
Scalable Overlay Operations over DCEL Polygon Layers
Andres Calderon-Romero

acald013@ucr.edu
University of California

Riverside, USA

Amr Magdy
amr@cs.ucr.edu

University of California
Riverside, USA

Vassilis J. Tsotras
tsotras@cs.ucr.edu

University of California
Riverside, USA

ABSTRACT
The Doubly Connected Edge List (DCEL) is an edge-list structure
that has been widely utilized in spatial applications for planar topo-
logical computations. An important operation is the overlay which
combines the DCELs of two input layers and can easily support spa-
tial queries like the intersection, union and di�erence between these
layers. However, existing sequential implementations for comput-
ing the overlay do not scale and fail to complete for large datasets
(for example the US census tracks). In this paper we propose a
distributed and scalable way to compute the overlay operation and
its related supported queries. We address the issues involved in
e�ciently distributing the overlay operator and o�er various op-
timizations that improve performance. Our scalable solution can
compute the overlay of very large real datasets (32M edges) in few
minutes.

CCS CONCEPTS
• Computing methodologies! Parallel algorithms;MapRe-
duce algorithms; • Information systems! Data structures.

KEYWORDS
Spatial data structures, overlay operator, DCEL
ACM Reference Format:
Andres Calderon-Romero, Amr Magdy, and Vassilis J. Tsotras. 2023. Scalable
Overlay Operations over DCEL Polygon Layers. In Symposium on Spatial and
Temporal Data (SSTD ’23), August 23–25, 2023, Calgary, AB, Canada. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3609956.3609964

1 INTRODUCTION
The use of spatial data structures is ubiquitous in many spatial
applications, ranging from spatial databases to computational ge-
ometry, robotics and geographic information systems [26]. Spatial
data structures have been used to improve the e�ciency of various
spatial queries, such as spatial joins, nearest neighbors, voronoi
diagrams and robot motion planning. Examples include grids [20],
R-trees [2, 14], quadtrees [10], etc. There are also edge-list struc-
tures that have been typically utilized in applications as topological
computations in computational geometry [4].

The most commonly used data structure in the edge-list family
is the Doubly Connected Edge List (DCEL). A DCEL [19, 22] is a
data structure which collects topological information for the edges,

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0899-2/23/08.
https://doi.org/10.1145/3609956.3609964

a

b

c

d

e

f

twin(~fe)
~fe

ne
xt
(
~fe
)

pr
ev
(
~fe
)

incidentFace(~fe)

f3 f2

f1

Figure 1: Components of the DCEL structure.

vertices and faces contained by a surface in the plane. The DCEL and
its components represent a planar subdivision of that surface. In a
DCEL, the faces (polygons) represent non-overlapping areas of the
subdivision; the edges are boundaries which divide adjacent faces;
and the vertices are the point endings between adjacent edges (see
Figure 1). In addition to geometric and topological information a
DCEL can be enhanced to provide further information. For instance,
a DCEL storing a thematic map for vegetation can also store the
type and height of the trees around the area [4].

The DCEL data structure has been used in various applications.
For instance, the use of connected edge lists is cardinal to support
polygon triangulations and their applications in surveillance (the
Art Gallery Problem [9, 21]) and robot motion planning (Minkowski
sums [4, 8]). DCELs are also used to perform polygon unions (for
example, on printed circuit boards to support the simpli�cation
of connected components in an e�cient manner [11]) as well as
the computation of silhouettes from polyhedra [3, 11] (applied
frequently in computer vision and 3D graphics modelling [5]).

Edge-list data structures have also been utilized for the creation
of thematic overlay maps. In this problem, the input contains the
DCELs of two polygon layers each capturing geospatial information
and attribute data for di�erent phenomena and the output is the
DCEL of an overlay structure that combines the two layers into one.
In many application areas such as ecology, economics and climate
change, it is important to be able of join the input layers and match
their attributes in order to unveil patterns or anomalies in data
which can be highly impacted by location. Several operations can
then be easily computed given an overlay; for instance, the user
may want to �nd the intersection between the input layers, identify
their di�erence (or symmetric di�erence), or create their union.

Spatial databases have been using spatial indexes (R-tree [2, 14])
to store and query polygons. Such methods use the �lter and re�ne
approach where a complex polygon is abstracted by its Minimum
Bounding Rectangle (MBR) that is inserted in the R-tree index.

85

https://doi.org/10.1145/3609956.3609964
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3609956.3609964
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609956.3609964&domain=pdf&date_stamp=2023-08-24

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Calderon, et al.

Finding the intersection between two polygon layers each indexed
by a separate R-tree is then reduced to �nding the pairs of MBRs
from the two indexes that intersect (�lter part). This is followed
by the re�ne part, which, given two MBRs that intersect needs to
compute the actual intersections between all the polygons these
two MBRs contain. While MBR intersection is simple, computing
the intersection between a pair of complex real-life polygons is
a rather expensive operation (a typical 2020 US census track is
a polygon with hundreds of edges). Moreover, using DCELs for
overlay operations o�ers the additional advantage that the result
is also a DCEL which can then be directly used for subsequent
operations. For example, onemaywant to create an overlay between
the intersection of two layers with another layer and so on.

Even though the DCEL has important advantages for implement-
ing overlay operations, current approaches are sequential in nature.
This is problematic considering layers with thousands of polygons.
For example, the layer representing the 2020 US census tracks con-
tains around 72K polygons; the execution for computing the overlay
over such large �le crashed on a stock laptop. To the best of our
knowledge there is no scalable solution to compute overlays over
DCEL layers.

In this paper we describe the design and implementation of a
scalable and distributed approach to compute the overlay between
two DCEL layers. We �rst present a partition strategy that guaran-
tees that each partition collects the required data from each layer
DCEL to work independently, thus minimizing duplication and
transmission costs over 2D polygons. In addition, we present a
merging procedure that collects all partition results and consoli-
dates them in the �nal combined DCEL. Our approach has been
implemented in a parallel framework (i.e., Apache Spark).

Implementing a distributed overlay DCEL creates novel prob-
lems. First, there are potential challenges which are not present
in the sequential DCEL execution. For example, the implementa-
tion should consider features such as holes which could lay on
di�erent partitions. Such features need to be connected with their
components residing in other partitions so as to not compromise
the correctness of the combined DCEL. Secondly, once a distributed
overlay DCEL has been built, it must support a set of binary over-
lay operators (namely union, intersection, di�erence and symmetric
di�erence) in a transparent manner. That is, such operators should
take advantage of the scalability of the overlay DCEL and be able
to run also in a parallel fashion. Additionally, users should be able
to apply the various operators multiple times without the need of
rebuild the overlay DCEL data structure.

The rest of this paper is organized as follows. Section 2 presents
related work while Section 3 discusses the basics of DCEL and the
sequential algorithm. In Section 4 we present a partitioning scheme
that enables parallel implementation of the overlay computation
among DCEL layers; we also discuss the challenges presented in
the DCEL computations by distributing the data and how to solve
them e�ciently. Two important optimizations are introduced in
Section 5. An extensive experimental evaluation appears in Section
6, while Section 7 concludes the paper.

2 RELATEDWORK
The fundamentals of the DCEL data structure were introduced in
the seminal paper by Muller and Preparata [19]. The advantages

Table 1: Vertex records.

vertex coordinates incident edge

a (0,2) Æ10
b (2,0) Æ31
c (2,4) Æ32
...

...
...

Table 2: Face records.

boundary hole
face edge list

51 Æ01 =8;

52 Æ5 4 =8;
53 =8; =8;

Table 3: Half-edge records.

half-edge origin face twin next prev

Æ5 4 f 52 Æ4 5 Æ42 Æ35
Æ20 c 51 Æ02 Æ01 Æ32
Æ31 d 53 Æ13 Æ10 Æ5 3
...

...
...

...
...

...

of DCELs are highlighted in [4, 22]. Examples of using DCELs for
diverse applications appear in[1, 6, 13]. Once the overlay DCEL
is created by combining two layers, overlay operators like union,
di�erence etc., can be computed in linear time to the number of
faces in their overlay [13].

Currently, few sequential implementations are available: LEDA
[18], Holmes3D [15] and CGAL [11]. Among themCGAL is an open-
source project widely used for computational geometry research.
To the best of our knowledge, there is no scalable implementation
for the computation of overlay DCEL.

While there is a lot of work on using spatial access methods to
support spatial joins, intersections, unions etc. in a parallel way
(using clusters, multicores or GPUs), [7, 12, 16, 17, 23–25] these ap-
proaches are di�erent in two ways: (i) after the index �ltering, they
need a time-consuming re�ne phase where the operator (union,
intersection etc.) has to be applied on each pair of (typically) com-
plex spatial objects; (ii) if the operator changes, we need to run
the �lter/re�ne phases from scratch (in contrast, the same overlay
DCEL can be used to run all operators.)

3 PRELIMINARIES
The DCEL [19] structure is used to represent an embedding of a
planar subdivision in the plane. It provides e�cient manipulation of
the geometric and topological features of spatial objects (polygons,
lines and points) using faces, edges and vertices respectively. A DCEL
uses three tables (relations) to store records for the faces, edges
and vertices, respectively. An important characteristic is that all
these records are de�ned using edges as the main component (thus

86

Scalable Overlay Operations over DCEL Polygon Layers SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

termed as an edge-based structure). Examples appear in Tables ??-3
below, following the subdivision depicted in Figure 1.

An edge corresponds to a straight line segment, shared by two
adjacent faces (polygons). Each of these two faces will use this
edge in its description; to distinguish, each edge has two half-edges,
one for each orientation (direction). It is important to note that
half-edges are oriented counter clockwise inside each face (Figure
1). A half-edge is thus de�ned by its two vertices, one called the
origin vertex and the other the target vertex, clearly specifying
the half-edge’s orientation (origin to target). Each half-edge record
contains references to its origin vertex, its face, its twin half-edge,
as well as the next and previous half-edges (using the orientation
of its face); see Table 3. These references are used as keys to the
tables that contain the referred attributes.

Figure 1 shows half-edge
�!
5 4 , its twin(

�!
5 4) (which is half-edge

�!
4 5),

the next(
�!
5 4) (half-edge �!42) and the prev(

�!
5 4) (half-edge

�!
3 5). Note

the counter clockwise direction used by the half-edges comprising
face 52. The incidentFace of a half-edge corresponds to the face that
this edge belongs to (for example incidentFace(

�!
5 4) is face 52).

Each vertex corresponds to a record in the vertex table (see Table
??) that contains its coordinates as well as one of its incident half-
edges. An incident half-edge is one whose target is this vertex. Any
of the incident edges can be used; the rest of a vertex’s incident
half-edges can be found easily following next and twin half-edges.

Finally, each record in the faces table contains one of the face’s
half edges to describe the polygon’s outer boundary (following
this face’s orientation); see Table 2. All other half-edges for this
face’s boundary can be easily retrieved following next half-edges
in orientation order. In addition to regular faces, there is one face
that covers the area outside all faces; it is called the unbounded face
(face 53 in Figure 1). Since 53 has no boundary, its boundary edge is
set to nil in Table 2. Note, that polygons can contain one or more
holes (a hole is an area inside the polygon that does not belong to
it). Each such hole is itself described by one of its half-edges; this
information is stored as a list attribute (hole list) in the faces table
where each element of the list is the half-edge’s id which describe
the hole. Note that in Table 2 this list is empty as there are no holes
in any of the faces in the example of Figure 1.

An important advantage with the DCEL structure is that a user
can combine two DCELs from di�erent layers over the same area
(e.g. the census tracks from two di�erent years) and compute their
overlay which is a DCEL structure that combines the two layers into
one. Other operators like the intersection, di�erence etc. can then
be computed from the overlay very e�ciently. Given two DCEL
layers (1 and (2, a face 5 appears in their overlay $+!((1, (2) if
and only if there are faces 51 in (1 and 52 in (2 such that 5 is a
maximal connected subset of 5 1\ 5 2 [4]. This property implies that
the overlay $+!((1, (2) can be constructed using the half-edges
from (1 and (2 .

The sequential algorithm [11] to construct the overlay between
two DCELs �rst extracts the half-edge segments from the half-edge
tables and then �nds intersection points between half-edges from
the two layers (using a sweep line approach) [4]. The intersection
points found will become new vertices of the resulting overlay. If an
existing half-edge contains an intersection point it is split into two
new half-edges. Using the list of outgoing and incoming half-edges

a1 a2

a3a4

b1 b2

b3b4

A1

B1

=)
c1

c2

A1

B1

=)

a1 a2

a3a4

b1 b2

b3b4

c1

c2

A1

B1

A1B1

Figure 2: Sequential computations of an overlay of two DCEL
layers.

for the newly added vertices (intersection points) the algorithm can
compute the attributes for the records of the new half-edges. For
example, the list of outgoing and incoming half-edges at each new
vertex will be used to update the next, previous and twin pointers.
Finally, records for faces and vertices tables are also updated with
the new information.

Figure 2 illustrates an example for computing the overlay be-
tween two DCEL layers with one face each (�1 and ⌫1 respectively),
that overlap over the same area. First, intersection points are found
and create new vertices in the overlay (red vertices 21 and 22). Fi-
nally, new half edges are created around these new vertices. As a
result, face �1 is modi�ed (to an L-shaped boundary) as does face
⌫1, while a new face �1⌫1 is created. Since this new face is the
intersection of the boundaries of �1 and ⌫1, its label contains the
concatenation of both face labels. By convention [4], even though
�1 changes its shape, it does not change its label since its new
shape is created by its intersection with the unbounded face of ⌫1;
similarly the new shape of ⌫1 maintains its original label. These
labels are crucial for the creation of the overlay (and the operators
it supports) as they are used to identify which polygons overlap an
existing face.

Once the overlay structure of two DCELs is computed, queries
like their intersection, union, di�erence etc. (Figure 3) can be per-
formed in linear time to the number of faces in the overlay. The
space requirement for the overlay structure remains linear to the
number of vertices, edges and faces. Since an overlay is itself a
DCEL, it can support the traditional DCEL operations (e.g., �nd the
boundary of a face, access a face from an adjacent one, visit all the
edges around a vertex, etc.)

4 SCALABLE OVERLAY CONSTRUCTION
The overlay computation depends on the size of the input DCELs
and the size of the resulting overlay. The DCEL of a planar subdi-
vision (1 has size$ (=1) where =1 = ⌃(E4AC824B1 + 4364B1 + 5 024B1).
The sequential algorithm constructing the overlay of (1 and (2
takes $ (= log= + : log=) time, where = = =1 + =2 and : is the size
of their overlay. Note that : depends on how many intersections
occur between the input DCELs, which can be very large [4].

While the sequential algorithm is e�cient with small DCEL
layers, it su�ers when the input layers are large and have many
intersections. For example, creating the overlay between the DCELs
of two census tracks (from years 2000 and 2010) from California
(each with 7K-8K polygons and 2.7M-2.9M edges) took about 800sec
on an Intel Xeon CPU at 1.70GHz with 2GB of memory (see Section

87

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Calderon, et al.

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A [B

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A \ B

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A \B

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

B \ A

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A4 B

Figure 3: Examples of overlay operators supported by DCEL; results are shown in gray.

6). With DCELs corresponding to the whole US, the algorithm
crashed.

Nevertheless, the overlay computation can take advantage of
partitioning (and thus parallelism), by observing that the edges
in a given area of one input layer, can only intersect with edges
from the same area in the other input layer. One can thus spatially
partition the two input DCELs using a spatial index (or grid) and
then compute the overlay within each cell; such computations are
independent and can be performed in parallel. While this is a high
level view of our scalable approach, there are various challenges,
including how to deal with edges that cross cells, how to manage
the extra complexity introduced by orphan holes (i.e., when holes
and their polygons are in di�erent cells), how and where to combine
partition overlays into a global overlay, as well as how to balance
the computation if one layer is much larger than the other.

4.1 Partition Strategy
The main idea of the partition strategy is to split the area covered
by the input layers into non-overlapping cells which could then be
processed independently. One could use a simple grid to divide the
area but our early experiments showed that such approach would
result in unbalanced cells (in number of edges) which a�ects per-
formance. In the rest we assume that the partitioning is performed
using a quadtree index which adapts to skewed spatial distributions
and helps to assign a similar number of edges to each cell.

The overall approach can be summarized in the following steps:
(i) Partition the input layers into the index cells and build local
DCEL representations of them at each cell; and (ii) Compute the
overlay of the DCELs at each cell. Overlay operators and other
functions can be run over the local overlays and then local results
are collected to generate the �nal answer.

Note that each input layer is given as a sequence of polygon
edges, where each edge record contains the coordinates of the
edge’s vertices (origin and target vertex) as well as the polygon id
and a hole id in the case that an edge belongs to a hole inside of a
polygon. We assume there are not overlapping or stacked polygons
in the dataset. To quickly build the partitioning quadtree structure
we take a sample from the edges of each layer (1% of the total
number of edges in that layer). After the quadtree is created, we
use its leaf nodes as the partitioning cells for each layer. Each input
layer �le is then read from disk and all of its edges are inserted to
the appropriate cells of the partitioning structure.

For this approach to work, it is important that each cell can
compute its two DCELs independently. Note that an edge can be

fully contained in a cell, or it can intersect the cell’s boundary. In
the second case, we copy this edge to all cells that it intersects, but
within each cell, we use the part of the edge that lies fully inside
the cell. Figure 4 shows an example, where there are 4 cells and
two edges of the upper polygon from layer A cross the cell borders.
Such edges are clipped at the cell borders, introducing new edges
(e.g. edges U 0 and U 00 in the Figure 4). Similarly, a polygon that
crosses over a cell is clipped to the cell by introducing arti�cial
edges on the cell’s border (see face �2 in cell 3 of Figure 4). Such
arti�cial edges are shown in red in the �gure. This allows to create
a smaller polygon that is contained within each cell. For example
polygon �2 is clipped into four smaller polygons as it overlaps all
four cells. The clipping of edges and polygons ensures that each
cell has all needed information to complete its DCEL computations.
As such computations can be performed independently, they are
sent to di�erent compute nodes to be processed in parallel. The
assignment is delegate to the distributed framework (i.e. Apache
Spark).

Once a cell is assigned to a node, the sequential algorithm is
used to create a DCEL for each layer (using the cell edges from
that layer and any arti�cial edges, vertices and faces created by the
clipping procedures above) and then compute the corresponding
(local) overlay for this cell. Using the example from Figure 4, Figure
5 depicts an overview of the process for creating a local overlay
DCEL inside cell 2. Similarly, Figure 6 shows all local overlay DCELs
computed at each cell (again, arti�cial edges are shown in red).

Nevertheless, the partitioning can create two problems (not
present in the sequential environment) that need to be addressed.
The �rst is the case where a cell is empty, that is, it does not in-
tersect with (or contain) any regular edge from neither layer. A
regular edge is one that is not part of a hole. This empty cell does
not contain any label and thus we do not know which face it may
belongs to. We term this as the orphan cell problem. An example
is shown in Figure 7 which depicts a face (from one of the input
layers) whose boundary goes over many quadtree cells; orphan
cells are shown in grey.

Note that an orphan cell may contain a hole (see Figure 7). In
this case the original label of the face where the hole belongs (and
reported in the hole’s edges) may have changed during the overlay
computation (because it overlapped with a face from the other
layer). However, this new label has not been propagated to the
hole edges. We term this as the orphan hole problem. While for
simplicity we focus in the case where a hole is within one orphan
cell, in the general case, a hole can split among many such cells.

88

Scalable Overlay Operations over DCEL Polygon Layers SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

Input Layer A

A

↵

=)

1 2

3 4

Clipped Edges A

A1

A2 A2

A2 A2

↵0
↵00

=)

1 2

3 4

Partitioned DCEL for A

A1

A2 A2

A2 A2

Input Layer B

B
=)

1 2

3 4

Clipped Edges B

B1

B2

B3

B1

B2

B3

=)

1 2

3 4

Partitioned DCEL for B

B1

B2

B3

B1

B2

B3

Figure 4: Partitioning example using input layers A and B over four cells.

2

A2

2

B2

B3

=)

2

A2 B2

B3 =)

2

A2B3

A2B2

B2

B3

Figure 5: Local overlay DCEL for cell 2.

A1

B2

B2

B3 B3

B1

B1

A2

A2

A
1B

1

A2B1 A2B1

A2B2

A2B2

A2B3 A2B3

1 2

3 4

Figure 6: Result of the local overlay DCEL computations.

The issue with both ‘orphan’ problems is the missing labels.
Below we propose an algorithm that correctly labels an orphan cell.
If this cell contains a hole, the new label is used to update the hole
edges as well.

4.2 Labeling Orphan Cells and Holes
To �nd the label of an orphan cell we propose an algorithm that
recursively searches the space around the orphan cell until it iden-
ti�es a nearby cell which contains edge(s) of the face that contains

the orphan cell and thus acquire the appropriate label information.
This search is accommodated by the quadtree index. Two observa-
tions are in order: (1) each cell is a leaf of the quadtree index (by
construction), and (2) each cell has a unique id created by the way
this cell was created; this id e�ectively provides the lineage (unique
path) from the quadtree root to this leaf. Recall that the root has
four possible children (typically numbered as 0,1,2,3 correspond-
ing to the four children NW, NE, SW and SE). The lineage is the
sequence of these numbers in the path to the leaf. For example, the
lineage for the shaded orphan cell in Figure 7a is 03. Further, note
that the quadtree is an unbalanced structure, having more deep
leaves where there are more edges. Thus higher leaves correspond
to larger areas and deeper leaves to smaller areas (since a cell split
is created when a cell has more edges than a threshold).

After identifying an orphan cell, the question is where to search
for a cell that will contain an edge. The following Lemma applies:

L���� 4.1. Given an orphan cell, one of its siblings at the same
quadtree level must contain a regular edge (directly or in its subtree).

This lemma arises from the simple observation that if all three
siblings of an orphan cell are empty then there is no reason for the
quadtree to make this split and create these four siblings. Based on
the lemma, we know that one of the three siblings of the orphan
cell can lead us to a cell with an edge. However, these siblings may
not be cells (leaves). Instead of searching each one of them in the
quadtree until we reach their leaves, we want a way to quickly reach
their leaves. To do so, we pick the centroid point of the orphan
cell’s parent (which is also one of the corners of the orphan cell).
For example, the parent centroid for the orphan cell 03 is the green
point in Figure 7b. We then query the quadtree to identify which
cells (leaves; one from each sibling) contain this point. We check
these cells if they contain an edge; if we �nd such a cell we stop
(and use the label in that cell). If all three cells are orphans, we need
to continue the search. This is the case in Figure 7b, where all three
cells (green in the �gure) are also orphan.

The algorithm has to pick one of them as the current orphan cell
and repeat the process recursively. One can use di�erent heuristics.

89

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Calderon, et al.

(a) (b) (c) (d)

Figure 7: (a) Empty cell and hole examples; (b)-(c)-(d) show three iterations of the proposed solution.

Below we consider the case where we use the deepest cell (i.e. the
one with the longest lineage) among the three. This is because, we
expect that this will lead us to the denser areas of the quadtree
index, where there is more chance to �nd cells with edges. Figure 7
shows a three-iteration run of the algorithm.

During the search process we keep any orphan cells we discover;
after a cell with an edge (non-orphan cell) is found, the algorithm
stops and labels the original orphan cell and any other orphan cells
retrieved in the search with the label found in the non-orphan cell.
Note that if the non-orphan cell contains many labels (because
di�erent faces pass through it), we assign the label of the face that
contains the original centroid. The pseudocode of the search process
can be seen at Algorithms 1 and 2.

Another heuristic we used (not described here) is to follow the
highest among the three orphan cells (the one with the shorter
lineage) since this has larger area and will thus help us cover more
empty space and possibly reach the border of the face faster.

4.3 Answering global overlay queries
Using the local overlay DCELs we can easily compute the global
overlay DCEL; for that we simply need a reduce phase (described
below) to remove arti�cial edges (and concatenate split edges) from
all the faces. Using the local overlay DCELs we can also compute
(in a scalable way) global operators like intersection, di�erence,
symmetric di�erence, etc. For these operators there is �rst a map
phase that computes the speci�c operator on each local DCEL,
followed by a reduce phase to remove arti�cial edges/added vertices.
Figure 8 shows how the intersection overlay operator (� \ ⌫) is
computed, starting with the local DCELs for 4 cells (Figure 8a).
First each cell computes the intersection using its local overlay
DCEL (Figure 8b). This is a simple map operation as we just need
to identify overlay faces that contain both labels (from layer A and
layer B). Each cell can then report every such face that does not
include any arti�cial edges (like face �1⌫1 in Figure 8b); note that
these faces are fully included in the cell.

Using a reduce phase, the remaining faces are sent to a master
node, in our implementation it would be the driver node of the
spark application, that will: (i) remove the arti�cial edges (shown
red in the �gure), and (ii) concatenate edges that were split because
they were crossing cell borders. This is done by pairing faces with
the same label and concatenating their geometries by removing the

Algorithm 1: ���N���C���W���E���� algorithm
Input: a quadtree Q and a list of cellsM.

1 function ���N���C���W���E����(Q,M):
2 C orphan cells in M
3 foreach >A?⌘0=⇠4;; in C do
4 initialize 24;;!8BC with >A?⌘0=⇠4;;
5 =4GC⇠4;;, 8C⌘⇢364B =8;
6 A4 5 4A4=24⇠>A=4A =8;
7 3>=4 5 0;B4
8 while ¬3>=4 do
9 2 last cell in 24;;!8BC

10 24;;B, 2>A=4A ���C����A�C�����(Q, 2)
11 foreach 24;; in 24;;B do
12 =4364B get edge count of 24;; inM
13 if =4364B > 0 then
14 =4GC⇠4;;, 8C⌘⇢364B 24;;
15 A4 5 4A4=24⇠>A=4A 2>A=4A
16 3>=4 CAD4
17 else
18 add 24;; to 24;;!8BC
19 end
20 end
21 end
22 foreach 24;; in 24;;!8BC do
23 output(24;; ,=4GC⇠4;;, 8C⌘⇢364B ,

A4 5 4A4=24⇠>A=4A)
24 remove 24;; from C
25 end
26 end
27 end

arti�cial edges and vertices added during the partition stage (for
example the two faces with label �2⌫1 from two di�erent cells in
Figure 8b were combined into one face in Figure 8c while the extra
vertex was also removed). In section 5.1 we discuss techniques to
optimize the reduce process of combining faces.

For symmetric di�erence (� 4 ⌫), the map phase �lters faces
whose label is a single layer (A or B). For the di�erence (� \ ⌫), it

90

Scalable Overlay Operations over DCEL Polygon Layers SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

Algorithm 2: ���C����A�C����� algorithm
Input: a quadtree with cell envelopes Q and a cell 2 .

1 function ���C����A�C�����(Q, 2):
2 A468>= quadrant region of 2 in 2 .?0A4=C
3 switch A468>= do
4 case ‘SW’ do
5 2>A=4A left bottom corner of 2 .4=E4;>?4
6 case ‘SE’ do
7 2>A=4A right bottom corner of 2 .4=E4;>?4
8 case ‘NW’ do
9 2>A=4A left upper corner of 2 .4=E4;>?4

10 case ‘NE’ do
11 2>A=4A right upper corner of 2 .4=E4;>?4
12 end
13 24;;B cells which intersect 2>A=4A in Q
14 24;;B 24;;B � 2
15 24;;B sort 24;;B on basis of their depth
16 return (24;;B , 2>A=4A)
17 end

Distributed Overlay

A1

B2

B2

B3 B3

B1

B1

A2

A2

A
1B

1

A2B1 A2B1

A2B2

A2B2

A2B3 A2B3

(a)

Overlay operator (A \B)

A
1B

1

A2B1 A2B1

A2B2

A2B2

A2B3 A2B3

(b)

Reduce stage (A \B)

A
1B

1

A2B1

A2B2

A2B3

(c)

Figure 8: Example of an overlay operator querying the dis-
tributed DCEL.

�lters faces with label A. For union (� [⌫), all faces in the overlay
structure are retrieved.

5 OVERLAY EVALUATION OPTIMIZATIONS
5.1 Optimizations for faces expanding cells
The (naive) reduce phase described above has the potential for a
bottleneck since all faces (which can be a very large number) are
sent to one node. One observation is that faces from di�erent cells
that are concatenated are in contiguous cells. This implies that faces
from a particular cell will be combined with faces from neighboring
cells. We will use this spatial proximity property to reduce the
overhead in the central node.

We thus propose an alternative, where an intermediate reduce
processing step is introduced. In particular, the user can specify
a level in the quadtree structure (measured as the depth from the
root) that can be used to combine cells together. Given level i, the
quadtree nodes in that level (at most 48) will serve as intermediate
reducers, collecting the faces from all the cells below that node.
(Note: level 0 corresponds to the root, which is the naive method
where all the cells are sent to one node).

By introducing this intermediate step it is expected that much
of the reduce work can be distributed in a larger number of nodes.

Nevertheless, there may be faces (typically few) that cannot be
completed by these intermediate reducers because they span the
borders of the level 8 nodes. Such faces still have to be evaluated in
a master/root node.

Clearly, picking the appropriate level is important. Choosing a
large level 8 (i.e., going to nodes lower in the quadtree structure)
implies larger number of intermediate reducers and thus higher
parallelism. However, at the same time, it increases the number of
faces that would need to be evaluated by the master/root node. On
the other hand, lowering 8 reduces parallelism but fewer faces will
need to go to the master/root node.

We also examine another approach to deal with the bottleneck in
the naive reduce phase. This approach re-partitions the faces using
the label as the key. Such partitions represent small independent
amounts of work since they only combine faces with the same label
(typically few). Partitions are then shu�ed among the available
nodes. The second approach e�ectively avoids the reduce phase;
it has to account for the cost of the re-partitioning however as we
will show in the experimental section, this cost is negligible.

5.2 Optimizing for unbalanced layers
During the overlay computation, the most critical task is �nding
the intersections between the half-edges. In many cases the number
of half-edges from each layer within a cell can be unbalanced, that
is one of the layers has many more half-edges than the other.

In the current approach, the input sets of half-edges within a cell
are combined into one dataset which is �rst ordered by the x-origin
of each half-edge and then a sweep-line algorithm is performed
scanning the half-edges from left to right (in the x-axis). This scan-
ning takes time proportional to the total number of half-edges.
However, if one layer has much fewer half-edges, the running time
will still be a�ected by the cardinality of the larger dataset.

An alternative approach is to scan the larger dataset only for
the x-intervals where we know that there are half-edges in the
smaller dataset. To do so, we order the two input set separately.
We scan the smaller dataset in x-order and identify x-intervals
occupied by at least one half-edge. For each x-interval we then
scan the larger dataset with the sweep-line algorithm. This focused
approach avoids unnecessary scanning of the large dataset (for
example, areas where there are no half-edges present from the
smaller dataset).

6 EXPERIMENTAL EVALUATION
This section presents our experimental evaluation using a 12-node
Linux cluster (kernel 3.10) and Apache Spark 2.4. Each node has 9
cores (each core is an Intel Xeon CPU at 1.70GHz) and 2G memory.

Evaluation datasets. The details of the real datasets of polygons
that we use are summarized in Table 4. The �rst dataset (MainUS)
contains the complete Census Tracts for all the states in the US
mainland for years 2000 (layer A) and 2010 (layer B). It was col-
lected from the o�cial website of the United States Census Bureau1.
The data was clipped to select just the states inside the continent.
Something to note with this dataset is that the two layers present
a spatial gap (which was due to improvements in the precision
introduced for 2010). As a result, there are considerably many more
1https://www2.census.gov/geo/tiger/TIGER2010/TRACT/

91

https://www2.census.gov/geo/tiger/TIGER2010/TRACT/

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Calderon, et al.

Table 4: Evaluation Datasets

Dataset Layer Number Number
of polygons of edges

MainUS Polygons for 2000 64983 35417146
Polygons for 2010 72521 36764043

GADM Polygons for Level 2 116995 32789444
Polygons for Level 3 117891 37690256

CCT Polygons for 2000 7028 2711639
Polygons for 2010 8047 2917450

intersections between the two layers thus creating many new faces
for the DCEL.

The second dataset (GADM - taken from Global Administration
Areas2) collects geographical boundaries of the countries and their
administrative divisions around the globe. For our experiments, one
layer selects the States (administrative level 2) and the other layer
has the Counties (administrative level 3). Since GADMmay contain
multi-polygons, we split them into their individual polygons.

Since these two datasets are too large, a third, smaller dataset
was created for comparisons with the sequential algorithm. This
dataset is the California Census Tracts (CCT) which is a subset from
MainUS for the state of California; layer A corresponds to the CA
census tracts from year 2000 while layer B for 2010. (Below we also
use other states to create datasets with di�erent number of faces).

6.1 Overlay face optimizations
We �rst examine the optimizations in Section 5.1. To consider dif-
ferent distributions of faces, for these experiments we used 8 states
from the MainUS dataset with di�erent number of tracks (faces). In
particular, we used (in decreasing order of number of tracks): CA,
TX, NC, TN, GA, VA, PA and FL. For each state we computed the
distributed overlay between two layers (2000 and 2010). For each
computation we compared the baseline (master at the root node)
with intermediate reducers at di�erent levels: 8 varied from 4 to 10.
Figure 9 shows the results for the distributed overlay computation
stage (that is, after the local DCELs were computed at each cell).
Note that for each state experiment we tried di�erent number of
leaf cells for the quadtree and present the one with the best per-
formance. As expected there is a trade-o� between parallelism and
how much work is left to the �nal reduce job. For di�erent states
the optimal 8 varied between level 4 and 6. The same �gure also
shows the optimization that re-partitions the faces by label id. This
approach has actually the best performance. This is because there
are few faces with the same label that can be combined indepen-
dently. This results to smaller jobs that are better distributed among
the cluster nodes and no reduce phase is needed. As a result, for
the rest of the experiments we use the label re-partition approach
to implement the overlay computation stage.

6.2 Unbalanced layers optimization
For these experiments we compared the traditional sweep approach
with the ‘�ltered-sweep’ approach that considers only the areas
where the smaller layer has edges (Section 5.2). To create the smaller
cell layer, we picked a reference point in the state of Pennsylvania
2https://gadm.org/

GA VA PA FL

CA TX NC TN

By
 L

ab
el

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

By
 L

ab
el

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

By
 L

ab
el

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

By
 L

ab
el

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

0
25
50
75

100
125

0
25
50
75

100
125

Method of overlay

Ti
m

e
[s

]

Figure 9: Overlay methods evaluation.

(from the MainUS dataset) and started adding 2000 census tracks
until the number of edges reached 3K. We then varied the size of
the larger cell layer in a controlled way: using the same reference
point but using data from the 2010 census, we started adding tracks
to create a layer that had around 2x, 3x, ..., 7x the number of edges
of the smaller dataset. Since this optimization occurs per cell, we
used a single node to perform the overlay computation within that
cell. Figure 10a shows the behaviour of the two methods (�ltered-
sweep vs. traditional sweep) under the above described data for the
overlay computation stage.

Clearly, as the data from one layer grows much larger that the
other layer the �ltered-sweep approach overcomes the traditional
one.

We also performed an experiment where the di�erence in size
between the two layers varies between 10% and 70%. For this ex-
periment we �rst identi�ed cells from the GADM dataset where
the smaller layer had around 3K edges. Among these cells we then
identi�ed those where the larger layer had 10%, 20%, ... up to 70%
more edges. In each category we picked 10 representative cells
and computed the overlay for the cells in that category. Figure
10b shows the results; in each category we show the average time
to compute the overlay among the 10 cells in that category. The
�ltered-sweep approach shows again better performance as the
percentage di�erence between layers increases. Based on these
results, one could apply the optimization on those cells where the
layer di�erence is signi�cant (more than 50%).

6.3 Varying the number of cells
The quadtree settings allow for tuning its performance by providing
the number of leaf cells to be created as a parameter. The quadtree
then continues its splits so as to reach this capacity (approximately).
The number of cells a�ects the performance of our scalable over-
lay implementation (termed as SDCEL below) since it relates to
the average cell capacity (in number of edges). Fewer number of
cells implies larger cell capacity (and thus more edges to process
within each cell). On the other hand, creating more cells increases
the number of jobs to be executed. Figure 11a shows the SDCEL
performance using the two layers of the CCT dataset, while varying
the number of cells from 100 to 15K (by multiple of 1000). Each bar
corresponds to the time taken to create the DCEL for each layer

92

https://gadm.org/

Scalable Overlay Operations over DCEL Polygon Layers SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

0.0

0.2

0.4

0.6

2x 3x 4x 5x 6x 7x
Dataset Size

Ti
m

e
[s

] Method
Filtered−sweep

Traditional

(a)

0.0

0.1

0.2

0.3

0.4

10% 20% 30% 40% 50% 60% 70%
Percentage difference in size between cell layers

Ti
m

e
[s

] Method
Filtered−sweep

Traditional

(b)

Figure 10: Evaluation of the unbalanced layers optimization.

and then combining them to create the distributed overlay. Clearly
there is a trade-o�: as the number of cells increases the SDCEL
performance improves until a point where the larger number of
cells adds an overhead. Figure 11b focuses on that area; the best
SDCEL performance was around 7K cells.

In addition Figure 11a shows the performance of the sequen-
tial solution (CGAL library) for computing the overlay of the two
layers in the CCT dataset, using one of the cluster nodes. Clearly,
the scalable approach is much more e�cient as it takes advan-
tage of parallelism. Note that the CGAL library would crash when
processing the larger datasets (MainUS and GADM).

Figure 12 shows the results when using the larger MainUS and
GADM datasets, while again varying the number of cells parameter
(from 1K to 15K and from 2K to 26K respectively). In this �gure
we also show the time taken by each stage of the overlay compu-
tation (namely, to create the DCEL for layer A, for layer B and for
their combination to create their distributed overlay). We can see
a similar trade-o� in each of the stages. The best performance is
given when setting the number of cells parameter to 5K for the
MainUS and respectively 8K for the GADM dataset. Note that in the
MainUS dataset the two layers have similar number of edges; as it
can be seen their DCEL computations are similar. Interestingly, the
overlay computation is expensive since (as mentioned earlier) there
are many intersections between the two layers. An interesting ob-
servation from the GADM plots is that layer B takes more time than
layer A; this is because there are more edges in the counties than
the states. Moreover, county polygons are included in the (larger)
state polygons. When the size of cells is small (i.e. larger number of
cells like in the case of 26K cells) these cells mainly contain counties
from layer B. As a result, there are not many intersections between
the layers in each cell and the overlay computation is thus faster.
On the other hand, with large cell sizes (smaller number of cells)
the area covered by the cell is larger, containing more edges from
states and thus increase the number of intersections, resulting in
higher overlay computation.

6.4 Speed-up and Scale-up experiments
The speed-up behavior of SDCEL appears in Figure 13a (for the
MainUS dataset) and in Figure 14a (for the GADM dataset); in
both cases we show the performance for each stage. For these
experiments we varied the number of nodes from 3 to 12 (while
keeping the input layers the same). Clearly, as the number of nodes

increases the performance improves. SDCEL shows good speed-up
characteristics: as the number of nodes doubles (from 3 to 6 and
then from 6 to 12) the performance improves almost by half.

To examine the scale-up behavior we created smaller datasets
out of the MainUS (and similarly out of the GADM) so that we can
control the number of edges. To create such a dataset we picked
a centroid and started increasing the area covered by this dataset
until the number of edges were closed to a speci�c number. For
example, from the MainUS we created datasets of sizes 8M, 16M,
24M and 32M edges for each layer. We then used two layers of
the same size as input to di�erent number of nodes, while keeping
the input to node ratio �xed. That is, the layers of size 8M were
processed using 3 nodes, the layers of size 16M using 6 nodes, the
24M using 9 nodes and the 32M using 12 nodes. We did the same
process for the scale-up experiments of the GADM dataset. The
results appear in Figure 13b and Figure14b. Overall, SDCEL shows
good scale-up performance; it remains almost constant as the work
per node is similar (there are slight variations because we could
not control perfectly the number of edges and their intersection).

7 CONCLUSIONS
We introduced SDCEL, a scalable approach to compute the overlay
operation among two layers that represent polygons from a planar
subdivision of a surface. Both input layers use the DCEL edge-list
data structure to store their polygons. Existing sequential DCEL
overlay implementations fail for large datasets. We �rst presented
a partition strategy which guarantees that each partition collects
the required data from each layer to work independently. We also
proposed several optimizations to improve performance. Our ex-
perimental evaluation using real datasets shows that SDCEL has
very good scale-up and speed-up performance and can compute
the overlay over very large layers (up to 37M edges) in few seconds.

ACKNOWLEDGMENTS
This work was partially supported by the National Science Foun-
dation under grants IIS-1901379, IIS-2237348, CNS-2031418, SES-
1831615 and the Google-CAHSI research grant. We would like to
thank Sergio Rey from the Center for Geospatial Sciences for intro-
ducing the SDCEL problem to us.

93

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Calderon, et al.

CGAL

0

200

400

600

800

SDCEL

0.1 0.2 0.5 1 2 4 7 10 12.5 15

0

200

400

600

800

Number of cells (x1000)

Ti
m

e
[s

]

(a)

0

20

40

2 4 7 10 12.5 15
Number of cells (x1000)

Ti
m

e
[s

]

(b)

Figure 11: SDCEL performance while varying the number of cells in the CCT dataset.

0

100

200

300

400

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K
Number of cells

Ti
m

e
[s

]

Stages
Layer A

Layer B

Overlay

(a)

0

1000

2000

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K 22K 24K 26K
Number of cells

Ti
m

e
[s

]

Stages
Layer A

Layer B

Overlay

(b)

Figure 12: Performance with (a) MainUS and (b) GADM datasets.

Layer A Layer B Overlay

3 6 9 12 3 6 9 12 3 6 9 12

0

100

200

300

400

Number of nodes

Ti
m

e
[s

]

(a)

Layer A Layer B Overlay

8M 16M 24M 32M 8M 16M 24M 32M 8M 16M 24M 32M

0

50

100

Size [number of edges]

Ti
m

e
[s

]

(b)
Figure 13: Speed-up and Scale-up experiments for the MainUS dataset.

Layer A Layer B Overlay

3 6 9 12 3 6 9 12 3 6 9 12

0

500

1000

1500

Number of nodes

Ti
m

e
[s

]

(a)

Layer A Layer B Overlay

8M 16M 24M 32M 8M 16M 24M 32M 8M 16M 24M 32M

0

100

200

300

400

Size [number of edges]

Ti
m

e
[s

]

(b)
Figure 14: Speed-up and Scale-up experiments for the GADM dataset.

94

Scalable Overlay Operations over DCEL Polygon Layers SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

REFERENCES
[1] G. Barequet. 1998. DCEL - A Polyhedral Database and Programming Environment.

IJCGA 08, 05n06 (1998), 619–636.
[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. 1990. The R*-Tree: An

E�cient and Robust Access Method for Points and Rectangles. In ACM SIGMOD
PODS. Association for Computing Machinery, New York, NY, USA, 322–331.

[3] E. Berberich, E. Fogel, D. Halperin, M. Kerber, and O. Setter. 2010. Arrangements
on Parametric Surfaces. Mathematics in Computer Science 4, 1 (2010), 67–91.

[4] M. Berg, O. Cheong, M. Kreveld, andM. Overmars. 2008. Computational Geometry:
Algorithms and Applications. Springer, TU Eindhoven, P.O. Box 513.

[5] P. Boguslawski, C. Gold, and H. Ledoux. 2011. Modelling and analysing 3D
buildings with a primal/dual data structure. ISPRS 66, 2 (2011), 188–197.

[6] D. Boltcheva, J. Basselin, C. Poull, H. Barthélemy, and D. Sokolov. 2020.
Topological-based roof modeling from 3D point clouds. In WSCG, Vol. 28. Union
Agency, Science Press, CZ 301 00 Plzen, 137–146.

[7] J. Challa, P. Goyal, S. Nikhil, A. Mangla, S. Balasubramaniam, and N. Goyal. 2016.
DD-Rtree: A dynamic distributed data structure for e�cient data distribution
among cluster nodes for spatial data mining algorithms. In IEEE Big Data. IEEE,
222 Rosewood Drive, Danvers, MA 01923., 27–36.

[8] L. Chew and K. Kedem. 1993. A convex polygon among polygonal obstacles.
Computational Geometry 3, 2 (1993), 59–89.

[9] V. Chvátal. 1975. A combinatorial theorem in plane geometry. Combinatorial
Theory 18, 1 (1975), 39–41.

[10] R. Finkel and J. Bentley. 1974. Quad Trees: A Data Structure for Retrieval on
Composite Keys. Acta Inf. 4 (1974), 1–9.

[11] E. Fogel, D. Halperin, and R. Wein. 2012. CGAL Arrangements and Their Applica-
tions. Springer Berlin, Heidelberg.

[12] W. Franklin, S. Magalhães, and M. Andrade. 2018. Data Structures for Parallel
Spatial Algorithms on Large Datasets. In ACM BigSpatial. ACM, Seattle, WA,
USA, 16–19.

[13] W. Freiseisen. 1998. Colored DCEL for boolean operations in 2D.
[14] A. Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.

In ACM SIGMOD ICMD. Association for Computing Machinery, New York, NY,
United States, 47–57.

[15] R. Holmes. 2021. The DCEL Data Structure for 3D Graphics.
[16] Y. Li, A. Eldawy, J. Xue, N. Knorozova, M. Mokbel, and R. Janardan. 2019. Scalable

computational geometry in MapReduce. VLDB 28, 1 (2019), 523–548.
[17] S. Magalhães, M. Andrade, W. Franklin, and W. Li. 2015. Fast exact parallel

map overlay using a two-level uniform grid. In ACM BigSpatial. Association for
Computing Machinery, New York, NY, USA, 45–54.

[18] K. Mehlhorn and S. Näher. 1995. LEDA: a platform for combinatorial and geo-
metric computing. Commun. ACM 38, 1 (1995), 96–102.

[19] D.Muller and F. Preparata. 1978. Finding the intersection of two convex polyhedra.
Theoretical Computer Science 7, 2 (1978), 217–236.

[20] J. Nievergelt, H. Hinterberger, and K. Sevcik. 1984. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Trans. Database Syst. 9, 1 (1984), 38–71.

[21] J. O’Rourke. 1987. Art Gallery Theorems and Algorithms. Oxford University Press,
United States.

[22] F. Preparata and M. Shamos. 1985. Computational Geometry: An Introduction.
Springer, New York, NY.

[23] S. Puri, D. Agarwal, X. He, and S. Prasad. 2013. MapReduce Algorithms for
GIS Polygonal Overlay Processing. In IEEE IPDPS. IEEE, Cambridge, MA, USA,
1009–1016.

[24] S. Puri and S. Prasad. 2013. E�cient Parallel and Distributed Algorithms for
GIS Polygonal Overlay Processing. In IEEE IPDPS. IEEE Computer Society, USA,
2238–2241.

[25] I. Sabek andM.Mokbel. 2017. On Spatial Joins inMapReduce. InACM SIGSPATIAL.
Association for Computing Machinery, New York, NY, USA, 1–10.

[26] H. Samet. 1990. The Design and Analysis of Spatial Data Structures. Wesley, 75
Arlington Street, Suite 300 Boston, MA, United States.

95

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Scalable Overlay Construction
	4.1 Partition Strategy
	4.2 Labeling Orphan Cells and Holes
	4.3 Answering global overlay queries

	5 Overlay evaluation optimizations
	5.1 Optimizations for faces expanding cells
	5.2 Optimizing for unbalanced layers

	6 Experimental Evaluation
	6.1 Overlay face optimizations
	6.2 Unbalanced layers optimization
	6.3 Varying the number of cells
	6.4 Speed-up and Scale-up experiments

	7 Conclusions
	Acknowledgments
	References

