
20

Temporal Geo-Social Personalized Keyword Search
Over Streaming Data

ABDULAZIZ ALMASLUKH, King Saud University, Riyadh, Saudi Arabia
YUNFAN KANG and AMR MAGDY, University of California, Riverside

The unprecedented rise of social media platforms, combined with location-aware technologies, has led to
continuously producing a signi!cant amount of geo-social data that "ows as a user-generated data stream.
This data has been exploited in several important use cases in various application domains. This article sup-
ports geo-social personalized queries in streaming data environments. We de!ne temporal geo-social queries
that provide users with real-time personalized answers based on their social graph. The new queries allow
incorporating keyword search to get personalized results that are relevant to certain topics. To e#ciently
support these queries, we propose an indexing framework that provides lightweight and e$ective real-time
indexing to digest geo-social data in real time. The framework distinguishes highly dynamic data from rela-
tively stable data and uses appropriate data structures and a storage tier for each. Based on this framework,
we propose a novel geo-social index and adopt two baseline indexes to support the addressed queries. The
query processor then employs di$erent types of pruning to e#ciently access the index content and provide
a real-time query response. The extensive experimental evaluation based on real datasets has shown the su-
periority of our proposed techniques to index real-time data and provide low-latency queries compared to
existing competitors.

CCS Concepts: • Information systems→Multidimensional range search; Stream management; Data
streaming; Query operators;

Additional Key Words and Phrases: Spatial, temporal, geo-social, real-time, indexing, query processing

ACM Reference format:
Abdulaziz Almaslukh, Yunfan Kang, and Amr Magdy. 2021. Temporal Geo-Social Personalized Keyword
Search Over Streaming Data. ACM Trans. Spatial Algorithms Syst. 7, 4, Article 20 (August 2021), 28 pages.
https://doi.org/10.1145/3473006

1 INTRODUCTION
The unprecedented popularity of online social media platforms over the past decade combined
with the availability of location information through GPS-equipped devices has led to signi!cant

Abdulaziz Almaslukh work has been performed while the author was at the University of California, Riverside.
This work is partially supported by the National Science Foundation, USA, under grants IIS-1849971, SES-1831615, and
CNS-2031418.
Authors’ addresses: A. Almaslukh, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi
Arabia; email: aalmaslukh@ksu.edu.sa; Y. Kang and A. Magdy, Department of Computer Science and Engineering, Center
for Geospatial Sciences, University of California, Riverside; emails: ykang040@ucr.edu, amr@cs.ucr.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2374-0353/2021/08-ART20 $15.00
https://doi.org/10.1145/3473006

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

https://doi.org/10.1145/3473006
mailto:permissions@acm.org
https://doi.org/10.1145/3473006
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3473006&domain=pdf&date_stamp=2021-08-16

20:2 A. Almaslukh et al.

attention for supporting geo-social queries at scale [6, 7, 16] in order to serve applications e#-
ciently on such big data. These queries are used in various applications and services such as social
recommendations [9, 40, 49], community and event detection [11, 24, 46], and urban planning [20].
A major category of these queries is personalized search queries that use the social information to
tailor the query answer per the issuing user. For example, a user who is concerned about COVID-
19 infections in her social circle wants to !nd recent posts that contain coronavirus or COVID-19
keywords from her friends in the city of Los Angeles, California. To allow !nding recent posts at
a !ne temporal granularity, it is required to manage geo-social data as a data stream. In fact, the
modern geo-social data has a streaming nature due to the large number of its data items that arrive
every second around the clock. Latest assessments estimate Twitter to receive approximately 8,500
tweets/second [22] while Facebook posts are even an order of magnitude larger in size [17, 22]. This
streaming nature has already motivated several streaming queries on this data, such as keyword
queries [3, 30, 42], spatial queries [29, 32], and social queries [27, 35], with plenty of applications.
Although several geo-social queries, including keyword predicates, have been addressed in the lit-
erature [6, 7, 16, 23, 26, 44, 50], querying streaming data combining social, geographical location,
and textual information is still an unaddressed challenge.

Geo-social queries have got a little attention in the streaming environments although several ap-
plications that are powered by these queries will signi!cantly bene!t from the real-time nature of
geo-social data, e.g., providing real-time search on friends’ posts during emergency situations and
detecting real-time events based on friends’ updates. In such streaming environments, hundreds
of millions of items arrive at high pace every day, which puts major challenges on real-time index-
ing and query processing based on social, geographical, and textual information. These challenges
include sustainable digestion of new data in real-time index structures and exploiting the social
information, which is usually complex in structure and huge in size, to serve incoming queries
that have certain locations of interest. State-of-the-art techniques [8, 26, 38, 39] are still limited
to address these challenges, either for ine#cient indexing for real-time data or ine#cient query
processing navigating highly complex graph structures, which limits using streaming geo-social
textual information in scalable applications.

This article introduces scalable real-time indexing and query processing for geo-social person-
alized search queries over streaming data. The index and query processing design are made to
support e#cient snapshot queries and can be used as an e#cient initial phase for continuous
querying modules. We !rst de!ne two queries that combine three aspects: spatial, temporal, and
the social connectivity between users. They are socio-temporal extensions of the two fundamental
spatial queries, range query and k-nearest-neighbor query, to e$ectively serve the streaming
data applications that are timely by nature. An example of such queries is to “!nd what my
friends/friends-of-friends have recently posted in Los Angeles”, where a spatial range encapsulates
Los Angeles city boundaries, or “!nd what my friends/friends-of-friends post now nearby Tampa,
Florida” in case of hurricane emergency. Such queries are obviously useful for various applica-
tions that make use of personalized real-time content, such as improving emergency response
by involving the close social circle of individuals or getting personalized recommendations from
friends. To limit the query answer to the top relevant items, the queries use ranking functions
based on timestamp and discrete social distance, similar in spirit to hop count, to retrieve only
the top-k items that satisfy the query predicates. We further extend these queries to incorporate
the textual aspect. The extended queries take a set of keywords as input and produce objects that
only contain one or more of these keywords. An example of extended keyword search queries
could be “!nd what my friends/friends-of-friends post now about coronavirus or COVID-19 nearby
Los Angeles” where “coronavirus or COVID-19” serves as the keyword set to further !lter out the
most textually relevant to such a pandemic disease.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:3

In support of these queries in real time, we propose a geo-social indexing framework that dis-
tinguishes highly streaming data from relatively stable data. Then, it employs memory-based light
indexing for incoming streams and disk-based indexing for stable data. Based on this framework,
we propose novel geo-social indexes that e$ectively organize real-time data for e#cient query-
ing based on either pure temporal aspect or combining temporal and textual aspects. The indexes
consist of three components: an in-memory spatio-temporal index, an in-disk social index, and
an in-memory bu$er. During query processing, both in-memory and in-disk data are combined to
retrieve relevant data from direct friends in the social graph. If the retrieved data items are less
than k , then the query search expands to search indirect friends at one or more levels of social
expansions to retrieve the !nal top-k answer. Due to the awareness of social aspect, the query
processor smartly prunes the search space based on social connectivity in addition to spatial, tem-
poral, and textual information. Such multi-dimensional pruning signi!cantly reduces the query
response time and reduces contention on the real-time index structure to maintain high real-time
data digestion rates.

This work is a signi!cant extension from our previous work [4] to enable keyword search on
geo-social streaming data. The extension adds a new query predicate to the original queries def-
initions. The new predicate takes a set of keywords to produce output that only contains one or
more of these keywords. Supporting such new predicate by trivially extending the query proces-
sor to employ a keyword !lter after getting the results provides unacceptable performance. Such
simple !ltering leads to processing signi!cantly large number of objects to produce an answer
of size k , where k is relatively small. Consequently, keyword support must be inherent in both
indexing and query processing modules to enable e#cient keyword search. This leads to radical
extensions to di$erent modules of this work, both indexing and query processor. Extending these
modules is challenging and have di$erent considerations and trade-o$s. For example, existing in-
dexes already have three-dimensional structures to e#ciently handle spatial, temporal, and social
aspects of the data. So, it is not clear if adding the textual within the same structure provides
reasonable trade-o$ between indexing e#ciency in real time and fast query processing. In nut-
shell, this new query predicate introduces several technical challenges to be supported e#ciently
through existing indexing and query processing. Thus, this extended work addresses these chal-
lenges to enable e#cient keyword search on geo-social streaming data in real time. Our extended
experimental evaluation studies tradeo$s of using existing modules versus the newly proposed
extensions.

The extensive experimental evaluation of our proposed techniques on real datasets has shown
superiority over competitor techniques that are incorporated from the literature. Using a single
machine setting, our indexes can digest up to 220K object/second of streaming data while providing
an order of milliseconds query latency for both average and 99% of the queries. In addition, the in-
memory component of our proposed indexes consistently maintains low memory usage compared
to competitor techniques. Our contributions in this article can be summarized as follows:
• We extend the fundamental spatial queries to de!ne temporal geo-social personalized search

queries that retrieve data objects based on spatial, temporal, and social predicates on stream-
ing data in real time.
• We further extend the temporal geo-social personalized search queries to enable keyword

search in real time.
• We propose a novel real-time indexing framework that e#ciently digests geo-social stream-

ing data based on di$erent attributes.
• We study various considerations and tradeo$s of instantiating the indexing framework for

di$erent attribute combinations on real-time indexing.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:4 A. Almaslukh et al.

• We develop query processing techniques that exploit the index content and further prune
the search space to provide low query latency.
• We extensively evaluate the proposed techniques compared to existing competitors on real

Twitter datasets showing their superiority and e$ectiveness for streaming environments.
The rest of this article is organized as follows: Section 2 presents the related work. Section 3

presents the problem de!nition. Sections 4 and 5 detail the proposed geo-social indexing and query
processing techniques. Section 6 provides an extensive experimental evaluation. Finally, Section 7
concludes the article.

2 RELATED WORK
There is no current research work that addresses geo-social queries on user-generated streaming
data in real time to the best of our knowledge. However, social-aware queries are supported inde-
pendently on both spatial user-generated data and streaming user-generated data in the literature.
This section covers this literature and distinguishes it from our proposed work.

Queries on User-Generated Streaming Data. User-generated streaming data has received signi!-
cant attention over the past few years due to the popularity of online social media platforms and
similar online services. In addition to continuous queries [34, 42] that were the only foci of tra-
ditional machine-generated streaming data, user-generated streaming data has been exploited for
various applications and snapshot queries, such as geo-textual queries [3, 12–14, 25, 30], location-
based search [8, 10, 32], trend detection [1, 18, 36], time-sensitive recommendations [47], and news
and topic extraction [19, 37, 43]. In this literature, the spatial and social aspects of the queries
are addressed independently. So, geo-textual queries (e.g.,[3], [12], [13], [14], [25], and [30]), and
location-based search queries (e.g., [8], [10], and [32]) do not support any social or personalized
aspect, and personalized queries (e.g., [26]) do not consider the spatial dimension. A recent attempt
to combine both spatial and social dimension is proposed in [38]. However, their solution creates
a complete disk-based spatial index for each user, which is extremely expensive for streaming data
and cannot even scale to be a baseline approach to compare with. Our work distinguishes itself
from existing techniques to be the !rst to combine both spatial and social aspects in one query
while considering streaming environments and a keyword search for both lightweight real-time
indexing and e#cient query processing. This was not addressed by any of the existing techniques.

Social Queries on Spatial Data. Due to the importance and various applications that bene!t from
combining social and spatial aspects, several researchers have recently developed indexing and
query processing techniques for di$erent geo-social queries (e.g., [2], [6], [7], [16], [35], and [50]).
This includes recommending POIs [2, 39, 40, 48, 49], !nding cliques [21, 28, 45], !nding top-k
spatial-keyword objects [2, 44], and !nding top-k in"uential users [2, 23]. Some of the works (e.g.,
[2], [35], [44], and [50]) support geo-social keyword search queries. However, none of these tech-
niques address geo-social personalized search queries on streaming data. Thus, our work is distin-
guished from all existing techniques in multiple ways. First, we are the !rst to extend geo-social
queries and geo-social keyword queries with the temporal aspect due to the nature of streaming
data that is the main focus of this article. Second, we are the !rst to consider lightweight real-time
indexing and query processing for geo-social data. This real-time aspect of the streaming environ-
ment puts signi!cant overhead on both indexing and query processing, which cannot be handled
by any of the existing techniques.

3 PROBLEM DEFINITION
We evaluate the geo-social queries on a streaming datasetD that consists of geo-social objects. Each
object o ∈ D is represented with the four main attributes (uid , loc , keywords , timestamp), where

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:5

Table 1. Content of Objects in Figure 1

UID OID Keywords Timestamp
u1 o1 Fantastic, Comeback, Play 05-08-2021 20:18:30
u2 o2 Love, Pineapple, Pizza 05-08-2021 20:18:27
u3 o3 Sunny, Day, Good, Running 05-08-2021 20:18:23
u1 o4 Freeway, Tra#c, Bad 05-08-2021 20:18:19
u4 o5 University, Graduation 05-08-2021 20:18:17
u2 o6 USA, Japan, Summit 05-08-2021 20:18:14
u5 o7 Airport, Flight, Time, Ready 05-08-2021 20:18:09
u6 o8 NBA, Lakers, LeBron 05-08-2021 20:18:06

Fig. 1. Spatial !adtree (SQ).

uid is the identi!er of user who posted this object, loc is the location where the object is posted
in the two-dimensional space represented with latitude/longitude coordinates, keywords is the set
of keywords extracted from the textual content of the object, and timestamp is the time when the
user posts the object. DT is a snapshot of the dataset D at time T , so every object o ∈ DT has
o.timestamp ≤ T . Table 1 shows a sample of the dataset that consists of eight objects. Each object,
identi!ed by oid , is composed of a user id who posted the object, a set of keywords that represent
the textual content, a timestamp, and located in the space as shown in Figure 1. In addition, the
social connectivity between the users is represented as a hashtable where the <key,value> pair
is <user id, list of friend ids>. The social network and the hashtable of the sample are shown in
Figure 2. Each entry of the hashtable consists of the given user id as the key, and the list of user’s
friends ids as the value. We can easily navigate from a user’s friends to the friends of friends
by expanding the immediate friends and retrieving their friends. This process can be repeated to
navigate to higher levels of the social graph. The simplicity of representation and navigation of
the social graph helps the query processors to achieve high query throughput, especially in a tight
streaming environment.

The two fundamental spatial queries, in particular range query and k-nearest neighbor, that are
common in the literature have been extended to support temporal geo-social aspects in this work.
The query de!nitions of the two extended queries are as follows:

De!nition 1 (Spatial-Social Temporal Range Query (SSTRQ)). Given q = <user u, spatial range R,
integer k , and timestampT>, and DT that is a snapshot of the dataset D at timeT , SSTRQ retrieves
the most recent k objects oi ∈ DT , 1 ≤ i ≤ k , that are posted within R and are posted by u’s friends
or friends of friends based on a discrete social distance.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:6 A. Almaslukh et al.

Fig. 2. Example of in-disk social structure.

The k objects are ranked based on time to retrieve the most recent objects in DT from u’s direct
friends. Because of the overwhelming number of objects, settingk value helps to provide users with
the most relevant objects, which makes the answer useful. In addition, limiting answer size to k
objects helps to prune the search space. This still serves all applications as it provides the "exibility
to adjust the value of k based on the interest of the application to retrieve more results. If q fails to
retrieve all k objects from u’s friends, the search is expanded to u’s friends of friends recursively
to retrieve the rest of objects. So, the social relevance of objects in q answer are assessed based
on a discrete social distance that takes only integer values (1,2,3, etc.) and no fractional values in
between.

This enables scalable query processing on streaming data in real time as detailed in the following
sections:

Example 1. Given q1 = <u5,spatial range R, k = 2, T = 05-08-2021 20:18:30>, q1 is an SSTRQ
query that !nds the two most recent objects (k = 2) from u5’s friends or friends of friends that are
posted in the area R as shown in Figure 1. According to the hashtable in Figure 2, the only friend
u5 has followed is u4; hence, the only object o5 from u4 in Table 1 is included in the result. The
objects from the friends of u4, i.e., u2 and u6, are checked and the most recent object, o2, is added
to the result. As a result, the answer to the example query is {o5, o2}.

De!nition 2 (Spacial-Social Tamporal kNN Query (SSTkQ)). Given q = <user u, spatial point loca-
tion L, integer k , and timestamp T>, and DT that is a snapshot of the dataset D at time T , SSTkQ
retrieves top-k objects oi ∈ DT , 1 ≤ i ≤ k , that are posted by u’s friends or friends of friends, and
ranked based on a spatio-temporal distance Fα from L and T as follows:

Fα (o,q) = α × SpatialScore (o,q) + (1 − α) ×TemporalScore (o,q),

where α is a weighting parameter, 0 ≤ α ≤ 1, that weighs the relative importance of spatial and
temporal scores in the object proximity. SpatialScore and TemporalScore are de!ned as follows:

SpatialScore (o,q) =
distance (o.loc,q.L)

RMax

TemporalScore (o,q) =
q.T − o.timestamp

TMax
where RMax and TMax are the maximum allowed spatial and temporal ranges for any object, and
distance is the spatial distance between the object and the query locations in the Euclidean space.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:7

The social relevance is assessed using the same discrete social distance that is used in SSTRQ for
scalability on streaming data in real time.

Example 2. Given q2 = <u1,spatial point location o1.L, k = 1, T = 05-08-2021 20:18:30>, q2 is an
SSTkQ query that !nds the object o (k = 1) ranked by the ranking function Fα (o,q2) from u1’s
friends or friends of friends. As shown in the hashtable in Figure 2, the friend list of u1 is {u6, u4,
u3}. According to Table 1, the set of objects posted by the friends of u1 is {o3, o5, o8}. Because o3
is closer to the speci!ed location and is also newer than the other two objects, o3 gets the highest
SpatialScore and TemporalScore and hence is ranked the highest by Fα (o,q2). As a result, {o3} is
returned as the answer to the query.

The two queries are further extended to include keyword predicates. The extended queries are
formally de!ned as follows:

De!nition 3 (Spacial-Social Temporal Keyword Range Query (SSTRQKW)). Given q = <user u, spa-
tial range R, integer k , keyword set kw , and timestampT>, and DT that is a snapshot of the dataset
D at timeT , SSTRQKW retrieves the most recent k objects oi ∈ DT , 1 ≤ i ≤ k , that are posted within
R byu’s friends or friends of friends based on a discrete social distance and oi .keywords∩q.kw ! ϕ.

The k objects out of SSTRQKW are still ranked based on time to retrieve the most recent ob-
jects in DT from u’s direct friends. The social relevance is assessed using the same discrete social
distance that is used in SSTRQ. The new addition in SSTRQKW is the keyword predicate kw . This
predicate has a BooleanOR conjunction semantic for query keywords. If the keyword set kw of an
object oi contains at least one keyword in the query keyword set q.kw , oi is eligible to be included
in the !nal answer. Keyword similarity is based on exact string matching.

Example 3. Given q3 = <u5,spatial range R, k = 2, keyword set kw = {“Love”, “Watch”, “NBA”},
T = 05-08-2021 20:18:30>, q3 is a SSTRQKW query that retrieves the two most recent objects (k =
2) posted by the friends or the friends of friends of u5 containing at least one keyword in the kw
set in range R. Because the object o5 posted by the only friend of u5 from social distance 1 does
not contain any of the keywords, the search space is expanded to social level 2, i.e., the friends of
friends. Among the objects posted by the friends of u4, only the object o2 contains the keyword
“Love” and the object o8 contains the keyword “NBA”. As a result, {o5, o2} is returned as the top-k
results, k equals 2.

De!nition 4 (Spatial-social Temporal Keyword kNN Query (SSTkQKW)). Given q = <useru, spatial
point location L, integer k , keyword set kw , and timestamp T>, and DT that is a snapshot of the
dataset D at time T , SSTkQKW retrieves top-k objects oi ∈ DT , 1 ≤ i ≤ k , that are posted by u’s
friends or friends of friends, ranked based on a spatio-temporal distance Fα from L and T , and
oi .keywords ∩ q.kw ! ϕ.
Where Fα is the same ranking function that is detailed in the SSTkQ de!nition, the social relevance
is assessed in the same way as well. The new keyword predicate also has a BooleanOR conjunction
semantic for query keywords, so an object that has any of the keywords is eligible to be included
in the !nal answer.

Example 4. Given q4 = <u2,spatial point location o6.L, k = 1, keyword set kw = {“LeBron”,
“James”, “University”}, T = 05-08-2021 20:18:30>, q4 is a SSTkQKW query that !nd the highest
ranked object (k = 1) by the ranking function Fα (o,q4) from u2’s friends or friends of friends. The
list of friends foru2 is {u6,u4,u1,u3}, as shown in Figure 2. According to Table 1, the list of objects
from the friends of u2 is {o1, o3, o4, o5, o8}. Among the list of objects from the friends of u2, o5 con-
tains the keyword “University”, and o8 contains the keyword “LeBron”. Object o5 is ranked higher

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:8 A. Almaslukh et al.

than o8 by the ranking function Fα (o,q4) because o5 is posted closer to the location speci!ed by
the query and is also more recent than o8. Because the k is 1, {o5} is the result returned.

4 GEO-SOCIAL REAL-TIME INDEXING
This section presents geo-social data indexing in real time. This data is rich with spatial, temporal,
textual, and social information. The two main challenges in indexing such rich data in real time
are: (1) encoding the incoming information in highly scalable data structures that are e#cient
for insertions with tens of thousands of data objects each second and (2) removing old data from
the main memory to sustain digesting new incoming data objects at all times. Traditional insertion
procedures in spatial and social index structures incur signi!cant overhead that limits scalable data
digestion. In addition, straight forward deletion procedure that scan every index cell in di$erent
spatial regions or di$erent parts of the social graph to expel old data incur signi!cant overhead
that will also a$ect the indexing scalability in real time.

To address these challenges, we introduce a generic indexing framework (Section 4.1) that sep-
arates highly dynamic data from relatively-stable data, so real-time data structures are tailored to
digest only the needed information in real time to reduce both insertion and deletion overheads.
Based on this framework, we propose a scalable index (Section 4.2) that enables e#cient handling
for geo-social data in real time, and adapt two baseline index structures (Section 4.3) from the liter-
ature of spatial and spatial-social indexing. Finally, we extend the proposed index in two di$erent
ways to support the keyword queries more e#ciently (Section 4.4). The rest of this section details
the indexing framework as well as the !ve indexes.

4.1 Indexing Framework
The proposed indexing framework depends on the observation that incoming geo-social data ob-
jects are highly dynamic while the social graph information is relatively static. Each second, tens
of thousands of geo-social objects are "owing, which requires real-time digestion. These objects
are posted by hundreds of millions of users that are connected to each other with social bonds,
represented as a social graph. This social graph is not updated frequently compared to the geo-
social objects. In a real Twitter dataset, an active user posts, on average, seven tweets per day [41],
which leads to hundreds of millions of tweets every day. However, the number of new friends or
unfollowed friends are not even close to this daily number. It is usual not to accept new friends
or follow new people for several days, weeks, or even months. Consequently, the frequency of
updates in social graph information is way less than the incoming geo-social objects in real time.
Our indexing framework exploits this observation to dedicate the necessary resources to index
each type of data.

The proposed indexing framework consists of three components: (1) in-memory index that di-
gests streaming geo-social objects in real time, (2) in-disk index that organizes relatively stable
social graph information, and (3) in-memory bu$er that swaps social graph information from and
to the disk index. The in-memory index is equipped with optimized insertion and deletion tech-
niques that minimize the real-time overhead and is able to scale for handling streaming data. As
main-memory is a scarce resource, data cannot be digested in!nitely with excessive amounts and
have to be expelled to a secondary storage on a regular basis. For that reason, the in-memory index
employs a temporal durationTMax that indicates the maximum allowed past data to store.TMax is a
system parameter and can be adjusted by the administrators based on the available main-memory
resources and the streaming rates of incoming data.

The second component is an in-disk index that stores the social graph information. Two reasons
are behind storing this information on disk. First, the excessive size of this information consumes
signi!cant memory storage that is not frequently utilized, due to the long-tail distribution where

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:9

the majority of users are inactive in queries [31]. For example, a subset of our experimental Twitter
social graph with 3.3 million users consumes approximately 62.5 GB of main-memory as each user
has an average of 500 friends. Second, the relative stability of social graph information as discussed
earlier in this section. Because of this, the social graph index structure needs infrequent updates,
which is not challenging to be handled on the disk storage. However, for query processing, it is
ine#cient to visit the disk for every retrieval of a user friend list, especially for active users who
post frequent queries. This has motivated the third component of our indexing framework, which
is the in-memory bu$er for social graph information. This component acts like the database bu$er,
where certain disk pages are swapped in the main-memory bu$er from the disk index only when
needed. As disk pages keep accumulating in the bu$er, it becomes full and needs to evict some of its
content to swap in new pages. Eviction policies that are used for the bu$er are the same ones that
are studied in the literature of database bu$er management and operating system virtual memory.
We choose to use the famous least recently used (LRU) policy in our realization. However, other
policies could be used, based on the underlying application requirements.

4.2 SSQ Index
Based on the described framework in Section 4.1, we propose Spatial-Social Quadtree (SSQ) in-
dex for scalable real-time indexing of geo-social objects without recording the keyword sets. Con-
formed to the framework, the index has three components: an in-memory component for digesting
objects in real-time, a disk-resident component for the social graph indexing, and an in-memory
bu$er, as described in Section 4.1. This section describes the details of the index structures and
update operations for di$erent index components.

Index Structure. The in-memory component adopts a spatial quadtree [5] as a highly-scalable
space-partitioning index for real-time data digestion [33]. Spatial quadtree adapts with skewness
in spatial distribution and could adapt with dynamic data with low indexing cost in real-time. As
a space-partitioning index, it does not need heavy restructuring with changing its data content.
In addition, it allows the index cell split and merge operations to be modi!ed to reduce real-time
indexing overhead and scale up for high rates of real-time data as shown in [33].

An example of spatial quadtree is depicted in Figure 1 for eight geo-social objects that are pre-
sented in Table 1. The tree divides the space into multi-level disjoint cells that either have four
or zero children cells. An incoming object is located in the cell that contains its location. A cell is
divided into four quadrants only if the number of objects exceeds a speci!c cell capacity, which is
a system parameter that determines the tree height, so a small cell capacity leads to a deeper tree
while a large cell capacity generates a shallow tree. Only leaf nodes hold data objects, while in-
termediate nodes provide routing information. SSQ index extends the quadtree to be aware of the
user aspect of the spatial objects. Speci!cally, each leaf cell is equipped with a hash index structure
that organizes the cell’s objects based on the issuing users. This hash structure is light for real-time
digestion, and still provides e$ective pruning for the search space, based on the social information.
The hash structure uses the user id as a key and the value is a list of objects that are posted by
this user order, based on their timestamps. Including the social information within the spatial cell
signi!cantly helps the query processor to retrieve candidate objects that could potentially make it
to the !nal answer.

Figure 3(a) depicts an example of the SSQ in-memory index. The depicted index represents the
same set of objects that are depicted in Figure 1, and the same quadtree organization, with adding
the light hash structure to each leaf node that enables e$ective social-based pruning while sustains
high digestion rates in real time as veri!ed in our experimental evaluation.

The in-disk component of SSQ index stores the social graph represented by a set of adjacency
lists. Our social graph representation adopts the famous form that represents users as nodes and

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:10 A. Almaslukh et al.

Fig. 3. Structure of geo-social real-time indexes.

friendship relations as directed edges. The adjacency list representation stores this information as
a hash structure that uses the user id as a key and the list of friends as a value for each hash entry.
Figure 2 demonstrates an example for a social graph with six users, u1 to u6. Figure 2(a) shows the
high-level graph model for the social relations among the six users while Figure 2(b) shows the
adjacency list representation that is stored on the disk-resident index structure. The disk structure
consists of two parts, the data part and the index part. The data part stores consecutive blocks of
long integer lists that contain the user ids as depicted in Figure 2(b). The index part stores all the
distinct user ids, each user id is associated with a disk pointer to the block in which the user friend
list is stored. Compared to the data part, the index part is small in size and can be easily loaded
during the query processing for e#cient access of user information as described in Section 5.

To reduce the overhead of reading back and forth from the disk, the third component of SSQ
index is a dedicated in-memory bu$er that is utilized to store the retrieved user friend lists from
the disk for further recycling during future queries. The in-memory bu$er is a hash structure that
stores key-value pairs of user ids and friend lists, similar in format to the disk index from which
data is retrieved. When the in-memory bu$er is full, it adopts the LRU policy to free up content to
continue serving incoming queries.

Index Insertion. Insertion in both the in-disk component of SSQ index and its corresponding
bu$er adopts traditional one-by-one insertion due to the low insertion rates in the stable social
structure. On the contrary, the in-memory index component, that adopts a social-aware quadtree,
incurs an excessive insertion rate as tens of thousands of objects arrive every second. The
traditional insertion procedure, which navigates the tree hierarchy for each incoming object and
inserts it in the corresponding cell, does not scale enough to cope with such a high insertion rate.
To overcome this problem, we employ a batch insertion process that collects a few seconds worth
of data in a temporary bu$er and inserts them as one batch in the quadtree structure. During
the bu$ering, a minimum bounding rectangle (MBR) is maintained around the location of
incoming objects. Then, the MBR boundaries are compared to the index cell boundaries, instead
of comparing location of each object, and the tree navigation is performed based on this cheap
ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:11

comparison. With thousands of objects bu$ered, thousands of comparison operations are saved,
which signi!cantly boost the digestion performance and allows the index to ingest streaming
data with high arrival rates.

As the tolerable bu$ering delay depends on the underlying application, the bu$ering time is
adjustable by the system administrators to meet the application needs. The main motivating use
cases for our techniques work on streaming user-generated data, such as social media and other
content that is generated by human users online. In this context, a few seconds of delay is usually
tolerable. For example, when users search major social media platforms, the most recent results are
usually posted a few seconds ago. It is worth noting that the high rate of streaming data in these
applications enables a very small bu$ering delay while still bu$ering thousands of data items. So,
a typical bu$ering delay of 1-2 seconds is enough to enable scalable indexing in real time, which
is a reasonable delay that !ts most of the mainstream applications.

The index insertion and the queries can be handled concurrently while still maintaining high
real-time data ingestion through employing a single-writer-multiple-readers concurrency model
as detailed in [32] and [3]. This model is slightly modi!ed in this work to enable queries to expire
data that is beyond TMax time units as pointed out in index deletion below. The data that has the
potential for concurrent access from reader threads is already expired and removed from the index
shortly after, so they minimally a$ect the real-time index update operations.

The speculative cell-splitting module [33] is used to reduce insertion and query-processing time.
A leaf cell is split if it exceeds its capacity and the objects in the leaf cell will span at least two
quadrants.

Index Deletion. To sustain digesting incoming data in the scarce memory resources, the in-
memory index expels objects that are older than TMax time units ago to the disk, where TMax
is a system parameter that is based on the availability of memory resources and arrival rates of
the underlying streaming data. To expel this data, a straightforward way is to exhaustively iterate
over all index cells, either every few time units or when a certain memory budget !lls up, and
clean up all expired data objects that are older thanTMax . However, such exhaustive and frequent
cleaning process puts an overhead on real-time operations of the index. To avoid such overhead,
we employ a combination of regular and periodic cleaning processes that are lighter than the
exhaustive cleaning and still sustain memory consumption. The regular cleaning is piggybacked
on the real-time insertion and querying, so whenever an index cell is accessed for either insertion
or query processing, the accessed entries are checked for expired content to be expelled from
main-memory. This reduces the cleaning overhead as it shares the index traversal overhead with
the other operations.

This regular cleaning process does not guarantee to expel all the expired data proactively as
it depends on the spatial distributions of both data and queries, so some index cells might be
left without cleaning due to infrequent access to those cells. To address this, we employ a light
periodic cleaning that goes over all index cells every TMax time units. For each cell, if it is not
cleaned during the pastTMax time units, which means no insertions happened during this period,
all the cell content is wiped as all objects are expired. Otherwise, the cell is skipped. This process
is very light and mainly addresses cells that are infrequently accessed. In addition, it can be easily
invoked in a separate thread to reduce the contention over index cells in real time. We adopt the
lazy cell merging strategy to manage the leaf nodes after deletion. If a leaf node becomes empty
after the deletion, the siblings of the leaf node are examined. If two of the siblings are empty, the
content of the third sibling is moved to their parent node and the four leaf nodes are removed. The
lazy cell merging saves 90% of the split empirically and merge operations and reduces the index
update overhead signi!cantly. The details for the lazy cell merging is given in [33] and it is not
considered a novel contribution for this article.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:12 A. Almaslukh et al.

4.3 Baseline Indexes
In addition to our proposed SSQ index (Section 4.2), we adopt two baseline indexes based on
the proposed indexing framework that is described in Section 4.1. The two baseline indexes are
alternatives to address the supported queries based on existing techniques in the literature. The
two baseline indexes are Spatial Quadtree (SQ) and Tightly-Coupled Spatial-Social Quadtree
(TCSSQ). The rest of this section describes each index and highlights its di$erences compared to
the proposed SSQ index.

(1) Spatial Quadtree (SQ). This index has a similar structure to the SSQ index with the exception
of the in-memory index component that adopts a pure spatial quadtree structure without any
extended structures to organize the data based on the posting users. Figure 1 shows an example
of the spatial quadtree index. It is worth noting that all data objects in the leaf nodes are sorted
based on their arrival timestamp at no additional cost due to the nature of the streaming data
that comes ordered by time. For the index insertion and deletion, the same procedures that are
developed for SSQ index are used in SQ index with the exception of navigation the leaf nodes
content that does not have the hash structure anymore. So, inserted data are appended to a long
list of chronologically ordered objects, and all the cleaning processes are performed on the same
list, which reduces the real-time indexing overhead while increases the query processing overhead
as will be detailed in Sections 5 and 6.

(2) Tightly Coupled Spatial-Social Quadtree (TCSSQ). This index has a similar structure to the SSQ
index with the exception of the in-memory index component that includes extra user information
in all intermediate and leaf nodes of the quadtree structure instead of having a hash structure in
only leaf nodes. Speci!cally, each leaf nodeC has an additional list of usersC .Lu who posted in the
spatial region ofC . Then, the content ofC .Lu is replicated to the parent nodes up to the root node.
So, the root’s Lu has all the users who posted in any region, and each intermediate node has a list
of all users who posted in the sub-tree that is rooted in this intermediate node. This organization
is a modi!ed version of [44] that is suitable for real-time indexing. This is built based on the core
ideas of the IR-tree structure [15]. Figure 3(b) depicts an example of TCSSQ index for the eight
objects of Table 1. Each node, including root, intermediate, and leaf nodes, has an additional list
C .Lu of users who posted in the node C spatial region.

The additional user lists Lu a$ect the index insertions and deletions in real time. On insertion,
after the insertion procedure is performed in node C as described for SSQ index, the posting user
id uid is added to C .Lu . To this end, uid is searched in C .Lu using binary search. If uid does not
exist in C .Lu , it is inserted into the ordered list; otherwise, C .Lu remains intact. Then, the same
process repeats for parent nodes’ Lu until it propagates to the root node. On index deletion, object
deletions are performed for certain user entries in the node’s hash structure. For each user entry,
if the list of objects remains non-empty, i.e., there are still remaining objects for this user in the
node, C .Lu remains intact. On the contrary, if the list of objects becomes empty, i.e., the deleted
objects are the last objects for this user in the node, then the user id is removed from C .Lu . Then,
the removal checks are propagated to parent levels of the tree. ForC’s parent Lu , the three siblings
nodes ofC are checked. If uid exists in any of their Lu lists, then the parent’s Lu remains intact. If
uid does not exist in any of these lists, then uid is removed from the parent’s Lu , and the removal
check is propagated to the higher levels, up to the root node.

4.4 Keyword Indexing
This section presents the geo-social indexes that incorporate the keywords while indexing the
geo-social objects in order to process keyword-extended geo-social queries in streaming data en-
vironment e#ciently. First, we present Spatial-Social Quadtree Keyword (SSQKW), and then
Spatial-Social Quadtree 4D (SSQ4D).

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:13

Fig. 4. Geo-social keyword index structure for cell 6 based on Figure 3(a).

(1) Spatial-Social Quadtree Keyword (SSQKW). This index is adopted from Spatial-Social Quadtree
(SSQ) since the experiments have shown its superior performance compared with baseline indexes.
It has a di$erent index structure than the in-memory component while it has exactly the same
components of SSQ , including the in-disk and in-memory bu$er components. More speci!cally,
it attaches a hash index called the inverted keyword index for each leaf cell of SSQ in-memory
quadtree in order to prune the objects based on the keywords e$ectively. This makes each leaf
cell have two separate hash indexes; one for the social as in SSQ where the <key,value> pair is
<user id, list of friend ids>, and the additional one for the keywords where the <key,value> pair
is <keyword, list of objects>. The objects are organized based on the social information as in SSQ
and additionally based on the keywords. Therefore, the index structure helps the query processor
to signi!cantly reduce the query latency with minimal overhead on the digestion rate and the
memory resource. Figure 4(a) shows the index structure of SSQKW for a cell with two hash indexes.
The leaf cell has both the social information that represented with a hash index that organizes the
objects based on the issuing users and another hash index that indexes the objects based on the
keywords appeared in the objects. For insertion and deletion, the same procedures of SSQ detailed
in Section 4.2 are applied to maintain a high digestion rate for the new incoming data. However,
additional operations are needed to insert/remove the objects to/from the accompanying keyword
inverted index to be consistent with the user hash index. Any object inserted/removed to/from
the user hash index must be inserted/removed accordingly to/from the keywords hash index. So,
the object is being inserted into the posting user’s list of the user index and inserted also into
all keyword lists, which contain the object’s keywords, of the keyword index. Once the object is
removed from the user index, as being older thanTMax time units ago as detailed in Section 4.2, all
the lists of objects where the object’s keywords are the keys shall be retrieved in order to remove
the object in order to be synchronized with the user index.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:14 A. Almaslukh et al.

(2) Spatial-Social Quadtree 4D (SSQAD). SSQ4D is another index structure adopted from Spatial-
Social Quadtree (SSQ) that adds the keyword dimension di$erently to support the keyword queries
more e#ciently. Only the in-memory index structure is di$erent from SSQ while the other com-
ponents remain the same. At the leaf cell of SSQ tree, SSQ4D indexes the objects based on the
social information !rst, then for each indexed user u, u points to the inverted keyword list that
organizes the objects based on the keywords appeared in the objects. The hash index has the struc-
ture <key,value> where the key is the user id, and the value is another nested hash index where
the <key,value> pair is <keyword, list of objects>. In other words, each user u has her dedicated
inverted keyword index which is only indexing the objects that been posted by u in the given cell.
Thus, the query processor takes the advantage of the index structure to prune the objects spatially,
socially, and textually at the same time. Figure 4(b) depicts the index structure of SSQ4D for a cell.
The cell has the user index as the !rst level, and, for each user in the user index, has her own in-
verted keywords index as the second level. For insertion and deletion, SSQ4D follows similar steps
as SSQ detailed in Section 4.2, taking into account the objects are being indexed in a nested hash in-
dex based on the keywords. Thus, the object is being inserted into multiple entries of theu keyword
hash index based on the object keywords. When removing the object which is older thanTMax , all
entries of the user keyword hash index should be accessed to remove the object from these lists.

5 QUERY PROCESSING
This section details the query processing of the four queries that are de!ned in Section 3 exploiting
the proposed SSQ index, the baseline SQ and TCSSQ indexes, and the keyword-extended indexes
SSQKW and SSQ4D that are introduced in Section 4. In Section 5.1, we introduce a high-level query
processing framework that is generic for all indexes. Sections 5.2 and 5.3 detail the query pro-
cessing of SSTRQ and SSTkQ queries, respectively, without involving the textual features. Then,
Sections 5.4 and 5.5 explain the processing of SSTRQKW and SSTkQKW , respectively, in SQ, SSQ,
SSQKW , and SSQ4D .

5.1 !ery Processing Framework
Our query processor consists of two generic steps:

(1) Step 1: Given the user id uid of the query issuing user u, step 1 retrieves a list of friends
u .Lf that contains a set of user ids for u’s direct friends. To this end, the in-memory bu$er of
the social graph is checked with the key value uid . If it exists, u .Lf is directly retrieved from the
bu$er. Otherwise, the in-disk social index is accessed in a traditional way to retrieve u .Lf to the
in-memory bu$er. If the in-memory bu$er is full, the least recently used (LRU) replacement policy
is used to free up some of the bu$er content. Then, u .Lf is fed to step 2 of the query processor.

(2) Step 2: Given a list of friends Lf , that is retrieved in step 1, and spatio-temporal predicates, in
step 2, the query processor accesses the in-memory spatial index to retrieve the top-k objects based
on the query semantic and the underlying index structure. The speci!cs of this step is di$erent for
each <query, index> combination, as detailed in the rest of this section.

If the execution of these two steps retrieves k objects, then they are considered a !nal query
answer and returned to the user. If the computed answer has less than k , the search is expanded
recursively beyond u’s social level 1 (direct friends) to social level 2 (friends of friends) or higher
social levels until k objects are retrieved. To this end, the two steps are repeated for each user id
in Lf for expansion to social level 2, and the same repeats for higher social levels.

5.2 SSTRQ !ery Processing
This section details the speci!cs of step 2 of Section 5.1 for SSTRQ query. In this step, the query
processor retrieves the most recent k objects within a spatial region R, per the query de!nition,

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:15

that are posted by users in the friend list Lf that is computed in step 1. The rest of this section
details this procedure using SSQ, SQ, and TCSSQ indexes.

SSTRQ in SSQ Index. SSTRQ query is processed on three phases in SSQ index: (a) spatial retrieval,
(b) social !ltering, and (c) temporal pruning. First, the spatial retrieval phase navigates the quadtree
to retrieve the tree nodes that intersect with the query region R. Second, for each node, the social
!ltering phase accesses the hash index and retrieve lists of objects that are associated with user
ids in the friend list Lf . Each of these lists is ordered based on the timestamp due to the streaming
nature of incoming objects. Third, the retrieved lists are enqueued in a priority queueQ that orders
lists based on their most recent object. Then, the lists are traversed inQ order to compute an initial
answers Ans of k objects. Based on Ans , a temporal boundary Tk is computed as the timestamp
of the kth object in Ans . Any object older than Tk cannot be part of the !nal answer. So, Tk is
used as a temporal pruning boundary to process the rest of the objects in Q . In speci!c, each list
in Q is retrieved in order. Then, the list’s objects are traversed in time order. If the current object
o.timestamp < Tk , then o is added to Ans replacing the kth object, and Tk is updated. Otherwise,
o is skipped. Once we reach an object o.timestamp ≥ Tk , the rest of the list is pruned as no more
objects can make it to the !nal answer. This repeats for all lists in Q before Ans is returned as a
!nal query answer.

SSTRO in SQ Index. In SQ index, SSTRQ is processed using the !rst and third phases, spatial
retrieval and temporal pruning, that are used in SSQ index. As SQ index does not include any user
information, the social !ltering phase cannot be employed. So, the list of objects in each quadtree
node is scanned to select the objects associated with user ids in the friend list Lf and fed directly
to the temporal pruning phase that produces the !nal answer using the same procedure that is
described above.

SSTRQ in TCSSQ Index. In TCSSQ index, SSTRQ is processed using the same three phases
that are used in SSQ index, with an extended social !ltering phase. In particular, TCSSQ index
maintains extra user list information C .Lu in each quadtree node C . So, the social !ltering phase
goes through two stages. The !rst stage is intersecting the user friend list u .Lf with the node
user list C .Lu . If the intersection is empty, thenC and all its descendants are immediately pruned.
Otherwise, C is considered for the second stage that is exactly similar to the social !ltering phase
in SSQ index. The other two phases, spatial retrieval, and temporal pruning, remains identical to
the ones in SSQ index.

5.3 SSTkQ !ery Processing
This section details step 2 of the query processing framework that is presented in Section 5.1
for SSTkQ query. This query retrieves the closest k objects, based on a spatio-temporal distance
function Fα , nearby a point location L and relative to a query timestampT that are posted by users
in the friend list Lf that is computed in step 1, in accordance with the query de!nition in Section 3.
The rest of this section details the query processing using SSQ, SQ, and TCSSQ indexes.

SSTkQ in SSQ Index. SSTkQ query is processed on two phases in SSQ index: (a) computing initial
answer and (b) answer re!nement. The !rst phase navigates the quadtree structure to the tree node
C that contains the query location L. Then, initial k objects that are associated with users in the
friend list Lf are retrieved as an initial answer Ans . IfC has less than k objects posted by Lf users,
then neighbor nodes are checked until Ans has k objects.

The second phase uses the kth Fα score of the initial answer (namely, Fα,k) as a re!nement
boundary to compute the !nal answer Ans so any object with Fα ≥ Fα,k cannot make it to the
!nal answer. This could be done in a traditional way by visiting all nodes within the maximum
spatial rangeRMax and check objects that are associated withLf . However, with excessive amounts
of data, this could be very expensive and has high query latency. To compute the !nal answer

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:16 A. Almaslukh et al.

e#ciently, a spatio-temporal pruning procedure is employed to signi!cantly reduce the number
of checked objects. To this end, two pruning boundaries are calculated and updated throughout
the second phase based on the equation of Fα : a spatial boundary Ru and a temporal boundaryTu .
The spatial upper bound Ru is calculated by assuming zero temporal score in the spatio-temporal
ranking function, so Ru =

Fα ,k
α × Rmax . Similarly, the temporal upper bound Tu is calculated by

assuming zero spatial score in spatio-temporal ranking function, so Tu = q.time − Fα ,k
1−α × Tmax .

Any object or cell that are outside Ru andTu can be safely pruned. So, neighboring quadtree nodes
to location L are visited in spatial order with Ru , and objects of each node are checked as long as
they are within Tu . With each new object added to Ans , Fα,k is updated and then Ru and Tu are
updated accordingly. So, the pruning boundaries are continuously tightened, which reduces the
total number of checked objects and signi!cantly reduces the query latency. When all nodes and
objects within Ru and Tu are exhausted, Ans is returned as a !nal answer.

SSTkQ in SQ Index. In SQ index, SSTkQ is processed using the same two phases as in SSQ index
with exception to user !ltering in quadtree nodes. As SQ index does not include any user infor-
mation, the list of objects in each quadtree node is used as a whole and fully scanned for !ltering
objects that are posted by Lf users.

SSTkQ in TCSSQ Index. In TCSSQ index, SSTkQ is processed using the same two phases that
are used in SSQ index, with an extended user !ltering step. As the TCSSQ index maintains extra
user list information C .Lu in each quadtree node C , when a quadtree node is accessed, the user
friend list u .Lf is intersected with the node user list C .Lu . If the intersection is empty, then C and
all its descendants are immediately pruned. Otherwise, C is considered for further processing as
described in the two phases of SSQ index.

5.4 SSTRQKW !ery Processing
This section explains the query processing of SSTRQKW which includes the keywords as predicates
for the four indexes, SQ , SSQ , SSQKW , and SSQ4D . The query processor retrieves the most recent
k objects within a spatial region R, and the objects contain the keywords query. The candidate
objects are posted by friends of the query issuer.

SSTRQKW in SQ and SSQ Indexes. Since SQ and SSQ indexes do not support the keyword pruning
as the indexes are not aware of the presence of the keywords, we adopted the simple on-the-"y
keyword !ltering that examines the candidate objects for the presence of the given query key-
words. Speci!cally, objects that satisfy the spatial and social predicates are retrieved as detailed
in Section 5.2. Then, before the object is added to the answer list, the query processor checks for
the keywords’ presence by applying the on-the-"y keyword !lter. If any query keyword overlaps
with the object text, the query processor will add the object to the answer list to consider it for
further processing; otherwise, the object will not be selected.

SSTRQKW in SSQKW. The query processor generally follows the same phases as SSTRQ in SSQ,
which are detailed in Section 5.2 with some modi!cations. First, the query processor retrieves the
objects that contain the query keywords from the keyword inverted index. If there is no object
in the keyword index, the query processor stops processing the cell. Second, the query processor
performs the social !ltering to retrieve the objects that are posted by the query issuer’s friends and
exist in the list of objects that was retrieved from the keyword index from the previous step with
the same steps as SSQ query processor mentioned in Section 5.2. Thus, the objects will be added to
the initial answer Ans . The query processor will re!ne the initial answer Ans with the same logic
as in SSQ . This will expedite the process of retrieving the candidate objects that contain the query
keywords by exploiting the additional hash index for the keyword indexing.

SSTRQKW in SSQ4D. In SSQ4D , the query processor performs the same SSQ phases as detailed in
Section 5.2 with an additional phase called keyword !ltering. Instead of retrieving all objects from
ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:17

the given user, the query processor accesses the keyword inverted index that each user has and
retrieves objects that contain only the keywords query. Spatial and temporal pruning are employed
to prune objects that would not make it to the !nal answer in the same way detailed before.

5.5 SSTkQKW !ery Processing
This section explains the query processing of SSTkQKW which includes the keywords as predicates
for the four indexes. This query retrieves the closest k objects that contain the keywords query,
based on a spatio-temporal distance function explained in Section 3.

SSTkQKW in SQ and SSQ Indexes. The query processor is similar to the query processor of SQ
and SSQ explained in Section 5.3. However, on-the-"y keyword !ltering is employed to retrieve
objects that contain the keywords query similar to the way described in Section 5.4. Therefore,
any objects that did not pass the keyword !ltering will not be considered for the initial answer
list Ans .

SSTkQKW in SSQKW. The query processor retrieves the list of objects that contain the keywords
query by accessing the keyword hash index. Then, the query processor utilizes the underlying in-
dex structure to retrieve the objects, from the user hash index, that socially overlap with the query
issuer’s friends list and intersect with the list of objects which was obtained from the previous
step. The other steps and the pruning techniques are similar to the query processor of SSQ that is
explained in Section 5.3.

SSTkQKW in SSQ4D. In SSQ4D , the query processor performs similar steps as those detailed in
Section 5.3. However, the query processor does not retrieve all the objects. It retrieves only objects
that contain the keywords query by making the use of the keyword inverted index that is associated
with every user entry. The pruning techniques are similar to the SSQ query processor.

6 EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of geo-social real-time indexing and query
processing that are discussed in previous sections. Section 6.1 explains the experimental settings.
Sections 6.2–6.4 evaluate indexing scalability, memory consumption, and query evaluation,
respectively, for SSTRQ and SSTkQ queries. Section 6.5 gives the evaluation for the keyword
search queries SSTRQKW and SSTkQKW .

6.1 Experimental Setup
We evaluate the indexes that are discussed in Section 4 for indexing scalability, storage overhead,
and query processing. The proposed Spatial-Social Quadtree index is denoted as SSQ, its keyword
extensions denoted as SSQKW and SSQ4d , the baseline Spatial Quadtree index is denoted as SQ, and
the Tightly Coupled Spatial-Social Quadtree index is denoted as TCSSQ, a modi!ed version of [44]
for real-time operations. Our parameters include quadtree node size, dataset size, query answer size
k , query range, the space-time weighting parameter α , and the maximum allowed temporal range
TMax . Unless mentioned otherwise, the default node size is 2000, dataset size is 80 million objects,
k is 100, query range is 50 km, α is 0.2, RMax is 500 km, TMax is one day, number of keywords
is 2, and bu$er size is 500K entries. The two keywords are selected randomly from the keyword
set of the dataset for each keyword query. Our performance measures include index digestion rate
(the average number of indexed objects per second), index memory footprint, and query latency.
All experiments are based on Java 8 implementation and using an Intel Xeon(R) server with CPU
E5-2637 v4 (3.50 GHz) and 128-GB RAM running Ubuntu 16.04.

Evaluation Datasets and Query Workloads. We have collected 6+ billion geotagged tweets from
public Twitter Streaming APIs over the course of 5 years. Then, !ve datasets, of sizes 20, 40, 60,
80, and 100 million tweets, are composed for our evaluation. Each tweet is represented with a

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:18 A. Almaslukh et al.

Table 2. Evaluation Dataset Statistics

Dataset 20M 40M 60M 80M 100M
Users 3,379,403 4,589,750 5,323,808 5,862,339 6,319,263
Avg. Friends 531 513 504 497 492

Fig. 5. Indexing scalability.

latitude/longitude coordinates that represent either an exact location or a centroid of a place, e.g.,
a city or a landmark. Users of all tweets have been extracted from each of the !ve datasets. The data
includes only the number of friends of each user and not the actual friend list. Thus, we randomly
generate a list of friends for each user, where the majority are close to her location while the rest
are scattered around the world. Table 2 summarizes the number of users and the average number
of friends in each dataset. In order to generate the query workload, we randomly select a thousand
users, and their home locations are the query points. For keyword queries, a hundred users are
randomly selected and two keywords are randomly selected for a given user from her nearby home
location. A random word from the tweet textual content is associated as a keyword.

6.2 Indexing Scalability
This section evaluates the scalability of the real-time indexing measured as the number of objects
being digested in a second. Figure 5(a) shows the indexing scalability with di$erent quadtree node
size. SQ can digest on average 250K objects/sec which is the highest among the three indexes. SSQ
digestion rate is reduced to 210K objects/sec, due to incorporating social information in the index
structure, which still maintains 84% of SQ digestion rate and digests an order of magnitude higher
than the Twitter rate. On the other hand,TCSSQ has the lowest digestion rate of 100K objects/sec
due to the overhead of summarizing all sub-tree social information. It is though noticeable that
di$erent node sizes have no real impact on the digestion rate.

Figure 5(b) shows the impact of di$erent dataset sizes on the digestion rate. The digestion rate
slightly decreases when the number of objects increases for all indexes due to the larger index
contents, which makes it heavier to digest new data. However, the overall reduction is still accept-
able. For example, SSQ digests 220K objects/sec with 20 million objects and 190K objects/sec with
100 million objects, which represents 14% reduction of digestion rate and both are still an order of
magnitude higher than the Twitter rate.

6.3 Memory Consumption
Figure 6 shows the memory consumption for the three indexes with varying the quadtree node
size (Figure 6(a)) and varying dataset size (Figure 6(b)). Varying node size in Figure 6(a) does not
signi!cantly a$ect the memory consumption for all the three indexes despite an order of mag-
nitude higher node capacity, which leads to a signi!cantly lower number of index nodes. This

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:19

Fig. 6. Memory footprint.

shows the minor e$ect of the index nodes’ memory on storage overhead as the majority of mem-
ory consumed for data that is being stored inside the nodes. SQ consumes the lowest memory,
22 GB, while SSQ consumes a slightly higher memory resource, 24 GB, since the index structure
keeps more information about the social aspect. TCSSQ consumes the highest memory resource,
33 GB, with di$erent index node sizes. The additional social information ofTCSSQ index structure
increases the memory overhead by ∼50% of the baseline SQ index.

Varying the dataset size in Figure 6(b) a$ects the memory resources to be increased linearly for
all alternatives. For example, SSQ consumes 7 GB when the dataset size is 20 million objects, and,
when the dataset size triples, SSQ consumes 19 GB. The same pattern repeats for SQ and TCSSQ ,
where TCSSQ always consumes the largest memory. This also con!rms that the majority of the
memory resources are being consumed by the data that resides in the main-memory.

6.4 !ery Evaluation
This section evaluates the query processing of the Spatial-Social Temporal Range Query
(SSTRQ) and the Spatial-Social Temporal kNN Query (SSTkQ), named for the short range
query and the kNN query, respectively. The query latency is presented as an average and per-
centiles, e.g., the 99% percentile latency that shows the maximum query latency for 99% of the
queries.

(a) SSTRQ Query Evaluation:
E"ect of Varying k. Figure 7 shows the e$ect of varying k on range query latency, both in-

memory and disk processing. Figure 7(a) shows in-memory range query latency measured in mil-
liseconds (msec) for all alternatives. Generally, query latency increases with increasing k due to
the additional processing needed for getting a larger answer. However, the latency of TCSSQ is
signi!cantly higher than the other two alternatives. After monitoring the statistics, we !nd that
the average number of tree nodes visited per query is 175 in our query workload. TCSSQ checks
whether the friends list C .Lf of each visited node C intersects with the friends list u .Lf of the
given user u and prunes 55 nodes on average. Although the search space is reduced by more than
1/4 through social pruning, the social pruning leads to great overhead and causes the TCSSQ to
have much higher latency than the other two alternatives. As a result, even though this process is
e$ective in disk-based processing of traditional queries, in streaming environments, this process
increases the real-time overhead tremendously. As shown in the !gure, our proposed SSQ index
performs the best with 2-msec latency at k = 10, and increases to 25 msec at k = 1000. The SSQ
index combines both social-aware pruning and lightweight structure that is suitable for real-time
environments. The SQ index has no social awareness, so it is three times slower than the SSQ index
on average. It starts with 10-msec latency at k = 10, and it increases steadily to reach 65 msec at k =
1000. The superiority of the SSQ index is further con!rmed by measuring the 99th, 95th, and 90th

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:20 A. Almaslukh et al.

Fig. 7. Range query latency with varying k .

percentile latency as depicted in Figures 7(b), 7(c), and 7(d), respectively. SSQ constantly performs
the best in terms of query latency, and the advantage is even obvious in Figures 7(c) and 7(d).

Figure 7(e) shows the disk overhead to retrieve the users’ friends or friends of friends in order
to retrieve the k objects for the given user. All indexes need to access the disk to fetch the social
data. Therefore, all alternatives perform similarly, with increasing latency with larger k value, as
all indexes use the same disk-based social structure. The increase with k value is explained by the
percentage of the query being expanded beyond the !rst social level (direct friends) as shown in
Figure 7(f). The larger k , the less probability that direct friends can satisfy the query answer, and
hence expansion to higher social levels is necessary.

E"ect of Varying Query Range. Figure 8(a) shows the average query latency with varying query
range from 10 km to 300 km. SSQ index still performs the best among the other alternatives. Both
SQ and TCSSQ indexes have an increasing latency with the increasing range due to the larger
search space. On the contrary, the query latency of SSQ drops with increasing range. As SSQ
employs both temporal and social pruning, the more cells, the more recent initial answer, which
in turn produces a tight temporal upper bound. The temporal pruning uses this tight bound to
terminate processing very early in many cells. In addition, the social pruning enables us to process
only the posting lists that are socially connected to the query issuer, which prunes a signi!cant
number of objects that do not contribute to the answer. At the 10-km range, SSQ processes queries
with an average of 27-msec latency, while at the range of 300 km, this latency drops four times to
7 msec. On the other hand, SQ has an almost stable performance with varying ranges as it only
employs the temporal pruning, while TCSSQ performs the worst although it employs both the
temporal and social pruning for the same reasons that were discussed before. Figure 8(b)shows
the 99th percentile latency, which con!rms the superiority of SSQ over all alternatives.

Figures 8(c) and 8(d) show the correlation between disk overhead and the percentage of queries
being expanded to higher social levels. Clearly, the disk overhead decreases when the expansion
percentage decreases. With small spatial ranges, the probability to retrieve k objects from direct
friends is small, and hence the majority of queries expand. This signi!cantly decreases with in-
creasing range.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:21

Fig. 8. Range query latency with varying range query.

Fig. 9. Range query latency with varying TMax .

E"ect of Varying TMax. Figure 9 illustrates the e$ect of varying TMax on range query latency,
both in-memory and disk processing. Figure 9(f) shows the percentage of queries being expanded
to higher social levels with varyingTMax from 1 day to 5 days. Obviously, the expansion percentage
decreases with the increase of theTMax . WhenTMax increases, more data objects become available
in the main memory and the number of objects associated with each user increases on average.
As a result, it is easier to retrieve all the k results from the friends with social distance 1 without
expanding to higher social levels. Due to the reduction of the expansion to higher social levels
when TMax increases, the disk overhead is also reduced, as shown in Figure 9(e). The correlation

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:22 A. Almaslukh et al.

Fig. 10. kNN latency with varying k .

between disk overhead and the social expansion percentage is similar to the previous discussions.
Figure 9(a) shows the average query latency with varyingTMax . SSQ still performs the best among
the alternatives and TCSSQ is the worst when TMax is 1 day to 4 days for the same reasons that
were discussed before. Both SSQ andTCSSQ bene!t from the reduction of the social expansion rate
asTMax increases. The overhead for loading the social information to perform the search on higher
social levels is largely reduced and both alternatives have a decreasing average query latency when
TMax increases. However, the average query latency increases for SQ . When more objects become
available as TMax increases, the search space for SQ is increased because SQ cannot perform the
social pruning as the SSQ andTCSSQ do. The increase in the cost by the re!nement procedure for
SQ is more signi!cant than the bene!t introduced by the reduced social expansion rate. As a result,
the average query latency increases for SQ and it performs worse thanTCSSQ whenTMax is set to
5 days. The 99th, 95th, and 90th percentile query latency for the three alternatives in Figures 9(b),
9(c), and 9(d) show the same trend as the average query latency.

(b) SSTkQ Query Evaluation:
E"ect of Varying k. Figure 10(a) shows the in-memory query latency with varying k . SSQ in-

dex performs consistently better than the other alternatives due to its three-dimensional prun-
ing on temporal, spatial, and social dimensions. At k = 10, SSQ has an average query latency of
9 msec, which increases with larger k to 25 msec at k = 1000. This is !fty times better thanTCSSQ
due to its social pruning overhead that is not suitable for real-time processing. On the contrary,
SQ is slower three times compared to SSQ due to lack of social pruning. Such behavior remains
the same for the 99th percentile of queries, as shown in Figure 10(b), which shows the superi-
ority of SSQ in all cases. For the disk overhead, all alternatives incur almost the same latency
as shown in Figure 10(c) due to using the same disk structure. Also, the percentage of socially
expanded kNN queries, depicted in Figure 10(d), are much less than range queries since range
queries are restricted by a spatial range, which obligates to expand the search to higher social
levels often.

E"ect of Varying α . Figure 11(a) shows the e$ect of varying α that controls the relative impor-
tance of the spatial and temporal scores in the spatio-temporal distance. As the !gure shows, the

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:23

Fig. 11. kNN latency with varying α .

Fig. 12. kNN latency with varying TMax .

α value has a great impact on the query performance, especially for TCSSQ index. When only
the temporal score is important (at α = 0), all indexes hit their highest query latency because the
query processor has to cover a larger search region. With increasing α , the query latency gradu-
ally drops to the lowest point for all the indexes when only the spatial score is important (at α
= 1). For all values of α , SSQ performs the best, while TCSSQ performs the worst up to α < 0.6.
Then, TCSSQ performs better than SQ after α ≥ 0.6. The key reason behind this behavior is the
number of cells that need to be processed is huge with small α , andTCSSQ is very sensitive to the
number of cells as it checks for overlap with long user lists. This number decreases as the query
region shrinks due to the importance shifts to the spatial closeness. Figure 11(b) con!rms similar
behavior and SSQ superiority on the 99th percentile of queries. For di$erent values of α , the disk
overhead is almost stable (approximately 80 msec) for all alternatives except with α = 0 where
very few queries expand the search space, which makes the disk overhead very minimal with a
few milliseconds.

E"ect of Varying TMax . Figure 12(a) shows the average in-memory query latency with varying
TMax . As the !gure shows, SSQ performs better than the other alternatives whileTCSSQ performs
the worst. Query latency tend to increase for all three alternatives. AsTMax increases, the density of
the object increase both spatially and temporally. Although all three alternatives adopt the spatial

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:24 A. Almaslukh et al.

Fig. 13. Indexing overhead.

and temporal pruning technique and the search space is reduced to a large extent, more objects are
checked as the density of the objects increases. As a result, the average in-memory query latency
increases whenTMax increases. The 99th percentile query latency shown in Figure 12(b) con!rms a
similar trend. Figure 12(c) shows that the disk overhead is stable for all alternatives but the latency
caused by the disk overhead is not very low. This is because there are 0.8% to 0.9% failed queries for
all values ofTMax . In these rare cases, the social network stored on the disk is loaded for multiple
times until the queries fail after exploiting the search space. However, because there are only a few
failed queries, the percent of queries that are expanded to higher social levels is low for all TMax
values in accordance with Figure 12(d).

6.5 Keyword Search Evaluation
This section presents evaluation of geosocial keyword search on real-time indexing (SQ , SSQ ,
SSQKW , and SSQ4d) and query processing of the keyword-extended queries SSTRQKW and
SSTkQKW as discussed in previous sections. The evaluation focuses on the impact of the keywords
query on the digestion rate, memory consumption, and the query latency.

Digestion Rate and Memory Consumption. We evaluate the digestion rate and the memory con-
sumption for varying node sizes for geo-social keyword indexes. Figure 13(a) shows the diges-
tion rate for the four indexes. Clearly, SQ and SSQ digest more objects than SSQKW and SSQ4d
, since the former indexes do not take into account the overhead of indexing keywords. The
overhead of indexing keywords is still acceptable for real-time application as both indexes can
digest more than 160K and 170K objects/sec on average for SSQKW and SSQ4d , respectively.
Figure 13(b) shows the memory consumption of the indexes. SSQKW and SSQ4d consume the
highest memory resources with 37 GB and 33 GB, respectively. The node size does not signi!-
cantly a$ect the memory consumption as the data dominates the memory resources rather than the
underlying indexing structure.

Query Evaluation. We evaluate query processing of both extended queries using di$erent
indexes.

(a) SSTRQKW Query Evaluation. Figure 14 shows the the performance of the four indexes for
range query with keywords varying the spatial ranges. Figure 14(a) shows that SSQKW performs
slightly better than the other alternatives while SQ performs the worst, since the SQ index is not
aware of neither the social aspect nor the keyword dimension. This becomes obvious when the
spatial range increases when query latency of SQ increases signi!cantly while the other steadily
decreases. Both SSQ and SSQ4d perform about the same with varying spatial ranges in spite of the
fact that the latter is equipped with the keywords indexing. Nevertheless, the social !ltering and
the temporal pruning are the dominant factors for pruning. Figures 14(b) and 14(c) can draw the
same conclusion as Section 6.4 for range query processing without keywords. Figure 15 shows the

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:25

Fig. 14. Range query latency with varying range query.

Fig. 15. Range query latency with varying numbers of keywords.

Fig. 16. kNN latency with varying k .

impact of the number of keywords on the range query. Both Figure 15(a)and Figure 15(b) show a
general trend when the number of keywords is increasing, the query latency is decreasing along
with the social expansion. Therefore, the query processor can !nd the candidate objects quickly
with the increasing number of keywords.

(b) SSTkQKW Query Evaluation. Figure 16 depicts the kNN query latency performance for the
geo-social keyword indexes. Clearly, the indexes that are equipped with inverted keyword indexes
preform signi!cantly better than the indexes that are not aware of the keyword dimension as
shown in Figure 16(a). The di$erence becomes even more obvious when the k value increases.
More speci!cally, SSQKW and SSQ4d perform two times better on average than SQ and SSQ . Thus,
the keywords indexing e$ect is very obvious in the query processing as it gives an edge over the
indexes that do not support the keywords indexing. For the disk overhead and social expansion,
the same conclusions can be drawn as explained in Section 6.4 and as shown in Figures 16(b) and
16(c). Figure 17 shows the impact of the number of keywords on the kNN query. Both Figures 17(a)
and 17(b) show a similar pattern as the range query with increasing number of keywords.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

20:26 A. Almaslukh et al.

Fig. 17. kNN latency with varying numbers of keywords.

7 CONCLUSION
This article de!ned temporal geo-social queries on streaming data as extensions for the fundamen-
tal spatialk-nearest neighbor (kNN) and range queries. It further extended these queries to support
the keyword search feature. To address these queries, we proposed a generic indexing framework
for real-time geo-social data that digests and indexes highly dynamic data in main-memory and or-
ganizes stable social information in a disk-based structure. Based on this framework, we proposed
spatial-social quadtree (SSQ) index and two keyword-aware variants that are lightweight to handle
real-time data e#ciently, while providing scalable query response for both kNN and range queries.
In addition, we adopted two baseline index structures based on the proposed indexing framework.
The experimental evaluation on real datasets has clearly shown the superiority of our proposed
indexes for both real-time indexing and query processing. For keyword search, SSQ index and its
keyword-aware variants provide better performance on streaming data compared to the baseline
SQ index. Meahwhile, SSQ maintains a light indexing by using the essential indexing components
in a novel way to handle streaming data. We see the novelty in the design of the SSQ index and
its variants and consider this as the main contribution of this paper. SSQ performs worse than
its keyword extensions for query latency while performs better for indexing overhead. However,
the querying loss in SSQ for keyword predicates still makes it reasonable for supporting keyword
predicates without extra indexing overhead. On the other hand, the indexing overhead of its key-
word variants is still reasonable to support high-velocity streaming data. This shows the impact
of the high-level indexing framework that e$ectively distinguishes dynamic data from stable data
and enables various instantiations to perform e#ciently in streaming environments.

REFERENCES
[1] Hamed Abdelhaq, Christian Sengstock, and Michael Gertz. 2013. Eventweet: Online localized event detection from

Twitter. In Proceedings of VLDB (2013).
[2] Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias, and George J. Fakas. 2015. Geo-social keyword search. In

Proceedings of SSTD.
[3] Abdulaziz Almaslukh and Amr Magdy. 2018. Evaluating spatial-keyword queries on streaming data. In Proceedings of

the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
[4] Abdulaziz Almaslukh and Amr Magdy. 2019. Temporal geo-social personalized search over streaming data. In

Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
189–198.

[5] Walid G. Aref and Hanan Samet. 1990. E#cient processing of window queries in the pyramid data structure. In
Proceedings of the SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.

[6] Nikos Armenatzoglou, Ritesh Ahuja, and Dimitris Papadias. 2015. Geo-social ranking: Functions and query processing.
VLDB Journal (2015).

[7] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. 2013. A general framework for geo-social query
processing. In Proceedings of VLDB (2013).

[8] Jie Bao, Mohamed F. Mokbel, and Chi-Yin Chow. 2012. Geofeed: A location-aware news feed system. In Proceedings
of ICDE.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

Temporal Geo-Social Personalized Keyword Search Over Streaming Data 20:27

[9] Jie Bao, Yu Zheng, and Mohamed F. Mokbel. 2012. Location-based and preference-aware recommendation using sparse
geo-social networking data. In Proceedings of GIS.

[10] Ceren Budak, Theodore Georgiou, Divyakant Agrawal, and Amr El Abbadi. 2013. Geoscope: Online detection of geo-
correlated information trends in social networks. In Proceedings of VLDB (2013).

[11] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross Maciejewski, David S. Ebert, and Thomas Ertl. 2012. Spa-
tiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition.
In Proceedings of IEEE VAST.

[12] Lisi Chen, Gao Cong, and Xin Cao. 2013. An e#cient query indexing mechanism for !ltering geo-textual data. In
Proceedings of SIGMOD.

[13] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. 2015. Temporal spatial-keyword top-k publish/subscribe. In Pro-
ceedings of ICDE.

[14] Lisi Chen, Yan Cui, Gao Cong, and Xin Cao. 2014. SOPS: A system for e#cient processing of spatial-keyword pub-
lish/subscribe. PVLDB 7, 13 (2014).

[15] Gao Cong, Christian S. Jensen, and Dingming Wu. 2009. E#cient retrieval of the top-k most relevant spatial web
objects. In Proceedings of VLDB (2009).

[16] Tobias Emrich, Maximilian Franzke, Nikos Mamoulis, Matthias Renz, and Andreas Zü"e. 2014. Geo-social skyline
queries. In Proceedings of DASFAA.

[17] FB Stats 2019. The Top 20 Valuable Facebook Statistics. https://zephoria.com/top-15-valuable-facebook-statistics/.
May 2019.

[18] Wei Feng, Chao Zhang, Wei Zhang, Jiawei Han, Jianyong Wang, Charu Aggarwal, and Jianbin Huang. 2015. STREAM-
CUBE: Hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream. In Proceedings
of ICDE.

[19] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J. Smola, and Kostas Tsioutsiouliklis. 2012. Discovering
geographical topics in the twitter stream. In WWW.

[20] Desislava Hristova, Matthew J. Williams, Mirco Musolesi, Pietro Panzarasa, and Cecilia Mascolo. 2016. Measuring
urban social diversity using interconnected geo-social networks. In Proceedings of WWW.

[21] Qian Huang and Yu Liu. 2009. On geo-social network services. In Proceedings of the 2009 17th International Conference
on Geoinformatics.

[22] Internet Live Stats 2019. Internet Live Stats 2019. http://internetlivestats.com/. May 2019.
[23] Jinling Jiang, Hua Lu, Bin Yang, and Bin Cui. 2015. Finding top-k local users in geo-tagged social media data. In

Proceedings of ICDE.
[24] Ryong Lee and Kazutoshi Sumiya. 2010. Measuring geographical regularities of crowd behaviors for twitter-based

geo-social event detection. In Proceedings of SIGSPATIAL LSBN Workshop.
[25] Guoliang Li, Yang Wang, Ting Wang, and Jianhua Feng. 2013. Location-aware publish/subscribe. In Proceedings of

KDD.
[26] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan. 2015. Real time personalized search on social networks. In

Proceedings of ICDE.
[27] Yafei Li, Rui Chen, Jianliang Xu, Qiao Huang, Haibo Hu, and Byron Choi. 2015. Geo-social k-cover group queries for

collaborative spatial computing. In Proceedings of TKDE (2015).
[28] Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang, Yinan Jing, and Kunjie Chen. 2012. Circle of friend query in

geo-social networks. In Proceedings of DASFAA.
[29] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. 2011. Discovering spatio-temporal causal interactions in

tra#c data streams. In Proceedings of SIGKDD.
[30] Amr Magdy, Louai Alarabi, Saif Al-Harthi, Mashaal Musleh, Thanaa M. Ghanem, Sohaib Ghani, and Mohamed F.

Mokbel. 2014. Taghreed: A system for querying, analyzing, and visualizing geotagged microblogs. In Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.

[31] Amr Magdy, Rami Alghamdi, and Mohamed F. Mokbel. 2016. On main-memory "ushing in microblogs data manage-
ment systems. In Proceedings of ICDE.

[32] Amr Magdy, Mohamed F. Mokbel, Sameh Elnikety, Suman Nath, and Yuxiong He. 2014. Mercury: A memory-
constrained spatio-temporal real-time search on microblogs. In Proceedings of ICDE.

[33] Amr Magdy, Mohamed F. Mokbel, Sameh Elnikety, Suman Nath, and Yuxiong He. 2015. Venus: Scalable real-time
spatial queries on microblogs with adaptive load shedding. IEEE Transactions on Knowledge and Data Engineering 28,
2 (2015), 356–370.

[34] Ahmed R. Mahmood, Ahmed M. Aly, and Walid G. Aref. 2018. FAST: Frequency-aware indexing for spatio-textual
data streams. In Proceedings of ICDE.

[35] Shunya Nishio, Daichi Amagata, and Takahiro Hara. 2017. Geo-social keyword top-k data monitoring over sliding
window. In Proceedings of DEXA.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

https://zephoria.com/top-15-valuable-facebook-statistics/
http://internetlivestats.com/

20:28 A. Almaslukh et al.

[36] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake shakes twitter users: Real-time event detection
by social sensors. In Proceedings of WWW.

[37] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman, and Jon Sperling. 2009. Twitter-
Stand: News in tweets. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems.

[38] Ammar Sohail, Muhammad Aamir Cheema, and David Taniar. 2018. Social-aware spatial top-k and skyline queries.
Comput. J. (2018).

[39] Ammar Sohail, Ghulam Murtaza, and David Taniar. 2016. Retrieving top-k famous places in location-based social
networks. In Proceedings of the Australasian Database Conference.

[40] Panagiotis Symeonidis, Alexis Papadimitriou, Yannis Manolopoulos, Pinar Senkul, and Ismail Toroslu. 2011. Geo-
social recommendations based on incremental tensor reduction and local path traversal. In Proceedings of the SIGSPA-
TIAL International Workshop on Location-Based Social Networks.

[41] Twitter by the Numbers 2019. Twitter by the Numbers: Stats, Demographics & Fun Facts. https://www.
omnicoreagency.com/twitter-statistics/.

[42] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015. Ap-tree: E#ciently support continuous
spatial-keyword queries over stream. In Proceedings of the ICDE.

[43] Hong Wei, Jagan Sankaranarayanan, and Hanan Samet. 2018. Enhancing local live tweet stream to detect news. In
Proceedings of the SIGSPATIAL LENS Workshop.

[44] Dingming Wu, Yafei Li, Byron Choi, and Jianliang Xu. 2014. Social-aware top-k spatial keyword search. In Proceedings
of MDM.

[45] De-Nian Yang, Chih-Ya Shen, Wang-Chien Lee, and Ming-Syan Chen. 2012. On socio-spatial group query for location-
based social networks. In Proceedings of SIGKDD.

[46] Hongzhi Yin, Zhiting Hu, Xiaofang Zhou, Hao Wang, Kai Zheng, Quoc Viet Hung Nguyen, and Shazia Sadiq. 2016.
Discovering interpretable geo-social communities for user behavior prediction. In Proceedings of ICDE.

[47] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann. 2013. Time-aware point-of-interest
recommendation. In Proceedings of SIGIR.

[48] Jia-Dong Zhang and Chi-Yin Chow. 2013. iGSLR: Personalized geo-social location recommendation: A kernel density
estimation approach. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems..

[49] Jia-Dong Zhang and Chi-Yin Chow. 2015. GeoSoCa: Exploiting geographical, social and categorical correlations for
point-of-interest recommendations. In Proceedings of SIGIR.

[50] Jingwen Zhao, Yunjun Gao, Gang Chen, Christian S. Jensen, Rui Chen, and Deng Cai. 2017. Reverse top-k geo-social
keyword queries in road networks. In Proceedings of ICDE.

Received July 2020; revised May 2021; accepted June 2021

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 20. Publication date: August 2021.

https://www.omnicoreagency.com/twitter-statistics/

