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Disorder and electron-electron interaction play essential roles in the physics of electron systems in
condensed matter. In two-dimensional, quantum Hall systems, extensive studies of disorder-induced
localization have led to the emergence of a scaling picture with a single extended state, characterized by
a power-law divergence of the localization length in the zero-temperature limit. Experimentally, scaling has
been investigated via measuring the temperature dependence of plateau-to-plateau transitions between
the integer quantum Hall states (IQHSs), yielding a critical exponent κ ≃ 0.42. Here we report scaling
measurements in the fractional quantum Hall state (FQHS) regime where interaction plays a dominant role.
Our Letter is partly motivated by recent calculations, based on the composite fermion theory, that suggest
identical critical exponents in both IQHS and FQHS cases to the extent that the interaction between composite
fermions is negligible. The samples used in our experiments are two-dimensional electron systems confined
to GaAs quantum wells of exceptionally high quality. We find that κ varies for transitions between different
FQHSs observed on the flanks of Landau level filling factor ν ¼ 1=2 and has a value close to that reported for
the IQHS transitions only for a limited number of transitions between high-order FQHSs with intermediate
strength. We discuss possible origins of the nonuniversal κ observed in our experiments.
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In 1958, Anderson introduced the theory of localization
in disordered systems [1]. He showed that, in sufficiently
dilute systems with only short-range forces, states return to
their original site with a finite probability in the long-time
limit and, thus, there is an absence of diffusion. While the
scaling theory of localization predicts the lack of extended
states in two dimensions [2], quantum Hall systems are
reported to host both localized and extended states [3–6].
In the zero-temperature limit, as the Fermi energy
approaches a single critical energy (Ec), theory predicts
that the localization length (ξ) diverges according to the
power law ξ ∝ jE − Ecj−γ with a universal critical exponent
γ [7–9]. Criticality is also associated with fundamental
phenomena such as anomalous diffusion, multifractal
conductance fluctuations, and power-law density correla-
tions [10–12] owing to the large fluctuations in the local
densities and currents in the absence of a length scale. Since
its inception, the theory of criticality for the noninteracting
integer quantum Hall states (IQHSs) has garnered immense
interest, with recent numerical calculations suggesting
substantial corrections to the critical exponent and predict-
ing model-dependent exponents [2,13–16].
The strongly interacting nature of the fractional quantum

Hall states (FQHSs) poses a more challenging theoretical
framework in understanding critical phenomena. Exact-
diagonalization studies are limited to very small systems
and are often inadequate in capturing the dynamics in the

thermodynamic limit. The composite-fermion (CF) theory
provides a fruitful way to distill the physics of the FQHSs
by treating the system of strongly interacting electrons as a
collection of weakly interacting, magnetic-flux electron
quasiparticles, namely, the CFs [17,18]. The simplest
FQHSs occur in the lowest Landau level, flanking the
filling factor ν ¼ 1=2 at ν ¼ p=ð2p� 1Þ where p is a
positive integer. The FQHS at a particular ν can then be
thought of as the pth IQHS of CFs [17,18]. Early
theoretical work suggested the same scaling exponents
for the transitions between FQHSs as those for the IQHSs
[19], but a microscopic confirmation of this correspon-
dence was lacking. More recent, rigorous calculations
elaborate on the correspondence and highlight similar
localization physics in the two regimes [20–22].
Experimentally, one can measure the divergence of ξ via

studying the temperature (T) dependence of the Hall (Rxy)
and longitudinal (Rxx) resistances at the transitions between
the QHS plateaus. The derivative of Rxy (with respect to the
magnetic field B) at the critical magnetic field and the
inverse of the half-width of Rxx between two successive
quantum Hall states ð1=ΔÞ both diverge according to the
power law T−κ. The quantum phase coherence length (Lϕ)
also diverges with temperature as Lϕ ∝ T−q=2, and the three
exponents κ, q, and γ follow the relation κ ¼ ðq=2γÞ
[7,9,23–27]. Despite some discrepancies in earlier studies,
systematic measurements for the transitions between the
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IQHSs have concluded a value of κ ≃ 0.42, in excellent
agreement with theoretical expectations [26,27].
Experimental scaling measurements in the FQHS regime,
however, are quite scarce. An early study on a sample with
relatively low mobility suggested that the transition between
the strongest adjacent FQHSs (at ν ¼ 1=3 and 2=5) has the
same exponent of criticality (κ) as the transitions between the
IQHSs [28], but a complete set of exponents to test univer-
sality for transitions between various, high-order FQHSs
is still lacking. The focus of this Letter is to investigate scaling
in ultrahigh-quality GaAs two-dimensional electron systems
(2DESs) in the FQHS regime.
Our experiments were performed on a series of 2DESs

confined to GaAs quantum wells (QWs) of well widths
30–50 nm with densities ≃1 × 1011 cm−2 [29,30]. This was
achieved by flanking the QWs with 220-nm-thick
Al0.24Ga0.76As barriers and placing the Si doping layers
inside doping wells [31]. The mobilities in these samples
are ≃20 × 106 cm2 V−1 s−1. The samples were then cooled
in a dilution refrigerator and magnetoresistance measure-
ments were carried out using standard lock-in techniques.
The samples had a van der Pauw geometry, with alloyed
InSn contacts at the corners and midpoints of edges of
4 × 4 mm2 square pieces.

In Fig. 1(a), we show the Rxx vs B trace for the 30-nm-
wide GaAs QW at T ≃ 45 mK. The exceptional sample
quality is seen from the presence of a series of FQHSs at
ν ¼ p=ð2p� 1Þ around ν ¼ 1=2 extending up to p ¼ 10,
namely, ν ¼ 10=21 on the electron side (ν < 1=2) and
ν ¼ 10=19 on the hole side (ν > 1=2). We observe well-
developed FQHSs, with vanishingly small Rxx, for states
from ν ¼ 1=3 to 6=13 and ν ¼ 2=3 to 6=11. We also
see emerging Rxx minima between ν ¼ 1=3 and 2=5 at
ν ¼ 4=11, 3=8, and 5=13, which correspond to the FQHSs
of CFs in an interacting CF picture [32–35].
Figures 1(b) and 1(c) describe the procedure employed

in extracting the critical exponent κ from the dependence of
Rxx on B and T. The blue trace in Fig. 1(b) shows Rxx vs B
between ν ¼ 5=11 and 4=9. We first employ a Savitzky-
Golay filter [36] with order 2 to smooth out the raw data
shown in Fig. 1(a). We then determine dRxx=dB, as shown
in red. The extrema in dRxx=dB, corresponding to the
highest rate of change in resistance with B between the two
FQHSs, are marked by the two vertical gray lines. The
difference between the magnetic fields at which dRxx=dB
has an extremum is defined as Δ. We repeat this procedure
for a range of temperatures and proceed to extract κ as
shown in Fig. 1(c). The circles correspond to 1=Δ obtained
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FIG. 1. (a) Longitudinal resistance (Rxx) vs magnetic field (B) for a 2DES confined to a 30-nm-wide GaAs QWat T ≃ 45 mK. (b) The
blue trace is the smoothed Rxx between ν ¼ 4=9 and 5=11. The red trace is the corresponding dRxx=dB vs B. The vertical gray lines
mark B at which dRxx=dB has an extremum, and the field difference between the two extrema is denoted by Δ. (c) Log-log plot of 1=Δ
vs T for the transition between the ν ¼ 4=9 and 5=11 FQHSs; the red line is a least-squares fit through the data points according to
1=Δ ∝ T−κ and κ is the magnitude of the slope extracted from the fit. (d) Log-log plot of 1=Δ vs T for the 30-nm-wide QW for the
different FQHS transitions; the lines are fits to the data points.
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at different T and are shown in a log-log plot. The line is a
least-squares fit to the data points and the magnitude of its
slope yields κ. We then proceed to analyze the temperature
dependence of 1=Δ for the transitions between different
FQHSs, as shown in Fig. 1(d). While 1=Δ for all the
transitions exhibit linear dependencies on T in log-log
plots, the slopes and thus κ are strikingly different.
A summary of all the extracted κ vs 1=ν� is shown in

Fig. 2(a) for the 30-nm-wide QW sample; similar data for
the 40- and 50-nm-wide samples are shown in Figs. 2(b)
and 2(c). For the x axis of Figs. 2(a)–2(c), we use the
harmonic mean of the filling factors (ν1 and ν2) of two
successive FQHSs, namely, 1=ν� ¼ ð1=ν1 þ 1=ν2Þ=2. The
gray horizontal lines indicate κ ¼ 0.42, expected from
measurements and calculations for IQHSs. Our experimen-
tally extracted κ for the FQHS transitions, however, exhibit
a nonuniversal and nonmonotonic behavior. For the tran-
sitions between the strongest FQHSs (farthest away from
ν ¼ 1=2), κ is much smaller than 0.42. As we move toward
ν ¼ 1=2, κ increases dramatically and reaches maximum
values that exceed 0.42. It then decreases again as ν
approaches 1=2. The trend for the evolution of κ on the
hole side (ν > 1=2) is qualitatively similar to its electron
counterpart (ν < 1=2).

The exponent κ can also be extracted from the temperature
dependence of the Hall resistance (Rxy). The maximum
value of the derivative of Rxy with respect to B, at the critical
magnetic field (Bc), which corresponds to the critical
energy, exhibits a power-law divergence with temperature,
with the same critical exponent, i.e., ðdRxy=dBÞjB¼Bc

∝ T−κ

[7,9,23,26]. We report the values of κ extracted from Rxy for
the 50-nm-wide QW in the Supplemental Material [37] and
show that they closely follow the values obtained from Rxx.
In order to discuss Fig. 2 data, we first briefly review

what is known for the localization and scaling in the
IQHS and FQHS regimes. For the IQHS case, numerous

theoretical attempts have been made to determine the value
of the critical exponent γ that quantifies the divergence of
the localization length at transitions between the plateaus
[7–9,13–16,38]. While different models of localization
predict slightly dissimilar values for γ, it is generally found
that γ ≃ 2.4 [9]. Assuming a value of q ≃ 2 for the exponent
of the phase coherence length, γ ≃ 2.4 implies that
κ ≃ 0.42. Experimentally, early studies on 2DESs confined
to different materials (Si–metal oxide semiconductor field-
effect transistors, InxGa1−xAs, and GaAs) provided differ-
ent values for κ, deduced from the T dependence of the
plateau-to-plateau transition widths [23,25,39–46]. While
in some specific materials and for certain transitions,
a κ ≃ 0.42 was indeed measured, this was not found to
be universal; see Ref. [9] for a comprehensive review of
early results. Later systematic studies by Li et al. [26,27],
performed on 2DESs confined to AlyGa1−yAs QW sam-
ples, shed new light on the experimental situation. They
demonstrated that, for these samples, where the dominant
electron scattering mechanism is the short-range, alloy
scattering, the scaling exponents are indeed universal and
have values κ ≃ 0.42, q ≃ 2, and γ ≃ 2.4, very much
consistent with the theoretical expectations.
Considerably less is known for the transitions between

the plateaus in the FQHS case. An early experimental study
by Engel et al. [28] reported κ ≃ 0.43 for the transition
between the ν ¼ 1=3 and 2=5 FQHSs, i.e., a value very
close to the IQHS case. Note that the density of the sample
used in Ref. [28] was similar to the density of our sample,
but the quality was much inferior as judged by its much
(about 20 times) lower mobility and the presence of only
very few FQHSs, namely, those at ν ¼ 1=3, 2=5, 2=3, and
3=5. Theoretically, the transitions between FQHSs were
studied recently by Pu et al. [22] in a noninteracting CF
formalism, and it was concluded that the critical exponents
for these transitions should be the same as in the IQHS
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FIG. 2. (a) The extracted κ for the 30-nm-wide QW are plotted vs 1=ν�, defined as 1=ν� ¼ ð1=ν1 þ 1=ν2Þ=2, where ν1 and ν2 are
the fillings of two consecutive FQHSs, e.g., ν1 ¼ 1=3 and ν2 ¼ 2=5 yield a value of 1=ν� ¼ 2.75. The colors of data points for
2 < 1=ν� < 3 represent the colors of data presented in Fig. 1(d) for different transitions. The dashed lines connecting the data points are
guides to the eye. The gray horizontal line at κ ¼ 0.42 represents the expected exponent. (b),(c) Summary of the extracted κ vs 1=ν� for
the 40- and 50-nm-wide QWs.
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regime, confirming the data of Ref. [28]. Note that the
conclusion of Ref. [22] can be readily understood: In a
noninteracting CF picture, the FQHSs can be simply
mapped into the IQHSs of CFs [17,18].
Now our data in Fig. 2 reveal that κ ≃ 0.20 for the

ν ¼ 1=3 − 2=5 transition (1=ν� ¼ 2.75). This is signifi-
cantly smaller than the theoretically expected value of
0.42 [22] or previously reported in experiments of Ref. [28]
(≃0.43). The discrepancy likely stems from the much
higher quality of our present samples and the fact that
they exhibit numerous developing FQHSs between
ν ¼ 1=3 and 2=5 [see Fig. 1(a)]. These FQHSs at inter-
mediate fillings between the standard, Jain-series FQHSs
(i.e., those at ν ¼ 1=3 and 2=5) are a common feature of
ultrahigh-quality samples such as ours and can be described
as the FQHSs of CFs, originating from interaction between
CFs [32–35]. Note that such additional FQHSs are com-
pletely absent in the sample of Ref. [28], which exhibits
only a single, sharp maximum in Rxx between the deep and
wide Rxx minima at ν ¼ 1=3 and 2=5. As a result, Δ is
significantly smaller in Ref. [28] and, more importantly,
1=Δ diverges faster as temperature approaches zero. In
contrast, in our much better quality 2DESs, the growth of
1=Δ at low T is limited by the presence of these inter-
mediate FQHSs, rendering κ ≃ 0.2; see also Supplemental
Material [37]. It is worth mentioning that, in some of
the experiments in the IQHS regime on samples where the
spin splitting in Landau levels was not well resolved,
a κ ≃ 0.21 was also found for transitions between two
IQHSs that were separated by a weakly developed or
undeveloped IQHS [42].
In our sample, as seen in Fig. 1(a), emerging features are

also seen at transitions between other consecutive Jain-
series FQHSs: ν ¼ 2=5–3=7, 2=3 − 3=5, 3=5 − 4=7, and
4=7 − 5=9. The measured κ for these transitions are also
≃ 0.2, much smaller than 0.42 [Fig. 2(a)], consistent with
our conjecture that the presence of intermediate features in
the transition region is the cause of smaller than expected κ.
In Fig. 2(a) we also observe a decrease of κ for the

transitions between the highest-order FQHSs closest to
ν ¼ 1=2, e.g., between 7=15 and 8=17. While we do not
know the reason for this decrease, it is worth noting that
these FQHSs are not well developed even at the lowest
temperatures achieved in our experiments. They are akin to
the weak, high-filling factor IQHSs, more appropriately
termed Shubnikov–de Haas oscillations, seen near zero
magnetic field. The apparent decrease we observe in κ as
ν ¼ 1=2 is approached might be related to this weakness of
the highest-order FQHSs.
The nonuniversality of κ we measure and its deviations

from the expected value might also be related to the type of
disorder present in our samples. Experiments in the IQHS
regime have indeed shown that the nature of the disorder in
the 2DES does play an important role in determining the
value of κ and its universality. Li et al. [26,27] performed a

systematic localization study in 2DESs confined to
AlyGa1−yAs alloy QWs (rather than single-crystal GaAs
QWs) with different Al alloy compositions y. Their results
revealed that the scaling follows the theoretical power law
only in the range 0.0065 ≤ y ≤ 0.016, where the disorder
and electron scattering are dominated by short-range alloy
potential fluctuations. In contrast to their samples, the
primary contributions to disorder in the ultrahigh-quality
2DESs studied in our experiments come from remote
and background (residual) ionized impurities [29,30].
These lead to long-range potential fluctuations. Indeed,
in GaAs 2DESs similar to ours, with long-range disorder,
Wei et al. [43] reported significant deviations from the
theoretically expected κ in the IQHS regime. While it is,
in principle, possible to fabricate 2DESs confined to
AlyGa1−yAs QWs and study localization phenomena in
the FQHS regime, the experiments would be challenging:
y has to be sufficiently large to induce significant alloy
disorder, and yet small enough to preserve the quality of the
2DES at low densities so that FQHSs could be still
observed at accessible magnetic fields [47].
In summary, we report values of the critical exponent κ

for transitions between the plateaus of FQHSs flanking
ν ¼ 1=2 in ultrahigh-quality GaAs 2DES samples. Several
samples with different QW widths exhibit a qualitatively
similar behavior: κ changes nonmonotonically as a function
of filling and, only for a limited number of transitions
between high-order FQHSs with intermediate strength, has
a value close to ≃0.42, the value predicted theoretically
based on a noninteracting CF picture. The nonuniversality
of κ might be a result of the additional unconventional
FQHSs that emerge between the neighboring strong Jain-
sequence FQHSs when CFs are interacting. It can also be a
consequence of the nature of the disorder in the samples.
Our results shed light on the complex role of interaction and
highlight the need for future experimental and theoretical
efforts to understand the physics of criticality for the FQHS
plateau-to-plateau transitions.
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