elastic rod geometry and deformation, we conclude our
review of Cosserat rod kinematics theory for individual rods.

B. Relating Actuator Twists

For a constant-twist manipulator we derive a novel linear
mapping from the twist-vectors of each actuators to the
twist-vector of the manipulator base-curve. We do so by
generalizing the geometric constraints between the actuators.

It is established that for manipulators assumed to be
constant-curvature, the uniformity of the manipulator cross-
section geometry is crucial to the validity of the constant-
curvature assumption [10]. Works on constant-twist manip-
ulators similarly rely on designs with a uniform helical
winding pitch [2]. In designs where actuators are attached to
a backbone with consistent cross-sections, this uniformity is
inherited from the backbone. Other designs lack a continuous
backbone and employ a set of inter-actuator separators:
enough separators are used so that constraints between actua-
tors are still enforced, even at points not directly constrained
by separators, as in Fig. 2. For either design, the result is
the same: uniform cross-section geometry leads to constant
deformation throughout the manipulator.

Note that this is only true in the un-loaded case: the
addition of external loads causes deformation that is no
longer uniform throughout.

Consider a planar arm with two actuators A and B,
as depicted in Fig. 2. We can represent the cross-section
geometry as the transformation from a frame attached to
actuator B to a frame attached to actuator A:

gA(s) = gB(s)BgBA (6)

where BgBA is an element of SE(3) representing the
transformation from a frame on actuator B to a frame on
actuator A, with respect to the frame on B. Note that due to
the uniform geometry, this transformation is constant across
the entire manipulator. We can exploit this to relate the twist-
vectors between different actuators.

Expressing the poses g(s) along each actuator by expo-
nentiating the twist-vectors using Eqn. 4 gives:

gA(0) � exp(s
ë
gA) = gB(0) � exp(s

ë
gB) � BgBA (7)

Eqn. 6 gives us gA(0)�1
gB(0) = Bg

�1
BA, which we

substitute in:

exp(s
ë
gA) = Bg

�1
BA � exp(s ë

gB) � BgBA (8)

We have thus arrived at the common definition for the
Adjoint matrix. Thus the twist-vectors ëgA and ë

gB are related
via the Adjoint matrix in SE(3):

ë
gA = Ad-1

BA
ë
gB (9)

The structure of the Adjoint matrix AdBA depends on the
Lie group used to parameterize actuator geometry, such as
SE(2) or SE(3). The values of the matrix depend on the
cross-section geometry: BgBA. For a full derivation of the
Adjoint map and matrix representations in common groups
we refer the reader to [11].

Note that so long as the cross-section geometry is uniform,
one can apply Eqn. 9 to any imagined actuator given its
location in the manipulator cross-section. For a general
manipulator with an arbitrary number of actuators, we there-
fore relate all actuators to a single reference actuator. If
the reference actuator is considered at the center of the
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manipulator, it traces the base-curve of the manipulator.
Thus, for any actuator i with transformation igoi relative
to the base-curve, its twist-vector ë

gi can be related to the
base-curve twist-vector ëgo by the Adjoint matrix Adoi

ë
gi = Ad-1

oi
ë
go (10)

We have thus shown that assuming the cross-section
geometry is uniform throughout the continuum manipulator,
the twist-vector of every actuator in the manipulator can
be related to the twist-vector of the manipulator base-curve
via the Adjoint map. This concludes the derivation of our
kinematic model.

IV. EQUILIBRIUM MECHANICS MODEL

We now derive our equilibrium manipulator model by
formulating the elastic energy stored within each actuator,
and solving for the manipulator configuration that minimizes
the total energy. Note once again that this model does not
consider external loading.

Combining the deformation vector �
ë
g from before

with a Hookean spring law with stiffness matrix K =
diag(

⇥
K✏ K� K� K⌧ K K

⇤
), we arrive at the

standard expression for local wrench moments throughout
the length of the rod:

f = K(
ë
g �ë

g0) (11)

Note that by being a spatial-velocity, the linear component
v of ëg has units [m/m] and is thus unitless, while the angular
component ! has units [rad/m]. Thus the linear stiffness
constants K✏ and K� are have units of [N], and the rotational
stiffness constants K⌧ and K have units of [N m2], because
radians are unitless.

One can also integrate these local wrenches to find the
elastic energy stored within a rod:

U(q) =

Z ë
g

ë
g0

Kr · dr (12)

=
1

2
(
ë
g �ë

g0)
T
K(

ë
g �ë

g0) (13)

Remember that ëg0 is dependent on the actuator config-
uration q. We will now use the Adjoint mapping between
actuator twist-vectors to derive our equilibrium model.

The total elastic energy stored within a manipulator is
the sum of the elastic energy stored in each actuator. For a
manipulator with n actuators, using Eqn. 13 we can express
the total energy as:

UT =
nX

i=1

Ui =
1

2

nX

i=1

(
ë
gi �

ë
g0i)

T
K(

ë
gi �

ë
g0i) (14)

Using Eqn. 10, we can then represent each actuator’s twist-
vector ëgi in terms of the base-curve twist-vector:

UT =
1

2

nX

i=1

(Ad-1
oi
ë
go �

ë
g0i)

T
K(Ad-1

oi
ë
go �

ë
g0i)

Expanding the quadratics gives:

UT =
1

2

nX

i=1

(
ë
g
T
o Ad-T

oiKAd-1
oi
ë
go � 2

ë
g
T
o Ad-T

oiK
ë
g0i +

ë
g
T
0iK

ë
g0i)

Recall that the reference twist-vector ë
g0i for each

rod is a function of its configuration qi, where ë
g0i =⇥

l(qi) 0 0 0 0 0
⇤T

= l(qi)e1 and e1 is the first basis
vector. The equilibrium base-curve twist-vector ë

g
⇤
o is the

collective actuator configuration where the gradient of the
elastic energy is the zero vector. Taking the gradient, setting
it to zero, and solving for ëg⇤o gives the following:

rUT =
nX

i=1

(Ad-T
oiKAd-1

oi
ë
g
⇤
o � Ad-T

oiK
ë
g0i) = 0

)
nX

i=1

Ad-T
oiKAd-1

oi
ë
g
⇤
o =

nX

i=1

Ad-T
oiKe1l(qi)

The ë
g
⇤
o in the LHS of the above equation can be factored

out of the sum. The RHS equation can be simplified by
noting that it is a linear combination with each l(qi) ele-
ment. Combining each l(qi) element into a vector gives the
following:

nX

i=1

(Ad-T
oiKAd-1

oi)
ë
g
⇤
o =

⇥
Ad-T

o1Ke1 Ad-T
o2Ke1 . . . Ad-T

onKe1
⇤

2

6664

l(q1)
l(q2)

...
l(qn)

3

7775
(15)

Using A =
Pn

i=1(Ad-T
oiKAd-1

oi) as the sum of the
Adjoints scaled with elastic constants, the matrix D =⇥
Ad-T

o1Ke1 Ad-T
o2Ke1 . . . Ad-T

onKe1
⇤
, and vector l =⇥

l(q1) l(q2) . . . l(qn)
⇤T as the vector of actuator neu-

tral lengths dependent on pressure, we can represent Eqn. 15
in compact matrix form:

A
ë
g
⇤
o = Dl (16)

As a final step, the neutral configuration can be solved for
by taking the pseudo-inverse of A:

ë
g
⇤
o = A+Dl (17)

This concludes our derivation of our simplified rod model
for the equilibrium configuration of an unloaded constant
twist manipulator.

A. Example In Coordinates

We now provide the coordinate representation of our
model of a two-actuator planar arm with width 2d. Since
the planar arm exists entirely in two dimensions, we embed
the model in SE(2). By using the SE(2) twist-vector form
ë
g =

⇥
� � 

⇤
respectively containing length, shear, and
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curvature, and the SE(2) Adjoint as derived in [11], Eqn.
16 takes on the following form:

2

4
2K✏ 0 0
0 2K� 0
0 0 2K + 2K✏d

2

3

5

2

4
�

�

!

3

5 = K✏

2

4
1 1
0 0
�d �d

3

5

l(q1)
l(q2)

�

(18)
While the above equation is in terms of lengths � and l(qi),

once converted to be in terms of strain our model becomes
equivalent to that of [9]. Our model further generalizes
between manipulator designs, and crucially is able to predict
how the overall manipulator bending stiffness 2K+2K✏d

2

changes with manipulator width - left experimentally deter-
mined in [9]. As that work was performed on cable-driven
manipulators while ours is with pneumatic ones, our model
generalizes to manipulators with different types of actuation.

V. EXPERIMENT RESULTS
We now describe the setup, methodology, and results of

validating our constant-twist equilibrium model on planar,
spatial, and helical arms. We first describe the construction
of our three manipulators with adjustable dimensions. We
then outline the procedure of each experiment, as well as the
parameter characterization process. Finally, we present the
experiment results, concluded by a discussion of the sources
of error.

A. Manipulator Construction

Individual actuators were constructed as in [4]: using latex
tubes (McMaster 5234K51) and polyester sleeving (McMas-
ter 9284K614), with an effective length of 460mm. These
actuators were mounted to three different types of actuator-
separators to form our array of manipulators. Constraining a
constant distance between two muscles creates a planar arm
capable of purely planar bending. A spatial arm which can
bend in three dimensions is created by adding a third muscle
to form a radial arrangement. Finally, tilting the actuator
mount relative to the separator creates a pitch, and thus a
helical arm that both bends and twists. Pictures of the three
actuators can be found in Fig. 1.

In all manipulators, the muscles were held in place by
clamps which constrained their position but allowed them
to rotate in place. These clamps were then rigidly attached
to muscle separators with adjustable mounting positions,
enabling the effective width or diameter of the arms to
be easily reconfigured. The planar arm was tested with
widths (planar diameter) of 50.8mm, 76.2mm, and 101.6mm.
The spatial arm was tested with diameters of 50.8mm and
101.6mm. The helical arm was only tested at a diameter of
50.8mm.

B. Experiment Procedure

Laminated Apriltag [12] fiducial markers were first at-
tached to the manipulators using adhesive putty to enable
motion capture. The experiments were then conducted as a
series of static measurements. Using a bicycle pump, the
manipulator was inflated to a desired pressure, which was
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Fig. 3: Fitted artificial muscle free-contraction line.

maintained constant by an inline pressure regulator. Then,
with a Logitech c920 webcam, we capture video footage
of the fiducials which we later localize using TagSLAM
[13]. Finally, the twist-vector ë

go of the manipulator base-
curve is fitted based on the measured tag positions through a
nonlinear optimization solved with Matlab’s fminsearch
function. Between three to five such captures are performed
for each muscle inflation pressure, and their median is taken
as the final result.

The pressure regulator was tested to be accurate to
within 5kPa. Individual Apriltag localization accuracy with
TagSLAM was tested to be accurate to within ±0.01 m for
position, and ±3 degrees for orientation. We did not perform
a benchmark for the full curve-fitting algorithm.

C. System Characterization

Our equilibrium model is characterized by two sets of
parameters. The first is the mapping from muscle inflation
pressure to neutral length l(q), which we refer to as the free-
contraction model. The second parameter is the individual
muscle stiffness matrix K.

The contraction model was experimentally measured by
inflating a single unladen muscle to various pressures within
our activation range and measuring its length. As in [8], we
then fit a fifth-order polynomial over the measured values to
arrive at our fitted model. The results can be seen in Figure
3.

For the muscle stiffness matrix K, appropriate assump-
tions help simplify the full matrix to a single value: the ratio
of strain stiffness K✏ to bending stiffness K. First, because
the muscles are not actually rigidly clamped to the separators
and instead are allowed to rotate in place, we assume the
effective torsional stiffness K⌧ of a single muscle is 0.
Second, we assume the muscles experience zero shearing,
and thus have infinite shearing stiffness K� ; in practice,
we’ve found that using any shearing stiffness K� more than
ten times the strain stiffness K✏ had the same effect. Finally,
we note that in equation 15 any scale factor of K would
cancel each other out; we can therefore eliminate K✏ by
normalizing K with K✏, and just consider the normalized
bending stiffness K̄ = K/K✏. To recap, our final stiffness
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Fig. 4: Planar (Top), and Spatial (Bottom) arm model accuracy for a range of arm diameters. Left: Model vs.
experimentally measured length-scaled curvature, which for a 2D arm is equivalent to the bending angle. Right: Manipulator
tip position error normalized by the length of the manipulator.

matrix is therefore K = diag(1, 10, 10, 0, 0, K̄). Recall
the units of K✏ and K� are [N], and the units of K⌧ and
K are [Nm2].

In practice, our value for K̄ is taken as the value that
minimizes tip position error for a single calibration dataset.
This value is then used for all other datasets.

D. Model Accuracy

We reiterate that the model in all following tests are
parameterized by the same stiffness matrix K and contraction
model l(q).

For each type of manipulator tested, we provide two
metrics. The first is the accuracy of the arc-length-scaled-
curvature over pressure, which we directly get through the
corresponding component in the base-cure twist-vector. The
authors of [8] used the same metric but with the true-
curvature. The second is the tip position error: the difference
between predicted and measured positions of the manipulator
tips, normalized by the actuator’s length. This metric is used
in [5].

Figures 4 shows the experiment results of a two-muscle
planar and a three-muscle spatial arm at all dimensions
tested. For each arm a single muscle was actuated to induce
a planar bending. The bending plane was oriented such that
the arms were evenly supported by a flat tabletop at all times,
eliminating the effects of gravity.

Fig. 5: Snapshots from helical arm experiment. Expected
(dashed) vs. measured (solid) geometry. Left to right: red
muscle inflated at 103kPa, 241kPa, and 345kPa. Note that
as in Fig. 1, these helical arms are hanging.

Unlike the planar and spatial arms, helical arm bending is
not relegated to a single bending plane. Thus, the effects of
gravity could not be prevented, and there are now also two
curvature components to consider: the X- and Z-curvature.
Fig. 6 shows the model accuracy results from actuating a
helical arm, where the model has less than 6% normalized
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Fig. 6: Helical arm results model accuracy results. Left: Model vs. experimentally measured X- and Z-curvature over
pressure. Right: Same as before - manipulator tip position error normalized by the length of the manipulator.

tip position error at maximum inflation..
Prior works on helical manipulators also considered the

helix winding radius and helix pitch error. At maximum
inflation (380kpa), we measured a winding radius error of
4%, and a pitch error of 16%.

E. Sources of Error

The largest sources of error were external forces such as
gravity and friction with the table, which were most promi-
nent at lower pressures. This can be seen in the planar and
helical dataset tip position error trends. Our use of TagSLAM
and manually attached Apriltags also introduced error to
each tag’s position estimate. Finally, our assumption of zero
torsional stiffness is likely the cause of the incorrectly-
trending x-curvature in Fig. 6. This can be accounted for
in future experiments by actuator mounts that prevent them
from rotating in-place, as done in [8].

VI. CONCLUSION
In this work, we presented a linear kinematics model that

generalizes across all constant curvature and twist manipu-
lators. Using these kinematics, we derived a physics-based
mechanics model that is analogous to traditional robot for-
ward kinematics, and generalizes across multiple manipulator
designs without the need for re-parameterization. This model
was implemented and tested for a wide array of manipulators,
and showed less than 10% of error when using a single
characterization across all designs.

We are excited for future work that applies this model
to planning and control of constant twist manipulators that
fully exploit the linear forward and inverse kinematics.
Future theoretical work includes extending the model to
encompass external loading while maintaining simplicity;
incorporating the novel kinematics to derive constant-twist
dynamics rather than statics; and extending the embedding
group to Similarity or Affine space to encompass tapering
and shearing manipulator designs.
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