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ARTICLE INFO ABSTRACT

Keywords: The weakly compressible translating hollow vortex pair is examined using the Imai-Lamla formula and a
Compressible flow direct conformal mapping approach applied to a Rayleigh-Jansen expansion in the Mach number, M, taken
Vortex dynamics to be small. The incompressible limit has been studied by Crowdy et al. (Eur. J. Mech. B Fluids 37 (2013),

Conformal map
Hollow vortex
Schottky-Klein prime function

180-186) who found explicit formulas for the solutions using conformal mapping. We improve upon their
results by finding an explicit formula for the conformal map which had been left as an integral in Crowdy
et al. (2013). The weakly compressible problem requires the solution of two boundary value problems in an
annulus. This results in a linear parameter problem for the perturbed propagation velocity and speed along the
vortex boundary. We find that two additional constraints are required to solve for the perturbed parameters.
We require that the perturbation in vortex area and the perturbation in centroid separation to vanish. Three
possible centroid definitions are given and the results worked out for each case. It is found that the correction
to the propagation velocity is always negative, so that the vortex always slows down at first order due to
compressible effects. Numerical results are consistent in the limit of small vortex size with the previous result
by Leppington (J. Fluid Mech. 559 (2006), 45-55) that the propagation parameter is unchanged to O(M?).

1. Introduction

The study of incompressible vortices has a long history going back to Helmholtz. In contrast, vortices in compressible flows have been much
less studied despite their importance [1]. In recent years there has been a renewal of interest in theoretical studies of weakly compressible flows
via perturbation methods using Rayleigh-Jansen expansions [2-4]. Many of these studies model a vortex as a hollow vortex, which is a bounded
region of fluid at constant pressure with a non-zero circulation around it. Some studies have also considered point vortices in compressible flows,
using methods of matched asymptotic expansions to deal with the supersonic flow region present in compressible flow near a point vortex [2,3,5,6].

Early studies of hollow vortices in compressible flow favored the hodograph method, which is based on taking the velocity field in polar
coordinates as the independent variables. In this hodograph plane, the governing equations are linear. Baker et al. [7] studied a singly-periodic
row of incompressible hollow vortices by combining this technique with a conformal mapping approach to deal with the unknown shape of the
hollow vortex boundary. The corresponding compressible flow was studied by Ardalan et al. [8] using a Rayleigh-Jansen expansion in the small
Mach number limit and employing numerical methods for larger Mach numbers. They found the existence of transonic shock-free solutions for a
suitable choice of the parameters in the problem.

For point vortices in incompressible flow, solutions to the two-vortex problem are relative equilibria in which the inter-vortex distances are
constant [9]. Two vortices with equal and opposite circulations translate at a constant speed. The incompressible hollow vortex pair was studied
by Pocklington [10] who found solutions in terms of elliptic functions. This problem was revisited more recently by Crowdy et al. [11], who used
a conformal mapping approach employing the Schottky—Klein prime function [12].

The translating vortex pair is a model for a vortex ring and the effect of compressibility on a thin vortex ring was studied by Moore [13]. Moore
and Pullin [14] considered a hollow vortex pair in compressible flow and found that for small vortex sizes (i.e., the point vortex limit) the
propagation parameter, which encodes the translation speed of the pair as well as a suitably defined vortex separation, changes at first-order in a
perturbation expansion. Later, Leppington [2] modeled the vortices as point vortices, and showed that the first-order correction to the propagation
parameter is in fact zero. This was done by a careful consideration of the force-free condition on point vortices in weakly compressible flows.
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This centrally important point was recently further clarified by Crowdy and Krishnamurthy [3] via an extension of the Blasius theorem to weakly
compressible flows (see also Barsony-Nagy [15]). Their approach makes use of the Imai-Lamla formula [16] to derive a closed-form expression
for the first-order correction to the classical formula for the translation speed of the incompressible Kdirman vortex street. The Imai-Lamla formula
combined with a direct conformal mapping approach (without transforming to a hodograph plane) was used by Crowdy and Krishnamurthy [4]
to find solutions for weakly compressible translating hollow vortex streets. These solutions are perturbations of the incompressible hollow vortex
street studied by Crowdy and Green [17].

In this paper, we study the weakly compressible translating hollow vortex pair using the Imai-Lamla formula and a direct conformal mapping
approach. In Section 2 we review the basic equations and set up the problem in the complex plane using Rayleigh-Jansen expansions for the physical
quantities combined with a perturbed conformal mapping. In Section 3 we review the incompressible hollow vortex pair as studied by Crowdy
et al. [11], to which we add an explicit formula for the conformal map found in this paper. In Section 4 we formulate the weakly compressible
problem. We set up two boundary value problems to be solved in an annulus in order to obtain the weakly compressible solutions. In Section 5
we discuss the results of solving the parameter problem arising in Section 4. We conclude with a summary of our findings in Section 6.

2. Governing equations for weakly compressible flow

We consider the steady, irrotational, isentropic two-dimensional flow of an inviscid barotropic fluid. Let (x, y) be the flow plane, (4, v) the two
components of the fluid velocity field, p(x, y) the pressure and v(x, y) the density of the fluid. The basic equation of motion for such a flow is the
Bernoulli equation

2 2 VoI
% +/ L év) dv = const. (€8}

The pressure—density relationship for isentropic flows is

po v, (2)

where y is the ratio of specific heats. The speed of sound c is defined by c? = p/(v). Since the flow is irrotational there exists a velocity potential
¢(x, y) such that

= % and 9%

u v=—. 3
ax dy 3)
Further, since the flow is steady, the conservation of mass implies the existence of a stream function y(x, y) such that
\ Vo 0
_WW e v )
v ady v 0x

Here v is the (constant) incompressible density. The Egs. (1), (2), (3) and (4) provide a complete set of equations for the unknown functions u, v,

¢, v, p and v.
It is convenient to work in the complex plane through the formal change of variables (x, y) — (z,z) where z = x + iy. Throughout this paper,

overbars denote complex conjugates. Even though the flow is compressible, we can define a complex potential f(z,z) as

f(z.2) = ¢(z.2) + iy (z.2). )

Note that the complex potential is not an analytic function of z, but instead also depends on the conjugate variable z, due to the compressibility
of the flow. We may combine the definitions (3) and (4) using

7} 1(0 .0 0 1[0 .0

9 _1(2 ;2 d L-1(2 ;% 6

0z 2<ax ldy> an 0z 2<()x+lay> ©
to define derivatives with respect to z and z. We get the two equivalent equations

of _ 1 9f
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9z~ B(v) oz (7a)

of of

=L = B(y)=L 7b

az = PVaz (7)
where the real-valued function B(v) is defined as

1—v/v
B(v) = ————. 8
2 1+v/y ®

The two Egs. (7a) and (7b) are equivalent in the sense that they are complex conjugates of each other. It is seen from (8) that B(v) = 0 when
v = v, (7b) then implies that df/0z = 0 and we recover the incompressible case.
We can define the complex velocity field as

&(z,z) = u(z,z) —iv(z, z), 9
and obtain using (3), (5) and (7a)
50 o _of
&(z,z) = 3z + oz~ oz (1 + B(v)). (10)

Using the pressure—density relationship (2), the Bernoulli equation (1) can be re-written:

y=1\ 17 v ™!
( 2 )T"1_<Z> ‘ an

Here ¢, is the speed of sound at the stagnation point and v, is the corresponding density . We set v, = v, without loss of generality. The real-valued
equation (11) and the complex-valued equation (7a) form a closed system of equations for the unknown complex potential and fluid density.
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2.1. Imai-Lamla formula

The foregoing discussion is applicable to compressible flows at any Mach number; we now introduce Rayleigh-Jansen expansions for weakly
compressible flows. Let M = U,/c, be a Mach number for the fluid flow, where U, is some characteristic velocity scale in the fluid. We expand the
complex potential f(z,z) in a perturbative series, in powers of the Mach number M, about a known incompressible complex potential f,(z). We
also expand the velocity field &(z,z) about the corresponding incompressible velocity field &,(z), to obtain:

[@2) = fo(2)+ M f1(2,2) + O(MY), (12a)
&(2.2) = &(2) + M?&(2.2) + O(M*). (12b)

The first-order corrections f|(z,z) and ¢,(z,z) are unknowns to be found. Combining these Rayleigh-Jansen expansions with (7a) and the Bernoulli
equation (11), we obtain the Imai-Lamla formula, which provides an expression for f|(z,z) in terms of £y(z) = f(;(z) (primes denote derivatives

with respect to the argument) and an arbitrary analytic function G(z):

[z = == 5(2)1@) + G(2), (13a)
4U0

z
I(z) = / (&y(2))* d2. (13b)
We call I(z) the Imai-Lamla integral. We can also derive an expression for & (z,z) using (10) and (12a):

49 = (@@ &G + 4T +6' ) a4
0

The problem is thus reduced to finding a single unknown analytic function G(z), for a given incompressible solution. An important point to note
is that the ratio of specific heats, y, does not appear in the solutions at first order. For details on the derivation of the above formulas, see Crowdy
and Krishnamurthy [3,4].

2.2. Solutions via a perturbed conformal mapping method

Since the problem we are interested in involves free boundaries, we adopt a conformal mapping approach to obtain solutions. Let z({) be
a conformal map from an auxiliary ¢-plane to the complex flow plane. We further consider that the conformal map z({) can be expanded as a
Rayleigh-Jansen expansion

2(0) = zp(0) + Mz, ({) + O(M™), @as)

where z,({) is the known map in terms of which the incompressible solution is given, while z,(¢) is an unknown first-order correction to be
computed. The conformal map is always an analytic function, and hence the corrections to the map are also analytic functions. The Rayleigh-Jansen
expansions (12) in the ¢-plane are

[0 = fo©) + M £1(C.0) + O(M™), (16a)
£ D) = &) + ML, 0) + OMY). (16b)
Here the known incompressible solutions are taken to be given in terms of the conformal map, so that f,({) = f,(z¢({)) and &y(¢) = &y(zo(£)). Usage
of the same function name in the z-plane as well as the ¢-plane should not cause any confusion since the function meant is clear by context. The

first order corrections f; and ¢&,; in the {-plane are now the unknown functions to be found.
We can write the Imai-Lamla formula (13a) and the Imai-Lamla integral (13b) in the ¢-plane as

F1ED) = == &OTD) + GO, (172)
4U0
g A A A
(9] =/ (fo(C))2Zf)(§)dC- (17b)
The first-order correction to the velocity field (14) becomes
Z_ 1 — O—|  ¢© 2©
) =— + 1 + - . 18
§E.0 4U§ [(50@)) &) 1) © 70 fo(C)zé(C) (18)

The additional term, dependent on the correction to the conformal map, appears because the correct expression relating the incompressible velocity,
complex potential and conformal map is &(¢) = f(;(é‘ )/z6(§ ) whereas the derivatives in (10) are with respect to z. The solution here is thus
determined by two unknown analytic functions G(¢) and z;({).

3. Incompressible hollow vortex pair

The solution for an incompressible pair of hollow vortices was obtained by Pocklington [10]. A modern re-derivation of Pocklington’s results
using a conformal mapping method as well as a stability analysis is found in Crowdy et al. [11]. Consider a pair of hollow vortices with equal and
opposite circulations +I" as shown in Fig. 1. A particular form of solutions for the hollow vortex pair is sought based on the behavior of a point
vortex pair with equal and opposite circulations:

1. the hollow vortex pair must be uniformly translating with some speed U,
2. in the rest frame of the vortices there are exactly two stagnation points in the velocity field due to the vortex pair, and
3. additional conditions are imposed so that the two vortices are symmetric reflections of each other.
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Fig. 1. An incompressible hollow vortex pair in the rest frame of the vortices. In this rest frame, the velocity at infinity is U, along the negative y-axis, where U is the translation
speed of the vortices in the lab frame. A conformal map z,({) from an annulus p, < [{| <1 in a {-plane to the exterior of the hollow vortices in the z-plane (flow plane) is used
to obtain solutions in Crowdy et al. [11]. The inner boundary of the annulus is mapped to the vortex with circulation +I" while the outer boundary is mapped to the vortex with
circulation —TI.

The hollow vortex pair is taken to be uniformly translating along the positive y-axis. The solutions are described in the rest frame of the hollow
vortex pair, in which there exists a uniform flow U, in the negative y-direction at infinity. The solutions for this free boundary problem are obtained
using a conformal mapping approach, where an auxiliary ¢{-plane is introduced and explicit formulas for the complex potential f,(¢) and the velocity
field &,(¢) are obtained. The conformal mapping z((¢) itself is then obtained using the simple but important formula (chain rule)

£
&0

The solutions are given in terms of a parameter p, which appears in the conformal mapping, which is the inner radius of the annulus p, < [{| < 1;
see Fig. 1. Symmetric solutions are sought, so that this single parameter p, determines the size, shape and separation of the hollow vortices. We
note the following symmetries that we require of the solutions under the mapping ¢ — p, /¢, i.e. reflection in the circle |{| = \/ZO:

() = 19)

Jo©) = —=fo(po /9 &0(©) = &o(py/0), zo(0) = =z(py/©). (20)

The explicit solutions are given in terms of the Schottky—Klein prime function on the annulus. A brief introduction to this special function is given
in Appendix A. We make extensive use of the properties listed there in the rest of this paper.

The conformal map has a simple pole at the pre-image of infinity. Let ¢ = , map to infinity, then,
9o

z9($) = + Taylor series as { — f, 21
where q, is some length scale which will be fixed later. Since we are in the rest frame of the vortex pair, we have the condition at infinity

SO =1iUy at { = f. (22)

The same boundary conditions apply on both the hollow vortex boundaries due to symmetry; these conditions are defined on the pre-images
I¢] = py, 1 of the two boundaries. First, the no penetration condition leads to

G onlll=1,
m[f©)] =9 " 23)
—Cy on [{| = py,
where C,, is some constant. Second, the constant speed g, on the vortex boundary is related to U, via
TN Us/x onl¢=1,
6O =& &O =g =1 5 24
O \U2/x oncl=p

where y is a constant defined further below (see (27)).
3.1. Exact solutions for incompressible flow

The formulation presented above is slightly different from that used by Crowdy et al. [11], where the symmetry conditions are not imposed
explicitly in all the formulas. In terms of the present formulation, the solutions of Crowdy et al. [11] can be written

r log L, (25a)

1@ = 0% K&/ o)+ Koo~ 3] = I
0le) = fo 0> P0 0:P0) ~ 5 "z \/;0

iUgpy P& /ey, po) P(E [ag, py)

&o(6) = — , (25b)
0 VZ CPEag, p)P(ETo, po)
. [ PGy, o) P py) ]
&) =C [ . (25¢)
O(O P Bys p0) P&/ By po)
Here ay, @, are the pre-images of the stagnation points. The constant € is given in terms of a, via the formula
2
A [ PlagBy. po)P(@yfy po)
a = —p0C< AOﬂO o) P(@gfo, po > ’ 26)
P(1, po) P(py, po)
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but we will not use this formula in the following development. The constant y is

P(ay/ Bo> o) P/ Bos o) :
P(ayfo: po)P(ayBy. po)
It can be shown using the properties discussed in Appendix A that the conditions at infinity (21) and (22) as well as the boundary conditions (23)
and (24) are satisfied by the solutions (25). The symmetry requirements (20) can be satisfied by the solutions (25) if we choose

fo=1/p, and ay=+/p,e, (28)

where 6, € (0,27). We have thus identified five real parameters in the incompressible problem, namely I, ), Uy, p, 6. Finally, we note that the
constant C;, can be calculated to be

x =5 27)

+ —logp,. (29)
7T

3.2. The conformal map and the parameter problem

The solution (25c¢) provides an expression for the derivative of the conformal map zé(g“ ) but not the map z,(¢) itself. In Crowdy et al. [11] the
map was found by numerical integration, but in Appendix B we show that the expression (25¢) for z;(¢) can be integrated to

20(0) = 52 [K(€/ B p0) + 7 KB p0) = 5. 30)
B 2
The derivative of the map can be written as
A ”ﬂ—o [L(/Bos po) + 2 LBy o)) (1)
0

which is equivalent to the expression (25c¢) for z(’)(c ). We see from (25c¢) that the zeros of z(’)(cj ) are at { = 1/ay, 1 /ay. We need to impose these as
conditions on the parameters, since the expression (30) only fixes the poles of zy({):

L(aypy, po) + ¥ L(ay/ By, py) = 0. (32)

The condition at 1/« is just the complex conjugate of (32) and is therefore equivalent to (32). The derivative f;({) must also be zero at the points
¢ =1/ay, 1/ay, which leads to

g,

2zUyay

L(ay/By» po) + Lo By, py) = (33)

We use (33) to determine the translation speed U, in terms of the other parameters.
We solve the parameter problem as follows: first, we set the time and length scales by fixing the values of I" and q,. Then we choose the value
of 0 < py < 1, and solve (32) for 6. Finally, U, is determined by (33). We thus obtain a one-parameter family of solutions, parameterised by p,.

4. Weakly compressible hollow vortex pair

When the flow is weakly compressible, the complex potential f(z,z) and velocity field &(z,z) are no longer analytic functions, and the theory
outlined in Section 2 applies. The velocity scale U, is taken to be the incompressible velocity of the vortex pair. The speed of the vortex pair and
the speed on the vortex boundary are perturbed to

U = Uy + M?U, + O(M*), (34a)
q=qy+ M%q + O(M*), (34b)

where U, and ¢, are the unknown first-order corrections due to compressibility. Since the incompressible solutions are described in terms of the
conformal map z(¢), the Rayleigh-Jansen expansions for the complex potential f({ ,©) and the velocity field £(¢,¢) are given by (16). In addition,
the conformal map itself has a Rayleigh-Jansen expansion (15) where z;(¢) is the unknown first-order correction to the conformal map zy(¢). The
domain of the perturbed conformal map z(¢) is p < |¢| < 1. The pre-image of infinity under z({) is §, whereas the circle |{| = p maps to one of the
hollow vortex boundaries. The circle |{| = 1 maps to the other hollow vortex boundary. The Imai-Lamla formula (17a), together with (18), shows
that there are two unknown analytic functions G(¢) and z,(¢) in the theory.

The streamline condition leads to the following (symmetric) boundary condition on the complex potential

= C on [{=1,
Im[f (¢, D] = {—C on |¢]=p. (35)
The constant C is related to the incompressible constant C, in (23) via the Rayleigh-Jansen expansion
C =Cy+ M2C, + O(M*). (36)
The fluid speed on the hollow vortex boundaries remains a constant in the compressible flow. We express this as
6D = 6. DECD =4 onlfl=1and (] =p. 37)

This is analogous to (24) with ¢ given by the Rayleigh-Jansen expansion Eq. (34b).
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4.1. Properties of the perturbed conformal map

The parameters in z(¢) are perturbatively related to the parameters in z,(¢{). We have the Rayleigh-Jansen expansions
p=po+Mp +OM*Y), f=py+M* +0OM?Y), a=ay+ M2a; +OM*). (38)
We require the symmetry properties (20) to also hold for the weakly compressible flow so that we have g = \/; Using (38), this symmetry property
implies
p1/po =28/ bo.- (39)

Of the five parameters I, ay, Uy, py and 6, in the incompressible solution, we leave the circulation I" unchanged due to compressibility.
We require that z({) have a simple pole at ¢ = g, like in (21):

z(§) = ﬁ + Taylor series as ¢ — . (40)
Using (38), (21), and (15) in (40) we obtain the required behavior of the correction z,(¢) near ¢ = f:
ayp .
z1(§) = + Taylor series, as ¢ — f,. 41)

=+
C ﬂo (e

Let us take the conformal map z(¢) to be of the following form, consistent with (40):

z(§) = —K(C/ﬂ po)+ B ;{K(Cﬁo,po)— 5 +0(M2) (42)
Here the O(M?) terms are regular with a Taylor series everywhere in the domain. Using (38) for § and a, we see that

%K(C/ﬂ, =3 20 K(¢/ o o) + M? K(C/ﬂo p0) = ﬂ" ’;‘ [K(/Bo. po) + L/ Bo. po)] | + OM™), (43)
which leads to

2() = 2o(&) + M? [25(0) + 2,,0)] + O(M*). (44
We have decomposed the correction as

21(0) = 215(0) + 21(0) (45)

with singular part z4({) and regular part z,.({). The singular part can be taken to be

z15(0) = B ﬁ Z155(8) + 2 ﬁo ZJSQ(C) (46)
where we have defined

Z15p(8) = K(&/By- po) + L&/ Bo- po) — % + 2L Bo- po)- (472)

£1al®) = K& Boop) = 3. (47b)

This expression for z4(¢) is consistent with the required behavior (41) near ¢ = f,. Note that z,(({) has two terms, one proportional to 8, /8, and
another proportional to a, /a.
The conformal map z(¢) has to obey the same symmetries as the incompressible map z,(¢), i.e.,

2(p/0) =-2() for p<[CI< 1. (48)
Using (15) and (38) we find

2(p/8) = =20(Q) + M? |21(py /) + —gzo(o +0(M*) (49a)
so that the symmetry condition for z,;(¢) is

21(p0/O) + Z—;cz(;a:) =-2,0). (50)
This equation can be rewritten as

210) + 211(py /) = 0. (51)

4.2. Imai-Lamla integral

The first step in solving the weakly compressible problem is to evaluate the Imai-Lamla integral (17b) in which &,(¢) is given by (25b) and
z6(§ ) is given by (31). Taking derivatives of (17b) and multiplying by ¢ on both sides, we get

CI'Q) =01 Zé(C) = [&O1 0,(&) =& 0y, (©), (52)
where we have defined the functions
Q.0 = CZG(C), 9,0 = Cfé(C)- (53)
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Differentiating (25a) and applying the property (106) leads to

04,()==0,, (1/0). (54)

The Imai-Lamla integral can be evaluated using a combination of properties (54) and the analytic continuation of (24) inside the annulus
po < |¢] < 1. We have using (19)

U?/y _— U?/y —
0, = —l“—_] 0,,(1/0) =~ [ ;’@) 0,,(1/0), (55)
&) /0 0
implying
E)(0)Q;, (£) = =(UZ /1) 0, (1/0). (56)

Now it is clear from (31) that QZO(I/Z) =1/ z(;(l/é’). Therefore we get

, Us\ (1.,
1 (¢>:—(7> <Z>Z°(1/Q 7)

Integrating, we obtain

UZ
I1¢) = (—0> z9(1/¢) + constant, 58)
X
where the constant is found to be
aU?
0 1
o Ty (59)
28, ( X )

by imposing the symmetry property I(p,/¢) = —I(¢). The Imai-Lamla integral thus evaluates to

I(§)=—G—Ug [K(C/ﬂo,l’o)‘l'l K(Cﬂ()sl’o)—l . (60)
o x 2

4.3. Streamline boundary condition

The two unknown analytic functions G(¢) and z,({) are found by deriving two boundary value problems from the two boundary conditions on
the hollow vortex boundaries. In this subsection we describe how to set up the boundary value problem for G(¢).

We first need to ensure that the velocity correction & (¢, ) has the correct required behavior (34a) at infinity, remembering that ¢{ = § maps to
infinity under the perturbed map. We decompose G(¢) as

G = %io(C)I(C) + G4(8) + G(0), (61)
U

where G,(¢) is the singular part of G(¢), and G,(¢) is a regular function with a Taylor series throughout the domain. We find the following behavior
as ¢ — fy:

z)(¢) = _(C—a# + Taylor series, (62a)
1 (S 0% 4
== 10 — , 62b
20" e O (©2b)
aOUg
1) =- + Taylor series, (62¢)
&=h

G'(¢) iU, N Gl()

=—— . 62d
Zé(C ) 4 Z(;(C ) (62d)
Substituting (61) and (62) into (18), we get
- Gl(©) Z,'S(C)
, = - . (63)
&(¢ C)Lzﬂo R
We choose G,(¢) such that the velocity field &, (¢ ,0) is well defined at ¢ = g, with
:(c,Z)‘ = iU, (64)
{=p
where U is given by (34a). With the choice
U ir
GiO) = &(©)21:0) + G [ 1001+ 3 1os ] (65)
we get
G/ z, () ;250 U, L@ ir 1
_ = + — +——. 66
ZS(C) f® Z(;(C) % © Z(;(C) Uy ZS(C) 2rn¢ ZS(C) 66)
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Using (66), (41) for z;4(¢), and (62) we find

& (C,E)L = iU — B1&;(By) + O(M™). (67)
=Po
But since
é(C,Z)L =G+ M2y E)(Bo) + M2¢1(c,Z)L ot o(M*), (68)
- "

we see that (64) is satisfied.
We are now in a position to formulate a boundary value problem for the regular function G,({). To do this, we have to find the boundary
conditions on f|(¢,¢) first. Expanding the left hand side of (35) using (12a), and substituting (36) on the right hand side, (35) becomes

- Co+ M2C,+OM* on|=1,

I M?1 , omH=4 " ! 69

m[fo(H)] + m[f(¢, )]+ O(M™) {—Co _M2C, +OM*) on |¢| = p. (69)
Using (23) and the expansion

Im[ /(O] = Im[fo(C)]| +m2 IlTl[CfO’(C)]' +0M*Y), (70)

1¢l=p 1¢1=po Po ¢1=po
we find the boundary condition for f,(¢ ,©) from (69):
_ on [{|=1,
Im[f,(, 0] = 71

1
—Cl—%lm[g“fo’(o] on ] = pp.
0

Since the correction p; is an unknown at this stage, we have rewritten the boundary condition in terms of p, by noting that the point of evaluation
of an O(M?) term can be safely switched from p to p,. We will use this observation throughout what follows. Substituting (61) and (65) into (17a)
and using this in (71), we get the boundary conditions for G,({):

‘ Ci+SCO+ B8y D+ 25,¢.0) on [¢l=1,
Re[iG, (D] =4 ~ = B = @ = - (72)
G+S¢CO+ %Sﬁ(C,C) + QSa(é”,C) + ES,,(C,C) on [¢| = py.
Here we define the functions
ST = = Iml&O)RelIQ)L, (73a)
20
8,(¢.0) = Im[—%io(i)flsﬂ(é“)], (73b)
0
5,60 = I, 0] (73¢)
0
8,(£.0) =Im[Z £y (), (73d)
and note that these are known on both boundaries. The constants C, and C, are
C,=-C+ %CO and C,=C; - % Co + vr log pg. 74)
0

U_O Uy 2n

Given the real part of a regular analytic function on the boundaries of an annulus, we can find the function within the annulus by solving
a “Villat problem”. The appendix in Crowdy and Krishnamurthy [4] provides details of this solution procedure. We need to satisfy the Villat
consistency condition, which states that the constant terms in the given data on the two boundaries must match, in order to obtain well-defined
solutions in the annulus. The boundary condition (72) is not yet a boundary value problem for G.({) because of the unknown parameters g, and
p;. To remedy this, we now split (72) into four parts:

ReliG,s()] = { &9 o leI=1, (752)
S8 on [L]=pp.

ReliGyy ()1 = { S/&9 o K=t (75b)
S55(8,8) on || = py.

ReliGy,(0)] = { 20&) o lel=1, (75¢)
5,8, on [¢] = py.

ReliG, (1= 4 . _ o IEI=1 (75d)
5,(,8) on [¢] = py.

The four Villat problems (75) can be solved for the four functions G,({), G4({), Gy,(¢) and G,,(¢). The final solution is then given by

GO = Gog©) + DL G0+ L G0 + 2 6,0, 76)

Bo ag Po

which is known once the parameters f;, a;, and p, are determined. Note that G,s({), Gy3(0), Gy,(¢) and G,,(¢) do not need to satisfy the Villat
consistency condition individually, since we only need the final solution G.({) to do so. From (72) and (74) it is clear that once f,, a;, and p,
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are known we can equate the constants in the data on the two boundaries to obtain a single equation for the single unknown C;, and the Villat
consistency condition can be satisfied this way. Since C; is a constant in the complex potential, its value does not alter the physical solution and
we make no further mention of it.

4.4. Bernoulli condition

We now turn to formulating a boundary value problem for z;.({). Since we have already solved the boundary value problem in Section 4.3, the
function G,(¢) is known at this stage, although the parameters are still unknown. The condition (37) becomes

[EO)? = £(0) E(©) + 2M Re[£,() &) + O(M*)
= gy +2M?qoq; + O(M™), 77

on |[¢{| =1 and |¢| = p, where we have used (24) and (34b).
We first have to take into account the change from p, to p due to compressibility. The expansion

50(9")’ = -fo(C)‘ + M2l [CEO’(C)] +O0(M*), (78)
IC1=p 1C1=pg Po I¢1=po
together with (24), leads to
2 2 |1 on [{|=1,
[E0DI” 16 o 79

+O0(M*) on [¢]| = py.

2 2 220
4 @ (1M Re[éo(o

The boundary condition (77) along with (79) and (12b) gives a condition on &,(¢) & (¢ ,©) on the boundaries:

S |=

. (a )
Re [éo@):l(c,c)]: a on |¢]=1,

0 (80)
% "—‘—”‘Re[” ] n ¢l = po.

w0 ()

Since the right hand side of (80) is known and the only unknown on the left hand side is z;,.(¢) in & (¢, E), we can rewrite (80) as a boundary
value problem for g(¢) = z K(9) / z0(§ ). Substituting (45) and (61) into (18), then using (60), (46) and (66), gives, after some algebra,

T(¢,0)+ ﬁ—T/j(C C)+ T(§ O+ —TU(C O+ —T(C C)— — on [{|=1,
4o
B
Re[g()] = T(.0)+ ﬂ—OTp(C,C)-F %Ta(C,C)-F FOTU(C’O “ (81)
o - GO\ o T
2T, R« _ 4
i < oAb Re [ 50 | )
The various functions here are defined below:
_ [ 1 1 [ &© ) r’S(C)
T¢,0)=Re|—+ — 1 10 s 82.
,8)=Re 4)( +4U2 <f0(C)( &)+ 1) + (&) fol(g) (82a)
- [ a4y §© r,,(g)
Ty, 0) = . 82b
3(&.0) _ ﬂ fo@) ZispO + fo(g) (82b)
_ aU é ©) Gm(C)
T, 0) = sar) + — 82
EO=RN G o0t T (620
T, 0) =R [ © (82d)
,6) =he
? i fO'(C)
= ir
Ty(€.§)=1+Re [—ijfé(zj)] . (82e)

The parameters f,, p;, a;, U, and ¢, are unknowns at this stage and as in Section 4.3 we split (81) into five separate Villat problems. These
five problems can be solved individually since their boundary data is completely known.

T(.0) onl||=1,
R = 2 83
elgr (] {T(g,g) on 121 = sy, (83a)
TyC.0) on (¢ =1,
R =4 P>z 83b
elgp()] {T,}@@ on 1¢] = gy, (83b)
T,&.0) on|f|=1,
R = 2 83
elg, ()] {T(cj 2 onlcl =, (83c)
T,¢.0) on [¢| =1, ;
Re[g,(0)] = T g)+R cs (o on [¢] = po, (83d)
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Ty(¢.0) on ¢l =1,
Ty(E,8) on [¢] = py.
The solution to a Villat problem is unique up to an imaginary constant. We will set this constant by requiring that Im ¢ g-(¢)[d{| = 0 on the

boundaries (and similarly for g4(¢), g,(0), g,(¢) and gy ({)). Therefore we set the constants C’s to be real. The final solution is then given by
zl’r(C) = g(C)z(’)(C), where g(¢) is related to the solutions of (83) via

Re[gy (D)) = { (83e)

_ B ! P U _Q
8 = (gT(C) + ﬂ—og,;(C) + %ga@) + %g,,(C) + FOgU(C) qo) . 84

Once the Laurent series for g(¢) has been found, the Laurent series for z,,({) can be found by integrating z’lr(g‘ ).
4.5. Finding the parameters

Completing the solutions to the weakly compressible problem requires us to find the five unknown parameters, namely g, /fy, a,/ay, p1/Pos

U, /U,, and ¢, /q,- We impose five conditions on the solutions in order to find the parameters. These five parameters appear as linear coefficients

in all the conditions, which means that we solve a linear algebra problem to obtain them at the end. First, the solution to (81) has to satisfy the

Villat consistency condition, although the individual boundary value problems in (83) do not need to do so. Let the constants in the boundary data

(82) on || = 1 be C;l), Cl(}l), Cf,l), Cf,l), Cg), and the constants on [{| = p, be C;"U), C;"O), cf,”o), Cl(,"U), Cg"’), respectively. The Villat consistency
condition for (81) is then

W, B

¢+ A

e+ 2ew g 2oty Dot ooy Do | 9 p0 y 2100y D cen (85)
B ay o * U Bo P a o Uy

The second condition is that the correction to the conformal map is finite at { = f,, so that g(,) = 0, since z(;(g ) has a singularity at { = f,.
We next require that the boundaries of the vortices, which are the images of the circles |{| =1 and || = p,, be closed curves. This means that the
Laurent series of zl’r(g’ )=g(& )z(;(C ) cannot contain any ¢! terms. This is a separate condition because we have so far only ensured that zﬁr(g )/zf)(g“ )
as well as 2} ({) are analytic in the annulus. By symmetry, this condition is the same on both boundaries. Note that the conditions so far do not
involve ¢, /qp-

We impose two further conditions on the solutions. The circulation is automatically conserved at O(M?), as shown in Appendix C, so this is not
an additional constraint. The first condition is to keep the area A of the vortices fixed at its incompressible value A,. The second condition is to
keep the vortex centroid C fixed at its incompressible value C,. We explain these choices in detail below.

The area of the two vortices can be computed from

A=:id Oroa =7 ?f EGE(SLS 86)

2 Jig=1 2 Jigi=p

The choice of sign depends on the direction of integration along the contour, and the areas are equal. We will work along the outer contour, in
which case the minus sign is appropriate. Then

Ay = %}{ 2p($)zg(£) d¢, A= %% [21(D)z(&) + 292 ()] ¢, 87)
I€1=1 [¢l=1
where A, and A, are the areas in the Rayleigh-Jansen expansion A = A, + M2A, + O(M*). Expanding z,({) as in (45), using (84), inserting into
(87), and setting A; = 0 gives a fourth linear relation between the unknown parameters.
The first vortex centroid we define is the geometric centroid

oo 2O &
21) = Ld(g -1 20) % (88)
e i 2z Jig=1 ig

The superscript in C refers to the vortex boundary corresponding to |{| = 1. This centroid definition can be interpreted either as the ratio of
the z-weighted perimeter of the vortex in the ¢-plane (since |d¢| = d{/i{) to the perimeter in the ¢-plane (which is 2x) or as the ratio of the
z-weighted area in the ¢-plane to the area in the ¢-plane, since the latter would be the integral of £ = ¢~!. So it can be viewed as either the area-
or arclength-weighted centroid in the ¢-plane. One can show from (30) and (102) that in the incompressible case

w_ L 4
= jzil:l 200 5 (892)
~% | L _1
=3 [27[ ;‘fg | dog P&/ + i dtog )] - 5 (89b)
G o 1o %
% [1+0 2] =2, (89¢)

similarly Cé" 0 - —ay/2p,. Let us set the length and time scale by fixing I' = 1 and a, = f,. Setting a, = f, fixes the distance between the geometric
centroids of the vortices to be 1.
We consider two other definitions of the vortex centroid. The arclength-weighted centroid in the z-plane is defined as

Feim 20121
o 1271

This is the definition used in Crowdy and Krishnamurthy [4], and corresponds to weighting by the vorticity, i.e., it defines the center of vorticity.
A final possibility is the area-weighted centroid in the z-plane defined by

 fge 2OOZ @) de o
o 2O O AL

ch =

z

(90)

ch

10
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Table 1
The minima of the compressible corrections to the speeds U, /U, and q,/q, as functions of p, and A, for the three choices
of vortex centroid.

minU, /U, a/q Po Ay ming, /g U, /U, Po Ay
¢-centroid —0.4420 —-0.3252 0.2781 1.6854 -0.5516 —-0.3254 0.2935 1.8568
area-centroid —-0.5332 —0.2808 0.2370 1.2850 —-0.2809 —-0.5331 0.2310 1.2328
z-centroid —-0.5491 —-0.2745 0.2268 1.1974 —-0.2745 —-0.5491 0.2268 1.1974

Following Crowdy and Krishnamurthy [4] we expand the expressions for the centroids by substituting (15) and (45), obtaining

N, N NyN-
Co=-=2. ¢ =—L-_03

N, N, N2 ©2)

as the general expression. We denote the centroid expansions as C" = C(l) M ZC“) + O(M*), and so on. The quantities N; and N; can be
decomposed into terms proportional to the unknowns, and the result will be’ a linear equatlon when setting C, = 0. For the {-centroid we get,

¢ 1 }5 da¢
N, = L_l N= =, Ny=2z, N;3=0, 93
0 ?{g\—l zo($) i 3 1 et z1($) i 2 0 3 (93)
for the z-centroid
oA z1(©)
Ny =}l{ zo(O)zo (O] —» N, =7§ z1(8) + zp({)Re |z O(C)I (94a)
I¢I=1 i Il=1 FAG)
Z/
N, = Ny = R (94b)
2 y{:‘_ |z0(§>| 3 fmzl e [ 0@] E 0(é)|
while for the A-centroid
Ny = }ll{\ 1 20($)z({)zg($) dE, N, = =2i4, (95a)
=
N = ?lfg ‘_l[zl(o%zg(m 20020 + 2Oz @1, Ny = -2iA,. (95b)

In order to set the O(M?) correction in any of the centroid positions to zero, we set the corresponding C; = 0 in (92). Substituting for N,, Ny, N,
and N; from the corresponding equations above, we get a linear relation between the five unknown parameters, providing us with the required
fifth condition. Note that all the centroids and their corrections are real-valued due to the symmetries in the problem.

5. Results

We first show that some of the differences in the Villat consistency condition (85) vanish. These quantities are real, so that

C(l):}g d_gz% R | o 9%
U Fam ® 2wl = S\ | 2ee | ) 2aie (962)
- |4Re|— 1T )4 o6h
fin( ' e[zwo/ofg(po/c)]) 2mi (96b)

=— 1+R i dn =c, 96
?I§n|=po< e [Mnfé(n)]) (=2zin) Y (96¢)

using the derivative of the symmetry property in (20) in the form f;({) = (py/¢ 2 14(po/¢)- The underlying symmetry property is shared by T({ LO).
Hence C(l) C(p o) _ C(l) C(" ) — (0. The consistency condition (85) simplifies to

b
Bo

which can be shown numerically to be the same as the symmetry relation (39). Together with the finiteness condition and the single-valuedness
condition this gives three equations.

Fig. 2 shows a plot of the incompressible area .4, and the incompressible perimeter P, as functions of the conformal mapping parameter p,.
These plots show that both A, and P, are monotonic functions of p,. For the area constraint, the area is the same as the incompressible area (and
this could be enforced for all orders in M2), so we can use A = A as the abscissa.

Fig. 3 shows the behavior of the first-order corrections to the speed of the hollow vortex pair U, /U, and the speed on the boundaries of the
vortices ¢, /q, as functions of the conformal mapping parameter p, for the three different choices of the vortex centroid. In all cases, we see that
both U, /U, and q, /q, are always strictly negative for p, > 0, showing that, at first order, the compressible hollow vortex pair is always slower
than its incompressible counterpart. The behavior is however not monotonic, and both speeds attain minima for certain values of p,. The minimum
values of U, /U, and q, /g, and the corresponding values of ¢, /q, and U, /U, along with the values of p, and the area .4, at which these minima are
attained are tabulated in Table 1. We find that when the correction to the ¢-centroid is set to zero, the minima occur for quite different values of
po and A,. In the case of the area-centroid, the values of p, and A, are quite close together, but not exactly the same. Whereas for the z-centroid,
the minima of both U, /U, and ¢, /q, occur at the same value of p,, to machine precision.

Fig. 4 shows the behavior of U, /U, and q,/q, as functions of the vortex area A,. It is clear from both Figs. 3 and 4 that the compressible
corrections go to zero in the limit of zero vortex area, i.e. point vortices. Leppington [2] showed that the propagation parameter .S = 4zUh/I" has

[C(l) cY] 4+ ﬂ[C(l) —c¥ =0, 97)
s o P 4

11
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Fig. 2. Incompressible area .4, and perimeter P, as functions of p,.
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Fig. 3. Relative corrections to propagation velocity, U, /U, and speed on boundary, q,/q,, as functions of p,. The subscripts ¢, A and z denote the centroid positions calculated
according to (88), (90) and (91).

03

04

Fig. 4. Relative corrections to propagation velocity, U, /U,, and speed on boundary, q,/q,, as functions of A,. The subscripts {, A and z denote the centroid positions calculated
according to (88), (90) and (91).

the behavior S = 1 + o(M?) in the point vortex limit so that it is unchanged at O(M?). Here 24 is the separation between the vortices and we take
2h = |cV — c0)|. The precise definition is irrelevant in the point vortex limit as p, — 0. It is seen from Fig. 5 that the incompressible term tends
to 1 in the point vortex limit.

On substituting (34a) and h = hy + M*h; + O(M*) into the propagation parameter, and setting S = S, + M2S; + O(M*) where S, = 4zUyh, /T,
we get

1 1
s v on o 167=¢1 o 1ell g,

=— = —_ = — + —— = —. 98
So Uo ho Uo V¢ Uo i) Yo ©8

12
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Fig. 6. Shapes of incompressible (dashed) and compressible (solid) pairs. From left to right, centroid positions calculated according to (88), (90) and (91).

The third equality above follows from the symmetry properties of C. We have already seen in Fig. 3 that U, /U, — 0 as p, — 0. If one were to use
a different centroid definition for C, and C,, the last expression would not be valid. However, in the point vortex limit all the centroid definitions
converge and we find from Figs. 3 and 4 that the propagation parameter goes to zero in all cases. It is found numerically that the condition
continues to be satisfied.

Fig. 6 shows the shape of the incompressible (dashed curves) and compressible (solid curves) vortex pair for p, = 0.6 and M = 0.4. The correction
to the area is zero so the two shapes have the same area. The compressible pair is slightly more elongated.

6. Summary

We have used a perturbed conformal mapping approach to study the steadily translating weakly compressible hollow vortex pair. The first-order
complex potential and conformal map are computed by solving two Villat problems in an annulus. There are five free parameters in the problem
which are obtained by imposing various conditions on the solutions. We find that three conditions are necessary for physically meaningful solutions,
and impose two further conditions on the change in vortex area and change in the location of the vortex centroid. There are three distinct choices
for vortex centroid for any non-zero vortex area and this leads to three sets of solutions for the parameters. The incompressible vortex area can be
chosen as an independent variable on which all the other parameters depend.

For small vortex areas, we find that the O(M?) correction to the speed of the hollow vortex pair tends to zero. This is consistent with the result
of Leppington [2] that the correction to the speed of a point vortex pair is zero at O(M?). For finite vortex areas, we find that the correction
is always negative; thus the compressible hollow vortex pair is always slower compared to the incompressible pair. The O(M?) correction is not
monotonic as a function of the area. It displays a minimum whose value depends on the choice of the vortex centroid correction set to zero,
although it does display a minimum for each choice of vortex centroid.

Crowdy and Krishnamurthy [4] found that the speed of a hollow vortex street can increase or decrease due to compressibility effects relative to
the incompressible speed, depending on the vortex area. The O(M?) correction to the speed is a monotonic function of the area and increases for
areas smaller than a critical value and decreases for larger areas; further the value of the critical area depends on the aspect ratio of the vortices

13
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in the street. On the other hand, Crowdy and Krishnamurthy [3] found that the O(M?) speed of a weakly compressible von Karman street of point
vortices is not monotonic and displays a minimum, but as a function of the aspect ratio. Juxtaposition of the current results with these other recent
results shows that the effects of compressibility on any arrangement of vortices may not be predicted a priori, but is a delicate function of the
vortex geometry.
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Appendix A. Schottky-Klein prime function

In this appendix we present some properties of the Schottky-Klein prime function [12] that have been used extensively. We are concerned with
the Schottky-Klein prime function defined on the annulus p, < |¢| < 1 in a complex ¢-plane and denoted by P(¢, py). The prime function has the
infinite product representation

P =1 =[] (1=p5k¢) (1= 03t /2). (99)
k=1
The following properties of the prime function can be verified directly from (99):

P p) = —éP(CvPOX P(1/¢.py) = —%P(Qﬂo)v P p) = P(1/C. o). (100)

The definition

©

P, po) =[]0 = s3F0)0 = 02 /0. (101)

k=1
is useful in some calculations. Two other functions that are used throughout this paper are the K-function and the L-function, which are given in
terms of the derivatives of the prime function:

P'(C.po)
K(, =(—-, 102
) =5 00 (102)
L. po) = LK (. po). (103)

The following properties of the K-function can be derived from (100) and (102):
K(p3¢.p0) = K(C.po)— 1. K(1/C.pg) = 1= K(L. po).

2 (104)
K(py€, po) = =K1/, py)-
Using (104) we can check that
K(po.p9) =0, Re[K(C, py)] =0, and K(-1,py) = +1/2. (105)

I¢1=po
Using (103) and (104) the L-function can be shown to satisfy

L(pg¢.po) = L& po),  L(1/S,pg) = L(C, py)- (106)

Substituting (99) into (102) a series representation can be obtained for the K-function

o _ 2k o 2k
¢ p0§+z Py /¢

K. pp)=——— - , (107)
MR k; L=k A1-gte
and substituting (107) into (103) a series representation
) 2k 0 2k
4 py /¢
Lepp=-— -y L RN (108)
a-0° & (=) & (1-4340)

can be obtained for the L-function. We note that in the annulus p, < |[{| < 1, the P-function has a simple zero at { = 1, the K-function has a simple
pole at ¢ = 1 and the L-function has a second order pole at ¢ = 1. The properties (104) and (106) can also be obtained directly from the series
representations (107) and (108).

14
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Appendix B. Analytical expression for the conformal map zy(¢)

In this appendix we show how to integrate (25c) and obtain an analytical expression for the conformal map z,(¢). The function 0.,O=¢ z(;(g )
defined using (25¢),
P(Cay. po) P(CTy. po) |
P(C/ﬂo, po) P& By po)

is a loxodromic function satisfying the loxodromic property 0, (p(z)g” ) = 0.,(¢ ). In the annulus p, < [¢] < 1/py, 0:,(©) has second order poles at
¢ = py and ¢ = 1/f,. Hence there exists a “partial-fraction” expansion for 0, of the form

0,,(&)=C¢ (109)

0.,(©) = CiK(&/Bo. po) + C: KBy po) + C3 L / By po) + C4 L(C By, po) + Cs, (110)

where the K- and L- functions are defined in (102) and (103). These functions have simple and second-order poles respectively (see (107) and
(108)), at the two points ¢ = f,, 1/, in the annulus p, < || < 1/p,. Further, C|, ..., Cs in (110) are constants that need to be determined to obtain
a series representation for QZO(Q’ ) that is equivalent to (109). It is a simple step to integrate (110) using the definitions (102) and (103):

20() = €, log P(¢/ Bo. po) + €, log P(C fy. po) + C3K(E/ Bo- po)

+CyK(C By po) + Cs log ¢ + G, (111)
where Cj is an integration constant to be determined.
The constants C|, ..., C, are the coefficients of the poles in (110) and can be determined by matching local expansions of (109) and (110) near
these poles. Near ¢ = f, (109) can be expressed as
A~ — 2
. ~ P(ay, pg) Py,
0., = ZQL with O() = C¢ Pag. po) PEo. po) (112)
P2/ Bo. po) P(¢ By o)
First let us evaluate the Taylor series of Q(C ) near { = . Taking logarithmic derivatives of (112), evaluating at { = §, and using (28) we get
~, _ .
CON 14 2K(pe. pg) + K(poe™. py) = 2K e ).
O©) le=p,
Using the properties (105) in this equation we obtain Q’ By) = Q(ﬂo)/ po- The required Taylor series is then
AL A OBy
0(8) = 0By + 5 ¢~ Bo) + O — By)*. (113)
0
Using the definition (99), it can be shown that
1/P2(1,
3 1 = /P ZO) + Taylor series, near ¢ = 1. 114)
P=(¢, py) 1-90
Combining (113) and (114) we get
B0/ PX(1,00) 080/ P21,
0., = 0770 / 0 + AQP)/P (1. po) + Taylor series, near { = §,. (115)

(€ = Bo)? (€ - Bo)
At ¢ = B, (110) has two simple poles and a second-order pole,
Cihy Gy G

0, = T - = - (g—ﬁo)z + Taylor series near ¢ = f,. (116)

Comparing (115) and (116) we get

6 =20 4 ¢ -0 117)
P2(1, py)
A similar analysis near ¢ = 1/f, yields the constants
~ O(1 ~
C =—?(—/ﬂ0) and C, =0, (118)
P2(1, py)

where 0(¢) = 0.« YP2(¢ By, po) is defined analogously to Q(C ). We can now check that y = 64 / 63, where y is given in (27). Using the behavior of
z4(¢) at ¢ = fiy, which can be deduced from (21), we get G, = a/B,. We set Cs = 0 since we do not seek a solution with a logarithmic branch point
at ¢ = 0. The constant 66 is determined from the condition z,(—f,) = 0. Substituting for the constants in (111), we obtain (30).

Appendix C. Conservation of circulation at O(M?)
In this appendix we show that the circulation condition I' = ¢P is identically satisfied at O(M?). Here the perimeter is given by
P=§ @l 119)
[€l=1p

with the contour integral taken along either vortex, and the circulation I' is fixed at its incompressible value. At leading order we have I' = ¢,P,
where

d¢ d¢
P =}1§ [zg(O) —= =;z{ Iz5(O)lpy — (120)
L T T [T TS
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Writing P = Py + M?P, + O(M*) and substituting in I = ¢P together with (34b), we find at O(M?) that

P+ 8p—o. (121)
do
Along the vortex corresponding to |¢| = 1, we find the O(M?) term
z/(©) d¢ i U q
p _ ;Z{ Re | ! 1o 38 2 p L P L p) P p p<1> Zipn g 122
1 c=1 € Zé(C) |ZO(§)| 1 er ﬁ [ 1sp + lrﬁ] + [ 1sa + lra] + 1rp + UO 1rU q 0 ( )
where
— d¢
PO = 7|{V|=1 QESIEHETES (123)

and so on, while

Z! ()
Py = 7{ Re [~ 2022 & (124)
Sy Bo z5(&) i
We see that the ¢,/q, terms in (122) cancels with the last term in (121), so that gq,/¢, does not enter the circulation condition. Along the other
vortex boundary, we find

(00) _100) . P1p0) . plon) 00 | po)y . PLowo . UL o) _ @
P =Py + Bo [Plr; +P1s2]+ [plsz P+ — plrf, + UOPlr?/ %PO
"
” ?{ O 5O,
+ = 1+Re 120l =, (125)
Po m=p0< [zé(() &© | )0 e

taking into account the fact that the integral is computed along |{| = p,. Once again the ¢, /¢, term in (125) cancels with the corresponding term
in (121).

On the boundary the streamline condition (23) implies that ¢ f(;(g“ ) is pure imaginary along the boundaries in the {-plane, so that ¢ f(;(g ) =
—i| f(;(C )| on [¢]| = 1. The conditions (19) and (24) give | f(;(g ) = qolz(;(cj )|. The perimeter integrals all have real integrands, so the real part operator
in front of the various g functions can be taken out of the integrand. As a result

G dc
I = R 7{ ——R 7{ Gl ()= =0, 126
w=Rep f0(§)| 2@ ep GnOY (126)

since the function Gr’p(g ) is analytic inside the circle |{| = 1. Similarly Pl(‘; 2) = 0. Along the inner vortex boundary, we need to compute the integral

(5O HO]N dc ?{ IO, e
R 1+ — =P, +R — 127
e}I{CIwo( [ 2O fo(C) ])|20(C)|ﬂ0 i o+ he e 1O 125Dl pg ic (127a)
=Py +Re ;l{ ¢f© d (127b)
1¢1=po 9o

=P+ qiRe[ffo' = folici=s (127¢)

0
=P - L_ 0, (127d)

do

by evaluating the logarithmic derivative of (19) and using the leading-order perimeter condition. Note that on the inner boundary [{| = py,
$£5©) = =ipol £
We next find

73(1)=}{ 1+Re | L / %:p_LR% d_C=7J_£=o, 128
v |c|=1< I PG O =P e f T T T (128)

again using the leading-order circulation condition. Similarly P;fr' ‘[’]) =0.
Using the same approach, we obtain

o _Po

1rT 4 X 4U2 qO

Re 7%—1 EOIQ) L. (129)

From (58) we have

=% 20(0) — U2<1+1> (130)
2 2B, X

Since 5(’)(4 ) is analytic inside the contour, (129) becomes

o _ Po 1 ,
0= Got ke 7{; I CaCTE (131a)
7)0 1 % i
= — - ——Ri d 131b
4){ 4}(% e e &)z, () dE ( )
- _ d 131
T f SO de (1310)
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=20 L Rz (131d)
4y Ay O
Py r

_P o, (131e)
T Ay 4xq

using (25) and the leading order circulation condition. Similarly Pf’r’ %) =0.

Next
© &©) Gy ()
p 4 p :}{ R Zig© 0 5O & 132
CANSU IS Ml ﬁo 2O o700 O g 02 '20@)' (1322)
d
= —Dpe 75 o(O2],,©) + &) 215501 = = 0. (132b)
Bo 1¢]=1 4o
Similarly Pf’s’ ;) + Pf’r’ ;) = 0. Finally
© gy &© Gl () d¢
p(l) p(l) =?§ Isa + 0 . + ra ' ' = 133
fra = dre fleny ¢ /30 z(&) B fO(C) F1eal6) fo© SO @ 15O i (1332)
d
=—ZRe f (2] () + & O 21501 = =0, (133b)
B Jiei=t 4o

Similarly sz 2) + Pf’r’ 2) = 0. This means that the condition (121) is identically satisfied.
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