Scalable Overlay Operations over DCEL Polygon Layers

Andres Calderon-Romero
acald013@ucr.edu
University of California
Riverside, USA

ABSTRACT

The Doubly Connected Edge List (DCEL) is an edge-list structure
that has been widely utilized in spatial applications for planar topo-
logical computations. An important operation is the overlay which
combines the DCELs of two input layers and can easily support spa-
tial queries like the intersection, union and difference between these
layers. However, existing sequential implementations for comput-
ing the overlay do not scale and fail to complete for large datasets
(for example the US census tracks). In this paper we propose a
distributed and scalable way to compute the overlay operation and
its related supported queries. We address the issues involved in
efficiently distributing the overlay operator and offer various op-
timizations that improve performance. Our scalable solution can
compute the overlay of very large real datasets (32M edges) in few
minutes.

CCS CONCEPTS

« Computing methodologies — Parallel algorithms; MapRe-
duce algorithms; « Information systems — Data structures.

KEYWORDS

Spatial data structures, overlay operator, DCEL

ACM Reference Format:

Andres Calderon-Romero, Amr Magdy, and Vassilis J. Tsotras. 2023. Scalable
Overlay Operations over DCEL Polygon Layers. In Symposium on Spatial and
Temporal Data (SSTD °23), August 23-25, 2023, Calgary, AB, Canada. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3609956.3609964

1 INTRODUCTION

The use of spatial data structures is ubiquitous in many spatial
applications, ranging from spatial databases to computational ge-
ometry, robotics and geographic information systems [26]. Spatial
data structures have been used to improve the efficiency of various
spatial queries, such as spatial joins, nearest neighbors, voronoi
diagrams and robot motion planning. Examples include grids [20],
R-trees [2, 14], quadtrees [10], etc. There are also edge-Ilist struc-
tures that have been typically utilized in applications as topological
computations in computational geometry [4].

The most commonly used data structure in the edge-list family
is the Doubly Connected Edge List (DCEL). A DCEL [19, 22] is a
data structure which collects topological information for the edges,

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

SSTD °23, August 23-25, 2023, Calgary, AB, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0899-2/23/08.
https://doi.org/10.1145/3609956.3609964

Amr Magdy
amr@cs.ucr.edu
University of California
Riverside, USA

Vassilis J. Tsotras
tsotras@cs.ucr.edu
University of California
Riverside, USA

e\ twin(
Q
%
\

incident Face(f-e)

©

\/X

/N

®

Figure 1: Components of the DCEL structure.

vertices and faces contained by a surface in the plane. The DCEL and
its components represent a planar subdivision of that surface. In a
DCEL, the faces (polygons) represent non-overlapping areas of the
subdivision; the edges are boundaries which divide adjacent faces;
and the vertices are the point endings between adjacent edges (see
Figure 1). In addition to geometric and topological information a
DCEL can be enhanced to provide further information. For instance,
a DCEL storing a thematic map for vegetation can also store the
type and height of the trees around the area [4].

The DCEL data structure has been used in various applications.
For instance, the use of connected edge lists is cardinal to support
polygon triangulations and their applications in surveillance (the
Art Gallery Problem [9, 21]) and robot motion planning (Minkowski
sums [4, 8]). DCELSs are also used to perform polygon unions (for
example, on printed circuit boards to support the simplification
of connected components in an efficient manner [11]) as well as
the computation of silhouettes from polyhedra [3, 11] (applied
frequently in computer vision and 3D graphics modelling [5]).

Edge-list data structures have also been utilized for the creation
of thematic overlay maps. In this problem, the input contains the
DCELs of two polygon layers each capturing geospatial information
and attribute data for different phenomena and the output is the
DCEL of an overlay structure that combines the two layers into one.
In many application areas such as ecology, economics and climate
change, it is important to be able of join the input layers and match
their attributes in order to unveil patterns or anomalies in data
which can be highly impacted by location. Several operations can
then be easily computed given an overlay; for instance, the user
may want to find the intersection between the input layers, identify
their difference (or symmetric difference), or create their union.

Spatial databases have been using spatial indexes (R-tree [2, 14])
to store and query polygons. Such methods use the filter and refine
approach where a complex polygon is abstracted by its Minimum
Bounding Rectangle (MBR) that is inserted in the R-tree index.

https://doi.org/10.1145/3609956.3609964
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3609956.3609964
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609956.3609964&domain=pdf&date_stamp=2023-08-24

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Finding the intersection between two polygon layers each indexed
by a separate R-tree is then reduced to finding the pairs of MBRs
from the two indexes that intersect (filter part). This is followed
by the refine part, which, given two MBRs that intersect needs to
compute the actual intersections between all the polygons these
two MBRs contain. While MBR intersection is simple, computing
the intersection between a pair of complex real-life polygons is
a rather expensive operation (a typical 2020 US census track is
a polygon with hundreds of edges). Moreover, using DCELs for
overlay operations offers the additional advantage that the result
is also a DCEL which can then be directly used for subsequent
operations. For example, one may want to create an overlay between
the intersection of two layers with another layer and so on.

Even though the DCEL has important advantages for implement-
ing overlay operations, current approaches are sequential in nature.
This is problematic considering layers with thousands of polygons.
For example, the layer representing the 2020 US census tracks con-
tains around 72K polygons; the execution for computing the overlay
over such large file crashed on a stock laptop. To the best of our
knowledge there is no scalable solution to compute overlays over
DCEL layers.

In this paper we describe the design and implementation of a
scalable and distributed approach to compute the overlay between
two DCEL layers. We first present a partition strategy that guaran-
tees that each partition collects the required data from each layer
DCEL to work independently, thus minimizing duplication and
transmission costs over 2D polygons. In addition, we present a
merging procedure that collects all partition results and consoli-
dates them in the final combined DCEL. Our approach has been
implemented in a parallel framework (i.e., Apache Spark).

Implementing a distributed overlay DCEL creates novel prob-
lems. First, there are potential challenges which are not present
in the sequential DCEL execution. For example, the implementa-
tion should consider features such as holes which could lay on
different partitions. Such features need to be connected with their
components residing in other partitions so as to not compromise
the correctness of the combined DCEL. Secondly, once a distributed
overlay DCEL has been built, it must support a set of binary over-
lay operators (namely union, intersection, difference and symmetric
difference) in a transparent manner. That is, such operators should
take advantage of the scalability of the overlay DCEL and be able
to run also in a parallel fashion. Additionally, users should be able
to apply the various operators multiple times without the need of
rebuild the overlay DCEL data structure.

The rest of this paper is organized as follows. Section 2 presents
related work while Section 3 discusses the basics of DCEL and the
sequential algorithm. In Section 4 we present a partitioning scheme
that enables parallel implementation of the overlay computation
among DCEL layers; we also discuss the challenges presented in
the DCEL computations by distributing the data and how to solve
them efficiently. Two important optimizations are introduced in
Section 5. An extensive experimental evaluation appears in Section
6, while Section 7 concludes the paper.

2 RELATED WORK

The fundamentals of the DCEL data structure were introduced in
the seminal paper by Muller and Preparata [19]. The advantages

86

Calderon, et al.

Table 1: Vertex records.

vertex coordinates incident edge
a (0,2) ba
b (2,0) db
c (2,4) dc

Table 2: Face records.

boundary hole

face edge list
fi ab nil
b fe nil
f nil nil

Table 3: Half-edge records.

half-edge origin face twin next prev

fe f £ ef e df
ca c fi ac ab de
bd ba

db d £ fd

of DCELSs are highlighted in [4, 22]. Examples of using DCELs for
diverse applications appear in[1, 6, 13]. Once the overlay DCEL
is created by combining two layers, overlay operators like union,
difference etc., can be computed in linear time to the number of
faces in their overlay [13].

Currently, few sequential implementations are available: LEDA
[18], Holmes3D [15] and CGAL [11]. Among them CGAL is an open-
source project widely used for computational geometry research.
To the best of our knowledge, there is no scalable implementation
for the computation of overlay DCEL.

While there is a lot of work on using spatial access methods to
support spatial joins, intersections, unions etc. in a parallel way
(using clusters, multicores or GPUs), [7, 12, 16, 17, 23-25] these ap-
proaches are different in two ways: (i) after the index filtering, they
need a time-consuming refine phase where the operator (union,
intersection etc.) has to be applied on each pair of (typically) com-
plex spatial objects; (ii) if the operator changes, we need to run
the filter/refine phases from scratch (in contrast, the same overlay
DCEL can be used to run all operators.)

3 PRELIMINARIES

The DCEL [19] structure is used to represent an embedding of a
planar subdivision in the plane. It provides efficient manipulation of
the geometric and topological features of spatial objects (polygons,
lines and points) using faces, edges and vertices respectively. A DCEL
uses three tables (relations) to store records for the faces, edges
and vertices, respectively. An important characteristic is that all
these records are defined using edges as the main component (thus

Scalable Overlay Operations over DCEL Polygon Layers

termed as an edge-based structure). Examples appear in Tables ??-3
below, following the subdivision depicted in Figure 1.

An edge corresponds to a straight line segment, shared by two
adjacent faces (polygons). Each of these two faces will use this
edge in its description; to distinguish, each edge has two half-edges,
one for each orientation (direction). It is important to note that
half-edges are oriented counter clockwise inside each face (Figure
1). A half-edge is thus defined by its two vertices, one called the
origin vertex and the other the target vertex, clearly specifying
the half-edge’s orientation (origin to target). Each half-edge record
contains references to its origin vertex, its face, its twin half-edge,
as well as the next and previous half-edges (using the orientation
of its face); see Table 3. These references are used as keys to the
tables that contain the referr_e)d attributtg. -

Figure 1 shows half-edge fe, its twin(fe) (which is half-edge ef),

the next(fe) (half-edge) and the prev(fe) (half-edge df). Note
the counter clockwise direction used by the half-edges comprising
face f,. The incidentFace of a half-edge corresponds to the face that

this edge belongs to (for example incidentFace(Fé) is face f2).

Each vertex corresponds to a record in the vertex table (see Table
??) that contains its coordinates as well as one of its incident half-
edges. An incident half-edge is one whose target is this vertex. Any
of the incident edges can be used; the rest of a vertex’s incident
half-edges can be found easily following next and twin half-edges.

Finally, each record in the faces table contains one of the face’s
half edges to describe the polygon’s outer boundary (following
this face’s orientation); see Table 2. All other half-edges for this
face’s boundary can be easily retrieved following next half-edges
in orientation order. In addition to regular faces, there is one face
that covers the area outside all faces; it is called the unbounded face
(face f3 in Figure 1). Since f3 has no boundary, its boundary edge is
set to nil in Table 2. Note, that polygons can contain one or more
holes (a hole is an area inside the polygon that does not belong to
it). Each such hole is itself described by one of its half-edges; this
information is stored as a list attribute (hole list) in the faces table
where each element of the list is the half-edge’s id which describe
the hole. Note that in Table 2 this list is empty as there are no holes
in any of the faces in the example of Figure 1.

An important advantage with the DCEL structure is that a user
can combine two DCELs from different layers over the same area
(e.g. the census tracks from two different years) and compute their
overlay which is a DCEL structure that combines the two layers into
one. Other operators like the intersection, difference etc. can then
be computed from the overlay very efficiently. Given two DCEL
layers S; and Sy, a face f appears in their overlay OVL(Sy, S2) if
and only if there are faces f; in S; and f; in Sy such that f is a
maximal connected subset of 1N 2 [4]. This property implies that
the overlay OVL(S1,S2) can be constructed using the half-edges
from S; and S5 .

The sequential algorithm [11] to construct the overlay between
two DCELSs first extracts the half-edge segments from the half-edge
tables and then finds intersection points between half-edges from
the two layers (using a sweep line approach) [4]. The intersection
points found will become new vertices of the resulting overlay. If an
existing half-edge contains an intersection point it is split into two
new half-edges. Using the list of outgoing and incoming half-edges

87

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

by b3 by by
By By By

AB,

by by 2 by
Ay A Ay

by

Figure 2: Sequential computations of an overlay of two DCEL
layers.

for the newly added vertices (intersection points) the algorithm can
compute the attributes for the records of the new half-edges. For
example, the list of outgoing and incoming half-edges at each new
vertex will be used to update the next, previous and twin pointers.
Finally, records for faces and vertices tables are also updated with
the new information.

Figure 2 illustrates an example for computing the overlay be-
tween two DCEL layers with one face each (A; and Bj respectively),
that overlap over the same area. First, intersection points are found
and create new vertices in the overlay (red vertices ¢; and c3). Fi-
nally, new half edges are created around these new vertices. As a
result, face A; is modified (to an L-shaped boundary) as does face
B, while a new face A1Bj is created. Since this new face is the
intersection of the boundaries of A1 and By, its label contains the
concatenation of both face labels. By convention [4], even though
A1 changes its shape, it does not change its label since its new
shape is created by its intersection with the unbounded face of By;
similarly the new shape of B; maintains its original label. These
labels are crucial for the creation of the overlay (and the operators
it supports) as they are used to identify which polygons overlap an
existing face.

Once the overlay structure of two DCELs is computed, queries
like their intersection, union, difference etc. (Figure 3) can be per-
formed in linear time to the number of faces in the overlay. The
space requirement for the overlay structure remains linear to the
number of vertices, edges and faces. Since an overlay is itself a
DCEL, it can support the traditional DCEL operations (e.g., find the
boundary of a face, access a face from an adjacent one, visit all the
edges around a vertex, etc.)

4 SCALABLE OVERLAY CONSTRUCTION

The overlay computation depends on the size of the input DCELs
and the size of the resulting overlay. The DCEL of a planar subdi-
vision Sp has size O(n1) where ny = X(vertices; + edges; + facesy).
The sequential algorithm constructing the overlay of S; and S
takes O(nlogn + k log n) time, where n = ny + ny and k is the size
of their overlay. Note that k depends on how many intersections
occur between the input DCELSs, which can be very large [4].
While the sequential algorithm is efficient with small DCEL
layers, it suffers when the input layers are large and have many
intersections. For example, creating the overlay between the DCELs
of two census tracks (from years 2000 and 2010) from California
(each with 7K-8K polygons and 2.7M-2.9M edges) took about 800sec
on an Intel Xeon CPU at 1.70GHz with 2GB of memory (see Section

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Calderon, et al.

AAB

Figure 3: Examples of overlay operators supported by DCEL; results are shown in gray.

6). With DCELs corresponding to the whole US, the algorithm
crashed.

Nevertheless, the overlay computation can take advantage of
partitioning (and thus parallelism), by observing that the edges
in a given area of one input layer, can only intersect with edges
from the same area in the other input layer. One can thus spatially
partition the two input DCELSs using a spatial index (or grid) and
then compute the overlay within each cell; such computations are
independent and can be performed in parallel. While this is a high
level view of our scalable approach, there are various challenges,
including how to deal with edges that cross cells, how to manage
the extra complexity introduced by orphan holes (i.e., when holes
and their polygons are in different cells), how and where to combine
partition overlays into a global overlay, as well as how to balance
the computation if one layer is much larger than the other.

4.1 Partition Strategy

The main idea of the partition strategy is to split the area covered
by the input layers into non-overlapping cells which could then be
processed independently. One could use a simple grid to divide the
area but our early experiments showed that such approach would
result in unbalanced cells (in number of edges) which affects per-
formance. In the rest we assume that the partitioning is performed
using a quadtree index which adapts to skewed spatial distributions
and helps to assign a similar number of edges to each cell.

The overall approach can be summarized in the following steps:
(i) Partition the input layers into the index cells and build local
DCEL representations of them at each cell; and (ii) Compute the
overlay of the DCELs at each cell. Overlay operators and other
functions can be run over the local overlays and then local results
are collected to generate the final answer.

Note that each input layer is given as a sequence of polygon
edges, where each edge record contains the coordinates of the
edge’s vertices (origin and target vertex) as well as the polygon id
and a hole id in the case that an edge belongs to a hole inside of a
polygon. We assume there are not overlapping or stacked polygons
in the dataset. To quickly build the partitioning quadtree structure
we take a sample from the edges of each layer (1% of the total
number of edges in that layer). After the quadtree is created, we
use its leaf nodes as the partitioning cells for each layer. Each input
layer file is then read from disk and all of its edges are inserted to
the appropriate cells of the partitioning structure.

For this approach to work, it is important that each cell can
compute its two DCELSs independently. Note that an edge can be

88

fully contained in a cell, or it can intersect the cell’s boundary. In
the second case, we copy this edge to all cells that it intersects, but
within each cell, we use the part of the edge that lies fully inside
the cell. Figure 4 shows an example, where there are 4 cells and
two edges of the upper polygon from layer A cross the cell borders.
Such edges are clipped at the cell borders, introducing new edges
(e.g. edges a’ and a” in the Figure 4). Similarly, a polygon that
crosses over a cell is clipped to the cell by introducing artificial
edges on the cell’s border (see face Az in cell 3 of Figure 4). Such
artificial edges are shown in red in the figure. This allows to create
a smaller polygon that is contained within each cell. For example
polygon Aj is clipped into four smaller polygons as it overlaps all
four cells. The clipping of edges and polygons ensures that each
cell has all needed information to complete its DCEL computations.
As such computations can be performed independently, they are
sent to different compute nodes to be processed in parallel. The
assignment is delegate to the distributed framework (i.e. Apache
Spark).

Once a cell is assigned to a node, the sequential algorithm is
used to create a DCEL for each layer (using the cell edges from
that layer and any artificial edges, vertices and faces created by the
clipping procedures above) and then compute the corresponding
(local) overlay for this cell. Using the example from Figure 4, Figure
5 depicts an overview of the process for creating a local overlay
DCEL inside cell 2. Similarly, Figure 6 shows all local overlay DCELs
computed at each cell (again, artificial edges are shown in red).

Nevertheless, the partitioning can create two problems (not
present in the sequential environment) that need to be addressed.
The first is the case where a cell is empty, that is, it does not in-
tersect with (or contain) any regular edge from neither layer. A
regular edge is one that is not part of a hole. This empty cell does
not contain any label and thus we do not know which face it may
belongs to. We term this as the orphan cell problem. An example
is shown in Figure 7 which depicts a face (from one of the input
layers) whose boundary goes over many quadtree cells; orphan
cells are shown in grey.

Note that an orphan cell may contain a hole (see Figure 7). In
this case the original label of the face where the hole belongs (and
reported in the hole’s edges) may have changed during the overlay
computation (because it overlapped with a face from the other
layer). However, this new label has not been propagated to the
hole edges. We term this as the orphan hole problem. While for
simplicity we focus in the case where a hole is within one orphan
cell, in the general case, a hole can split among many such cells.

Scalable Overlay Operations over DCEL Polygon Layers

Input Layer A

A
(@

Input Layer B

®i

Clipped Edges A

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Partitioned DCEL for A

Figure 4: Partitioning example using input layers A and B over four cells.

/
N\,
/

N
VAN

1
/N

N
"
%
/ N\
N

4

P
N\ A4
/5
X

Figure 6: Result of the local overlay DCEL computations.

The issue with both ‘orphan’ problems is the missing labels.
Below we propose an algorithm that correctly labels an orphan cell.
If this cell contains a hole, the new label is used to update the hole
edges as well.

4.2 Labeling Orphan Cells and Holes

To find the label of an orphan cell we propose an algorithm that
recursively searches the space around the orphan cell until it iden-
tifies a nearby cell which contains edge(s) of the face that contains

89

the orphan cell and thus acquire the appropriate label information.
This search is accommodated by the quadtree index. Two observa-
tions are in order: (1) each cell is a leaf of the quadtree index (by
construction), and (2) each cell has a unique id created by the way
this cell was created; this id effectively provides the lineage (unique
path) from the quadtree root to this leaf. Recall that the root has
four possible children (typically numbered as 0,1,2,3 correspond-
ing to the four children NW, NE, SW and SE). The lineage is the
sequence of these numbers in the path to the leaf. For example, the
lineage for the shaded orphan cell in Figure 7a is 03. Further, note
that the quadtree is an unbalanced structure, having more deep
leaves where there are more edges. Thus higher leaves correspond
to larger areas and deeper leaves to smaller areas (since a cell split
is created when a cell has more edges than a threshold).

After identifying an orphan cell, the question is where to search
for a cell that will contain an edge. The following Lemma applies:

LEMMA 4.1. Given an orphan cell, one of its siblings at the same
quadtree level must contain a regular edge (directly or in its subtree).

This lemma arises from the simple observation that if all three
siblings of an orphan cell are empty then there is no reason for the
quadtree to make this split and create these four siblings. Based on
the lemma, we know that one of the three siblings of the orphan
cell can lead us to a cell with an edge. However, these siblings may
not be cells (leaves). Instead of searching each one of them in the
quadtree until we reach their leaves, we want a way to quickly reach
their leaves. To do so, we pick the centroid point of the orphan
cell’s parent (which is also one of the corners of the orphan cell).
For example, the parent centroid for the orphan cell 03 is the green
point in Figure 7b. We then query the quadtree to identify which
cells (leaves; one from each sibling) contain this point. We check
these cells if they contain an edge; if we find such a cell we stop
(and use the label in that cell). If all three cells are orphans, we need
to continue the search. This is the case in Figure 7b, where all three
cells (green in the figure) are also orphan.

The algorithm has to pick one of them as the current orphan cell
and repeat the process recursively. One can use different heuristics.

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Calderon, et al.

\ |
7] N il | il | |
% S il = el = e i
F:LL - Ei] Ei . .
S NN \rfi [77
T — — —
() (b) (© (d)

Figure 7: (a) Empty cell and hole examples; (b)-(c)-(d) show three iterations of the proposed solution.

Below we consider the case where we use the deepest cell (i.e. the
one with the longest lineage) among the three. This is because, we
expect that this will lead us to the denser areas of the quadtree
index, where there is more chance to find cells with edges. Figure 7
shows a three-iteration run of the algorithm.

During the search process we keep any orphan cells we discover;
after a cell with an edge (non-orphan cell) is found, the algorithm
stops and labels the original orphan cell and any other orphan cells

retrieved in the search with the label found in the non-orphan cell.

Note that if the non-orphan cell contains many labels (because
different faces pass through it), we assign the label of the face that
contains the original centroid. The pseudocode of the search process
can be seen at Algorithms 1 and 2.

Another heuristic we used (not described here) is to follow the
highest among the three orphan cells (the one with the shorter
lineage) since this has larger area and will thus help us cover more
empty space and possibly reach the border of the face faster.

4.3 Answering global overlay queries

Using the local overlay DCELs we can easily compute the global
overlay DCEL; for that we simply need a reduce phase (described
below) to remove artificial edges (and concatenate split edges) from
all the faces. Using the local overlay DCELs we can also compute
(in a scalable way) global operators like intersection, difference,
symmetric difference, etc. For these operators there is first a map
phase that computes the specific operator on each local DCEL,

followed by a reduce phase to remove artificial edges/added vertices.

Figure 8 shows how the intersection overlay operator (A N B) is

computed, starting with the local DCELs for 4 cells (Figure 8a).

First each cell computes the intersection using its local overlay
DCEL (Figure 8b). This is a simple map operation as we just need
to identify overlay faces that contain both labels (from layer A and
layer B). Each cell can then report every such face that does not
include any artificial edges (like face A; B in Figure 8b); note that
these faces are fully included in the cell.

Using a reduce phase, the remaining faces are sent to a master
node, in our implementation it would be the driver node of the
spark application, that will: (i) remove the artificial edges (shown
red in the figure), and (ii) concatenate edges that were split because
they were crossing cell borders. This is done by pairing faces with
the same label and concatenating their geometries by removing the

90

Algorithm 1: GETNEXTCELLWITHEDGES algorithm

Input: a quadtree Q and a list of cells M.
1 function GETNExTCELLWITHEDGES(Q,M):

2 C « orphan cells in M
3 foreach orphanCell in C do
4 initialize cellList with orphanCell
5 nextCellWithEdges < nil
6 referenceCorner « nil
7 done « false
8 while —done do
9 ¢ « last cell in cellList
10 cells, corner «— GETCELLSATCORNER(Q, c)
11 foreach cell in cells do
12 nedges < get edge count of cell in M
13 if nedges > 0 then
14 nextCellWithEdges < cell
15 referenceCorner « corner
16 done « true
17 else
18 ‘ add cell to cellList
19 end
20 end
21 end
22 foreach cell in cellList do
23 output(cell,nextCellWithEdges,
referenceCorner)
21 remove cell from C
25 end
26 end
27 end

artificial edges and vertices added during the partition stage (for
example the two faces with label AyB; from two different cells in
Figure 8b were combined into one face in Figure 8c while the extra
vertex was also removed). In section 5.1 we discuss techniques to
optimize the reduce process of combining faces.

For symmetric difference (A A B), the map phase filters faces
whose label is a single layer (A or B). For the difference (A \ B), it

Scalable Overlay Operations over DCEL Polygon Layers

Algorithm 2: GETCELLSATCORNER algorithm

Input: a quadtree with cell envelopes Q and a cell c.
1 function GETCELLSATCORNER(Q, c):

2 region « quadrant region of ¢ in c.parent

3 switch region do

4 case SW’do

5 ‘ corner « left bottom corner of c.envelope

6 case SE’do

7 ‘ corner « right bottom corner of c.envelope
8 case NW’do

9 ‘ corner « left upper corner of c.envelope

10 case NE’do

11 ‘ corner « right upper corner of c.envelope
12 end
13 cells « cells which intersect corner in Q
14 cells «— cells — ¢
15 cells « sort cells on basis of their depth
16 return (cells, corner)
17 end

Distributed Overlay Overlay operator (AN B) Reduce stage (AN B)

(©

Figure 8: Example of an overlay operator querying the dis-
tributed DCEL.

filters faces with label A. For union (A U B), all faces in the overlay
structure are retrieved.

5 OVERLAY EVALUATION OPTIMIZATIONS

5.1 Optimizations for faces expanding cells

The (naive) reduce phase described above has the potential for a
bottleneck since all faces (which can be a very large number) are
sent to one node. One observation is that faces from different cells
that are concatenated are in contiguous cells. This implies that faces
from a particular cell will be combined with faces from neighboring
cells. We will use this spatial proximity property to reduce the
overhead in the central node.

We thus propose an alternative, where an intermediate reduce
processing step is introduced. In particular, the user can specify
a level in the quadtree structure (measured as the depth from the
root) that can be used to combine cells together. Given level i, the
quadtree nodes in that level (at most 4°) will serve as intermediate
reducers, collecting the faces from all the cells below that node.
(Note: level 0 corresponds to the root, which is the naive method
where all the cells are sent to one node).

By introducing this intermediate step it is expected that much
of the reduce work can be distributed in a larger number of nodes.

91

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Nevertheless, there may be faces (typically few) that cannot be
completed by these intermediate reducers because they span the
borders of the level i nodes. Such faces still have to be evaluated in
a master/root node.

Clearly, picking the appropriate level is important. Choosing a
large level i (i.e., going to nodes lower in the quadtree structure)
implies larger number of intermediate reducers and thus higher
parallelism. However, at the same time, it increases the number of
faces that would need to be evaluated by the master/root node. On
the other hand, lowering i reduces parallelism but fewer faces will
need to go to the master/root node.

We also examine another approach to deal with the bottleneck in
the naive reduce phase. This approach re-partitions the faces using
the label as the key. Such partitions represent small independent
amounts of work since they only combine faces with the same label
(typically few). Partitions are then shuffled among the available
nodes. The second approach effectively avoids the reduce phase;
it has to account for the cost of the re-partitioning however as we
will show in the experimental section, this cost is negligible.

5.2 Optimizing for unbalanced layers

During the overlay computation, the most critical task is finding
the intersections between the half-edges. In many cases the number
of half-edges from each layer within a cell can be unbalanced, that
is one of the layers has many more half-edges than the other.

In the current approach, the input sets of half-edges within a cell
are combined into one dataset which is first ordered by the x-origin
of each half-edge and then a sweep-line algorithm is performed
scanning the half-edges from left to right (in the x-axis). This scan-
ning takes time proportional to the total number of half-edges.
However, if one layer has much fewer half-edges, the running time
will still be affected by the cardinality of the larger dataset.

An alternative approach is to scan the larger dataset only for
the x-intervals where we know that there are half-edges in the
smaller dataset. To do so, we order the two input set separately.
We scan the smaller dataset in x-order and identify x-intervals
occupied by at least one half-edge. For each x-interval we then
scan the larger dataset with the sweep-line algorithm. This focused
approach avoids unnecessary scanning of the large dataset (for
example, areas where there are no half-edges present from the
smaller dataset).

6 EXPERIMENTAL EVALUATION

This section presents our experimental evaluation using a 12-node
Linux cluster (kernel 3.10) and Apache Spark 2.4. Each node has 9
cores (each core is an Intel Xeon CPU at 1.70GHz) and 2G memory.

Evaluation datasets. The details of the real datasets of polygons
that we use are summarized in Table 4. The first dataset (MainUS)
contains the complete Census Tracts for all the states in the US
mainland for years 2000 (layer A) and 2010 (layer B). It was col-
lected from the official website of the United States Census Bureau!.
The data was clipped to select just the states inside the continent.
Something to note with this dataset is that the two layers present
a spatial gap (which was due to improvements in the precision
introduced for 2010). As a result, there are considerably many more

Uhttps://www2.census.gov/geo/tiger/TIGER2010/TRACT/

https://www2.census.gov/geo/tiger/TIGER2010/TRACT/

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Table 4: Evaluation Datasets

Dataset Layer Number Number
of polygons of edges

MainUS Polygons for 2000 64983 35417146
Polygons for 2010 72521 36764043

GADM Polygons for Level 2 116995 32789444
Polygons for Level 3 117891 37690256

CCT Polygons for 2000 7028 2711639
Polygons for 2010 8047 2917450

intersections between the two layers thus creating many new faces
for the DCEL.

The second dataset (GADM - taken from Global Administration
Areas?) collects geographical boundaries of the countries and their
administrative divisions around the globe. For our experiments, one
layer selects the States (administrative level 2) and the other layer
has the Counties (administrative level 3). Since GADM may contain
multi-polygons, we split them into their individual polygons.

Since these two datasets are too large, a third, smaller dataset
was created for comparisons with the sequential algorithm. This
dataset is the California Census Tracts (CCT) which is a subset from
MainUS for the state of California; layer A corresponds to the CA
census tracts from year 2000 while layer B for 2010. (Below we also
use other states to create datasets with different number of faces).

6.1 Overlay face optimizations

We first examine the optimizations in Section 5.1. To consider dif-
ferent distributions of faces, for these experiments we used 8 states
from the MainUS dataset with different number of tracks (faces). In
particular, we used (in decreasing order of number of tracks): CA,
TX, NC, TN, GA, VA, PA and FL. For each state we computed the
distributed overlay between two layers (2000 and 2010). For each
computation we compared the baseline (master at the root node)
with intermediate reducers at different levels: i varied from 4 to 10.
Figure 9 shows the results for the distributed overlay computation
stage (that is, after the local DCELs were computed at each cell).
Note that for each state experiment we tried different number of
leaf cells for the quadtree and present the one with the best per-
formance. As expected there is a trade-off between parallelism and
how much work is left to the final reduce job. For different states
the optimal i varied between level 4 and 6. The same figure also
shows the optimization that re-partitions the faces by label id. This
approach has actually the best performance. This is because there
are few faces with the same label that can be combined indepen-
dently. This results to smaller jobs that are better distributed among
the cluster nodes and no reduce phase is needed. As a result, for
the rest of the experiments we use the label re-partition approach
to implement the overlay computation stage.

6.2 Unbalanced layers optimization

For these experiments we compared the traditional sweep approach
with the ‘filtered-sweep’ approach that considers only the areas
where the smaller layer has edges (Section 5.2). To create the smaller
cell layer, we picked a reference point in the state of Pennsylvania

Zhttps://gadm.org/

92

Calderon, et al.

CA > NC ™
125-

100~

75-
50-
25-
0-m]

125-
100-
75-
50-
25-
0-

oo _aentll
PA FL

Time [s]
[0}
>
s

Level [10] - I

By Label -1
By Label -1

Method of overlay

Figure 9: Overlay methods evaluation.

(from the MainUS dataset) and started adding 2000 census tracks
until the number of edges reached 3K. We then varied the size of
the larger cell layer in a controlled way: using the same reference
point but using data from the 2010 census, we started adding tracks
to create a layer that had around 2x, 3x, ..., 7x the number of edges
of the smaller dataset. Since this optimization occurs per cell, we
used a single node to perform the overlay computation within that
cell. Figure 10a shows the behaviour of the two methods (filtered-
sweep vs. traditional sweep) under the above described data for the
overlay computation stage.

Clearly, as the data from one layer grows much larger that the
other layer the filtered-sweep approach overcomes the traditional
one.

We also performed an experiment where the difference in size
between the two layers varies between 10% and 70%. For this ex-
periment we first identified cells from the GADM dataset where
the smaller layer had around 3K edges. Among these cells we then
identified those where the larger layer had 10%, 20%, ... up to 70%
more edges. In each category we picked 10 representative cells
and computed the overlay for the cells in that category. Figure
10b shows the results; in each category we show the average time
to compute the overlay among the 10 cells in that category. The
filtered-sweep approach shows again better performance as the
percentage difference between layers increases. Based on these
results, one could apply the optimization on those cells where the
layer difference is significant (more than 50%).

6.3 Varying the number of cells

The quadtree settings allow for tuning its performance by providing
the number of leaf cells to be created as a parameter. The quadtree
then continues its splits so as to reach this capacity (approximately).
The number of cells affects the performance of our scalable over-
lay implementation (termed as SDCEL below) since it relates to
the average cell capacity (in number of edges). Fewer number of
cells implies larger cell capacity (and thus more edges to process
within each cell). On the other hand, creating more cells increases
the number of jobs to be executed. Figure 11a shows the SDCEL
performance using the two layers of the CCT dataset, while varying
the number of cells from 100 to 15K (by multiple of 1000). Each bar
corresponds to the time taken to create the DCEL for each layer

https://gadm.org/

Scalable Overlay Operations over DCEL Polygon Layers

0.6-

5 04-
o
E
IS
02-
00-
2 3x 6x 7x

4ax 5x
Dataset Size

(@

Method

Filtered-sweep

I Tiaditional

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

10% 20% 30% 40% 50% 60% 70%
Percentage difference in size between cell layers

(b)

03

Method

Filtered-sweep

B Taitional

Time [s]
o
S

°

0.0

Figure 10: Evaluation of the unbalanced layers optimization.

and then combining them to create the distributed overlay. Clearly
there is a trade-off: as the number of cells increases the SDCEL
performance improves until a point where the larger number of
cells adds an overhead. Figure 11b focuses on that area; the best
SDCEL performance was around 7K cells.

In addition Figure 11a shows the performance of the sequen-
tial solution (CGAL library) for computing the overlay of the two
layers in the CCT dataset, using one of the cluster nodes. Clearly,
the scalable approach is much more efficient as it takes advan-
tage of parallelism. Note that the CGAL library would crash when
processing the larger datasets (MainUS and GADM).

Figure 12 shows the results when using the larger MainUS and
GADM datasets, while again varying the number of cells parameter
(from 1K to 15K and from 2K to 26K respectively). In this figure
we also show the time taken by each stage of the overlay compu-
tation (namely, to create the DCEL for layer A, for layer B and for
their combination to create their distributed overlay). We can see
a similar trade-off in each of the stages. The best performance is
given when setting the number of cells parameter to 5K for the
MainUS and respectively 8K for the GADM dataset. Note that in the
MainUS dataset the two layers have similar number of edges; as it
can be seen their DCEL computations are similar. Interestingly, the
overlay computation is expensive since (as mentioned earlier) there
are many intersections between the two layers. An interesting ob-
servation from the GADM plots is that layer B takes more time than
layer A; this is because there are more edges in the counties than
the states. Moreover, county polygons are included in the (larger)
state polygons. When the size of cells is small (i.e. larger number of
cells like in the case of 26K cells) these cells mainly contain counties
from layer B. As a result, there are not many intersections between
the layers in each cell and the overlay computation is thus faster.
On the other hand, with large cell sizes (smaller number of cells)
the area covered by the cell is larger, containing more edges from
states and thus increase the number of intersections, resulting in
higher overlay computation.

6.4 Speed-up and Scale-up experiments

The speed-up behavior of SDCEL appears in Figure 13a (for the
MainUS dataset) and in Figure 14a (for the GADM dataset); in
both cases we show the performance for each stage. For these
experiments we varied the number of nodes from 3 to 12 (while
keeping the input layers the same). Clearly, as the number of nodes

93

increases the performance improves. SDCEL shows good speed-up
characteristics: as the number of nodes doubles (from 3 to 6 and
then from 6 to 12) the performance improves almost by half.

To examine the scale-up behavior we created smaller datasets
out of the MainUS (and similarly out of the GADM) so that we can
control the number of edges. To create such a dataset we picked
a centroid and started increasing the area covered by this dataset
until the number of edges were closed to a specific number. For
example, from the MainUS we created datasets of sizes 8M, 16M,
24M and 32M edges for each layer. We then used two layers of
the same size as input to different number of nodes, while keeping
the input to node ratio fixed. That is, the layers of size 8M were
processed using 3 nodes, the layers of size 16M using 6 nodes, the
24M using 9 nodes and the 32M using 12 nodes. We did the same
process for the scale-up experiments of the GADM dataset. The
results appear in Figure 13b and Figure14b. Overall, SDCEL shows
good scale-up performance; it remains almost constant as the work
per node is similar (there are slight variations because we could
not control perfectly the number of edges and their intersection).

7 CONCLUSIONS

We introduced SDCEL, a scalable approach to compute the overlay
operation among two layers that represent polygons from a planar
subdivision of a surface. Both input layers use the DCEL edge-list
data structure to store their polygons. Existing sequential DCEL
overlay implementations fail for large datasets. We first presented
a partition strategy which guarantees that each partition collects
the required data from each layer to work independently. We also
proposed several optimizations to improve performance. Our ex-
perimental evaluation using real datasets shows that SDCEL has
very good scale-up and speed-up performance and can compute
the overlay over very large layers (up to 37M edges) in few seconds.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foun-
dation under grants IIS-1901379, IIS-2237348, CNS-2031418, SES-
1831615 and the Google-CAHSI research grant. We would like to
thank Sergio Rey from the Center for Geospatial Sciences for intro-
ducing the SDCEL problem to us.

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

CGAL SDCEL
800~ 800 -

Time [s]

Number of cells (x1 000)

(@

600- 600 -
400- 400-
200~ 200~ I
ol I . - - - - - -

Time [s]

Number of cells (x1 000)

(b)

Figure 11: SDCEL performance while varying the number of cells in the CCT dataset.

400~
3001 2000-
Stages
% I Layera _ Stages
£ 200- B e E I ayera
. Overlay E Layer B
1000~ [overiay
) I I I I I
|K 2K BK 4K 5K GK 7K BK BK 10K HK |2K |3K |4K |5K 2K 4K GK BK |0K TZK 14K 15K |SK ZOK 22K 24K ZSK
Number of cells Number of cells
(a) (b)
Figure 12: Performance with (a) MainUS and (b) GADM datasets.
Layer A Layer B Overlay. Layer A Layer B Overlay
400-
300~
100~
o) z
@© 200- [
£ g
IS S
50~
l L 11T J
é B.M TéM 24.M 32.M Ei\ll 16.M 24.M 32.M S.M 16:M ZL;M 32.M
Number of nodes Size [number of edges]
(a) (b)
Figure 13: Speed-up and Scale-up experiments for the MainUS dataset.
Layer A Overlay Layer A Layer B Overlay
1500~
400~
1000~
— '_‘3007
2 2,
o o
£ £
S = 200~
500~
l I 1 I
é é 1.2 B.M TSM 24N| 32N| SM |6M 24M 32M S.M TSM 24M 32‘M
Number of nodes

(2)

Size [number of edges]

(b)

Figure 14: Speed-up and Scale-up experiments for the GADM dataset.

94

Calderon, et al.

Scalable Overlay Operations over DCEL Polygon Layers

REFERENCES

(1]
(2]

(3]

8

=

[10]
[11]
[12]

G.Barequet. 1998. DCEL - A Polyhedral Database and Programming Environment.
IJCGA 08, 05n06 (1998), 619-636

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. 1990. The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles. In ACM SIGMOD
PODS. Association for Computing Machinery, New York, NY, USA, 322-331.

E. Berberich, E. Fogel, D. Halperin, M. Kerber, and O. Setter. 2010. Arrangements
on Parametric Surfaces. Mathematics in Computer Science 4, 1 (2010), 67-91.

M. Berg, O. Cheong, M. Kreveld, and M. Overmars. 2008. Computational Geometry:
Algorithms and Applications. Springer, TU Eindhoven, P.O. Box 513.

P. Boguslawski, C. Gold, and H. Ledoux. 2011. Modelling and analysing 3D
buildings with a primal/dual data structure. ISPRS 66, 2 (2011), 188-197.

D. Boltcheva, J. Basselin, C. Poull, H. Barthélemy, and D. Sokolov. 2020.
Topological-based roof modeling from 3D point clouds. In WSCG, Vol. 28. Union
Agency, Science Press, CZ 301 00 Plzen, 137-146.

J. Challa, P. Goyal, S. Nikhil, A. Mangla, S. Balasubramaniam, and N. Goyal. 2016.
DD-Rtree: A dynamic distributed data structure for efficient data distribution
among cluster nodes for spatial data mining algorithms. In IEEE Big Data. IEEE,
222 Rosewood Drive, Danvers, MA 01923., 27-36.

L. Chew and K. Kedem. 1993. A convex polygon among polygonal obstacles.
Computational Geometry 3, 2 (1993), 59-89.

V. Chvatal. 1975. A combinatorial theorem in plane geometry. Combinatorial
Theory 18, 1 (1975), 39-41.

R. Finkel and J. Bentley. 1974. Quad Trees: A Data Structure for Retrieval on
Composite Keys. Acta Inf. 4 (1974), 1-9.

E. Fogel, D. Halperin, and R. Wein. 2012. CGAL Arrangements and Their Applica-
tions. Springer Berlin, Heidelberg.

W. Franklin, S. Magalhaes, and M. Andrade. 2018. Data Structures for Parallel
Spatial Algorithms on Large Datasets. In ACM BigSpatial. ACM, Seattle, WA,
USA, 16-19.

95

™~
2

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

W. Freiseisen. 1998. Colored DCEL for boolean operations in 2D.

A. Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.
In ACM SIGMOD ICMD. Association for Computing Machinery, New York, NY,
United States, 47-57.

R. Holmes. 2021. The DCEL Data Structure for 3D Graphics.

Y. Li, A. Eldawy, J. Xue, N. Knorozova, M. Mokbel, and R. Janardan. 2019. Scalable
computational geometry in MapReduce. VLDB 28, 1 (2019), 523-548.

S. Magalhées, M. Andrade, W. Franklin, and W. Li. 2015. Fast exact parallel
map overlay using a two-level uniform grid. In ACM BigSpatial. Association for
Computing Machinery, New York, NY, USA, 45-54.

K. Mehlhorn and S. Néher. 1995. LEDA: a platform for combinatorial and geo-
metric computing. Commun. ACM 38, 1 (1995), 96-102.

D. Muller and F. Preparata. 1978. Finding the intersection of two convex polyhedra.
Theoretical Computer Science 7, 2 (1978), 217-236.

J. Nievergelt, H. Hinterberger, and K. Sevcik. 1984. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Trans. Database Syst. 9, 1 (1984), 38-71.
J. O’Rourke. 1987. Art Gallery Theorems and Algorithms. Oxford University Press,
United States.

F. Preparata and M. Shamos. 1985. Computational Geometry: An Introduction.
Springer, New York, NY.

S. Puri, D. Agarwal, X. He, and S. Prasad. 2013. MapReduce Algorithms for
GIS Polygonal Overlay Processing. In IEEE IPDPS. IEEE, Cambridge, MA, USA,
1009-1016.

S. Puri and S. Prasad. 2013. Efficient Parallel and Distributed Algorithms for
GIS Polygonal Overlay Processing. In IEEE IPDPS. IEEE Computer Society, USA,
2238-2241.

1. Sabek and M. Mokbel. 2017. On Spatial Joins in MapReduce. In ACM SIGSPATIAL.
Association for Computing Machinery, New York, NY, USA, 1-10.

H. Samet. 1990. The Design and Analysis of Spatial Data Structures. Wesley, 75
Arlington Street, Suite 300 Boston, MA, United States.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Scalable Overlay Construction
	4.1 Partition Strategy
	4.2 Labeling Orphan Cells and Holes
	4.3 Answering global overlay queries

	5 Overlay evaluation optimizations
	5.1 Optimizations for faces expanding cells
	5.2 Optimizing for unbalanced layers

	6 Experimental Evaluation
	6.1 Overlay face optimizations
	6.2 Unbalanced layers optimization
	6.3 Varying the number of cells
	6.4 Speed-up and Scale-up experiments

	7 Conclusions
	Acknowledgments
	References

