2023 24th IEEE International Conference on Mobile Data Management (MDM) | 979-8-3503-4101-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/MDM58254.2023.00029

2023 24th IEEE International Conference on Mobile Data Management (MDM)

DDCEL.: Efficient Distributed Doubly Connected
Edge List for Large Spatial Networks

Laila Abdelhafeez
Computer Science and Engineering
Center for Geospatial Sciences
University of California, Riverside
labde005 @ucr.edu

Abstract—The Doubly Connected Edge List (DCEL) is a

Amr Magdy
Computer Science and Engineering
Center for Geospatial Sciences
University of California, Riverside
amr@cs.ucr.edu

Vassilis J. Tsotras
Computer Science and Engineering
Center for Geospatial Sciences
University of California, Riverside
tsotras @cs.ucr.edu

e®

popular data structure for representing planar subdivisions and qefg - Dangle r.

is used to accelerate spatial applications like map overlay, graph

simplification, and subdivision traversal. Current DCEL imple-

mentations assume a standalone machine environment, which ®

does not scale when processing the large dataset sizes that abound °® ‘Et_.ﬁii.g'e‘.
in today’s spatial applications. This paper proposes a Distributed Face

Doubly Connected Edge List (DDCEL) data structure extending
the DCEL to a distributed environment. The DDCEL constructor
undergoes a two-phase paradigm to generate the subdivision’s
vertices, half-edges, and faces. After spatially partitioning the
input data, the first phase runs the sequential DCEL construction
algorithm on each data partition in parallel. The second phase
then iteratively merges information from multiple data parti-
tions to generate the shared data structure. Our experimental
evaluation with real data of road networks of up to 563 million
line segments shows significant performance advantages of the
proposed approach over the existing techniques.
Index Terms—DCEL, Distributed, Polygonization

I. INTRODUCTION

The Doubly-Connected Edge List (DCEL) is a popular data
structure used to represent planar subdivisions. It is used
in a wide variety of applications; for example, it is central
in computing the overlay of planar subdivisions [9], which
solves the map overlay problem. The DCEL is also used
to represent Voronoi diagrams [7], [16], planar graphs [3],
polyhedron [17], and TIN data [25]. It is further utilized in
graph simplification [13], triangulation [4], [19], subdivision
traversal [6], and topology manipulation [2].

Given an input spatial network represented by a set of line
segments, the DCEL constructor generates and stores a record
for each subdivision’s vertex, half-edge, and face. A vertex
in a subdivision is a node where two or more line segments
meet, corresponding to a graph vertex of the spatial network.
A half-edge is a line segment split along its length and has
a directional component: an origin vertex and a destination
vertex. Two opposite-direction half-edges (twin half-edges),
where the origin of the first is the destination of the second
and vice versa, represent each undirected line segment. So,
each half-edge corresponds to a directed graph edge of the
spatial network. A face of a subdivision is a polygonal region

This work is partially supported by the National Science Foundation, USA,
under grants 1IS-1901379, 11S-2237348, CNS-2031418, and SES-1831615.

® Twin
Half-Edge ™ @
Fig. 1. DCEL Data Structure

whose boundary is formed by the subdivision’s vertices and
half-edges with the same direction. The subdivision’s vertices
and half-edges can be extracted directly from the input net-
work; the two endpoints of a line segment represent its two
vertices, and each line segment (undirected edge) is repre-
sented by two half-edges (directed edges). Unlike extracting
vertices and half-edges, extracting the subdivision’s faces is
not straightforward. To generate all of a subdivision’s faces,
the DCEL constructor invokes the polygonization procedure,
which extracts all closed polygons formed by a collection
of planar line segments in a subdivision. Figure 1 shows an
illustrative example of a DCEL data structure. In this example,
we have an input network of 10 line segments. The DCEL
stores this input as a collection of 20 half-edges, 2 half-edges
for each edge, a collection of 9 vertices, and a collection of
2 faces.

The DCEL data structure has a great potential to facilitate
efficient operations on mobility data that operate on spatial
networks, e.g., road networks or river networks. For exam-
ple, comprehensive maps are available in massive datasets
thanks to the emergence of various map technologies such as
Google Maps [12] and OpenStreetMap [20]. Because of the
added benefits of the DCEL, storing these maps in DCEL
objects will facilitate many applications, e.g., map overlay
applications. Also, the polygonization of these maps provides
means to generate new sets of polygons (faces of a DCEL)

2375-0324/23/$31.00 ©2023 IEEE 122
DOI 10.1109/MDM58254.2023.00029
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

that can be used in recommending and automating polygon
queries, such as polygon range queries and spatial joins.

The size growth of modern spatial networks, e.g., fine-
granular road network data, makes building the DCEL struc-
ture highly inefficient. The main performance bottleneck in
DCEL construction is polygonization. The current implemen-
tations for the DCEL data structure assume a standalone
machine environment [5], [18], which cannot scale up for
large spatial networks. The polygonization is also supported
in major GIS systems like QGIS [24], major spatial databases
systems like PostGIS [23], and major python spatial libraries
like Shapely [26]. However, these systems: (a) still assume
a standalone machine environment that cannot scale up to
large spatial networks, and (b) perform only the polygonization
procedure but do not build a whole DCEL structure.

As we discuss in our experimental results, the execution
of a sequential polygonization algorithm on PostGIS using
the USA road network (152 million line segments) as an
input breaks before producing results. As a result, sequential
techniques are limited to analyzing small-scale or sparse
networks. Splitting the workload into multiple batches is non-
trivial. The polygonization procedure depends on multiple
connected line segments, which means we need to split the
input file in a way that maintains information about all faces
found in the subdivision. To the best of our knowledge, the
DCEL construction is currently not supported in distributed
big-spatial data systems (such as GeoSpark, now Apache
Sedona [29]).

To generate a DCEL object representing an input spatial
network (set of line segments) on distributed big-spatial data
systems, we face two main challenges: (1) First, the extraction
of vertices and half-edges depends on one data record only,
i.e., the line segment. The extraction process can be distributed
directly along with the data records. However, in the case
of the faces, one face depends on multiple data records, i.e.,
connected line segments. Such data records do not necessarily
end up in the same data partition. (2) Second, to parallelize the
polygonization procedure, data partitions need means to share
data amongst each other. This data communication severely
affects performance, especially since these data partitions do
not necessarily reside in the same physical machine.

To overcome these challenges, we propose a novel Dis-
tributed DCEL (DDCEL) data structure extending the well-
known DCEL to work in a scalable way. Like DCEL, the
DDCEL data structure consists of three collections that store
the subdivision’s vertices, half-edges, and faces in a distributed
way. Given an input spatial network, the DDCEL constructor’s
goal is to populate these collections. To achieve this goal,
the constructor undergoes a two-phase paradigm: (1) Generate
each partition DCEL (Gen Phase), in which the vertices and
the half-edges collections are fully populated, whereas only a
portion of the faces collection is generated. (2) Generate the
Remaining Faces (Rem Phase), in which the polygonization
procedure proceeds to generate the remaining faces.

During the Gen Phase, after spatially partitioning the input
network into parallel data partitions, the constructor generates

123

a partition DCEL on each data partition. The partition DCEL
contains information about the vertices, the half-edges, and
the faces of this given partition. Constructing the partition
DCEL on each data partition generates all of the subdivision’s
vertices and half-edges. However, it does not generate all of
the subdivision’s faces; it only generates the faces that fit in
each partition’s minimum bounding rectangle. To generate the
remaining faces, the constructor proceeds to the second phase.

The remaining faces are the faces that have a subset of their
edges spanning multiple data partitions; hence the partition’s
subset of data is insufficient to generate them. The Rem Phase
is iterative. Each iteration accepts a subset of the remaining
line segments: input line segments that have not yet been
assigned to a face. These line segments are re-partitioned into
a new set of partitions, where data from multiple partitions
are aggregated into a single partition. Using the new set of
partitions, the constructor generates a new subset of faces,
faces that fit in the new partition boundaries, appending them
to the faces collection. Any remaining line segments are passed
into the next iteration for further processing. The procedure
terminates when we reach one of these cases: (1) there are
no more remaining line segments, or (2) the remaining line
segments are re-partitioned into one partition.

For the data partitioning and re-partitioning, we used a
modified QuadTree [10] spatial partitioning found in Apache
Sedona [29]. However, any non-overlapping spatial partition-
ing can be used in place of the QuadTree. We performed an
extensive experimental evaluation with real-world-scale road
networks. Our techniques have shown significant superiority
over all existing techniques, supporting an order of magnitude
larger datasets with an order of magnitude smaller query
latency. Our contributions are summarized as follows:

1) We propose a novel Distributed Doubly-Connected Edge
List (DDCEL) data structure extending the well-known
DCEL data structure.

We implement the proposed DDCEL constructor to
efficiently extract vertices, half-edges, and faces from
large-scale spatial networks.

We perform an extensive experimental evaluation using
large-scale spatial networks generated from OSM [20]
ranging from 152 million to 563 million data records
(line segments).

2)

3)

The rest of this paper is organized as follows: related work
appears in Section II. The proposed data structure and the
problem definition are formally defined in Section III. The
constructor and the re-partitioning schemes are detailed in
Sections IV and V, respectively. Sections VI and VII present
the experimental evaluation and the conclusions.

II. RELATED WORK

All available implementations for the bottleneck polygo-
nization procedure are built upon the JTS/GEOS implemen-
tation [11], [15]. While the JTS library is used in many
modern distributed spatial analytics systems [22], including
Hadoop-GIS [1], SpatialHadoop [8], GeoSpark [29], and Spa-
tialSpark [28], the implementation of the polygonization algo-

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

rithm [15] has not been extended to work in these distributed
frameworks.

A data-parallel algorithm for polygonizing a collection of
line segments represented by a data-parallel bucket PMR
quadtree, a data-parallel R-tree, and a data-parallel R™-tree
was proposed in [14]. The algorithm starts by partitioning
the data using the given data-parallel structure (i.e., the PMR
quadtree, the R-tree, or the RT-tree), beginning the poly-
gonization at the leaf nodes. The polygonization starts by
finding each line segment’s left and right polygon identifiers
in each node. Then children nodes are merged into their direct
parent node, at which redundancy is resolved. This procedure
is recursively called until the root node is reached, where all
line segments have their final left and right polygon identifiers
assigned. Each merging operation partitions the input data into
a smaller number of partitions. At each iteration, the number
of partitions decreases while the number of line segments
entering and exiting each iteration remains constant.

This implies that at the last iteration, the whole input line
segment dataset must be processed on only one partition at
the root node level. In the era of big data, where the use of
commodity machines as worker nodes is common, this can
become a bottleneck when processing datasets of hundreds of
millions of records on one machine. Our work differs in three
main aspects: (a) first, the approach in [14] only works with
directed line segments, whereas our approach is more generic
and works with undirected edges, (b) second, our output is
organized in a novel distributed DCEL data structure which is
an extension of popular data structure used in a wide variety of
applications, (c) third, while both approaches rely on iterative
data re-partitioning, [14] uses a constant input to each iteration
while significantly decreasing the number of partitions. On the
other hand, our input size decreases as the number of partitions
decreases (thus avoiding processing the whole dataset on a
single partition).

ITII. THE DATA STRUCTURE AND THE PROBLEM
DEFINITION

We start by introducing our novel data structure in Sec-
tion III-A; while the problem’s formal definition appears in
Section III-B.

A. The DDCEL Data Structure

The Distributed DCEL (DDCEL) is a novel distributed
version of the DCEL data structure introduced in Section I.
The DDCEL data structure is a distributed graph. It consists
of three collections (Apache Spark RDDs) analogous to the
DCEL data structure, representing the subdivision’s vertices,
half-edges, and faces. An RDD [30] is an immutable, fault-
tolerant, distributed collection of records partitioned across the
cluster nodes that can be operated in parallel. The DDCEL
consists of a vertices RDD (V'), a half-edges RDD (H), and
a list of faces RDDs (F).

Each vertex object v € V' is defined by:

1) its spatial location; i.e. its coordinates (v.coordinates),

and

124

2) its incident half-edges (v.incidentH); i.e., a list of the
half-edges arriving at the vertex v.

A half-edge object h € H is defined by:
1)
2)
3)
4)

its origin vertex (h.origin),

its destination vertex (h.destination),

its twin half-edge (h.twin),

its next half-edge (h.next) to walk around a face in
counterclockwise order,

the face it is bounded to (h.incidentF'); note that an
input line segment usually bounds two faces but viewing
the different sides of a line segment as two distinct half-
edges means that each half-edge bounds only one face;
and

6) whether it spans multiple partitions (h.spansM P).

5)

Dangles are the half-edges with one or both ends not incident
on another half-edge endpoint. Cut-Edges are the half-edges
connected at both ends but do not form part of a polygon.
Examples of the dangles and cut-edges are shown in Figure 1.
Both dangles and cut-edges are particular types of half-edges
since they are not bounded to any face (h.incidentF = null).
Two markers are added to each half-edge h:

7) h.isDangle

8) h.isCutEdge
These markers are added to exclude them from the face
generation (polygonization procedure).
The list of faces contains m RDDs (Fy, Iy, ..., Fj, .., Fp),
such that each F; Vj is an RDD and m is the total number of
iterations executed to generate all of the subdivision’s faces.
Fp contains the set of faces generated at the first phase (Gen
Phase). The remaining F; € F' Vj > 0 represents the subset
of faces generated at the j'" iteration of the Rem Phase.
Each face object f € F'is defined by a cycle of the half-edges
forming it List(hy, ho, hs, ..., h1).

B. Problem Definition

Consider an input spatial network N that consists of line
segment objects. Each line segment object o € N is defined by
two points (p1,p2); each point p is defined by < lat,long >,
where < lat,long > represents the latitude/longitude coor-
dinates of the point’s location in the two-dimensional space.
Formally, constructing a Distributed Doubly-Connected Edge
List (DDCEL) is defined as follows: Given an input spatial
dataset N, the constructor generates and stores all of the
network’s vertices, half-edges, and faces in a DDCFEL data
structure. An example would be: given the road network of
the United States of America, extract all road information,
i.e., road crossings (vertices), roads (half-edges), and faces
(neighborhood blocks), and store them in a DDCEL data
structure.

IV. THE DDCEL CONSTRUCTOR

We proceed with Section IV-A, which presents an overview
of the DDCEL constructor, followed by Sections IV-B and
IV-C, which discuss the details of the constructor’s two main
phases; the Gen Phase and the Rem Phase.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

Input Spatial Network
v

| Gen Phase I

| Rem Phase I

Remaining
Half-edges
| » or
Incomplete
Cycles
U-
| . d
» ~' <
==
DDCEL

Fig. 2. DDCEL Constructor Overview

A. Overview

Figure 2 shows an overview of the DDCEL constructor. To
create a DDCEL data structure from an input spatial network
N, the DDCEL constructor undergoes a two-phase paradigm.
The Gen Phase, detailed in Section IV-B, handles spatially
partitioning the input network, generating the subdivision’s
vertices (V') and half-edges (H), and a subset of the subdi-
vision’s faces (Fp). The remaining line segments that are not
assigned to a face yet are passed to the subsequent phase in
the form of half-edges or incomplete cycles. An incomplete
cycle is a connected half-edge list that is a candidate face. The
Rem Phase, detailed in Section IV-C, handles generating the
subdivision’s remaining faces (F;, Vj > 0).

B. Gen Phase

The Gen phase accepts an input dataset of line segments N
and starts by partitioning the input across the worker nodes in a
distributed cluster using a global QuadTree spatial index. Each
data partition P; covers a specific spatial area represented by
its minimum bounding rectangle (MBR) B;. Figure 3 shows
an example of four leaf nodes of a QuadTree built for an
input spatial network. Solid lines represent the network line
segments, and dashed lines represent the partitions’ MBRs.

After spatially partitioning the input network, each partition
generates its vertices, half-edges, and faces (collectively the
partition DCEL) using the subset of the dataset that intersects
with the partition’s MBR. The partition vertices are the
vertices that are wholly contained within the partition MBR.
On the other hand, the partition half-edges are any half-edge
that intersects with the partition MBR. Partition faces are
the faces that are wholly contained within the MBR of the
partition. On each data partition P;, the Gen phase undergoes
four main procedures; (1) first, generating the partition vertices
and half-edges, (2) second, marking the dangle half-edges, (3)
third, setting the next half-edge pointers for all half-edges and
marking the cut edges, (4) lastly, generating the partition faces.

Step 1: Generating the Partition Vertices and Half-edges.
In the first step, the Gen Phase starts with populating the ver-
tices and the half-edges RDDs of the DDCEL data structure.
Each partition P; receives a subset of the input dataset that

125

1

1

1

v R .

1 1
| B i P
(AL (N IO NI FP Y
1 1 1
: . :
1 1 1
: . :
1 1 1
1 1 1

]

1 1 :
| B, : Py
e e ==l

Fig. 3. Partitioned Input Spatial Network

intersects with the partition’s boundary. For every line segment
object o received at partition P; (o € F;), two vertices are
generated (v, v2); one for each endpoint on this line segment
(p1, p2). These two vertices objects (vi,ve) are appended
to the vertices RDD in the DDCEL data structure. We also
generate two half-edges (hq, ho) for every line segment. The
first half-edge h has its destination vertex vy, while the other
half-edge hs has its destination vertex vo. These two half-
edges are assigned as twins. The half-edge h; is appended to
the incident list of the vertex v;. Similarly, ho is appended to
v2’s incident list. For a half-edge to span multiple partitions,
we check whether it is wholly contained within the partition
MBR B;; if not, and it is just intersecting, then this half-edge
spans multiple partitions. These half-edges are duplicated on
all partitions they intersect with. The remaining attributes of
each half-edge object are assigned in the subsequent steps.
The two generated half-edge objects (hq, hy) are appended to
the half-edges RDD in the DDCEL data structure. Figure 4
shows a graphical illustration of the DDCEL data structure
representing the input network after generating the vertices
and the half-edges on all data partitions.

Step 2: Marking the Dangle Half-edges.
Dangle half-edges are not part of any face; thus, marking
them is essential to exclude them during the polygonization
procedure. To find dangles in the input network, we use
previously generated information, i.e., information about the
vertices and their incident half-edges. We compute the degree
of each vertex v € V populated in the previous step. A vertex
degree is the number of non-dangle half-edges in its incident
half-edges list. If the degree of an arbitrary vertex v is less than
or equal to 1 (degree(v) < 1), then all of v’s incident half-
edges and their twins are also dangle half-edges. Marking any
new half-edge as a dangle requires recomputing the degree of
the vertices connected to it. Thus, marking the dangle half-

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. DDCEL Vertices and Half-Edges

edges is an iterative process. After the initial run over all
vertices and marking the initial dangle half-edges, we reiterate
over the vertices to check for newly found dangle half-edges.
We keep iterating until convergence when no new dangle half-
edges are detected.

Step 3: Setting the Half-edges’ Next Pointers, and Mark-

ing the Cut-Edges.
The third step is divided into three smaller steps: (a) setting
the next half-edge pointer for each half-edge, (b) marking
the cut-edges, and (c) updating the next half-edges accord-
ingly. To set the next pointer for each half-edge, we use
information from the previous two steps, i.e., the vertices
incident half-edges and the current dangle half-edges. For
each vertex v € V, we sort its incident half-edges list
in clockwise order, excluding the dangle half-edges. After
sorting the incident half-edges list v.incidentH, for every
pair of half-edges v.incident H|[t], v.incidentH[t + 1] in the
sorted list, we assign v.incident H[t].next to v.incident H [t+
1].twin. For the last incident half-edge in the sorted list
v.incident H [v.incident H.len — 1], we assign its next half-
edge to v.incident H|[0].twin.

After the initial assignment of the next half-edge pointers,
we proceed with the second sub-step, marking the cut-edges.
To mark the cut-edges, we start our procedure at an arbitrary
half-edge h;pitiqr and assign our Ay.rent half-edge pointer to
it. We advance the hyprent pointer at each iteration to the
heurrent’s N€Xt (Reyrrent = Newrrent.-next), storing all visited
half-edges in a list (current cycle). We keep advancing the
heurrent pointer till we reach one of three cases. (1) We return
to the initial half-edge h;,;t:41, Which means a cycle is detected
and no cut-edge is detected. (2) The half-edge hcyrrent-next
is not available, which also means no cut-edge is detected. (3)
We find heyrrent.twin in the current cycle, which means that
heurrent and its twin are both cut-edges. Once we reach one of

126

{ . g
} : :
“— Z ‘ i
B | S

Y \

Fig. 5. DDCEL Vertices and Half-Edges After Dangle and Cut-Edge Removal

these cases, we mark all visited half-edges as such and proceed
with a new arbitrary half-edge to be h;ntiq;- This process is
terminated when all the partition half-edges are visited.

In the third sub-step, after marking all cut-edges, we update
the next pointers while excluding the cut-edges. For each
vertex v € V, we sort its incident half-edges list in clockwise
order again, now while excluding both the dangle and the
cut-edge half-edges. After sorting the incident half-edges list
v.ancidentH, we re-execute the same process of the first
sub-step, assigning v.incident H[t].next to v.incident H[t +
1].twin. Figure 5 shows the DDCEL data structure after
removing the dangle and the cut-edge half-edges.

Step 4: Generating the Partition Faces.
Polygonization on each partition P; starts with selecting an
arbitrary half-edge as our initial half-edge h;ytiq;. We initially
assign our Acyprent half-edge pointer to hjpiriqr. We advance
the heyrrent pointer at each iteration to the heyprent’S Next
(hewrrent = heurrent-next), storing all visited half-edges in a
list cycle. We keep advancing the h.y.rent pointer till we reach
one of the following cases: (1) We return to the initial half-
edge hinitiar, Which means that we have found a face. In this
case, we add the found face f to the faces collection F{y and
assign h.incidentF = f, Yh € cycle. (2) The heyrrent-next
is not available, and Ayrrent 1S @ half-edge that spans multiple
partitions. In this case, the cycle needs more information from
the neighboring partitions to be completed, and the current
partition’s data is insufficient to produce this face. To complete
this cycle, we either pass the incomplete cycle into the Rem
phase (the current list cycle), where it collects all incomplete
cycles from all partitions and attempts to join them to form a
face. Another approach would be passing the plain half-edges
in this cycle to the next phase. Both approaches are discussed
in detail in Section I'V-C. Once we finish processing this cycle,
we mark all visited half-edges as such, clear the cycle, and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. DDCEL Faces

proceed with a new arbitrary half-edge to be hinitiq;. This
process is terminated when all the partition half-edges are
visited. In Figure 6, the dotted faces are the faces generated
in this phase (Gen Phase).

C. Rem Phase

The Rem Phase accepts the remaining half-edges or incom-
plete cycles as input. To be included in the remaining half-
edges set, a half-edge cannot be a dangle or a cut-edge. Also,
the half-edge should not have been bounded to a face yet. An
incomplete cycle is a sequence of half-edges that acts as a
candidate face. This incomplete cycle could not be completed
since their marginal half-edges span multiple partitions.

The Rem Phase is an iterative phase, where each iteration
J generates a subset of faces F);. The unused input data at
iteration j is passed to the next iteration j+ 1. Faces generated
from the Gen phase and the Rem phase constitute the whole
faces of the subdivision F'. In each iteration, the Rem Phase
starts with re-partitioning the input data across the worker
nodes using a new set of partitions. This new set of partitions
satisfies the convergence criteria; the new number of partitions
(k;) at iteration j must be less than the number of partitions
(kj—1) at iteration j — 1. This criterion (k; < k;_1) ensures
there is an iteration (m) at which the remaining line segments
are re-partitioned to one partition only, where m is the total
number of iterations of the Rem Phase, converging the problem
into a sequential one and guaranteeing the termination of the
procedure. After the data re-partitioning, we proceed with
generating a subset of the remaining faces. Two approaches
are employed for the remaining faces generation, depending
on the phase input data. The first approach assumes the phase
input is a set of the Remaining Half-edges (RH Approach).
While the second approach assumes the input is a set of the
Incomplete Cycles (IC Approach).

127

RH Approach: Iterate over the Remaining Half-edges.
At each iteration j and on each new data partition, a subset
of the remaining half-edges is received. Duplicate half-edges
received on one new partition are merged into a single half-
edge choosing the half-edge with the available next half-edge.
We follow the same procedure of generating faces in the Gen
Phase. Starting from an arbitrary half-edge as our initial half-
edge Ninitial, We assign our heqy,rent half-edge pointer initially
to hinitial- We advance the hey,ren: pointer at each iteration
to the hcuw'ent’s next (hcuw'ent = iLcu'r'T‘e7Lt~7Le$t)a Storing
all visited half-edges in a list cycle. We keep advancing the
heurrent pointer till we reach one of the following cases: (1)
We return to the initial half-edge Ay itia1, Which means that we
have found a face. In this case, we add the found face f to the
faces collection F}; and assign h.incidentF = f, Vh € cycle.
(2) The heyrrent-next is not available, and heyrrent 1 @ half-
edge that is not wholly contained in the new partition MBR.
Once we finish processing this cycle, we mark all visited
half-edges as such, clear the cycle, and proceed with a new
arbitrary half-edge to be h;pitiqr. This iteration is terminated
when all the remaining half-edges are visited. All half-edges
that have not been assigned to any face yet are passed to the
next iteration. The Rem Phase terminates if (1) there are no
more remaining half-edges, i.e., all non-dangle non-cut-edge
half-edges are assigned to a face, or (2) the remaining half-
edges have been processed on one partition.

IC Approach: Iterate over the Incomplete Cycles.

At each iteration j, and on each new data partition, a subset of
the incomplete cycles is received. Starting from an arbitrary in-
complete cycle ¢ipitiqr With first half-edge first(cinitiar) and
last half-edge last(cinitiar), Where the first and last half-edges
are the incomplete cycle’s terminal half-edges, we search for
a match ¢p,q¢cp in the remaining incomplete cycles such that
the last(Cinitiat) = [irst(cmaten). When a match is found,
we merge the two cycles such that the last(Cinitiar) 1S NOW
the last(cmaten). We keep merging cycles till we reach one of
the following cases: (1) The last(cmaten) = [first(Cinitial),
which means the cycle is now completed. In this case, we add
the found face f to the faces collection F; and remove all
incomplete cycles used from the set of the incomplete cycles.
(2) We can not find a match for the current last half-edge,
and the last half-edge is not wholly contained within the new
partition’s MBR. In this case, the incomplete cycle needs more
information from the neighboring partitions to be completed,
and the current partition’s data is insufficient to produce this
face. Once we finish processing this matching process, we
mark all visited incomplete cycles as such and proceed with a
new arbitrary incomplete cycle to be ¢;nitiqr- This iteration j
is terminated when all the incomplete cycles are visited. All
incomplete cycles that are not completed yet are passed into
the next iteration. The Rem Phase terminates if (1) there are no
more remaining incomplete cycles, i.e., all cycles have been
completed, or (2) the incomplete cycles have been processed
on one partition. In Figure 6, the hatched faces are the faces
generated in the first iteration (j = 1) of the Rem Phase.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

V. DATA PARTITIONING

For the input spatial network partitioning, we used a spatial
QuadTree structure because of its ability to adapt to high skew-
ness (common in several spatial networks) by adapting the tree
depth in different spatial areas based on the network density.
Given a parameter capacity that defines how many data points
(line segments) are allowed within a QuadTree partition, the
QuadTree partitioner starts by inserting the whole network
into the root tree node. If the node capacity is exceeded, it
is divided into four child nodes with an equal spatial area,
and its data is distributed among the four child nodes. If any
child node has exceeded its capacity, it is further divided into
four nodes recursively and so on, until each node holds at most
its parameterized capacity. This standard mechanism divides
spatial areas with high data densities into deeper tree levels,
while sparse areas result in shallow tree depth. The optimal
goal is to hold an equal data load in each partition, which
balances the distributed query processing time when this data
is processed for incoming queries. Nevertheless, generating a
tree using all the data is expensive for enormous input data sets
with hundreds of millions of records and requires a powerful
master node. Apache Sedona [29] offers data sampling, where
only a sample of the data is used to generate the partitions.
These partitions are then used to partition the whole dataset.

The QuadTree partitioner is used to distribute the data
amongst the worker nodes across the cluster. In the Gen Phase,
the Quadtree leaf nodes are used as the initial data partitions.
The output of the Gen Phase, whether the remaining half-
edges or the incomplete cycles, is iteratively re-partitioned into
new sets of partitions. Each iteration set of partitions must
satisfy the convergence criterion to ensure that the Rem Phase
will terminate. We employ the same QuadTree partitioner to
generate the new partitions. Assume we have a QuadTree built
on the input line segments of height L. At the Gen Phase, we
use nodes at the leaf level L as our initial data partitions.
For each iteration j in the Rem Phase, we level up in the
QuadTree and choose different level nodes, aside from the
leaves, to be our current data partitions. We keep leveling up
in the QuadTree till we reach the root (I = 0), which means
that all data is located on only one partition (the root). Going
up in the QuadTree ensures that the number of partitions at
iteration j + 1 is less than that at iteration j since the number
of nodes at any arbitrary level [visited at iteration j is more
than that at level I nosen, Viehosen < [visited at iteration j+1.

We always start with the leaf nodes level L in the Gen
Phase. Choosing which levels to visit next in each iteration j
is a system parameter. In the experimental evaluation section,
we compare different schemes for the visited QuadTree levels.
The different schemes used are:

1) Going directly to the root node at [= 0 after the leaf
nodes, i.e., visiting only levels L in the Gen and O in
the Rem phases. However, the experimental evaluation
shows that collecting the data after the Gen phase on
one node is prohibitive, and one worker node will not
be able to process the Gen phase’s output.

128

TABLE 1
EVALUATION DATASETS
Dataset Area Size Faces
USA 9.83 Mkm? 152M 5M
South America 17.8 Mkm? 155M TM
North America 24.7 Mkm? 240 M 10M
Africa 30.4 Mkm? 288 M 10M
Europe 102 Mkm? 563M 25M
Asia 44.6 Mkm? 557M 23M

2) Going 1 Level Up (1LU) each iteration, i.e. if we visit
level [at iteration j, we go to level [—1 at iteration j+1.
This means the Rem Phase visits all the QuadTree levels
resulting in L iterations.

Going 2 Levels Up (2LU) each iteration resulting in half
the number of iterations % compared to 1LU.
Skipping to the Middle of the tree at level %, then
continue going 1 level up for the remaining levels
(M1LU), which will also result in % iterations.
Skipping to the Middle of the tree every time, dividing
the current level by two each iteration (MU); this will
result in log, (L) iterations.

3)

4)

5)

The goal is to find a re-partitioning scheme with a minimal
number of iterations, thus reducing the workload of the Rem
Phase while ensuring that the worker nodes can process the
chunk of the data it receives at each iteration j. The extreme
case of having only one iteration at the Rem Phase will not
work since the data is too big to fit one partition and be
processed by only one worker node. On the other hand, the
more unnecessary iterations we have, the more overhead on
the system resulting in higher query latency.

VI. EXPERIMENTAL EVALUATION

This section provides an extensive experimental evalua-
tion of our work. Section VI-A describes the experimental
setup. Section VI-B verifies that previous approaches do not
scale for large datasets. Sections VI-C through VI-F evaluate
our DDCEL constructor, including constructor scalability, re-
partitioning schemes, global index tuning, and speedup.

A. Experimental Setup

We implemented our framework on Apache Sedona [29].
All DDCEL experiments are based on Java 8 implementation
and use a Spark 2.3 cluster of a dual-master node and
12 worker nodes. All nodes run Linux CentOS 8.2 (64bit).
Each master node is equipped with 128GB RAM, and each
worker node is equipped with 64GB RAM. The total number
of worker executors on the Spark cluster is 84, each with 4 GB
of memory and an additional executor for the driver program.
Our evaluation datasets are road networks extracted from Open
Street Maps of the United States of America [27] and conti-
nents worldwide [21]. Statistics of the evaluation datasets and
the number of generated DDCEL faces are shown in Table L.
Unless mentioned otherwise, the default QuadTree partition
capacity for USA and South America datasets is 15K line
segments, for North America and Africa 17K line segments,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

and for Asia and Europe 25K line segments. The default re-
partitioning scheme is MU for all evaluation datasets.

B. Comparison with Previous Approaches

As mentioned in the introduction, sequential approaches do
not scale when dealing with large network sizes. Running the
sequential polygonization algorithm on a 64GB RAM machine
with 1.8TB disk space using the USA road network as an
input breaks before producing results. For example, PostGIS
was able to process only up to 20 Million edges out of the
152 Million edges of the USA road network dataset (13% of
the dataset) in around four hours of execution time.

We then tested the parallel approach introduced in [14] on a
distributed environment setting (Spark cluster), using the USA
road network dataset (152 Million edges). The input dataset is
undirected edges, while [14] only works with directed edges.
As a workaround, we defined each input undirected edge as
two directed edges (similar to half-edges). The input data
is spatially partitioned using a QuadTree onto around 35K
partitions, with a QuadTree depth of 13. In each merging
operation, the input dataset is re-partitioned into a smaller
number of partitions till we reach a single partition. As we
reach the 9*" iteration, the processing breaks down after the
data is re-partitioned into 112 partitions. This means that the
original input dataset of the 152M edges is being partitioned
into only 112 partitions after it was initially partitioned into
35K partitions. This means that, on average, each data partition
goes from handling around 4K edges at the first iteration to
handling around 1.3M edges in the 9*" iteration. Processing
this huge chunk of the input data on a worker node eventually
becomes prohibitive.

C. DDCEL Constructor Scalability

Figure 7 evaluates the scalability of DDCEL construc-
tor using the different evaluation datasets. As discussed in
Section IV, the Rem Phase has two different approaches
depending on the input data received from the Gen Phase. The
first approach is to process the remaining half-edges iteratively,
denoted as DDCEL-RH. In comparison, the second approach
processes the incomplete cycles generated from the first phase
iteratively denoted as DDCEL-IC.

From Figure 7, we draw three conclusions; (1) first, the
cardinality of the input dataset has a positive correlation with
the build time; as the number of line segments increases, the
build time also increases, as shown in Figure 7(a). However,
we see that we have close cardinality for Asia (557M) and
Europe (563M) datasets, but there is a noticeable difference
in the build time; moreover, the build time for the Europe
dataset is less than that of the Asia dataset. This drives us to
the second conclusion; (2) for datasets with close or similar
cardinalities, the area of the dataset has a positive correlation
with the build time shown in Figure 7(b). Hence the build time
of the Europe dataset (10.2M M km?) is less than that of the
Asia dataset (44.6 Mkm?), even though Europe has a slightly
larger dataset. (3) The third conclusion is that for all evaluated
datasets, the DDCEL-IC beats DDCEL-RH.

129

14 A
DDCEL-IC RXXXXX
% 12 | DDCEL-RH 1
[«
2 10
v 8 %
SIS %
a2
O PO :
152 155 240 288 557 563
Number of Line Segments (millions)
(a) Varying Number of Line Segments
14 A
—~ DDCEL-IC RXXXXN
g 12 | DDCEL-RH [
-
g 10
10) 8
g
46
o)
< 4
-
RN
m
0 >

9.83 10.2 17.8 24.7 30.4 44.6

Dataset Area (M KM
(b) Varying Dataset Area

Fig. 7. DDCEL Constructor Performance on Real Road Networks.

D. Re-partitioning Schemes Evaluation

Figure 8 shows the performance of the different re-
partitioning schemes discussed in Section V over two of the
evaluated datasets, namely Africa and Europe road network
datasets. It confirms the previous finding; DDCEL-IC beats
DDCEL-RH in all evaluated re-partitioning schemes for both
datasets. /LU is the worst performing re-partitioning scheme
since there are relatively more iterations where each iteration
generates only a small subset of the remaining faces. Also,
the input data skew leads to an unbalanced QuadTree. Going
a level up from the leaves does not guarantee that all nodes
are merged to a parent node. This cause to have some idle
partitions, the partitions that are already processed and not yet
merged, at earlier iterations.

MU or MILU are the best-performing approaches since both
have a minimal number of iterations; é and log, (L) iterations,
respectively, while maintaining parallelism by ensuring data is
re-partitioned to enough multiple partitions. Jumping to nodes
at higher levels in the QuadTree gives two major advantages;

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

14 —
DDCEL-IC EXXXXA

w 12 DDCEL-RH 1
o
E 10 _
o 8
£
o6 B
S 4
-
a 2

0 >

1LU 2LU M1LU MU
Re-Partitioning Scheme
(a) Africa Dataset

204

18 DDCEL-IC EXXXXX
" DDCEL-RH [
o 16
e 14

12
[0}
g 10
-
= 8
o}
’:: 6
5 4
mo2

0 P

1LU 2LU M1LU MU

Re-Partitioning Scheme

(b) Europe Dataset

Fig. 8. Varying Re-Partitioning Schemes.

first, these nodes have larger areas that can fit larger faces, and
second, it minimizes or completely eludes the idle partitions.
However, the extreme approach of going straight to the root
after the Gen phase decreases the parallelism and assumes that
one worker node is able to generate the remaining faces, which
is not the case. The experiments of this approach terminated
without producing any results due to memory issues.

E. Global Index Tuning

Figure 9 shows the effect of varying the initial partition
capacity on two of the evaluated datasets, Africa and Europe
datasets, using the IC approach with varying partitioning
schemes. The number of partitions has an inverse correlation
with the partition capacity. As we increase the partition ca-
pacity, the number of partitions decreases. Parallelism is at its
highest at smaller partition capacities (i.e., more data partitions
are processed in parallel). However, too many partitions result:
(1) too many iterations since the depth of the QuadTree is
directly correlated with the number of partitions, and (2) fewer

130

A
35
0 DDCEL-IC (1LU) &
w 30 DDCEL-IC (2LU) -©
5 DDCEL-IC (M1LU) -4
g 25 DDCEL-IC (MU) —+
0]
£
-
)
T
,_‘
-
3
m
0 >
5 25 50 100 125 150
Global Index Capacity (K lines)
(a) Africa Dataset
40 1
DDCEL-IC (1LU) &
— 3500 DDCEL-IC (2LU) -©
5 30 DDCEL-IC (M1LU) -4
s DDCEL-IC (MU) —+
o
£
-
H
o
—
5
m 5
0 >
15 50 100 200 250 300
Global Index Capacity (K lines)

(b) Europe Dataset

Fig. 9. Varying the Initial Partition Capacity.

faces generated per iteration since more faces will not fit in
one partition anymore. So we need to find an optimal partition
capacity that gives us enough partitions to ensure parallelism
but not too many partitions that become an overhead on the
system. Figure 9 shows that 17K partition capacity works best
for the Africa dataset, whereas 25K partition capacity works
best for the Europe dataset.

Figure 9 gives also two major insights: (1) We confirm that
MU and MILU perform better than /LU and 2LU. (2) For
almost all techniques, the build time starts very high with low
partition capacity, which confirms that too many partitions are
overhead from the system’s point of view. With increasing the
partition capacity, the build time drops significantly for /LU
and 2LU. However, the drop is less noticeable for MU and
MILU because MU and MILU already (a) have less number
of iterations and (b) skip the levels with too many partitions
(deeper levels in the QuadTree). The build time increases
again after the drop in build time because we now have a
small number of partitions, and insufficient data is processed

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

DDCEL-IC
DDCEL-RH

(MU)
(MU)

(mins)

i

Build Time

Number of executors

Fig. 10. Speedup Evaluation using the USA Dataset

in parallel, thus, decreasing the query parallelism.

F. Speedup Evaluation

Figure 10 shows the effect of increasing the number of
executors on the build time for the USA dataset. Overall
our approach has good speedup performance. As the number
of executors is doubled from 7 executors to 14 executors,
the build time is almost halved. This trend goes on as we
double the number of executors. As we increase the number
of executors from 7 to 84, the build time is decreased by a
factor of 8.

VII. CONCLUSIONS

This paper proposes a Distributed Doubly-Connected Edge-
List (DDCEL) data structure, a novel distributed extension
to the traditional DCEL data structure. The DDCEL data
structure is a distributed graph implemented by three RDDs
corresponding to the subdivision’s vertices, half-edges, and
faces. To construct a DDCEL for an input spatial network
of line segments, the constructor undergoes two phases: the
Gen and Rem Phases. In the Gen Phase, the input data is
spatially partitioned across a cluster of worker nodes. In each
data partition, the Gen Phase generates the partition’s subset
of vertices, half-edges, and faces. The Gen Phase generates
all of the input’s vertices and half-edges. However, it cannot
generate faces with half-edges spanning multiple partitions.
Through multiple iterations, the Rem Phase generates any
remaining faces by re-partitioning the remaining half-edges
or the incomplete cycles into a smaller set of partitions that
aggregate information from multiple older partitions. We used
a QuadTree partitioning in both the initial data partitioning and
in the Rem Phase iterative re-partitioning. In the initial data
partitioning, we always use the leaf nodes of the QuadTree
as our partition boundaries. We propose various schemes for
choosing the other tree levels to visit in the Rem Phase
iterations, and we compare them. The experimental evaluation
shows significant superiority of our approaches compared to
the existing techniques to support large-scale spatial networks.

131

[

—

B

[8

=

[9

—

[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]
[22]

[23]
[24]
[25]

[26]
[27]

[28]

[29]

[30]

REFERENCES

Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu,
Xiaodong Zhang, and Joel Saltz. Hadoop-GIS: A High Performance
Spatial Data Warehousing System Over MapReduce. In VLDB Journal,
2013.

Ergun Akleman, Jianer Chen, and Vinod Srinivasan. A New Paradigm
for Changing Topology Of 2-Manifold Polygonal Meshes. In Pacific
Graphics, 2000.

Tatsuya Akutsu, Colin de la Higuera, and Takeyuki Tamura. A Simple
Linear-Time Algorithm for Computing the Centroid and Canonical Form
of a Plane Graph and Its Applications. In Annual Symposium on
Combinatorial Pattern Matching, 2018.

David Avis. Generating Rooted Triangulations Without Repetitions.
Algorithmica, 1996.

DCEL Python Implementation. https://github.com/anglyan/dcel, 2015.
Mark De Berg, René Van Oostrum, and Mark Overmars. Simple
Traversal of a Subdivision without Extra Storage. Proceedings of the
Twelfth Annual Symposium on Computational Geometry, 1996.

Mark Theodoor De Berg, Marc Van Kreveld, Mark Overmars, and
Otfried Schwarzkopf. Computational Geometry: Algorithms and Ap-
plications. Springer Science & Business Media, 2000.

Ahmed Eldawy and Mohamed F Mokbel. Spatialhadoop: A Mapreduce
Framework For Spatial Data. In Proceedings of the IEEE International
Conference on Data Engineering, ICDE, 2015.

Ulrich Finke and Klaus H Hinrichs. Overlaying Simply Connected
Planar Subdivisions In Linear Time. In Symposium On Computational
Geometry, 1995.

Raphael Finkel and Jon Bentley. Quad trees: A data structure for retrieval
on composite keys. Acta Inf., 4:1-9, 03 1974.

GEOS Polygonizer Implementation. https://github.com/libgeos/geos.
GoogleMaps. https://www.google.com/maps.

Alexis Gourdon. Simplification of Irregular Surfaces Meshes in 3D
Medical Images. In Computer Vision, Virtual Reality and Robotics in
Medicine, 1995.

Erik G Hoel and Hanan Samet. Data-parallel polygonization. Parallel
Computing, 2003.

JTS Polygonizer Implementation. https://github.com/locationtech/jts.
Menelaos I Karavelas. Voronoi diagrams in CGAL. In European
Workshop on Computational Geometry, 2006.

Nilanjana Karmakar, Arindam Biswas, and Partha Bhowmick. Fast
Slicing Of Orthogonal Covers Using DCEL. In International Workshop
on Combinatorial Image Analysis, 2012.

Lutz Kettner. Halfedge Data Structures. In CGAL User and Reference
Manual. CGAL Editorial Board, 2022.

Mingzhao Li, Zhifeng Bao, Farhana Choudhury, Hanan Samet, Matt
Duckham, and Timos Sellis. AOI-shapes: An Efficient Footprint Algo-
rithm to Support Visualization of User-defined Urban Areas of Interest.
ACM Transactions on Interactive Intelligent Systems, 2021.
OpenStreetMap. https://www.openstreetmap.org/.

OpenStreetMap Data Extracts. http://download.geofabrik.de/.

Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kemper.
How Good Are Modern Spatial Libraries? Data Science and Engineer-
ing, 2021.

PostGIS. https://postgis.net.

QGIS Geographic Information System. https://www.qgis.org.

Eric Saux, R’emy Thibaud, Ki-Joune Li, and Min-Hwan Kim. A New
Approach For A Topographic Feature-Based Characterization of Digital
Elevation Data. In Proceedings of ACM GIS, 2004.
Shapely: Manipulation and Analysis of Geometric
https://github.com/Toblerity/Shapely.

U.S. Street Network Shapefiles, Node/Edge Lists, and GraphML Files.
https://doi.org/10.7910/DVN/CUWWY].

Simin You, Jianting Zhang, and Le Gruenwald. Large-scale Spatial Join
Query Processing In Cloud. In Proceedings of the IEEE International
Conference on Data Engineering, ICDE, 2015.

Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Spatial Data Management
in Apache Spark: the GeoSpark Perspective and Beyond. Geolnformat-
ica, 2018.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion
Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

Objects.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on November 29,2023 at 23:15:30 UTC from IEEE Xplore. Restrictions apply.

