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An accurate assessment of terrestrial ecosystem transpiration (T) is important to understand the vegetation-
atmosphere feedbacks under climate change. Solar-induced chlorophyll fluorescence (SIF) shows great poten-
tial to estimate T because of its mechanical linkage with photosynthesis and stomatal conductance. However, a
global and spatially estimation of terrestrial T based on remotely sensed SIF remains unresolved and novel
strategies are challenged to entail a precise partition of T from evapotranspiration (ET) across various biomes.
Here, with far-red SIF from Sentinel-5 Precursor satellite and ground observations for a total of 30 sites
encompassing ten primary plant functional types (PFTs), we extend a SIF-driven semi-mechanism canopy
conductance (g.) model for different plant functional types (PFTs), and use the optimized Penman-Monteith
model (PMp) to calculate T and T/ET. We reveal that the relationship between SIF and the product of g. and
0.5 power of vapor pressure deficit (g. x VPD®) is tighter than the relationship between SIF and ecosystem
productivity. The SIF-g. x VPD®® linear regressions show improved R? and increased magnitude in slopes across
PFTs when aggregating daily to 16-day. Our T/ET results show high correlations with the results of the Ball-
Berry-Leuning model combined with PM,, at the site scale (R? = 0.69), and with the results calculated by
leaf area index in a previous study at the PFT scale (0.70). We further determine the global mean T/ET (0.57 +
0.14), close to the ensemble mean of global averaged T/ET (0.55), using 36 different methods. The global T
estimated using the SIF-based approach is compared with two other remote sensing products. Our method
provides a valuable tool for T and ET estimation using remote sensing data and is critical to understanding
ecohydrological processes under climate change.
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1. Introduction

Terrestrial Evapotranspiration (ET), a fundamental component of the
terrestrial ecosystem water cycle, substantially influences climate
change, water availability, and land surface energy balance (Milly et al.,
2005; Trenberth et al., 2009; Zeng et al., 2017). The proportion of global
precipitation returning to the atmosphere via ET is close to 60%, higher
in arid and semi-arid zones (Mu et al., 2011). Different components of ET
-interception evaporation (I), evaporation (E) and transpiration (T) -
react to climatic changes, atmospheric composition, and land use
differently (Wei et al., 2017). T is the primary component in ET that

involves soil moisture uptake from the root and water vapor loss through
plant stomates (Schlesinger and Jasechko, 2014). As T is directly linked
to photosynthesis via stomatal conductance (gs), it has long been
acknowledged that quantification of T plays a crucial role in water
resource management, crop yield estimation, water cycle, and climate
change. However, it is still challenging to partition ET into its sub-
components at the regional and global scales. Significant variations in
the ratio of T to ET (T/ET) have been reported from 47% + 10% in the
Mediterranean shrubland with low Leaf Area Index (LAI) to 70% + 14%
in the Tropical rainforest with high LAI (Schlesinger and Jasechko,
2014; Wang et al., 2014). Global estimates of T/ET vary from ~ 35% to
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Fig. 1. The Workflow of this study.

~ 80% derived from different methods (Coenders-Gerrits et al., 2014).
The high uncertainties of ET components partition hinder our under-
standing of ET subcomponents’ authentic variation characteristics and
their interactions in the carbon and water cycle of terrestrial ecosystems.

Several methods for partitioning T from ET have been used,
including direct and indirect methods from the plot to the ecosystem
scale (Kool et al., 2014; Stoy et al., 2019). At the plot scale, these mainly
include the sap flow method, the gas-exchange chambers method, the
micro-lysimeter method, and the isotopic method (Sun et al., 2019).
These approaches can only determine the T/ET within a limited range
and would create considerable uncertainty when extrapolating to
ecosystem scale (Kool et al., 2014). Ways for partitioning E and T at the
ecosystem scale generally combine ecosystem-scale observations with
satellite-based algorithms, which can upscale E and T from ecosystem
scale to regional or global scale. These approaches include empirical
models based on the relationship between LAI and T/ET (Wang et al.,
2014; Wei et al., 2017), thermal imaging (Marshall et al., 2016), water-
use efficiency (WUE) combined with optimality theory assumption
(plants minimize water loss per unit carbon dioxide (CO5) gain) (Nelson
et al., 2018; Scott and Biederman, 2017; Zhou et al., 2016), flux variance
similarity (Scanlon and Kustas, 2010), and conditional eddy-covariance
method (Zahn et al., 2022). The first two methods that use leaf attributes
of the ecosystem from satellite observations, can capture the trend of T/
ET over all ecosystems. Nevertheless, there are still significant variations
in T/ET among ecosystems when leaf attributes are comparable (Sun
et al., 2019). The latter two methods, which rely on plant carbon-water
coupling characteristics, can precisely partition T from ET across all
ecosystems. However, they require a reliable estimation of vegetation
productivity (GPP) or canopy conductance (g.), especially when applied
at the regional or global scales in conjunction with remote sensing
techniques (Nelson et al., 2020).

Remote sensing approaches have also been widely used in global ET
estimation (Wang and Dickinson 2012). These approaches mainly
contain (1) surface energy balance (SEB) based method, including
single-source SEB model and dual-source SEB model, such as the oper-
ational Simplified Surface Energy Balance (SSEBop) developed by Senay
et al. (2013); (2) water balance (WB) based method, including surface
water balance and atmospheric water balance, such as the WB with
Model Tree Ensemble (WB-MTE) developed by Zeng et al. (2014); (3)
Penman-Monteith (PM) method, such as the Moderate Resolution Im-
aging Spectroradiometer (MODIS) ET product (PM-MOD) developed by
Mu et al. (2011) and the Penman-Monteith-Leuning model (PML and
PML-V2) developed by Zhang et al. (2016b, 2019b); (4) Priestley-Taylor
(PT) method, such as the Global Land Evaporation Amsterdam Model

(GLEAM) developed by Martens et al. (2017); (5) Surface temperature-
vegetation index space (Ts-VI) method, such as the Surface Energy
Balance System (SEBS) developed by Su (2002); (6) maximum entropy
production method (MEP) applied to global estimation by Huang et al.
(2017); (7) empirical or machine learning (EML) method, such as the
Gridded FLUXNET ET with Model Tree Ensemble (GFET-MTE) devel-
oped by Jung et al. (2010); and (8) Assimilation method, such as the
North American Land Data Assimilation System (NLDAS) developed by
Xia et al. (2012). The common disadvantage of SEB, WB, Ts-VI, and MEP
is only available for clear-sky. The drawbacks of WB include its inability
to compute gridded ET values directly and its poor spatiotemporal res-
olution. The simplification of physical processes is a restriction shared
by both PT and EML. PM can overcome these flaws, after acquiring high-
quality meteorological forcing and improving the g. estimate (Zhang
et al., 2016a). However, g. is closely coupled with photosynthesis, and
improving estimations of g. needs optimizing GPP modelling.

Spaceborne solar-induced chlorophyll fluorescence (SIF) has
emerged as an essential technique for optimizing GPP estimation (Joiner
etal.,2011; Lietal., 2018; Sun et al., 2017). Satellite sensors used for SIF
retrieval in terrestrial vegetation include the Meteorological Opera-
tional satellite - Global Ozone Monitoring Experiment-2 sensor; the
Orbiting Carbon Observatory; the Sentinel-5 Precursor - TROPOspheric
Monitoring Instrument (TROPOMI); and other sensors (Mohammed
et al., 2019). TROPOMI observations offer an excellent spatial and
temporal resolution, which improves global estimates of GPP over pre-
vious satellite SIF data (Zhang et al., 2019c). SIF has been used to esti-
mate g. and T because it has a tight physical relationship with GPP
(Damm et al., 2018; Lu et al., 2018; Maes et al., 2020; Pagan et al., 2019;
Shan et al., 2019). The SIF-T connection is dominated by air temperature
and intrinsic WUE (Maes et al., 2020) and also is affected by Photo-
synthetically Active Radiation (PAR), Vapor Pressure Deficit (VPD), and
LAI (Lu et al., 2018). Moreover, SIF-based T retrieval models, including
a WUE-based model and a conductance-based model, have been con-
structed from the standpoint of plant physiology (Feng et al., 2021; Shan
et al., 2021). These SIF-based models perform well at the site scale.
However, these SIF-based models are challenged to apply for quanti-
fying T/ET and to employ in different ecosystems on the global scale.

The main objective of this study is to quantify T/ET on the global
scale by using the SIF-constrained g. model. Specifically, we aim to: (1)
develop a plant functional type (PFT) specific SIF-driven semi-mecha-
nism g. model (denoted as g.-SIF model); (2) partition ET across
different PFTs worldwide combing the PM equation and SIF-constrained
g¢; (3) apply the g.-SIF model to global T estimation in the 2018 growing
season.
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Fig. 2. The distribution of flux sites in this study.

2. Materials and methods
2.1. Workflow

First, we calculated g. at 30 eddy-covariance (EC) flux tower sites
using the Ball-Berry-Leuning (BBL) model (denoted as gcsirg) covering
ten different PFTs (see 2.3.1 for details). Second, gc.sitg was used to
calculate and validate the g.-SIF model and simulate g. based on TRO-
POMI SIF data (denoted as gcsir) (see 2.3.2 for details). Third, gcsite and
gcsir combined with the optimized PM model (PM,p) were used to
calculate T (denoted as Tgyrg and Tgyr, respectively) for all sites (see 2.3.3
for details). Fourth, the results of Tgr and Tgp/ET were compared to
previous studies at the ecosystem scale and on the global scale (see 2.3.4
for details). Fifth, a global and spatial estimation of terrestrial T was
obtained using the g.-SIF model and the PM, as well as SIF and other
relevant data at a 16-day temporal resolution, represented as daily
global T estimation. Finally, the global T estimates were compared to
current state-of-the-art T estimates such as GLEAM and PML-V2. A
detailed flowchart for data processing is shown in Fig. 1.

2.2. Dataset

2.2.1. Far-red SIF data from TROPOMI

SIF from the Sentinel 5 Precursor satellite was retrieved by using a
singular value decomposition technique in the window of 743 ~ 758 nm
and normalized to the SIF at 740 nm (Kohler et al., 2018). It was almost
daily continuous global coverage with a spatial resolution of 7 km x 3.5
km at the nadir and 7 km x 14.5 km at the edge of the swath. It was
available from February 2018, and our study period ran from February
2018 to July 2019. To avoid cloud impacts, we first filtered out the
original SIF with cloud fractions>0.2. Second, the instantaneous SIF was
transformed to daily means using the day-length correction factor before
our investigation (Frankenberg et al., 2011). The daily mean SIF for each
site was determined as the average of all available observations within a
10 km radius buffer centered by the site location, which can well capture
the footprint of EC flux (Fig. Al). The ungridded daily mean SIF was
aggregated to 0.1° x 0.1° gridded daily SIF data to estimate global T
during the 2018 growing season. The 16-day SIF was further aggregated
by averaging daily mean SIF (ungridded and gridded) over the 16 days
when data was available for at least five days.

2.2.2. EC flux dataset
We collected a total of 30 EC flux sites after checking the availability

of data to match the period of SIF distributed over America, Europe,
Australia and China (Fig. 2 and Table A1), and all these sites have data
records covering at least one entire growing season from February 2018
to July 2019. The growing season was defined as the five consecutive
months with the highest ecosystem productivity in a year, as determined
by a multi-year average of the recent five years. The 30 flux sites contain
10 different PFTs, comprising 3 evergreen needle forests (ENF) sites, 3
evergreen broadleaf forests (EBF) sites, 3 deciduous broadleaf forests
(DBF) sites, 1 mixed forest (MF) site, 3 closed shrublands (CSH) sites, 4
open shrublands (OSH) sites, 3 woody savannas (WSA) sites, 3 savannas
(SAV) sites, 4 C3 grasslands (GRA) sites, 3 C4 grasslands (GRA(4) sites.

Flux data and relevant auxiliary data were available at AmeriFlux
(https://ameriflux.1bl.gov), European Eddy Fluxes Database Cluster (htt
ps://www.europe-fluxdata.eu/), OzFlux (https://data.ozflux.org.au/)
and few collaborating researchers. Flux data included net ecosystem
exchange flux (unit: pmol m~2 s 1), latent heat flux (LE, unit: W m~2),
and ground heat flux (G) (or sensible heat flux) (unit: W m32). Auxiliary
data contained net radiation (R, unit: W m’z), surface pressure (P, unit:
kPa), 2 m temperature (Tq, unit: °C), soil temperature (unit: °C), CO»
concentration ([CO2], unit: parts per million, ppm), friction velocity (u*,
unit: m s~ 1), wind speed (u, unit: m s, canopy height (h, unit: m),
measurement height (hy, unit: m), and air relative humidity (RH,
unitless). If R, was not directly available, R, was calculated by the
following formula:

R, =R, +R,;=RJ|I-R1+R| — R (€8]
where Ry, Ry, Rsd, Rs1, Ril, R;T were surface net solar radiation, surface
net thermal radiation, downward solar radiation, upward solar radia-
tion, downward thermal radiation, and upward thermal radiation in W
m~2, respectively. VPD could substitute for RH, because RH and T,
were used to compute VPD by Tetens’s formula:

VPD = e, x (1 — RH) )

(2sw)
e = 0.61078 X e 3
where VPD was in kPa, and ey, is saturated vapour pressure in kPa.
The following processes aimed to make a rigorous quality check to
identify reliable half-hour flux observations. First, a standard processing
was carried out for the original flux data, including u* filtering, gap
filling, and flux partitioning (Wutzler et al. 2018). Specifically, a day-
time carbon flux partitioning algorithm was used for calculating GPP
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Table 1

The empirical parameters used in the BBL model.
Type m £ Reference
GRAc4 4 0.04 Ran et al. (2017)
BF (EBF & DBF) 12 0.01 Sprintsin et al. (2012)
ENF 10 0.01 Sprintsin et al. (2012)
OSH 8 0.0011 Chen et al. (2012)
CSH 9 0.01 Ran et al. (2017)
GRA 9 0.01 Ran et al. (2017)
SAV 9 0.01 Ran et al. (2017)
WSA 9 0.01 Ran et al. (2017)
MF 11 0.01 Average of BF and ENF

(Lasslop et al., 2010). Second, measured data without gap-filling was
employed in this study except for standard processing of flux data. Third,
half-hourly data were averaged into hourly data to standardize the
calculation process. Fourth, observations with negative R, GPP, LE, and
VPD were eliminated. Fifth, we used day-time observations from 6:00 to
18:00. Data availability after quality control is given in Table A2 at each
site. In this study, daily values were computed only for days with at least
8 measured hour measurements, and 16-day values were calculated only
for the 16-days with at least 3 recorded day measurements.

2.2.3. ERA5-Land data

For the global T estimation, we used the fifth European Centre for
Medium-Range Weather Forecasts (ECMWF) ReAnalysis for land
(hourly dataset ERA5-Land) as auxiliary data, which is the latest global
land-surface climate reanalysis dataset with 0.1° x 0.1° resolution
(ECMWF, 2017). The uncertainty of ERA5-Land was defined by the
ensemble of data assimilations system, which confirms that the data was
reliable from February 2018 to July 2019. The hourly ERA5-Land var-
iables used in this study included Ty (unit: K), 2 m dewpoint temper-
ature (Tgew, unit: K), Ry, (unit: J m’z), Ry (unit: J m’z), and P (unit: Pa).
The units of all variables were converted to be consistent with the site
flux dataset. The Tgeww was used to calculate the VPD in kPa by the
following equation:

RH — esat,dew (4)
Csar

2 iy 1721 T gy
€sat,dew Ty 3313 Tiow 2313
VPD:em,X<177 =e —e (5)

€sar

where ey 4oy is the saturated vapor pressure at dew point temperature in
kPa. R, was calculated by the Eq. (1). Data with negative R, and VPD
was excluded. The hourly data was aggregated to daily data by aver-
aging day-time data from 6:00 to 18:00.

2.2.4. MODIS data

MODIS data were obtained from google earth engine (GEE) MODIS
collection 6 products from February 2018 to July 2019. The
MCD15A3H.006 LAI and fPAR (i.e., fraction of PAR absorbed by vege-
tation) dataset (Myneni et al., 2015), have a spatial resolution of 500 m
and a temporal resolution of 4-day, which were used to calculate gcgirEg-
The MCD12Q1.006 land cover dataset at 500-m spatial resolution is
annual land cover types (Friedl et al., 2010), and the year 2018 was used
in this study. The international geosphere-biosphere programme clas-
sification scheme was used to provide PFT-specific information. The
MOD16A2.006 ET dataset in 2018 was applied to magnify T/ET from
PFT to global (Mu et al., 2011).

A Savitzky-Golay filter was utilized for each pixel to eliminate noise
contaminations for LAI and fPAR data (Savitzky and Golay, 1964). The
quality control was checked using the quality assurance layer, and pixels
not contaminated by clouds and aerosols were selected as reliable ob-
servations. The LAI and fPAR around each flux tower site were extracted
by averaging all available observations within a 1 km radius around the
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site location. To estimate T for different PFTs, the land cover data was
aggregated to 0.1° x 0.1° resolution by counting the proportions of
different land cover types in each grid from the original 500 m resolu-
tion, and the dominant biome type was assigned to this 0.1° x 0.1°grid
cell. Similarly, the LAI and fPAR datasets were also aggregated to 0.1° x
0.1° resolution to keep the spatial resolution consistent with all other
datasets.

2.2.5. GLEAM data and PML-V2 data

GLEAM and PML-V2 are widely-used remote sensed products of ET
retrieved by PT and PM, which have dataset of different ET components.
When this study is in progress, GLEAM and PML-V2 are available from
2018 to 2019. Thus, the GLEAM v3.3b data (Miralles et al., 2011;
Martens et al. 2017) and the PML-V2 data (Zhang et al., 2019a) were
compared to validate our estimation of T in this study. The daily GLEAM
data was available from https://www.gleam.eu/, and provided on a
0.25° x 0.25° latitude-longitude grid. The PML-V2 data was collected
from GEE with a spatial resolution of 500 m and a temporal resolution of
8-day. The GLEAM data of each flux tower site was directly extracted by
its location. The PML-V2 data of each flux tower site was extracted by
the same strategies as MODIS LAI data. The GLEAM data were linearly
interpolated to 0.1° x 0.1° resolution, and the PML-V2 data were
averagely aggregated to 0.1° x 0.1° resolution to compare their spatial
patterns with our results.

2.3. Methods

2.3.1. G, estimation

We used the BBL model, a modified version of the Ball-Berry model,
to estimate hourly leaf g;.. And then g, was obtained within a big leaf
model framework (Sellers et al., 1992). The BBL model is a biochemical
model characterizing plants carbon-water coupling processes, in which
gs is expressed as a function of environmental parameters and net
assimilation rate (A,) (Leuning, 1995; Lohammer et al., 1980). The BBL
model was given as follows:

mxA,
(C; =T) x (1 +D,/Dy)

g = 1.6 X + 8o (©)

where g; was in unit of m s ' ormol m~2 s~!, A, was in unit of pmol m 2

s’l, Cs was [CO2] at the leaf surface (ppm), I was the CO, compensation
point (ppm), which was set to 40 for C3 plants and 2 for C4 grassland, D
was humidity deficit at the leaf surface (kPa), Dy, was set to 0.35 as an
empirically fitted parameter representing the sensitivity of stomata to
changes in Ds (kPa) (Leuning, 1995). m and gy were the slope and
minimum conductance calculated from empirical data provided in
Table 1, respectively. The unit of g was converted from mol m 2 s™! to
m s~! after a multiplication of the coefficient V,,. V;;, was calculated
according to the following equation:

o _ 8314 (T, +273.15)
" 1000 x P

)

Finally, we replaced gp with a multiplication of LAI and go, GPP with
A,, atmosphere [CO;] with C;, and VPD with D;, to upscale all param-
eters from leaf to canopy scale. Different g. models have little influence
on the results of g. after we compared the daily mean stomatal
conductance calculated by the BBL model and the Ball-Berry-Medlyn
model (BBM, Fig. A2, Lin et al., 2015; Medlyn et al., 2011).

2.3.2. The g.-SIF model development and calibration

Shan et al. (2021) developed a SIF-driven semi-mechanism g. model
combining theories on the photosynthetic pathway and optimal sto-
matal behavior and validated by hourly canopy SIF and concurrent eddy
covariance flux observations at both forest and crop ecosystems. The
form of this model was expressed as follows:
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Fig. 3. Schematic plot of ET energy distribution in PM,p; equation.

Table 2
Model parameters and validation results of the g.-SIF model.

Type Model Model RMSE, ms~' MAE, ms~! R?
Slope Intercept pa®® pa®®
GRAc4 0.0291 0.0015 0.0024 0.0019 0.88
GRA 0.0172 0.0026 0.0027 0.0023 0.50
OSH 0.0095 0.0014 0.0008 0.0007 0.41
SAV 0.023 0.0041 0.0015 0.0014 0.80
CSH 0.0361 0.0023 0.0025 0.0022 0.7
WSA 0.0223 0.0053 0.0024 0.0020 0.75
ENF + 0.0324 0.0042 0.0034 0.0030 0.81
MF
DBF + 0.0254 0.0077 0.0062 0.0051 0.73
EBF
gc = VPD™ "3 x (a x SIF +b) (8)
where SIF was in mW m~2 nm™! sr'', a and b were the slope and

intercept, which provided the constraint for the relationships between g
and SIF for each PFT. We extended this model to 10 different PFTs
worldwide using least squares regression and repeated K-Fold cross-
validation at the 16-day temporal resolution. We repeated 4 times K-
Fold cross-validation for each PFT, with K value of 10. The results for
each PFT, including model slope, model intercept, mean square error
(MSE), root mean square error (RMSE), mean absolute error (MAE), and
goodness of fit (R%), were computed by averaging the results of all the
repeated K-Fold cross-validation.

2.3.3. Transpiration estimation
The PM equation was used to estimate T. The original PM equation
and relevant formulas were as follows:

_AX(R,—G)+p,xc, xVPD/r,

LE = 9
A+yx(14r/r,) ©
A = 4098.17 X €,/ (T +237.3) 10)
28.9654 X (P — €yuren) + 18.016 X €5ur e an
a 8.314 x (273.15 + T,)
_ _ emt,dcw esat,dew
¢p = 1005 x (1-0.622 x ) 4 1820 x S a2)
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c, X P
= 13
"= 0.622 x (—2.2 x T, +2500) 13)
hu—2xhe/3 hu—2xhe/3
l"( 0‘123th ) x l"(o,omxh{) a4
r, =
“ kK Xu
1
L 15
T, G (15)

where LE was in W m ™2, A was the slope of the saturation vapour
pressure temperature relationship in kPa °C~}, p, was the mean air
density at constant pressure in kg m 3, ¢, was the specific heat of the air
inJ kg*1 °C’1, r, was the aerodynamic resistance in s m’l, y is the
psychrometric constant in kPa °C™}, r; was the surface resistance in s
m’l, and G; was the surface conductance in m s lormolm2s . The
PM equation was originally used to calculate ET, and was modified to
determine T after considering energy distribution between dry and wet
surfaces. Energy preferred evaporating liquid water on the wet surface,
similar to the parallel circuit system, since the evaporation resistance of
the wet surface was considerably lower than that of dry surface, as
illustrated in Fig. 3. Moreover, Gs had to be substituted with g. while
calculating T. As a result, the PMy,; equation for calculating T was as
follows:

AX (R,—G)+p, xc, x VPD/r,
AT = (1 —fier) X < 16
(1 =fie) A+yx[14+1/(g xr,)] 16
0.0RH < 70%
Fou = {RH470% < RH < 100% a”n

where AT was the latent heat flux from T in W m’z, A was the latent heat
of vaporization, 2.45 MJ kg’l, fwer Was the wet surface fraction from the
Fisher et al. (2008) ET model (Fisher et al., 2008).

All abbreviations are listed in Supplemental Table B1.

2.3.4. Comparison with previous T/ET estimations

First, T/ET estimated from both the BBL model and the g.-SIF model
were evaluated using the Pearson correlation analysis at the site scale.
Second, we used correlation analysis to examine the relationship be-
tween our Tgp/ET finding and prior multi-site T/ET results (collected by
Wei et al. (2017)). Wei et al. (2017) collected the values of T, E, I, ET,
and PFT type from 64 individual ground sties. Since these ground sites
are different from the sites in our study, we can only compare our results
with Wei’s results at PFT scale. Third, to further explore the performance
of our gc-SIF model, we estimated the global mean Tgp/ET of terrestrial
ecosystem for the 2018 growing season using Tsz/ET values at the PFT
scale and the method from Schlesinger and Jasechko (2014) combined
with MODIS ecozone ET (Mu et al., 2011) and land cover product (Friedl
et al., 2010, Table 3). Finally, we compared our global Tgz/ET result to
T/ET values using other methodologies reported in the previous
literature.

3. Results
3.1. Calibration and validation of the g.-SIF model

We first examined the relationship between SIF and both GPP and
8eSITE X VPD®* for all sites over the growing season at both daily and 16-
day temporal scale (Fig. 4). In general, the linear relationship can be
observed between daily SIF and GPP with R? of 0.50 (Fig. 4a). The SIF-
GPP relationship presents an increasing linearity and an improvement
after aggregating from daily to 16-days (R? increased to 0.56, Fig. 4b).
For the majority of sites, SIF shows significantly positive correlations
with GPP (p < 0.05, 21 out of 30 sites) at the 16-day temporal scale
(Table A3), and the mean site-based R between SIF and GPP is 0.62. The
correlation between gcgitg X VPD® and SIF is less scattered and more



Y. Liu et al.

Table 3

Statistics of the global mean T/ET calculated by different methods.
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Year Method Type of method T/ET | SD
2005 | Gerten et al., LPJ Climate model 0.65 0.03
2006 | Dirmeyer et al., GSWP-2 Climate model 0.48 | 0.03
2007 | Lawrence et al., CLM3 Climate model 0.44
2009 | Alton et al., JULES Climate model 0.38 0.09
2010 | Cao et al., CLM3.5/CAM3.5 Climate model 0.41 0.03
2011 | Lawrence et al., CLM3.5 Climate model 0.43
2011 | Lawrence et al., CLM4CN Climate model 0.56
2011 | Lawrence et al., CLM4CNE Climate model 0.56
2011 | Lawrence et al., CLM4SP Climate model 0.48
2012 | Ito and Inatomi, VISIT/Sim-CYCLE Climate model 0.24
2014 | Wang-Erlandsson et al., STEAM Climate model 0.59
2016 | Maxwell and Condon, ParFlow-CLM Climate model 0.62 0.12
2017 | Fatichi et al. T&C Climate model 0.7 0.09
2017 | Wei et al. CMIP5 Climate model 043 | 0.12
2018 | Lian et al., CMIP5 Climate model 0.41 0.11
2018 | Lian et al., CMIP5 constrained Climate model 0.62 0.06
2018 | Yang et al., CLM4.5 Climate model 0.48
2006 | Yoshimura et al., [so-Matsiro Isotope 0.31
2013 | Jasechko et al. Isotope 0.86 | 0.07
2014 | Coenders-Gerrits et al. Isotope 0.58 | 0.33
2015 | Good et al. Isotope 0.64 | 0.13
2014 | Wang et al. LAI-Based model 0.6 0.3
2017 | Wei et al. LAI-Based model 0.57 | 0.07
2011 | Compo et al., NOAA 20CR Reanalysis Data 0.39
1998 | Choudhury and DiGirolamo Remote sensing model 0.52
2011 | Miralles et al., GLEAM Remote sensing model 0.8
2016 | Miralles et al., GLEAM Remote sensing model 0.76
2016 | Miralles et al., PM-MOD Remote sensing model 0.24
2016 | Miralles et al., PT-JPL Remote sensing model 0.56
2016 | Zhang et al., PML Remote sensing model 0.65 | 0.04
2019 | Mianabadi et al., Gerrits's model Remote sensing model 0.71
2019 | Mianabadi et al., GLEAM v3.0a Remote sensing model 0.71
2019 | Zhang et al., PML-V2 (computed by this study) | Remote sensing model 0.55 | 0.07
2014 | Schlesinger and Jasechko Site statistics 0.61 | 0.15
2016 | Zhou et al. WUE-based model 0.57 | 0.04
2019 | Lietal. WUE-based model 0.66 | 0.15
now | This study, site level SIF model Site statistics 0.57 | 0.14

linear compared with the SIF-GPP relationship, with an improved R? of
0.69 for daily scale (Fig. 4c) and R? of 0.76 for 16-day temporal scales
(Fig. 4d) for all sites. At the individual site, 23 of 30 sites demonstrate
significant (p < 0.05) associations between SIF and gcsitg X vpPD%
(Table A3). The mean site-based R between SIF and gcsitg ¥ VPD%? is
0.48. Most of these sites (12/19 sites) show a stronger linear correlation
between SIF and gcgirg X VPD?® than between SIF and GPP. In short, the
relationship between SIF and gcsitg X VPD®® at the 16-day scale is
strongest among these four relationships.

We further explored the performance of the SIF-g.gitg X vPD%®
linear regressions at both daily and 16-day scales for each biome (Fig. 5).
The regression models vary significantly across PFTs, and the R? ranges
from 0.03 for OSH to 0.6 for GRAc4 at daily scale. The regressions show
improved R? (R? ranges from 0.28 for OSH to 0.83 for GRAc4) and
increased magnitude in slopes across PFTs when aggregating daily to 16-
day. Correlations between 16-day SIF and gegirg x VPD®® are generally
high (R > 0.75) for GRAcg4, CSH, WSA, SAV, ENF + MF and DBF + EBF,
but low (0.75 > R > 0.5) for GRA as well as OSH. According to the
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Fig. 4. The relationship between SIF and both GPP ((a) and (b)) and g. x VPD°?® ((c) and (d)) at all sites from daily ((a) and (c)) and 16-day ((b) and (d)) data. All R*

are statistically significant (p < 0.0001).
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Fig. 5. The relationship between SIF and both GPP and gesirg x VPD®® per PFT from daily and 16-day data. R? is calculated by simple correlation analysis.
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Fig. 6. The Tg/ET for each site calculated by the g.-SIF model.

significant correlation between SIF and gcsitg x vPD?®, we calculated
the slope and intercept per PFT in the g.-SIF model (Table 2). The results
show that the slopes of CSH and OSH are the greatest and lowest,
respectively. The best performance of the model was observed for GRAc4
R?= 0.88), while the worst was obtained for OSH (R? = 0.41). Similar

by
=)
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to R? between SIF and 8cSITE ¥ VPD%, the model slopes for GRA and
OSH are lower than those for other PFTs. Finally, the values of a and b in
the g.-SIF model across different PFTs are obtained.

3.2. T/ET Comparation

Ts/ET at the site scale was calculated using the simulated Tgp and
the observed ET (Fig. 6). Tgp/ET ratio is the greatest for MF (0.90),
which is limited to a single site. The lowest Tg/ET ratio is for GRA
(0.39). DBF is the PFT with the second greatest Ts;p/ET (0.85). For in-
dividual sites, the FR-Pue EBF site has the highest Ts/ET (0.98) of all
the sites, while the lowest Ts;g/ET value (0.30) is seen at the CN-Xil GRA
site. Interestingly, for evergreen forests, ENF’s mean Tg/ET (0.78) is
close to that of EBF (0.78). Due to a high vegetation coverage for CSH, an
average Tgp/ET ratio of 0.78 is observed. The mean Tg/ET values in
WSA, SAV and OSH, are 0.65, 0.69 and 0.57, respectively. Moreover,
there is a substantial difference in the Tgp/ET for C3 grasslands and C4
grasslands with different CO; assimilation pathways, with GRA¢3 having
a mean Tsp/ET value of 0.39 and GRAc4 having a mean Tsr/ET value of
0.73. Both the BBL model (Fig. A3) and the g.-SIF model provide com-
parable T/ET values for PFTs, but the ranking of Tgire/ET for PFTs with
high vegetation coverage is not entirely consistent (MF > EBF > DBF >
CSH > GRAc4 > ENF > WSA > SAV > OSH > GRA).

Tsre/ET is highly correlated with Tgp/ET ®R? = 0.69p < 0.001
Fig. 7a). In addition, our Tgr/ET values were further compared with the
T/ET values from Wei et al. (2017) using data from earlier research
(Fig. 7b). The R? between our PFT-mean Tsir/ET values and PFT-mean
T/ET from Wei et al. (2017) is 0.70, a significant correlation (p =
0.037). The R? for PFT-median value is 0.86 (p = 0.08). These two
comparative studies demonstrate the potential of the g.-SIF model in
Tsir/ET estimation across a wide variety of PFTs. GRA has the lowest
mean and median T/ET values, while forests, including ENF, DBF and
EBF (The last two are referred to BF.), have the highest mean and me-
dian T/ET values. SAV, WSA, and shrublands (OSH and CSH), all have
mean and median T/ET values around 0.6 with a large standard devi-
ation. But pattern of the mean T/ET values for SAV, WSA, and shrub-
lands are different in our results than in Wei’s results. In a word, our
Tsir/ET values are well validated by Tgirg/ET and T/ET from Wei et al.
(2017).

To further explore the performance of our g.-SIF model, we esti-
mated the global mean Tgp/ET of terrestrial ecosystem for the 2018
growing season using Tsp/ET values at the PFT scale and the method
from Schlesinger and Jasechko (2014) combined with MODIS ET and
landcover product (Table 3). Our growing season global mean Tgp/ET
value is 0.57 + 0.14. Global mean T/ET values calculated by different
methods vary from 0.24 to 0.86, whereas our result falls within this
range and close to their mean value. Global mean T/ET values computed
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Fig. 7. (a) The correlation between T/ET calculated by the BBL model and by the g.-SIF model at the site scale. (b) The correlation between T/ET selected by Wei
et al. (2017) and calculated by the g.-SIF model at the PFT scale. SHR is shrublands, including OSH and CSH. BF is broadleaf forests, including EBF and DBF. The
small points in (b) represent the Tg;p/ET value of each site when the T/ET ratio in Wei et al. (2017) is the average value of each PFT.
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Fig. 9. The average daily T for the 2018 growing season worldwide calculated by our g.-SIF model as well as ERA5-land data and MODIS data

using climate models, isotopes, LAI-based models, remote sensing
models, and WUE-based models are 0.50, 0.60, 0.59, 0.61, and 0.62. The
uncertainties (measured as standard deviation, SD) also vary widely
across models ranging from 0.03 to 0.33, while our global Tgjg/ET has an
SD of 0.14. Moreover, we evaluated the global mean T/ET (0.55 + 0.07)
for 2018 using PML-V2 data. Thus, our growing season global mean

Tsir/ET value is comparable to the average of global mean T/ET values
from other methods.

3.3. Global T estimation with the g.-SIF model

Our T estimates based on the g.-SIF model were compared to those
from GLEAM and PML-V2 products at the site scale (Fig. 8). ET simu-
lated by PML-V2 and GLEAM are strongly correlated with ET measured
from EC flux tower, with the R values of 0.85 and 0.79. The correlations
between the T from PML-V2 and both Tgrg and Tgr are more significant
than those between the ET from PML-V2 and the ET from the flux tower,
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Fig. 10. The comparation of the global average daily T for the 2018 growing season between our result and both PML-V2 and GLEAM products.

while the correlations between the T from GLEAM and both Tgrg and
Tsr are less than those between the ET from GLEAM and the ET from the
flux tower. Moreover, for most sites, the T estimated by GLEAM is higher
than Tgirg and Tgyg.

The global spatial pattern of the average daily Ts for the 2018
growing season is shown in Fig. 9. The daily mean Tg value varies
between 0 and 3 mm day ! globally (Fig. 9). The growing season mean
Tsir shows the high values (Tsg > 1.5 mm day-1) in the tropical rain
forest area (including the Amazon basin and the Congo river basins) and
the temperate broad-leaved forest area (including southeastern United

10

States, southern Europe, and southern China). The intermediate Tgp
values range from 0.8 mm day ! to 1.5 mm day ™! in the crop area (e.g.,
central United States, Sahel area, central and eastern Europe, south Asia,
and eastern China) and the ENF area (e.g., southern Canada, northern
Europe and northeastern China). The low values (Tgr < 0.8 mm day’l)
are in the arid and semi-arid areas, as well as the areas with high latitude
and altitude, which are characterized by sparse vegetation.

Our global Tgir mapping can exhibit the spatial pattern of terrestrial
ecosystem T globally, which is consistent with the current global T es-
timates. This consistency is simultaneously confirmed by the strong



Y. Liu et al. Journal of Hydrology 612 (2022) 128044

Table A1

The basic information of FLUXNET sites used in this study. Characteristics of the sites include latitude (in degree), longitude (in degree), h;,, (measurement height,
in meters), h. (canopy height, in meters), and international geosphere-biosphere programme (IGBP) plant functional type (PFT). EBF is evergreen broadleaf forests,
ENF is evergreen needleleaf forests, DBF is deciduous broadleaf forests, MF is mixed forests, CSH is closed shrublands, OSH is open shrublands, WSA is woody savannas,
SAV is savannas, GRA is C3 grasslands, and GRA¢4 is C4 grasslands.

Site No. PFT Name Latitude Longitude hp he
AU-ASM 1 SAV Alice Springs -22.2828 133.2493 11.6 6.5
AU-Col 2 DBF Collie -33.4200 116.2370 35 10
AU-Cpr 3 OSH Calperum —34.0027 140.5877 10 2
AU-Das 4 WSA Daly River Cleared —14.1592 131.3881 23 16.4
AU-Dry 5 SAV Dry River —15.2588 132.3706 15 12.3
AU-Gin 6 WSA Gingin —31.3764 115.7139 14.8 6.8
AU-Stp 7 GRAc4 Sturt Plains —17.1507 133.3502 4.8 1.2
AU-Wrr 8 EBF Warra —43.0950 146.6545 81 55
AU-Ync 9 GRA Australia Yanco site —34.9893 146.2907 8 1.2
BR-Sal 10 EBF Santarem-Km67-Primary Forest —2.85667 —54.95889 57.8 50
CN-Xil 11 GRA Xilinhot 43.5500 116.6667 5 1.2
FI-Var 12 ENF Varrio 67.7549 29.6100 16.6 8.61
FR-Pue 13 EBF Puechabon 43.7413 3.5957 12.2 7
IT-Tor 14 GRA Torgnon 45.8444 7.5781 2.5 0.5
RU-Fyo 15 ENF Fyodorovskoye 56.4615 32.9221 31 17
US-Jo2 16 CSH Jornada Experimental Range Mixed Shrubland 32.5849 —106.6032 7.1 1
US-Kon 17 GRAc4 Konza Prairie LTER (KNZ) 39.0824 —96.5603 3 0.5
US-MMS 18 DBF Morgan Monroe State Forest 39.3200 —86.4100 46 32.2
US-Mpj 19 WSA Mountainair Pinyon-Juniper Woodland 34.4385 —106.2377 9.33 5
US-Rls 20 CSH RCEW Low Sagebrush 43.1439 —116.7356 2.09 0.6
US-Rms 21 CSH RCEW Mountain Big Sagebrush 43.0645 —116.7486 2.5 1.2
US-Rws 22 OSH Reynolds Creek Wyoming big sagebrush 43.1675 —116.7132 2.05 0.6
US-Syv 23 MF Sylvania Wilderness Area 46.2420 —89.3477 36 21.8
US-Vem 24 GRA Valles Caldera Mixed Conifer 35.8884 —106.5321 23.6 19.1
US-Vep 25 ENF Valles Caldera Ponderosa Pine 35.8642 —106.5967 23.8 21
US-WCr 26 DBF Willow Creek 45.8059 —90.0799 29.6 18
US-Whs 27 OSH Walnut Gulch Lucky Hills Shrub 31.7438 —110.0522 6.5 0.5
US-Wjs 28 SAV Willard Juniper Savannah 34.4255 —105.8615 8 2
US-Wkg 29 GRAc4 Walnut Gulch Kendall Grasslands 31.7365 —109.9419 6.4 0.3
US-xJR 30 OSH NEON Jornada LTER (JORN) 32.5907 —106.8425 6.5 0.8

correlation with the PML-V2 product R? = 0.61; RMSE = 0.60 mm

Table A2 day~1) and the GLEAM product (R? = 0.56; RMSE = 0.75 mm day ') on
The data availability after quality control at all sites. a per pixel basis (Fig. 10). In most places, the magnitudes of T from
Site ID Site name PFT Number of hourly data GLEAM products are higher than our results. The T of PML-V2 product
1 AU-ASM SAV 1108 exceeds our findings only in the areas with high T intensity (T > 1.5 mm
2 AU-Col DBF 2297 day™1), mostly distributed in the tropics. In the arid and semi-arid areas,
3 AU-Cpr OSH 3825 as well as some crop areas, the T of PML-V2 and GLEAM products is
4 AU-Das WSA 2291 lower than our results.
5 AU-Dry SAV 2427
6 AU-Gin WSA 2782
7 AU-Stp GRAc4 1490 4. Discussion
8 AU-Wrr EBF 1054
o AU-Yne GRA 3299 Accurate assessment of the contribution of T to ET is critical for
1(1) iﬁ?:ll El;i 1%3 understanding terrestrial ecosystem carbon and water cycle (Good et al.,
12 FL-Var ENF 1804 2015; Wei et al., 2018). This study constructed a g.-SIF model to
13 FR-Pue EBF 1693 simulate g. and T based on satellite SIF data. The model is used to es-
1;‘ E"I}T:r gﬁ? géii‘ timate the global mean T/ET and T values for the growing season of the
-ryo
16 Us-ng CSH 1135 year 2018.
17 US-Kon GRAc4 1437
18 US-MMS DBF 3052 . —
1o US Mpj WsA 1837 4.1. Influencing factors of partitioning T from ET based on SIF
20 US-Rls CSH 1806
21 US-Rms CSH 1781 Our study shows that SIF links closely with GPP at different temporal
22 US-Rws OSH 933 scales (Fig. 4), consistent with previous findings (Guanter et al., 2014;
23 US-Syv ME 2818 Yang et al., 2015). The mechanic linkage between photosynthesis and
32 S:zzgﬂ gﬁ‘: 2;% SIF provides a valuable opportunity to estimate T, since GPP and T are
2% US-WCr DBF 3595 coupled through stomatal function (Stoy et al., 2019). However, SIF
27 US-Whs OSH 2891 cannot directly and exclusively estimate T, owing to the impact of
28 US-Wjs SAV 3512 confounding factors, such as micro-meteorological conditions, plant
2 Us-Wkg GRAcq 765 physiological characteristics, and canopy structure (Damm et al., 2018;
30 US-xJR OSH 2173

Maes et al., 2020). A lucubration of the SIF-T relationship prompts re-
searchers to develop two techniques for T retrieval via SIF, including the
SIF-g. empirical relationship-based model (Shan et al., 2019) and the
mechanism model (Feng et al., 2021; Shan et al., 2021). We adopt the
mechanism framework proposed by Shan et al. (2021) to connect SIF

11
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The correlations between SIFgo and both g. x VPD%® and GPP at all sites. R? is the coefficient of determination. The count is the number of useful 16-day observations.
R is the Pearson correlation coefficient. The red numbers in column R for g. x VPD® indicate that R for g. x VPD®® is greater than R for GPP.

ID Count PFT R for GPP p value for GPP R for gox p-value for g.x
VPD"5 VPD"5

1 3 SAV -0.3183 >0.05 -0.8535 <0.05
2 28 DBF -0.5499 <0.05 0.0024 >0.05
3 32 OSH  -0.5223 <0.05 -0.4066 <0.05
4 20 WSA  0.4238 <0.05 0.9281 <0.01
5 23 SAV 0.178 >0.05 0.5255 <0.05
6 29 WSA  0.1778 >0.05 0.1546 >0.05
7 25 GRAcs 0.9963 <0.01 0.8383 <0.01
8 6 EBF -0.8648 <0.05 -0.8811 <0.01
9 33 GRA  0.9295 <0.01 0.9442 <0.01
10 18 EBF 0.6955 <0.01 -0.2214 >0.05
11 10 GRA  0.829 <0.01 0.8345 <0.01
12 14 ENF 0.907 >0.01 0.9272 <0.01
13 11 EBF 0.3516 <0.05 0.333 >0.05
14 16 GRA  0.5216 <0.01 0.5868 <0.05
15 30 ENF 0.8762 <0.01 0.8818 <0.01
16 15 CSH 0.5744 <0.01 0.06 >0.05
17 15 GRAcs 0.8318 <0.01 0.8382 <0.01
18 32 DBF 0.8501 <0.01 0.8805 <0.01
19 12 WSA  0.6981 <0.05 0.7089 <0.01
20 13 CSH 0.8122 <0.01 0.8072 <0.01
21 13 CSH 0.7494 <0.01 0.784 <0.01
22 12 OSH 0.7184 <0.01 0.7317 <0.01
23 29 MF 0.9003 <0.01 0.9274 <0.01
24 26 GRA  0.8585 <0.01 0.7947 <0.01
25 18 ENF 0.1245 >0.05 0.1838 >0.05
26 33 DBF 0.8161 <0.01 0.858 <0.01
27 32 OSH  0.3317 >0.05 0.1936 >0.05
28 33 SAV 0.4454 <0.05 0.4823 <0.05
29 8 GRAcs 0.7285 <0.01 0.7162 <0.01
30 11 OSH  0.7718 <0.01 0.801 <0.01
Mean 0.4947 0.4787

with g. (Eq. (8)). This framework is a semi-mechanistic model for esti-
mating g. by combining theories on the photosynthetic pathway and
optimal stomatal behavior. The results indicate that the relationship
between SIF and g. x VPD%® has improved performance over that be-
tween SIF and GPP (Fig. 4), accounting for the enhancement of VPD on
the correlation of SIF-g.. With an increase in VPD, the stomatal closure
reduces the diffusion of CO, into the mesophyll, causing imbalances
between carboxylation and the harvest of light, then reduces GPP and
SIF (Paul-Limoges et al., 2018). Other mechanism models suggest that
VPD may also optimize T retrieval through SIF (Feng et al., 2021), since
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VPD is a key parameter in the PM model and contributes to the expla-
nation of large variability in the SIF-T relationship at the ecosystem scale
(Jonard et al., 2020).

Considering that the SIF-g. x VPD%® connection varies with PFTs
(Shan et al., 2021), we calculated the model parameters a and b of the
equation for each PFTs (Fig. 5 and Table 2). We find that the model slope
of GRA(4 is much greater than that of GRA, which might be attributed to
different photosynthetic strategies of C3 and C4 plants (Table 2). This
may be because the GPP of C4 plants is more sensitive to SIF than that of
C3 plants (Li et al., 2018; Liu et al., 2017), and C3 plants are more likely
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below each site.

to exhibit a positive ET response than C4 plants (Massmann et al., 2019).
Different PFTs within C3 plants differ in SIF, LAI and response to stress,
and water stress stability in forests is much larger than in grasslands
(Isbell et al., 2015; Zhang et al., 2019c¢). As a result, a calibration of the
g.-SIF model is also required for independent PFTs of C3 plants. Our
results show that the SIF-g. x VPD®® correlations are relatively weak in

GRA and OSH because GPP, SIF and VPD in these PFTs with low vege-
tation coverage, are generally more vulnerable to environmental factors.
The lower model slopes in these PFTs are probably due to a lower m
value in the BBL model (Table 1). The m value varied among PFTs,
especially for forests, due to the possibility that the big-leaf model
applied in forests with a high LAI generally underestimates GPP



Y. Liu et al.

Journal of Hydrology 612 (2022) 128044

OO =13112x + 2E-05 [y = 1.0304x + 1E-05 | y = 0.9962x + 6E-05 | y = 1.2606x + 3E-05
oors| B = 09869 R* = 0.8987 R? = 0.9502 R = 0.8893
o 0.012 o
E r'd
£ 0.006 & :
T (a) GRA(, (b) GRA (c) OSH (d) SAV
2 v = 0.9203x + 0.0002 |y = 0.9518x + 0.0006 | y = 0.5699x + 0.0004] y = 0.5576x + 0.0013
= ous R2=0.9408 R? = 0.9657 R?=0.8733 R = 0.9059
m " .
== ° p
g o012 e o ot e
J:: o// ?j ° °"’/ . 03{:
S8 0.006| _gf™ 2 phe” :
(e) CSH (f) WSA (2) ENF+MF (h) DBF+EBF

0 0.006 0.012 0.018 0

0.006 0.012 0.018

0 0.006 0.012 0.018 0 0.006 0.012 0.018 0.024

g. from BBL model (mol m” s1)

Fig. A2. The relationship of daily mean g. between from the BBL model and from the BBM model. The fitted g0 and g1 values on the BBM model for different PFTs
are from Lin et al. (2015), in which g0 is O for every PFTs, and g1 are 2.35 in ENF, 4.12 in EBF, 2.35 in DNF, 4.45 in DBF, 4.7 in Shrub, 5.25 in GRA, 1.62 in GRAc4.

The fitted g1 values in Sav and WSA are 4.8 and 6.7.

(Sprintsin et al., 2012).

The precipitation interception process has an important effect on the
accuracy of T partitioning from ET. The inaccurate description of the
interception process is one of the major reasons for the general under-
estimate of T/ET by climate models (Lian et al., 2018). In addition, the
large difference in T/ET values from two isotope methods reported are
mainly due to the disparate interception evaporation fluxes they used
(Good et al., 2015; Jasechko et al., 2013). As for PM-MOD model, pre-
vious studies indicate its interception evaporation is much greater than
that from other global ET products (i.e., GLEAM and PT-JPL) (Miralles
et al., 2016). This is because the r; of the wet canopy is underestimated
in the PM-MOD model (Yue et al., 2021; Zhang et al., 2019a). In this
study, our treatment of I is partially consistent with the PM-MOD model
by distinguishing wet and dry surfaces, but we simply remove the energy
of interception evaporation, independent of the resistance, implying that
our treatment of the interception process has less effect on the parti-
tioning of T from ET.

Moreover, our results show that the correlation between SIF and g.
x VPD® is more robust at a coarser temporal scale (Figs. 4 & 5), which
is similar to previous works on the more linear relationship between GPP
and SIF from short to longer time scales (Frankenberg et al., 2011; Yang
etal., 2017). This temporal aggregation effect is also observed in the SIF-
T relationship in the temperate forest ecosystem (Lu et al., 2018), which
suggests that both SIF and g. x VPD®® are sensitive to other environ-
mental factors in different ways.

4.2. Comparison with other independent ET partitioning products

We compare T/ET across different PFTs at the site scale and find a
trend toward a higher T/ET for PFTs with higher vegetation coverage
(Figs. 6 & 7). This trend coincides with the nonlinear relationship be-
tween T/ET and LAI found by Wang et al. (2014) and Wei et al. (2017).
However, this trend has been challenged in high LAI ecosystems, with a
close T/ET value (0.78) for ENF and EBF (Figs. 6 & 7). The underlying
mechanism is that more precipitation interception of broad-leaved for-
ests results in an increased I than that of coniferous forests during the
growing season (van Dijk et al., 2015). For grasslands, significant
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differences in T/ET are observed between our study and Wei et al.
(2017), primarily derived from photosynthetic pathways. The T/ET of
GRA(3 is much lower than that of GRA¢4 (Fig. 6). Compared with GRA(3,
GRA(4 has a very low I' and can sustain photosynthesis with very low g.
under conditions of high atmospheric water demand and limited water
availability (Brooks and Farquhar, 1985). This may cause C4 plants to
maintain low g. and T, and to continue emitting SIF under water stress.
Our study and Wei et al. (2017) indicate that the T/ET for SAV, WSA and
shrublands (OSH and CSH) is about 0.6 with a large standard deviation
(Fig. 7). Statistically, the large standard deviation is due to the small
sample size and the occurrence of outliers (Fig. 7). The large standard
deviation causes the PFT-mean pattern of SAV, WSA and shrublands to
be opposite to the PFT-median pattern, and the PFT-median pattern is in
line with Wei et al. (2017). If using more sites in the future comparison,
it is expected the discrepancy of PFT-mean pattern in T/ET ratio for SAV,
WSA and shrublands between our and Wei’s results may not exist.
Ecologically, the large standard deviation may be because in SAV, WSA
and shrublands, surface landscape heterogeneity affects the fraction of
absorbed PAR by leaves and further eco-hydrological processes, partic-
ularly T (Kobayashi et al., 2012). Besides, the large standard deviation
may also be due to the distinct patterns of carbon-water coupling be-
tween herbaceous and woody plants in SAV, WSA and shrublands (Wei
etal., 2017). Moreover, SAV, WSA and shrublands are usually vegetated
sparsely, which may result in a situation where E predominates over T.

We collected the results of global mean T/ET derived from 36
different methods (Table 3). The estimated global mean T/ET is>50%
for most methods. Our global mean T/ET value of 0.57 closes to the
ensemble mean of global T/ET (0.549) from these different methods.
Climate models generally underestimate the global mean T/ET due to
the inaccuracies in their representation of canopy light use and root
water uptake processes (Lian et al., 2018). Hydrological processes-based
climate models, such as ParFlow-CLM (Maxwell and Condon, 2016) and
T&C (Fatichi and Pappas, 2017) generally calculate a greater T/ET than
the other models. Global mean T/ET values derived from isotopes, LAI-
based models, remote sensing models and WUE-based models are all
around 0.6, which are slightly higher than our results. The lower value
in our study may be because we compare T/ET on different timescales.
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Fig. A3. The T/ET for each site calculated using the BBL model.

Growing season with sufficient precipitation generally leads to an
increased I and hence a drop in T/ET, particularly for forests. The lower
T/ET in our study may also be a consequence of the neglect of the impact
of C4 plants and crops when upscaling T/ET to the global terrestrial
ecosystem. They generally have a greater T/ET value than C3 plants. The
greater T/ET achieved using isotope method may be due to the signifi-
cant uncertainties of isotopic ratios under weak turbulence conditions
(Wei et al., 2015) or the overestimation of T in cases of hydrologic
decoupling (Brooks et al., 2010). The greater T/ET value derived using
LAI-based model, especially the method of Wang et al. (2014), is most
likely attributed to the inadequacy of the statistical method used to
calculate global average, which is simply an arithmetic average of all
observations. The global per-pixel calculation method (Wei et al., 2017)
and the weighted average method (this study) (Schlesinger and
Jasechko, 2014) are more acceptable. There are two possible explana-
tions for the greater T/ET value calculated by Li et al. (2019) in the
WUE-based model: the statistical method used and the omission of 1.
When compared to remote sensing models, our method produces
comparable global mean T/ET values as PT-JPT and PML-V2, whereas
GLEAM, PML and Gerrits’s model generate larger global mean T/ET
values and PM-MOD has a lower global mean T/ET value. GLEAM and
Gerrits’s model have approximate estimation of T and ET (Mianabadi
et al., 2019). A comparative study finds that PT-JPT is the closest to the
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actual T/ET value, while GLEAM (PM-MOD) overestimates (un-
derestimates) T/ET based on field observations (Talsma et al., 2018).
Another reason for underestimating T/ET by PM-MOD is that it signif-
icantly overestimates I as shown in section 4.1. GLEAM substantially
underestimates soil evaporation but slightly overestimates T, resulting
in a high accuracy of ET estimates (Talsma et al., 2018). This perspective
coincides with our findings that the T estimates in GLEAM are system-
atically greater than our global simulations (Figs. 8 & 10). The most
possible reason why PML has a larger global mean T/ET value than our
result is that PML overestimate T since the g. of PML is calculated
through empirical equations based on LAI and PAR without considering
water and heat stresses (Leuning et al., 2008). Thus, based on PML, the
PML-V2 optimizes the original g. module into the Ball-Berry model with
carbon-water coupling characteristics (Gan et al., 2018). The PML-V2
has been proved to perform better in estimating GPP and ET (Zhang
et al., 2019b). The estimation of T illustrates that our result is consistent
with PML-V2 at the site scale (Fig. 8). Nevertheless, when compared to
PML-V2, our global patterns of T indicate that it is larger in the tropics
and lower in the drylands (Fig. 10). The explanation may include the
following aspects: 1) The relationship between SIF and the modeled GPP
varies in these two regions; 2) We estimate T by treating C4 plants as C3
plants; 3) The available energy for T in our model is different from PML-
V2.

4.3. Implications and limitations

Our study may have important implications for assessing regional
and global water flux under climate change. This new framework reveals
that satellite SIF may be utilized to precisely estimate T/ET and monitor
the spatio-temporal variations in terrestrial T at the regional and global
scale combined with meteorological data (Figs. 7 & 9). The T/ET value
calculated using SIF can help to resolve whether T/ET is constrained by
vegetation characteristics and environmental factors (Fatichi and Pap-
pas, 2017; Niu et al., 2019; Paschalis et al., 2018; Wei et al., 2017). In
addition, previous empirical techniques employing vegetation indexes
or LAI can produce T, but hardly capture the temporal variations of T
since they are limited to environmental conditions and ecosystems
(Zhang et al., 2016a). Our SIF-based approach is useful to resolve this
shortcoming because SIF is more sensitive than other remotely sensed
vegetation parameters to plant photosynthetic and water/heat stresses
(Song et al., 2018; Yoshida et al., 2015). A remotely sensed ET model
with better performance can be developed in association with appro-
priate remote sensing models for I and E. This could be used to improve
the simulation accuracy of the global water and energy cycle.

However, there are still some limitations in this study. First, our
method may be inapplicable in the condition of carbon-water decou-
pling. For example, forests may decouple photosynthesis and T in
response to heat extremes and sufficient water availability (De Kauwe
et al., 2019). The trade-off between leaf water potential regulation and
stomatal behavior may influence the effect of VPD on the SIF-g. rela-
tionship (Martinez-Vilalta and Garcia-Forner, 2017). Second, the clas-
sification of PFTs is inadequate and needs further refined. The remote
sensing methods for T retrieval, such as PM-MOD, generally divide the
global ecosystem into 11 or more PFTs (Mu et al., 2011). Our model
examines 10 PFTs and did not distinguish crops or wetlands. Moreover,
we do not consider the proportion of C4 grasslands in our global T
simulation due to lack of accurate global map of C4 plants, even though
we have developed models for C4 grasslands. Third, the validation of our
model may be limited by the source of validated data. While we vali-
dated our results from satellite SIF data using EC flux tower and other
remote sensing products, the flux tower T/ET is achieved by simulation,
not by independent field measurements such as the isotope method.

5. Conclusion

Our results show that SIF has a stronger relationship with g. x VPD%®
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Table B1
All abbreviations and their meanings in this study.
Abbreviation  Full name Abbreviation  Full name Abbreviation  Full name
a slope for the linear relationships between g. x GLEAM Global Land Evaporation Ryl downward thermal radiation
VPD®* and SIF for each PFT Amsterdam Model
A, net assimilation rate or gross photosynthesis GPP vegetation productivity Rt upward thermal radiation
b intercept for the linear relationships between g. GRA C3 grasslands RMSE root mean square error
x VPD®® and SIF for each PFT
BBL Ball-Berry-Leuning GRAc4 C4 grasslands R, net radiation
cp specific heat of the air Gs surface conductance Rni surface net thermal radiation
CO, carbon dioxide h, canopy height Rps surface net solar radiation
Cs [CO,] at the leaf surface hy, measurement height Rl downward solar radiation
[CO,] CO2 concentration I interception evaporation Rt upward solar radiation
CSH closed shrublands LAI leaf area index SAV savannas
DBF deciduous broadleaf forests LE latent heat flux SIF solar-induced chlorophyll
fluorescence
Do an empirically fitted parameter representing the  m slope in BBL model calculated T transpiration
sensitivity of stomata to changes in Dg from empirical data
D humidity deficit at the leaf surface MAE mean absolute error Tair 2 m temperature
€sat saturated vapor pressure MF mixed forests Tdew 2 m dewpoint temperature
€gat,dew esar at dew point temperature MODIS moderate resolution imaging TsiTE T calculated using gcsrre
spectroradiometer
E evaporation MSE mean square error Tsip T calculated using gcsi¢
EBF evergreen broadleaf forests OSH open shrublands T/ET ratio of T to ET
ECMWF European Centre for Medium-Range Weather P surface pressure Tsire/ET ratio of Tgy7g to ET
Forecasts
ENF evergreen needle forests PAR photosynthetically active Tsie/ET ratio of Tgr to ET
radiation
ERA5-Land the 5th ECMWF reanalysis for land PET plant functional type TROPOMI TROPOspheric Monitoring
Instrument
ET evapotranspiration PM Penman-Monteith model u wind speed
fPAR fraction of PAR absorbed by vegetation PML Penman-Monteith-Leuning u* friction velocity
model
fvet wet surface fraction PML-V2 Penman-Monteith-Leuning- Vi coefficient when converting g from
Version 2 model molm2s ! toms™!
8o minimum conductance in BBL model calculated PMp¢ optimized Penman-Monteith VPD vapor pressure deficit
from empirical data model
8c canopy conductance PM-MOD MODIS evapotranspiration WSA woody savannas
model
8CSITE g. calculated using BBL model PT-JPL Priestley-Taylor Jet Propulsion WUE water-use efficiency
Laboratory model
8esIF g calculated using g.-SIF model Ia aerodynamic resistance A slope of the saturation vapour
pressure temperature relationship
8c-SIF model PFT-specific SIF-driven semi-mechanism gc I surface resistance r CO, compensation point
model
8s stomatal conductance R Pearson’s correlation coefficient Y psychrometric constant
G ground heat flux R? goodness of fit A latent heat of vaporization
GEE google earth engine RH air relative humidity Pa mean air density at constant pressure

than GPP, and the SIF-g. x VPD%® linear regression at the 16-day scale
are tighter and sharper than at the daily scale. Based on the regression,
we developed the SIF-driven semi-mechanism g. model on various PFTs
and use the PM,p; model to calculate T and T/ET. Correlations between
Tsir/ET and T/ET values from other independent techniques are excel-
lent at both site and global scale. After the implementation of our g.-SIF
model, we estimate the global mean T/ET of the terrestrial ecosystem for
growing season in 2018 (0.57 + 0.14) that is close to the mean T/ET
value (0.55) of the current models from other 36 methods. Ultimately,
we simulate global T for the 2018 growing season at the resolution of
0.1° x 0.1°and compare it to two commonly used remote sensing
retrieval products. Our model provides a valuable complement to
remote sensing-based T and ET retrieval, and has critical implications
for assessing eco-hydrological processes under climate change. More
consideration about condition of carbon-water decoupling, different
PFTs, and source of validated data will be useful in future studies.

CRediT authorship contribution statement

Yaojie Liu: Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing — original draft, Visualization.
Yongguang Zhang: Conceptualization, Resources, Writing — review &
editing, Supervision, Project administration, Funding acquisition. Nan

16

Shan: Methodology, Writing — review & editing. Zhaoying Zhang:
Resources, Data curation, Writing — review & editing, Funding acquisi-
tion. Zhongwang Wei: Validation, Resources, Writing — review &
editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

All authors approved this paper submission to the Journal of Hy-
drology and declare no conflict of interest. This research is financially
supported by the National Natural Science Foundation of China (NSFC)
(42125105, 42071388), and the Youth Program of NSFC (42101320).
The authors acknowledge the European Centre for Medium-Range
Weather Forecasts for the ERA5 data, and the FLUXNET community,
including the following: AmeriFlux, the European Eddy Fluxes Database
Cluster, ChinaFlux, and OzFlux-TERN, for the eddy covariance data.
Martens Brecht and Miralles Diego G. are acknowledged for providing
GLEAM data via https://www.gleam.eu/. The research team of Zhang



Y. Liu et al.

Yongqiang is acknowledged for providing PML-V2 data via GEE. We also
acknowledge Philipp Kohler and Christian Frankenberg for providing
TROPOMI SIF. TROPOMI SIF is available at ftp://fluo.gps.caltech.edu/
data/tropomi/. The MODIS products used here are available via GEE.

Appendix A. . The information and supplementary results of the
FLUXNET sites used in this study

Appendix B. The abbreviations used in this study.

References

Alton, P., Fisher, R., Los, S., Williams, M., 2009. Simulations of global evapotranspiration
using semiempirical and mechanistic schemes of plant hydrology. Global
Biogeochem. Cy. 23 (4) https://doi.org/10.1029/2009GB003540.

Brooks, J.R., Barnard, H.R., Coulombe, R., McDonnell, J.J., 2010. Ecohydrologic
separation of water between trees and streams in a Mediterranean climate. Nat.
Geosci. 3 (2), 100-104. https://doi.org/10.1038/ngeo722.

Brooks, A., Farquhar, G.D., 1985. Effect of temperature on the CO2/O3 specificity of
ribulose-1,5-bisphosphate carboxylase oxygenase and the rate of respiration in the
light-estimates from gas-exchange measurements on spinach. Planta. 165 (3),
397-406. https://doi.org/10.1007/bf00392238.

Cao, L., Bala, G., Caldeira, K., Nemani, R., Ban-Weiss, G., 2010. Importance of carbon
dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. U. S. A.
107 (21), 9513-9518. https://doi.org/10.1073/pnas.0913000107.

Chen, J.M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., Chan, D., 2012. Effects of
foliage clumping on the estimation of global terrestrial gross primary productivity.
Global Biogeochem. Cy. 26 (1) https://doi.org/10.1029/2010GB003996.

Choudhury, B.J., DiGirolamo, N.E., 1998. A biophysical process-based estimate of global
land surface evaporation using satellite and ancillary data I. Model description and
comparison with observations. J. Hydrol. 205 (3-4), 164-185. https://doi.org/
10.1016/50022-1694(97)00147-9.

Coenders-Gerrits, A.M.J., van der Ent, R.J., Bogaard, T.A., Wang-Erlandsson, L.,
Hrachowitz, M., Savenije, H.H.G., 2014. Uncertainties in transpiration estimates.
Nature 506 (7487), E1-E2. https://doi.org/10.1038/nature12925.

Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.J., Yin, X.,
Gleason, B.E., Vose, R.S., Rutledge, G., Bessemoulin, P., Bronnimann, S., Brunet, M.,
Crouthamel, R.I., Grant, A.N., Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C.,
Marshall, G.J., Maugeri, M., Mok, H.Y., Nordli, @., Ross, T.F., Trigo, R.M., Wang, X.
L., Woodruff, S.D., Worley, S.J., 2011. The twentieth century reanalysis project. Q. J.
Roy. Meteor. Soc. 137 (654), 1-28. https://doi.org/10.1002/qj.776.

Damm, A., Roethlin, S., Fritsche, L., IEEE, 2018. Towards advanced retrievals of plant
transpiration using sun-induced chlorophyll fluorescence: first considerations. In:
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium,
pp. 5983-5986. https://doi.org/10.1109/IGARSS.2018.8518974.

De Kauwe, M.G., Kala, J., Lin, Y.S., Pitman, A.J., Medlyn, B.E., Duursma, R.A.,
Abramowitz, G., et al., 2015. A test of an optimal stomatal conductance scheme
within the CABLE land surface model. Geosci. Model Dev. 8 (2), 431-452. https://
doi.org/10.5194/gmd-8-431-2015.

De Kauwe, M.G., Medlyn, B.E., Pitman, A.J., Drake, J.E., Ukkola, A., Griebel, A.,
Pendall, E., Prober, S., Roderick, M., 2019. Examining the evidence for decoupling
between photosynthesis and transpiration during heat extremes. Biogeosciences 16
(4), 903-916. https://doi.org/10.5194/bg-16-903-2019.

Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z.C., Oki, T., Hanasaki, N., 2006. GSWP-2:
Multimodel analysis and implications for our perception of the land surface. B. Am.
Meteorol. Soc. 87 (10), 1381-1398. https://doi.org/10.1175/BAMS-87-10-1381.

ECMWEF, 2017. ERAS Reanalysis [Date set]. In: Forecasts (Ed.), Research Data Archive at
the National Center for Atmospheric Research, Computational and. Information
Systems Laboratory, Boulder, CO. https://doi.org/10.5065/D6X34W69.

Fatichi, S., Pappas, C., 2017. Constrained variability of modeled T:ET ratio across
biomes. Geophys. Res. Lett. 44 (13), 6795-6803. https://doi.org/10.1002/
2017gl074041.

Feng, H., Xu, T., Liu, L., Zhou, S., Zhao, J., Liu, S., Xu, Z., Mao, K., He, X., Zhu, Z.,
Chai, L., 2021. Modeling Transpiration with Sun-Induced Chlorophyll Fluorescence
Observations via Carbon-Water Coupling Methods. Remote Sens. 13 (4), 804.
https://doi.org/10.3390/rs13040804.

Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global estimates of the land-atmosphere
water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET
sites. Remote Sens. Environ. 112 (3), 901-919. https://doi.org/10.1016/j.
rse.2007.06.025.

Frankenberg, C., Butz, A., Toon, G.C., 2011. Disentangling chlorophyll fluorescence from
atmospheric scattering effects in Oz A-band spectra of reflected sun-light. Geophys.
Res. Lett. 38 (3) https://doi.org/10.1029/2010GL045896.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A.,
Huang, X., 2010. MODIS Collection 5 global land cover: Algorithm refinements and

17

Journal of Hydrology 612 (2022) 128044

characterization of new datasets. Remote Sens. Environ. 114 (1), 168-182. https://
doi.org/10.1016/j.rse.2009.08.016.

Gan, R., Zhang, Y.Q., Shi, H., Yang, Y.T., Eamus, D., Cheng, L., Chiew, F.H.S., Yu, Q.,
2018. Use of satellite leaf area index estimating evapotranspiration and gross
assimilation for Australian ecosystems. Ecohydrology. 11 (5), 15. https://doi.org/
10.1002/eco0.1974.

Gerten, D., Hoff, H., Bondeau, A., Lucht, W., Smith, P., Zaehle, S., 2005. Contemporary
“green” water flows: Simulations with a dynamic global vegetation and water
balance model. Phys. Chem. Earth. Pt. A/B/C. 30 (6-7), 334-338. https://doi.org/
10.1016/j.pce.2005.06.002.

Good, S.P., Noone, D., Bowen, G., 2015. Hydrologic connectivity constrains partitioning
of global terrestrial water fluxes. Science. 349 (6244), 175-177. https://doi.org/
10.1126/science.aaa5931.

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C.,
Huete, A.R., Zarco-Tejada, P., Lee, J.-E., Moran, M.S., Ponce-Campos, G., Beer, C.,
Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M.,
Griffis, T.J., 2014. Global and time-resolved monitoring of crop photosynthesis with
chlorophyll fluorescence. Proc. Natl. Acad. Sci. U. S. A. 111 (14) https://doi.org/
10.1073/pnas.1320008111.

Huang, S.Y., Deng, Y., Wang, J.F., 2017. Revisiting the global surface energy budgets
with maximum-entropy-production model of surface heat fluxes. Clim. Dynam. 49
(5), 1531-1545. https://doi.org/10.1007/s00382-016-3395-x.

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T.
M., Bonin, C., Bruelheide, H., de Luca, E., Ebeling, A., Griffin, J.N., Guo, Q.,
Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., Meyer, S.T.,
Mori, A.S., Naeem, S., Niklaus, P.A., Polley, H.W., Reich, P.B., Roscher, C.,
Seabloom, E.W., Smith, M.D., Thakur, M.P., Tilman, D., Tracy, B.F., van der
Putten, W.H., van Ruijven, J., Weigelt, A., Weisser, W.W., Wilsey, B., Eisenhauer, N.,
2015. Biodiversity increases the resistance of ecosystem productivity to climate
extremes. Nature. 526 (7574), 574-577. https://doi.org/10.1038/nature15374.

Ito, A., Inatomi, M., 2012. Water-use efficiency of the terrestrial biosphere: a model
analysis focusing on interactions between the global carbon and water cycles.
Journal of Hydrometeorology 13 (2), 681-694. https://doi.org/10.1175/JHM-D-10-
05034.1.

Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., Fawcett, P.J., 2013. Terrestrial
water fluxes dominated by transpiration. Nature. 496 (7445), 347-+. https://doi.
org/10.1038/nature11983.

Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., Middleton, E.M., 2011.
First observations of global and seasonal terrestrial chlorophyll fluorescence from
space. Biogeosciences 8 (3), 637-651. https://doi.org/10.5194/bg-8-637-2011.

Jonard, F., De Canniere, S., Briiggemann, N., Gentine, P., Short Gianotti, D.J., Lobet, G.,
Miralles, D.G., Montzka, C., Pagan, B.R., Rascher, U., Vereecken, H., 2020. Value of
sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes:
Current status and challenges. Agr. For. Meteorol. 291, 108088. https://doi.org/
10.1016/j.agrformet.2020.108088.

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Sheffield, J., Goulden, M.L.,
Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A.J., Eugster, W., Gerten, D.,
Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B.E., Montagnani, L., Mu, Q.,
Mueller, B., Oleson, K., Papale, D., Richardson, A.D., Roupsard, O., Running, S.,
Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K.e.,
2010. Recent decline in the global land evapotranspiration trend due to limited
moisture supply. Nature. 467 (7318), 951-954. https://doi.org/10.1038/
nature09396.

Kobayashi, H., Baldocchi, D.D., Ryu, Y., Chen, Q., Ma, S.Y., Osuna, J.L., Ustin, S.L., 2012.
Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-
dimensional approach. Agr. For. Meteorol. 152, 83-100. https://doi.org/10.1016/j.
agrformet.2011.09.008.

Kool, D., Agam, N., Lazarovitch, N., Heitman, J.L., Sauer, T.J., Ben-Gal, A., 2014.

A review of approaches for evapotranspiration partitioning. Agr. For. Meteorol. 184,
56-70. https://doi.org/10.1016/j.agrformet.2013.09.003.

Kohler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J., Landgraf, J., 2018.
Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First
results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45 (19),
10456-10463. https://doi.org/10.1029/2018GL079031.

Lasslop, G., Reichstein, M., Detto, M., Richardson, A.D., Baldocchi, D.D., 2010. Comment
on Vickers et al.: Self-correlation between assimilation and respiration resulting from
flux partitioning of eddy-covariance CO; fluxes. Agr. For. Meteorol. 150 (2),
312-314. https://doi.org/10.1016/j.agrformet.2009.11.003.

Lawrence, D.M., Oleson, K.W., Flanner, M.G., Thornton, P.E., Swenson, S.C.,

Lawrence, P.J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G.B., Slater, A.
G., 2011. Parameterization improvements and functional and structural advances in
version 4 of the Community Land Model. J. Adv. Model Earth Sy. 3 (1) https://doi.
org/10.1029/2011MS00045.

Lawrence, D.M., Thornton, P.E., Oleson, K.W., Bonan, G.B., 2007. The partitioning of
evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a
GCM: Impacts on land-atmosphere interaction. J. Hydrometeorol. 8 (4), 862-880.
https://doi.org/10.1175/JHM596.1.

Leuning, R., 1995. A critical appraisal of a combined stomatal-photosynthesis model for
C3 plants. Plant Cell Environ. 18 (4), 339-355. https://doi.org/10.1111/j.1365-
3040.1995.tb00370.x.

Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K., 2008. A simple surface
conductance model to estimate regional evaporation using MODIS leaf area index
and the Penman-Monteith equation. Water Resour. Res. 44 (10), 17. https://doi.org/
10.1029/2007wr006562.

Li, X., Gentine, P., Lin, C.J., Zhou, S., Sun, Z., Zheng, Y., Liu, J., Zhang, C.M., 2019.

A simple and objective method to partition evapotranspiration into transpiration and


https://doi.org/10.1029/2009GB003540
https://doi.org/10.1038/ngeo722
https://doi.org/10.1007/bf00392238
https://doi.org/10.1073/pnas.0913000107
https://doi.org/10.1029/2010GB003996
https://doi.org/10.1016/S0022-1694(97)00147-9
https://doi.org/10.1016/S0022-1694(97)00147-9
https://doi.org/10.1038/nature12925
https://doi.org/10.1002/qj.776
https://doi.org/10.1109/IGARSS.2018.8518974
https://doi.org/10.5194/gmd-8-431-2015
https://doi.org/10.5194/gmd-8-431-2015
https://doi.org/10.5194/bg-16-903-2019
https://doi.org/10.1175/BAMS-87-10-1381
https://doi.org/10.5065/D6X34W69
https://doi.org/10.1002/2017gl074041
https://doi.org/10.1002/2017gl074041
https://doi.org/10.3390/rs13040804
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1029/2010GL045896
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1002/eco.1974
https://doi.org/10.1002/eco.1974
https://doi.org/10.1016/j.pce.2005.06.002
https://doi.org/10.1016/j.pce.2005.06.002
https://doi.org/10.1126/science.aaa5931
https://doi.org/10.1126/science.aaa5931
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1007/s00382-016-3395-x
https://doi.org/10.1038/nature15374
https://doi.org/10.1175/JHM-D-10-05034.1
https://doi.org/10.1175/JHM-D-10-05034.1
https://doi.org/10.1038/nature11983
https://doi.org/10.1038/nature11983
https://doi.org/10.5194/bg-8-637-2011
https://doi.org/10.1016/j.agrformet.2020.108088
https://doi.org/10.1016/j.agrformet.2020.108088
https://doi.org/10.1038/nature09396
https://doi.org/10.1038/nature09396
https://doi.org/10.1016/j.agrformet.2011.09.008
https://doi.org/10.1016/j.agrformet.2011.09.008
https://doi.org/10.1016/j.agrformet.2013.09.003
https://doi.org/10.1029/2018GL079031
https://doi.org/10.1016/j.agrformet.2009.11.003
https://doi.org/10.1029/2011MS00045
https://doi.org/10.1029/2011MS00045
https://doi.org/10.1175/JHM596.1
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1029/2007wr006562
https://doi.org/10.1029/2007wr006562

Y. Liu et al.

evaporation at eddy-covariance sites. Agr. For. Meteorol. 265, 171-182. https://doi.
org/10.1016/j.agrformet.2018.11.017.

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A.R., Emmel, C., Hollinger, D.
Y., Krasnova, A., Mammarella, I., Noe, S.M., Ortiz, P.S., Rey-Sanchez, A.C., Rocha, A.
V., Varlagin, A., 2018. Solar-induced chlorophyll fluorescence is strongly correlated
with terrestrial photosynthesis for a wide variety of biomes: First global analysis
based on OCO-2 and flux tower observations. Global Change Biol. 24 (9),
3990-4008. https://doi.org/10.1111/gcb.14297.

Lian, X.u., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P., McVicar, T.R.,
Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., Wang, T., 2018. Partitioning global
land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim.
Change 8 (7), 640-646. https://doi.org/10.1038/541558-018-0207-9.

Lin, Y.-S., Medlyn, B.E., Duursma, R.A., Prentice, I.C., Wang, H., Baig, S., Eamus, D., de
Dios, V., Mitchell, P., Ellsworth, D.S., de Beeck, M.O., Wallin, G., Uddling, J.,
Tarvainen, L., Linderson, M.-L., Cernusak, L.A., Nippert, J.B., Ocheltree, T.W.,
Tissue, D.T., Martin-StPaul, N.K., Rogers, A., Warren, J.M., De Angelis, P.,
Hikosaka, K., Han, Q., Onoda, Y., Gimeno, T.E., Barton, C.V.M., Bennie, J., Bonal, D.,
Bosc, A., Low, M., Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S.A., Tausz-
Posch, S., Zaragoza-Castells, J., Broadmeadow, M.S.J., Drake, J.E., Freeman, M.,
Ghannoum, O., Hutley, L., Kelly, J.W., Kikuzawa, K., Kolari, P., Koyama, K.,
Limousin, J.-M., Meir, P., Lola da Costa, A.C., Mikkelsen, T.N., Salinas, N., Sun, W.,
Wingate, L., 2015. Optimal stomatal behaviour around the world. Nat. Clim. Change.
5 (5), 459-464. https://doi.org/10.1038/nclimate2550.

Liu, L.Y., Guan, L.L., Liu, X.J., 2017. Directly estimating diurnal changes in GPP for C3
and C4 crops using far-red sun-induced chlorophyll fluorescence. Agr. For. Meteorol.
232, 1-9. https://doi.org/10.1016/j.agrformet.2016.06.014.

Lu, X.L., Liu, Z.Q., An, S.Q., Miralles, D.G., Maes, W.H., Liu, Y.L., Tang, J.W., 2018.
Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a
temperate forest. Agr. For. Meteorol. 252, 75-87. https://doi.org/10.1016/j.
agrforrnet.2018.01.017.

Maes, W.H., Pagén, B.R., Martens, B., Gentine, P., Guanter, L., Steppe, K., Verhoest, N.E.
C., Dorigo, W., Li, X., Xiao, J., Miralles, D.G., 2020. Sun-induced fluorescence closely
linked to ecosystem transpiration as evidenced by satellite data and radiative
transfer models. Remote Sens. Environ. 249, 112030. https://doi.org/10.1016/j.
rse.2020.112030.

Marshall, M., Thenkabail, P., Biggs, T., Post, K., 2016. Hyperspectral narrowband and
multispectral broadband indices for remote sensing of crop evapotranspiration and
its components (transpiration and soil evaporation). Agr. For. Meteorol. 218,
122-134. https://doi.org/10.1016/j.agrformet.2015.12.025.

Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernandez-
Prieto, D., Beck, H.E., et al., 2017. GLEAM v3: Satellite-based land evaporation and
root-zone soil moisture. Geosci. Model Dev. 10 (5), 1903-1925. https://doi.org/
10.5194/gmd-10-1903-2017.

Martinez-Vilalta, J., Garcia-Forner, N., 2017. Water potential regulation, stomatal
behaviour and hydraulic transport under drought: deconstructing the iso/
anisohydric concept. Plant Cell Environ. 40 (6), 962-976. https://doi.org/10.1111/
pce.12846.

Massmann, A., Gentine, P., Lin, C.J., 2019. When Does Vapor Pressure Deficit Drive or
Reduce Evapotranspiration? J. Adv. Model. Earth Syst. 11 (10), 3305-3320. https://
doi.org/10.1029/2019ms001790.

Maxwell, R.M., Condon, L.E., 2016. Connections between groundwater flow and
transpiration partitioning. Science. 353 (6297), 377-380. https://doi.org/10.1126/
science.aaf7891.

Medlyn, B.E., Duursma, R.A., Eamus, Derek, Ellsworth, D.S., Prentice, I.C., Barton, C.V.
M., Crous, K.Y., De angelis, Paolo, Freeman, Michael, Wingate, Lisa, 2011.
Reconciling the optimal and empirical approaches to modelling stomatal
conductance. Global Change Biol. 17 (6), 2134-2144. https://doi.org/10.1111/
j.1365-2486.2010.02375.x.

Mianabadi, A., Coenders-Gerrits, M., Shirazi, P., Ghahraman, B., Alizadeh, A., 2019.

A global Budyko model to partition evaporation into interception and transpiration.
Hydrol. Earth Syst. Sci. 23 (12), 4983-5000. https://doi.org/10.5194/hess-23-4983-
2019.

Milly, P.C.D., Dunne, K.A., Vecchia, A.V., 2005. Global pattern of trends in streamflow
and water availability in a changing climate. Nature. 438 (7066), 347-350. https://
doi.org/10.1038/nature04312.

Miralles, D.G., De Jeu, R.A.M., Gash, J.H., Holmes, T.R.H., Dolman, A.J., 2011.
Magnitude and variability of land evaporation and its components at the global
scale. Hydrol. Earth Syst. Sci. 15 (3), 967-981. https://doi.org/10.5194/hess-15-
967-2011.

Miralles, D.G., Jimenez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M.F., et al., 2016.
The WACMOS-ET project - Part 2: Evaluation of global terrestrial evaporation data
sets. Hydrol. Earth Syst. Sci. 20 (2), 823-842. https://doi.org/10.5194/hess-20-823-
2016.

Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., van der Tol, C., Nedbal, L.,
et al., 2019. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in
vegetation: 50 years of progress. Remote Sens. Environ. 231, 39. https://doi.org/
10.1016/j.rse.2019.04.030.

Mu, Q.Z., Zhao, M.S., Running, S.W., 2011. Improvements to a MODIS global terrestrial
evapotranspiration algorithm. Remote Sens. Environ. 115 (8), 1781-1800. https://
doi.org/10.1016/j.rse.2011.02.019.

Myneni, R., Knyazikhin, Y., Park, T., 2015. MCD15A3H MODIS/Terra+Aqua Leaf Area
Index/FPAR 4-day L4 Global 500m SIN Grid V0O06. NASA EOSDIS Land Processes
DAAC.

Nelson, J., Carvalhais, N., Cuntz, M., Delpierre, N., Knauer, J., Ogée, J., Migliavacca, M.,
Reichstein, M., Jung, M., 2018. Coupling Water and Carbon Fluxes to Constrain

18

Journal of Hydrology 612 (2022) 128044

Estimates of Transpiration: The TEA Algorithm. J. Geophys. Res.-Biogeosci. 123
(12), 3617-3632. https://doi.org/10.1029/2018jg004727.

Nelson, J.A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P.D., Gimeno, T.
E., Wohlfahrt, G., Desai, A.R., Gioli, B., Limousin, J.-M., Bonal, D., Paul-Limoges, E.,
Scott, R.L., Varlagin, A., Fuchs, K., Montagnani, L., Wolf, S., Delpierre, N.,
Berveiller, D., Gharun, M., Belelli Marchesini, L., Gianelle, D., Sigut, L.,
Mammarella, I., Siebicke, L., Andrew Black, T., Knohl, A., Hortnagl, L., Magliulo, V.,
Besnard, S., Weber, U., Carvalhais, N., Migliavacca, M., Reichstein, M., Jung, M.,
2020. Ecosystem transpiration and evaporation: Insights from three water flux
partitioning methods across FLUXNET sites. Global Change Biol. 26 (12),
6916-6930. https://doi.org/10.1111/gcb.15314.

Niu, Z., He, H., Zhu, G., Ren, X., Zhang, L.i., Zhang, K., Yu, G., Ge, R., Li, P., Zeng, N.a.,
Zhu, X., 2019. An increasing trend in the ratio of transpiration to total terrestrial
evapotranspiration in China from 1982 to 2015 caused by greening and warming.
Agr. For. Meteorol. 279, 107701. https://doi.org/10.1016/j.
agrformet.2019.107701.

Pagan, B.R., Maes, W.H., Gentine, P., Martens, B., Miralles, D.G., 2019. Exploring the
Potential of Satellite Solar-Induced Fluorescence to Constrain Global Transpiration
Estimates. Remote Sens. 11 (4), 15. https://doi.org/10.3390/rs11040413.

Paschalis, A., Fatichi, S., Pappas, C., Or, D., 2018. Covariation of vegetation and climate
constrains present and future T/ET variability. Environ. Res. Lett. 13 (10), 11.
https://doi.org/10.1088/1748-9326/aae267.

Paul-Limoges, E., Damm, A., Hueni, A., Liebisch, F., Eugster, W., Schaepman, M.E.,
Buchmann, N., 2018. Effect of environmental conditions on sun-induced
fluorescence in a mixed forest and a cropland. Remote Sens. Environ. 219, 310-323.
https://doi.org/10.1016/j.rse.2018.10.018.

Ran, L.M., Pleim, J., Song, C.H., Band, L., Walker, J.T., Binkowski, F.S., 2017.

A photosynthesis-based two-leaf canopy stomatal conductance model for
meteorology and air quality modeling with WRF/CMAQ PX LSM. J. Geophys. Res.-
Atmos. 122 (3), 1930-1952. https://doi.org/10.1002/2016jd025583.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and Differentiation of Data by Simplified
Least Squares Procedures. Anal. Chem. 36 (8), 1627-1639. https://doi.org/10.1021/
ac60214a047.

Scanlon, T.M., Kustas, W.P., 2010. Partitioning carbon dioxide and water vapor fluxes
using correlation analysis. Agr. For. Meteorol. 150 (1), 89-99. https://doi.org/
10.1016/j.agrformet.2009.09.005.

Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. Agr. For.
Meteorol. 189, 115-117. https://doi.org/10.1016/j.agrformet.2014.01.011.

Scott, R.L., Biederman, J.A., 2017. Partitioning evapotranspiration using long-term
carbon dioxide and water vapor fluxes. Geophys. Res. Lett. 44 (13), 6833-6840.
https://doi.org/10.1002/2017gl074324.

Sellers, P.J., Berry, J.A., Collatz, G.J., Field, C.B., Hall, F.G., 1992. Canopy reflectance,
photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a
new canopy integration scheme. Remote Sens. Environ. 42 (3), 187-216. https://
doi.org/10.1016/0034-4257(92)90102-P.

Senay, G.B., Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H., Verdin, J.P.,
2013. Operational evapotranspiration mapping using remote sensing and weather
datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. As.
49 (3), 577-591. https://doi.org/10.1111/jawr.12057.

Shan, N., Ju, W., Migliavacca, M., Martini, D., Guanter, L., Chen, J., Goulas, Y.,

Zhang, Y., 2019. Modeling canopy conductance and transpiration from solar-induced
chlorophyll fluorescence. Agr. For. Meteorol. 268, 189-201. https://doi.org/
10.1016/j.agrformet.2019.01.031.

Shan, N., Zhang, Y., Chen, J.M., Ju, W., Migliavacca, M., Penuelas, J., Yang, X.i.,
Zhang, Z., Nelson, J.A., Goulas, Y., 2021. A model for estimating transpiration from
remotely sensed solar-induced chlorophyll fluorescence. Remote Sens. Environ. 252,
112134. https://doi.org/10.1016/j.rse.2020.112134.

Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., Zhang, Y., 2018. Satellite sun-
induced chlorophyll fluorescence detects early response of winter wheat to heat
stress in the Indian Indo-Gangetic Plains. Global Change Biol 24 (9), 4023-4037.
https://doi.org/10.1111/gcb.14302.

Sprintsin, M., Chen, J.M., Desai, A., Gough, C.M., 2012. Evaluation of leaf-to-canopy
upscaling methodologies against carbon flux data in North America. J. Geophys.
Res.-Biogeosci. 117 https://doi.org/10.1029/2010jg001407.

Stoy, P.C., El-Madany, T.S., Fisher, J.B., Gentine, P., Gerken, T., Good, S.P.,
Klosterhalfen, A., Liu, S., Miralles, D.G., Perez-Priego, O., Rigden, A.J., Skaggs, T.H.,
Wohlfahrt, G., Anderson, R.G., Coenders-Gerrits, A.M.J., Jung, M., Maes, W.H.,
Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J.A., Poyatos, R.,
Reichstein, M., Scott, R.L., Wolf, S., 2019. Reviews and syntheses: Turning the
challenges of partitioning ecosystem evaporation and transpiration into
opportunities. Biogeosciences. 16 (19), 3747-3775. https://doi.org/10.5194/bg-16-
3747-2019.

Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat
fluxes. Hydrol. Earth Syst. Sc. 6 (1), 85-100. https://doi.org/10.5194/hess-6-85-
2002.

Sun, X.M., Wilcox, B.P., Zou, C.B., 2019. Evapotranspiration partitioning in dryland
ecosystems: A global meta-analysis of in situ studies. J. Hydrol. 576, 123-136.
https://doi.org/10.1016/j.jhydrol.2019.06.022.

Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D.T.,
Verma, M., Porcar-Castell, A., Griffis, T.J., Gu, L., Magney, T.S., Kohler, P., Evans, B.,
Yuen, K., 2017. OCO-2 advances photosynthesis observation from space via solar-
induced chlorophyll fluorescence. Science. 358 (6360) https://doi.org/10.1126/
science.aam5747.

Talsma, C.J., Good, S.P., Jimenez, C., Martens, B., Fisher, J.B., Miralles, D.G., McCabe, M.
F., Purdy, A.J., 2018. Partitioning of evapotranspiration in remote sensing-based


https://doi.org/10.1016/j.agrformet.2018.11.017
https://doi.org/10.1016/j.agrformet.2018.11.017
https://doi.org/10.1111/gcb.14297
https://doi.org/10.1038/s41558-018-0207-9
https://doi.org/10.1038/nclimate2550
https://doi.org/10.1016/j.agrformet.2016.06.014
https://doi.org/10.1016/j.agrforrnet.2018.01.017
https://doi.org/10.1016/j.agrforrnet.2018.01.017
https://doi.org/10.1016/j.rse.2020.112030
https://doi.org/10.1016/j.rse.2020.112030
https://doi.org/10.1016/j.agrformet.2015.12.025
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1111/pce.12846
https://doi.org/10.1111/pce.12846
https://doi.org/10.1029/2019ms001790
https://doi.org/10.1029/2019ms001790
https://doi.org/10.1126/science.aaf7891
https://doi.org/10.1126/science.aaf7891
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.5194/hess-23-4983-2019
https://doi.org/10.5194/hess-23-4983-2019
https://doi.org/10.1038/nature04312
https://doi.org/10.1038/nature04312
https://doi.org/10.5194/hess-15-967-2011
https://doi.org/10.5194/hess-15-967-2011
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.1016/j.rse.2019.04.030
https://doi.org/10.1016/j.rse.2019.04.030
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1016/j.rse.2011.02.019
http://refhub.elsevier.com/S0022-1694(22)00619-9/h0290
http://refhub.elsevier.com/S0022-1694(22)00619-9/h0290
http://refhub.elsevier.com/S0022-1694(22)00619-9/h0290
https://doi.org/10.1029/2018jg004727
https://doi.org/10.1111/gcb.15314
https://doi.org/10.1016/j.agrformet.2019.107701
https://doi.org/10.1016/j.agrformet.2019.107701
https://doi.org/10.3390/rs11040413
https://doi.org/10.1088/1748-9326/aae267
https://doi.org/10.1016/j.rse.2018.10.018
https://doi.org/10.1002/2016jd025583
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1016/j.agrformet.2009.09.005
https://doi.org/10.1016/j.agrformet.2009.09.005
https://doi.org/10.1016/j.agrformet.2014.01.011
https://doi.org/10.1002/2017gl074324
https://doi.org/10.1016/0034-4257(92)90102-P
https://doi.org/10.1016/0034-4257(92)90102-P
https://doi.org/10.1111/jawr.12057
https://doi.org/10.1016/j.agrformet.2019.01.031
https://doi.org/10.1016/j.agrformet.2019.01.031
https://doi.org/10.1016/j.rse.2020.112134
https://doi.org/10.1111/gcb.14302
https://doi.org/10.1029/2010jg001407
https://doi.org/10.5194/bg-16-3747-2019
https://doi.org/10.5194/bg-16-3747-2019
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.1016/j.jhydrol.2019.06.022
https://doi.org/10.1126/science.aam5747
https://doi.org/10.1126/science.aam5747

Y. Liu et al.

models. Agr. For. Meteorol. 260, 131-143. https://doi.org/10.1016/.
agrformet.2018.05.010.

Trenberth, K.E., Fasullo, J.T., Kiehl, J., 2009. EARTH’S GLOBAL ENERGY BUDGET. Bull.
Am. Meteorol. Soc. 90 (3), 311-323. https://doi.org/10.1175/2008bams2634.1.

van Dijk, A.IJ.M., Gash, J.H., van Gorsel, E., Blanken, P.D., Cescatti, A., Emmel, C.,
Gielen, B., Harman, L.N., Kiely, G., Merbold, L., Montagnani, L., Moors, E.,
Sottocornola, M., Varlagin, A., Williams, C.A., Wohlfahrt, G., 2015. Rainfall
interception and the coupled surface water and energy balance. Agr. For. Meteorol.
214-215, 402-415. https://doi.org/10.1016/j.agrformet.2015.09.006.

Wang-Erlandsson, L., Van Der Ent, R.J., Gordon, L.J., Savenije, H.H.G., 2014. Contrasting
roles of interception and transpiration in the hydrological cycle-Part 1: Temporal
characteristics over land. Earth Syst. Dynam. 5 (2), 441-469. https://doi.org/
10.5194/esd-5-441-2014.

Wang, K., Dickinson, R.E., 2012. A review of global terrestrial evapotranspiration:
Observation, modeling, climatology, and climatic variability. Rev. Geophys. 50 (2)
https://doi.org/10.1029/2011RG000373.

Wang, L.X., Good, S.P., Caylor, K.K., 2014. Global synthesis of vegetation control on
evapotranspiration partitioning. Geophys. Res. Lett. 41 (19), 6753-6757. https://
doi.org/10.1002/2014gl061439.

Wei, Z.W., Lee, X.H., Wen, X.F., Xiao, W., 2018. Evapotranspiration partitioning for three
agro-ecosystems with contrasting moisture conditions: a comparison of an isotope
method and a two-source model calculation. Agr. For. Meteorol. 252, 296-310.
https://doi.org/10.1016/j.agrformet.2018.01.019.

Wei, Z.W., Yoshimura, K., Okazaki, A., Kim, W., Liu, Z.F., Yokoi, M., 2015. Partitioning
of evapotranspiration using high-frequency water vapor isotopic measurement over
a rice paddy field. Water Resour. Res. 51 (5), 3716-3729. https://doi.org/10.1002/
2014wr016737.

Wei, Z.W., Yoshimura, K., Yang, L.X., Miralles, D.G., Jasechko, S., Lee, X.H., 2017.
Revisiting the contribution of transpiration to global terrestrial evapotranspiration.
Geophys. Res. Lett. 44 (6), 2792-2801. https://doi.org/10.1002/2016g1072235.

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Sigut, L.,

Menzer, O., Reichstein, M., 2018. Basic and extensible post-processing of eddy
covariance flux data with REddyProc. Biogeosciences. 15 (16), 5015-5030. https://
doi.org/10.5194/bg-15-5015-2018.

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C.,
Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y.,
Mocko, D., 2012. Continental-scale water and energy flux analysis and validation for
the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1.
Intercomparison and application of model products: WATER AND ENERGY FLUX
ANALYSIS. J. Geophys. Res. 117 (D3) https://doi.org/10.1029/2011JD016048.

Yang, H., Yang, X.i., Zhang, Y., Heskel, M.A., Lu, X., Munger, J.W., Sun, S., Tang, J.,
2017. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from
leaf to canopy in a temperate forest. Global Change Biol. 23 (7), 2874-2886. https://
doi.org/10.1111/gcb.13590.

Yang, M.H., Zuo, R.T., Wang, L.Q., Chen, X., 2018. A simulation study of global
evapotranspiration components using the community land model. Atmosphere. 9
(5), 178. https://doi.org/10.3390/atmos9050178.

Yang, X., Tang, J., Mustard, J.F., Lee, J.-E., Rossini, M., Joiner, J., Munger, J.W.,
Kornfeld, A., Richardson, A.D., 2015. Solar-induced chlorophyll fluorescence that
correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate

19

Journal of Hydrology 612 (2022) 128044

deciduous forest. Geophys. Res. Lett. 42 (8), 2977-2987. https://doi.org/10.1002/
2015g1063201.

Yoshida, Y., Joiner, J., Tucker, C., Berry, J., Lee, J.-E., Walker, G., Reichle, R., Koster, R.,
Lyapustin, A., Wang, Y., 2015. The 2010 Russian drought impact on satellite
measurements of solar-induced chlorophyll fluorescence: Insights from modeling
and comparisons with parameters derived from satellite reflectances. Remote Sens.
Environ. 166, 163-177. https://doi.org/10.1016/j.rse.2015.06.008.

Yoshimura, K., Miyazaki, S., Kanae, S., Oki, T., 2006. Iso-MATSIRO, a land surface model
that incorporates stable water isotopes. Global Planet. Change. 51 (1-2), 90-107.
https://doi.org/10.1016/j.gloplacha.2005.12.007.

Yue, K., De Frenne, P., Fornara, D.A., Van Meerbeek, K., Li, W., Peng, X., Ni, X., Peng, Y.,
Wu, F., Yang, Y., Penuelas, J., 2021. Global patterns and drivers of rainfall
partitioning by trees and shrubs. Global Change Biol. 27 (14), 3350-3357. https://
doi.org/10.1111/gcb.15644.

Zahn, E., Bou-Zeid, E., Good, S.P., Katul, G.G., Thomas, C.K., Ghannam, K., et al., 2022.
Direct partitioning of eddy-covariance water and carbon dioxide fluxes into ground
and plant components. Agr. For. Meteorol. 315: 108790. https://doi.org/10.1016/j.
agrformet.2021.108790.

Zeng, Z., Piao, S., Li, L.Z.X., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian, X.u., Wood, E.F.,
Friedlingstein, P., Mao, J., Estes, L.D., Myneni, R., Peng, S., Shi, X., Seneviratne, S.L.,
Wang, Y., 2017. Climate mitigation from vegetation biophysical feedbacks during
the past three decades. Nat. Clim. Change. 7 (6), 432-436. https://doi.org/10.1038/
nclimate3299.

Zeng, Z.Z., Wang, T., Zhou, F., Ciais, P., Mao, J.F., Shi, X.Y., Piao, S.L., 2014.

A worldwide analysis of spatiotemporal changes in water balance-based
evapotranspiration from 1982 to 2009. J. Geophys. Res.-Atmos. 119 (3), 1186-1202.
https://doi.org/10.1002/2013JD020941.

Zhang, K., Kimball, J.S., Running, S.W., 2016a. A review of remote sensing based actual
evapotranspiration estimation. Wiley Interdiscip. Rev.-Water. 3 (6), 834-853.
https://doi.org/10.1002/wat2.1168.

Zhang, K., Zhu, G.F., Ma, J.Z., Yang, Y.T., Shang, S.S., Gu, C.J., 2019a. Parameter
Analysis and Estimates for the MODIS Evapotranspiration Algorithm and Multiscale
Verification. Water Resour. Res. 55 (3), 2211-2231. https://doi.org/10.1029/
2018wr023485.

Zhang, Y.Q., Kong, D.D., Gan, R., Chiew, F.H.S., McVicar, T.R., Zhang, Q., Yang, Y.T.,
2019b. Coupled estimation of 500 m and 8-day resolution global evapotranspiration
and gross primary production in 2002-2017. Remote Sens. Environ. 222, 165-182.
https://doi.org/10.1016/j.rse.2018.12.031.

Zhang, Y., Pena-Arancibia, J.L., McVicar, T.R., Chiew, F.H.S., Vaze, J., Liu, C, Lu, X.,
Zheng, H., Wang, Y., Liu, Y.Y., Miralles, D.G., Pan, M., 2016b. Multi-decadal trends
in global terrestrial evapotranspiration and its components. Sci. Rep. 6 (1) https://
doi.org/10.1038/srep19124.

Zhang, Z.Y., Chen, J.M., Guanter, L., He, L.M., Zhang, Y.G., 2019c. From Canopy-Leaving
to Total Canopy Far-Red Fluorescence Emission for Remote Sensing of
Photosynthesis: First Results From TROPOMI. Geophys. Res. Lett. 46 (21),
12030-12040. https://doi.org/10.1029/2019g1084832.

Zhou, S., Yu, B.F.,, Zhang, Y., Huang, Y.F., Wang, G.Q., 2016. Partitioning
evapotranspiration based on the concept of underlying water use efficiency. Water
Resour. Res. 52 (2), 1160-1175. https://doi.org/10.1002/2015WR017766.


https://doi.org/10.1016/j.agrformet.2018.05.010
https://doi.org/10.1016/j.agrformet.2018.05.010
https://doi.org/10.1175/2008bams2634.1
https://doi.org/10.1016/j.agrformet.2015.09.006
https://doi.org/10.5194/esd-5-441-2014
https://doi.org/10.5194/esd-5-441-2014
https://doi.org/10.1029/2011RG000373
https://doi.org/10.1002/2014gl061439
https://doi.org/10.1002/2014gl061439
https://doi.org/10.1016/j.agrformet.2018.01.019
https://doi.org/10.1002/2014wr016737
https://doi.org/10.1002/2014wr016737
https://doi.org/10.1002/2016gl072235
https://doi.org/10.5194/bg-15-5015-2018
https://doi.org/10.5194/bg-15-5015-2018
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1111/gcb.13590
https://doi.org/10.1111/gcb.13590
https://doi.org/10.3390/atmos9050178
https://doi.org/10.1002/2015gl063201
https://doi.org/10.1002/2015gl063201
https://doi.org/10.1016/j.rse.2015.06.008
https://doi.org/10.1016/j.gloplacha.2005.12.007
https://doi.org/10.1111/gcb.15644
https://doi.org/10.1111/gcb.15644
https://doi.org/10.1038/nclimate3299
https://doi.org/10.1038/nclimate3299
https://doi.org/10.1002/2013JD020941
https://doi.org/10.1002/wat2.1168
https://doi.org/10.1029/2018wr023485
https://doi.org/10.1029/2018wr023485
https://doi.org/10.1016/j.rse.2018.12.031
https://doi.org/10.1038/srep19124
https://doi.org/10.1038/srep19124
https://doi.org/10.1029/2019gl084832
https://doi.org/10.1002/2015WR017766

	Global assessment of partitioning transpiration from evapotranspiration based on satellite solar-induced chlorophyll fluore ...
	1 Introduction
	2 Materials and methods
	2.1 Workflow
	2.2 Dataset
	2.2.1 Far-red SIF data from TROPOMI
	2.2.2 EC flux dataset
	2.2.3 ERA5-Land data
	2.2.4 MODIS data
	2.2.5 GLEAM data and PML-V2 data

	2.3 Methods
	2.3.1 Gc estimation
	2.3.2 The gc-SIF model development and calibration
	2.3.3 Transpiration estimation
	2.3.4 Comparison with previous T/ET estimations


	3 Results
	3.1 Calibration and validation of the gc-SIF model
	3.2 T/ET Comparation
	3.3 Global T estimation with the gc-SIF model

	4 Discussion
	4.1 Influencing factors of partitioning T from ET based on SIF
	4.2 Comparison with other independent ET partitioning products
	4.3 Implications and limitations

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A . The information and supplementary results of the FLUXNET sites used in this study
	Appendix B. The abbreviations used in this study.
	References


