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A B S T R A C T   

An accurate assessment of terrestrial ecosystem transpiration (T) is important to understand the vegetation- 
atmosphere feedbacks under climate change. Solar-induced chlorophyll fluorescence (SIF) shows great poten
tial to estimate T because of its mechanical linkage with photosynthesis and stomatal conductance. However, a 
global and spatially estimation of terrestrial T based on remotely sensed SIF remains unresolved and novel 
strategies are challenged to entail a precise partition of T from evapotranspiration (ET) across various biomes. 
Here, with far-red SIF from Sentinel-5 Precursor satellite and ground observations for a total of 30 sites 
encompassing ten primary plant functional types (PFTs), we extend a SIF-driven semi-mechanism canopy 
conductance (gc) model for different plant functional types (PFTs), and use the optimized Penman-Monteith 
model (PMopt) to calculate T and T/ET. We reveal that the relationship between SIF and the product of gc and 
0.5 power of vapor pressure deficit (gc × VPD0.5) is tighter than the relationship between SIF and ecosystem 
productivity. The SIF-gc × VPD0.5 linear regressions show improved R2 and increased magnitude in slopes across 
PFTs when aggregating daily to 16-day. Our T/ET results show high correlations with the results of the Ball- 
Berry-Leuning model combined with PMopt at the site scale (R2 = 0.69), and with the results calculated by 
leaf area index in a previous study at the PFT scale (0.70). We further determine the global mean T/ET (0.57 ±
0.14), close to the ensemble mean of global averaged T/ET (0.55), using 36 different methods. The global T 
estimated using the SIF-based approach is compared with two other remote sensing products. Our method 
provides a valuable tool for T and ET estimation using remote sensing data and is critical to understanding 
ecohydrological processes under climate change.   

1. Introduction 

Terrestrial Evapotranspiration (ET), a fundamental component of the 
terrestrial ecosystem water cycle, substantially influences climate 
change, water availability, and land surface energy balance (Milly et al., 
2005; Trenberth et al., 2009; Zeng et al., 2017). The proportion of global 
precipitation returning to the atmosphere via ET is close to 60%, higher 
in arid and semi-arid zones (Mu et al., 2011). Different components of ET 
-interception evaporation (I), evaporation (E) and transpiration (T) - 
react to climatic changes, atmospheric composition, and land use 
differently (Wei et al., 2017). T is the primary component in ET that 

involves soil moisture uptake from the root and water vapor loss through 
plant stomates (Schlesinger and Jasechko, 2014). As T is directly linked 
to photosynthesis via stomatal conductance (gs), it has long been 
acknowledged that quantification of T plays a crucial role in water 
resource management, crop yield estimation, water cycle, and climate 
change. However, it is still challenging to partition ET into its sub
components at the regional and global scales. Significant variations in 
the ratio of T to ET (T/ET) have been reported from 47% ± 10% in the 
Mediterranean shrubland with low Leaf Area Index (LAI) to 70% ± 14% 
in the Tropical rainforest with high LAI (Schlesinger and Jasechko, 
2014; Wang et al., 2014). Global estimates of T/ET vary from ~ 35% to 
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~ 80% derived from different methods (Coenders-Gerrits et al., 2014). 
The high uncertainties of ET components partition hinder our under
standing of ET subcomponents’ authentic variation characteristics and 
their interactions in the carbon and water cycle of terrestrial ecosystems. 

Several methods for partitioning T from ET have been used, 
including direct and indirect methods from the plot to the ecosystem 
scale (Kool et al., 2014; Stoy et al., 2019). At the plot scale, these mainly 
include the sap flow method, the gas-exchange chambers method, the 
micro-lysimeter method, and the isotopic method (Sun et al., 2019). 
These approaches can only determine the T/ET within a limited range 
and would create considerable uncertainty when extrapolating to 
ecosystem scale (Kool et al., 2014). Ways for partitioning E and T at the 
ecosystem scale generally combine ecosystem-scale observations with 
satellite-based algorithms, which can upscale E and T from ecosystem 
scale to regional or global scale. These approaches include empirical 
models based on the relationship between LAI and T/ET (Wang et al., 
2014; Wei et al., 2017), thermal imaging (Marshall et al., 2016), water- 
use efficiency (WUE) combined with optimality theory assumption 
(plants minimize water loss per unit carbon dioxide (CO2) gain) (Nelson 
et al., 2018; Scott and Biederman, 2017; Zhou et al., 2016), flux variance 
similarity (Scanlon and Kustas, 2010), and conditional eddy-covariance 
method (Zahn et al., 2022). The first two methods that use leaf attributes 
of the ecosystem from satellite observations, can capture the trend of T/ 
ET over all ecosystems. Nevertheless, there are still significant variations 
in T/ET among ecosystems when leaf attributes are comparable (Sun 
et al., 2019). The latter two methods, which rely on plant carbon–water 
coupling characteristics, can precisely partition T from ET across all 
ecosystems. However, they require a reliable estimation of vegetation 
productivity (GPP) or canopy conductance (gc), especially when applied 
at the regional or global scales in conjunction with remote sensing 
techniques (Nelson et al., 2020). 

Remote sensing approaches have also been widely used in global ET 
estimation (Wang and Dickinson 2012). These approaches mainly 
contain (1) surface energy balance (SEB) based method, including 
single-source SEB model and dual-source SEB model, such as the oper
ational Simplified Surface Energy Balance (SSEBop) developed by Senay 
et al. (2013); (2) water balance (WB) based method, including surface 
water balance and atmospheric water balance, such as the WB with 
Model Tree Ensemble (WB-MTE) developed by Zeng et al. (2014); (3) 
Penman-Monteith (PM) method, such as the Moderate Resolution Im
aging Spectroradiometer (MODIS) ET product (PM-MOD) developed by 
Mu et al. (2011) and the Penman-Monteith-Leuning model (PML and 
PML-V2) developed by Zhang et al. (2016b, 2019b); (4) Priestley-Taylor 
(PT) method, such as the Global Land Evaporation Amsterdam Model 

(GLEAM) developed by Martens et al. (2017); (5) Surface temperature- 
vegetation index space (Ts-VI) method, such as the Surface Energy 
Balance System (SEBS) developed by Su (2002); (6) maximum entropy 
production method (MEP) applied to global estimation by Huang et al. 
(2017); (7) empirical or machine learning (EML) method, such as the 
Gridded FLUXNET ET with Model Tree Ensemble (GFET-MTE) devel
oped by Jung et al. (2010); and (8) Assimilation method, such as the 
North American Land Data Assimilation System (NLDAS) developed by 
Xia et al. (2012). The common disadvantage of SEB, WB, Ts-VI, and MEP 
is only available for clear-sky. The drawbacks of WB include its inability 
to compute gridded ET values directly and its poor spatiotemporal res
olution. The simplification of physical processes is a restriction shared 
by both PT and EML. PM can overcome these flaws, after acquiring high- 
quality meteorological forcing and improving the gc estimate (Zhang 
et al., 2016a). However, gc is closely coupled with photosynthesis, and 
improving estimations of gc needs optimizing GPP modelling. 

Spaceborne solar-induced chlorophyll fluorescence (SIF) has 
emerged as an essential technique for optimizing GPP estimation (Joiner 
et al., 2011; Li et al., 2018; Sun et al., 2017). Satellite sensors used for SIF 
retrieval in terrestrial vegetation include the Meteorological Opera
tional satellite - Global Ozone Monitoring Experiment-2 sensor; the 
Orbiting Carbon Observatory; the Sentinel-5 Precursor - TROPOspheric 
Monitoring Instrument (TROPOMI); and other sensors (Mohammed 
et al., 2019). TROPOMI observations offer an excellent spatial and 
temporal resolution, which improves global estimates of GPP over pre
vious satellite SIF data (Zhang et al., 2019c). SIF has been used to esti
mate gc and T because it has a tight physical relationship with GPP 
(Damm et al., 2018; Lu et al., 2018; Maes et al., 2020; Pagan et al., 2019; 
Shan et al., 2019). The SIF-T connection is dominated by air temperature 
and intrinsic WUE (Maes et al., 2020) and also is affected by Photo
synthetically Active Radiation (PAR), Vapor Pressure Deficit (VPD), and 
LAI (Lu et al., 2018). Moreover, SIF-based T retrieval models, including 
a WUE-based model and a conductance-based model, have been con
structed from the standpoint of plant physiology (Feng et al., 2021; Shan 
et al., 2021). These SIF-based models perform well at the site scale. 
However, these SIF-based models are challenged to apply for quanti
fying T/ET and to employ in different ecosystems on the global scale. 

The main objective of this study is to quantify T/ET on the global 
scale by using the SIF-constrained gc model. Specifically, we aim to: (1) 
develop a plant functional type (PFT) specific SIF-driven semi-mecha
nism gc model (denoted as gc-SIF model); (2) partition ET across 
different PFTs worldwide combing the PM equation and SIF-constrained 
gc; (3) apply the gc-SIF model to global T estimation in the 2018 growing 
season. 

Fig. 1. The Workflow of this study.  
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2. Materials and methods 

2.1. Workflow 

First, we calculated gc at 30 eddy-covariance (EC) flux tower sites 
using the Ball-Berry-Leuning (BBL) model (denoted as gcSITE) covering 
ten different PFTs (see 2.3.1 for details). Second, gcSITE was used to 
calculate and validate the gc-SIF model and simulate gc based on TRO
POMI SIF data (denoted as gcSIF) (see 2.3.2 for details). Third, gcSITE and 
gcSIF combined with the optimized PM model (PMopt) were used to 
calculate T (denoted as TSITE and TSIF, respectively) for all sites (see 2.3.3 
for details). Fourth, the results of TSIF and TSIF/ET were compared to 
previous studies at the ecosystem scale and on the global scale (see 2.3.4 
for details). Fifth, a global and spatial estimation of terrestrial T was 
obtained using the gc-SIF model and the PMopt as well as SIF and other 
relevant data at a 16-day temporal resolution, represented as daily 
global T estimation. Finally, the global T estimates were compared to 
current state-of-the-art T estimates such as GLEAM and PML-V2. A 
detailed flowchart for data processing is shown in Fig. 1. 

2.2. Dataset 

2.2.1. Far-red SIF data from TROPOMI 
SIF from the Sentinel 5 Precursor satellite was retrieved by using a 

singular value decomposition technique in the window of 743 ~ 758 nm 
and normalized to the SIF at 740 nm (Köhler et al., 2018). It was almost 
daily continuous global coverage with a spatial resolution of 7 km × 3.5 
km at the nadir and 7 km × 14.5 km at the edge of the swath. It was 
available from February 2018, and our study period ran from February 
2018 to July 2019. To avoid cloud impacts, we first filtered out the 
original SIF with cloud fractions>0.2. Second, the instantaneous SIF was 
transformed to daily means using the day-length correction factor before 
our investigation (Frankenberg et al., 2011). The daily mean SIF for each 
site was determined as the average of all available observations within a 
10 km radius buffer centered by the site location, which can well capture 
the footprint of EC flux (Fig. A1). The ungridded daily mean SIF was 
aggregated to 0.1◦ × 0.1◦ gridded daily SIF data to estimate global T 
during the 2018 growing season. The 16-day SIF was further aggregated 
by averaging daily mean SIF (ungridded and gridded) over the 16 days 
when data was available for at least five days. 

2.2.2. EC flux dataset 
We collected a total of 30 EC flux sites after checking the availability 

of data to match the period of SIF distributed over America, Europe, 
Australia and China (Fig. 2 and Table A1), and all these sites have data 
records covering at least one entire growing season from February 2018 
to July 2019. The growing season was defined as the five consecutive 
months with the highest ecosystem productivity in a year, as determined 
by a multi-year average of the recent five years. The 30 flux sites contain 
10 different PFTs, comprising 3 evergreen needle forests (ENF) sites, 3 
evergreen broadleaf forests (EBF) sites, 3 deciduous broadleaf forests 
(DBF) sites, 1 mixed forest (MF) site, 3 closed shrublands (CSH) sites, 4 
open shrublands (OSH) sites, 3 woody savannas (WSA) sites, 3 savannas 
(SAV) sites, 4 C3 grasslands (GRA) sites, 3 C4 grasslands (GRAC4) sites. 

Flux data and relevant auxiliary data were available at AmeriFlux 
(https://ameriflux.lbl.gov), European Eddy Fluxes Database Cluster (htt 
ps://www.europe-fluxdata.eu/), OzFlux (https://data.ozflux.org.au/) 
and few collaborating researchers. Flux data included net ecosystem 
exchange flux (unit: μmol m−2 s−1), latent heat flux (LE, unit: W m−2), 
and ground heat flux (G) (or sensible heat flux) (unit: W m−2). Auxiliary 
data contained net radiation (Rn, unit: W m−2), surface pressure (P, unit: 
kPa), 2 m temperature (Tair, unit: ◦C), soil temperature (unit: ◦C), CO2 
concentration ([CO2], unit: parts per million, ppm), friction velocity (u*, 
unit: m s−1), wind speed (u, unit: m s−1), canopy height (hc, unit: m), 
measurement height (hm, unit: m), and air relative humidity (RH, 
unitless). If Rn was not directly available, Rn was calculated by the 
following formula: 

Rn = Rns + Rnl = Rs↓−Rs↑+Rl↓ − Rl↑ (1)  

where Rns, Rnl, Rs↓, Rs↑, Rl↓, Rl↑ were surface net solar radiation, surface 
net thermal radiation, downward solar radiation, upward solar radia
tion, downward thermal radiation, and upward thermal radiation in W 
m−2, respectively. VPD could substitute for RH, because RH and Tair 
were used to compute VPD by Tetens’s formula: 

VPD = esat × (1 − RH) (2)  

esat = 0.61078 × e

(
17.27×Tair
Tair +237.3

)

(3)  

where VPD was in kPa, and esat is saturated vapour pressure in kPa. 
The following processes aimed to make a rigorous quality check to 

identify reliable half-hour flux observations. First, a standard processing 
was carried out for the original flux data, including u* filtering, gap 
filling, and flux partitioning (Wutzler et al. 2018). Specifically, a day- 
time carbon flux partitioning algorithm was used for calculating GPP 

Fig. 2. The distribution of flux sites in this study.  
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(Lasslop et al., 2010). Second, measured data without gap-filling was 
employed in this study except for standard processing of flux data. Third, 
half-hourly data were averaged into hourly data to standardize the 
calculation process. Fourth, observations with negative Rn, GPP, LE, and 
VPD were eliminated. Fifth, we used day-time observations from 6:00 to 
18:00. Data availability after quality control is given in Table A2 at each 
site. In this study, daily values were computed only for days with at least 
8 measured hour measurements, and 16-day values were calculated only 
for the 16-days with at least 3 recorded day measurements. 

2.2.3. ERA5-Land data 
For the global T estimation, we used the fifth European Centre for 

Medium-Range Weather Forecasts (ECMWF) ReAnalysis for land 
(hourly dataset ERA5-Land) as auxiliary data, which is the latest global 
land-surface climate reanalysis dataset with 0.1◦ × 0.1◦ resolution 
(ECMWF, 2017). The uncertainty of ERA5-Land was defined by the 
ensemble of data assimilations system, which confirms that the data was 
reliable from February 2018 to July 2019. The hourly ERA5-Land var
iables used in this study included Tair (unit: K), 2 m dewpoint temper
ature (Tdew, unit: K), Rns (unit: J m−2), Rnl (unit: J m−2), and P (unit: Pa). 
The units of all variables were converted to be consistent with the site 
flux dataset. The Tdew was used to calculate the VPD in kPa by the 
following equation: 

RH =
esat,dew

esat
(4)  

VPD = esat ×

(

1 −
esat,dew

esat

)

= e

(
17.27×Tair
Tair +237.3

)

− e

(
17.27×Tdew
Tdew+237.3

)

(5)  

where esat,dew is the saturated vapor pressure at dew point temperature in 
kPa. Rn was calculated by the Eq. (1). Data with negative Rn and VPD 
was excluded. The hourly data was aggregated to daily data by aver
aging day-time data from 6:00 to 18:00. 

2.2.4. MODIS data 
MODIS data were obtained from google earth engine (GEE) MODIS 

collection 6 products from February 2018 to July 2019. The 
MCD15A3H.006 LAI and fPAR (i.e., fraction of PAR absorbed by vege
tation) dataset (Myneni et al., 2015), have a spatial resolution of 500 m 
and a temporal resolution of 4-day, which were used to calculate gcSITE. 
The MCD12Q1.006 land cover dataset at 500-m spatial resolution is 
annual land cover types (Friedl et al., 2010), and the year 2018 was used 
in this study. The international geosphere-biosphere programme clas
sification scheme was used to provide PFT-specific information. The 
MOD16A2.006 ET dataset in 2018 was applied to magnify T/ET from 
PFT to global (Mu et al., 2011). 

A Savitzky-Golay filter was utilized for each pixel to eliminate noise 
contaminations for LAI and fPAR data (Savitzky and Golay, 1964). The 
quality control was checked using the quality assurance layer, and pixels 
not contaminated by clouds and aerosols were selected as reliable ob
servations. The LAI and fPAR around each flux tower site were extracted 
by averaging all available observations within a 1 km radius around the 

site location. To estimate T for different PFTs, the land cover data was 
aggregated to 0.1◦ × 0.1◦ resolution by counting the proportions of 
different land cover types in each grid from the original 500 m resolu
tion, and the dominant biome type was assigned to this 0.1◦ × 0.1◦grid 
cell. Similarly, the LAI and fPAR datasets were also aggregated to 0.1◦ ×

0.1◦ resolution to keep the spatial resolution consistent with all other 
datasets. 

2.2.5. GLEAM data and PML-V2 data 
GLEAM and PML-V2 are widely-used remote sensed products of ET 

retrieved by PT and PM, which have dataset of different ET components. 
When this study is in progress, GLEAM and PML-V2 are available from 
2018 to 2019. Thus, the GLEAM v3.3b data (Miralles et al., 2011; 
Martens et al. 2017) and the PML-V2 data (Zhang et al., 2019a) were 
compared to validate our estimation of T in this study. The daily GLEAM 
data was available from https://www.gleam.eu/, and provided on a 
0.25◦ × 0.25◦ latitude-longitude grid. The PML-V2 data was collected 
from GEE with a spatial resolution of 500 m and a temporal resolution of 
8-day. The GLEAM data of each flux tower site was directly extracted by 
its location. The PML-V2 data of each flux tower site was extracted by 
the same strategies as MODIS LAI data. The GLEAM data were linearly 
interpolated to 0.1◦ × 0.1◦ resolution, and the PML-V2 data were 
averagely aggregated to 0.1◦ × 0.1◦ resolution to compare their spatial 
patterns with our results. 

2.3. Methods 

2.3.1. Gc estimation 
We used the BBL model, a modified version of the Ball-Berry model, 

to estimate hourly leaf gs. And then gc was obtained within a big leaf 
model framework (Sellers et al., 1992). The BBL model is a biochemical 
model characterizing plants carbon–water coupling processes, in which 
gs is expressed as a function of environmental parameters and net 
assimilation rate (An) (Leuning, 1995; Lohammer et al., 1980). The BBL 
model was given as follows: 

gs = 1.6 ×

[
m × An

(Cs − Γ) × (1 + Ds/D0)
+ g0

]

(6)  

where gs was in unit of m s−1 or mol m−2 s−1, An was in unit of μmol m−2 

s−1, Cs was [CO2] at the leaf surface (ppm), Γ was the CO2 compensation 
point (ppm), which was set to 40 for C3 plants and 2 for C4 grassland, Ds 
was humidity deficit at the leaf surface (kPa), D0, was set to 0.35 as an 
empirically fitted parameter representing the sensitivity of stomata to 
changes in Ds (kPa) (Leuning, 1995). m and g0 were the slope and 
minimum conductance calculated from empirical data provided in 
Table 1, respectively. The unit of gs was converted from mol m−2 s−1 to 
m s−1 after a multiplication of the coefficient Vm. Vm was calculated 
according to the following equation: 

Vm =
8.314 × (Tair + 273.15)

1000 × P
(7) 

Finally, we replaced g0 with a multiplication of LAI and g0, GPP with 
An, atmosphere [CO2] with Cs, and VPD with Ds, to upscale all param
eters from leaf to canopy scale. Different gc models have little influence 
on the results of gc after we compared the daily mean stomatal 
conductance calculated by the BBL model and the Ball-Berry-Medlyn 
model (BBM, Fig. A2, Lin et al., 2015; Medlyn et al., 2011). 

2.3.2. The gc-SIF model development and calibration 
Shan et al. (2021) developed a SIF-driven semi-mechanism gc model 

combining theories on the photosynthetic pathway and optimal sto
matal behavior and validated by hourly canopy SIF and concurrent eddy 
covariance flux observations at both forest and crop ecosystems. The 
form of this model was expressed as follows: 

Table 1 
The empirical parameters used in the BBL model.  

Type m g0 Reference 

GRAC4 4  0.04 Ran et al. (2017) 
BF (EBF & DBF) 12  0.01 Sprintsin et al. (2012) 
ENF 10  0.01 Sprintsin et al. (2012) 
OSH 8  0.0011 Chen et al. (2012) 
CSH 9  0.01 Ran et al. (2017) 
GRA 9  0.01 Ran et al. (2017) 
SAV 9  0.01 Ran et al. (2017) 
WSA 9  0.01 Ran et al. (2017) 
MF 11  0.01 Average of BF and ENF  
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gc = VPD−0.5 × (a × SIF + b) (8)  

where SIF was in mW m−2 nm−1 sr-1, a and b were the slope and 
intercept, which provided the constraint for the relationships between gc 
and SIF for each PFT. We extended this model to 10 different PFTs 
worldwide using least squares regression and repeated K-Fold cross- 
validation at the 16-day temporal resolution. We repeated 4 times K- 
Fold cross-validation for each PFT, with K value of 10. The results for 
each PFT, including model slope, model intercept, mean square error 
(MSE), root mean square error (RMSE), mean absolute error (MAE), and 
goodness of fit (R2), were computed by averaging the results of all the 
repeated K-Fold cross-validation. 

2.3.3. Transpiration estimation 
The PM equation was used to estimate T. The original PM equation 

and relevant formulas were as follows: 

LE =
Δ × (Rn − G) + ρa × cp × VPD/ra

Δ + γ × (1 + rs/ra)
(9)  

Δ = 4098.17 × esat/(Tair + 237.3)
2 (10)  

ρa =
28.9654 ×

(
P − esat,dew

)
+ 18.016 × esat,dew

8.314 × (273.15 + Tair)
(11)  

cp = 1005 ×
(

1 − 0.622 ×
esat,dew

P

)
+ 1820 ×

esat,dew

P
(12)  

γ =
cp × P

0.622 × (−2.2 × Tair + 2500)
(13)  

ra =
ln

(
hm−2×hc/3

0.123×hc

)
× ln

(
hm−2×hc/3
0.0123×hc

)

k2 × u
(14)  

rs =
1

Gs
(15)  

where LE was in W m−2, Δ was the slope of the saturation vapour 
pressure temperature relationship in kPa ◦C−1, ρa was the mean air 
density at constant pressure in kg m−3, cp was the specific heat of the air 
in J kg−1 ◦C−1, ra was the aerodynamic resistance in s m−1, γ is the 
psychrometric constant in kPa ◦C−1, rs was the surface resistance in s 
m−1, and Gs was the surface conductance in m s−1 or mol m−2 s−1. The 
PM equation was originally used to calculate ET, and was modified to 
determine T after considering energy distribution between dry and wet 
surfaces. Energy preferred evaporating liquid water on the wet surface, 
similar to the parallel circuit system, since the evaporation resistance of 
the wet surface was considerably lower than that of dry surface, as 
illustrated in Fig. 3. Moreover, Gs had to be substituted with gc while 
calculating T. As a result, the PMopt equation for calculating T was as 
follows: 

λT = (1 − fwet) ×
Δ × (Rn − G) + ρa × cp × VPD/ra

Δ + γ × [1 + 1/(gc × ra) ]
(16)  

fwet =

{
0.0RH < 70%

RH470% ≤ RH ≤ 100% (17)  

where λT was the latent heat flux from T in W m−2, λ was the latent heat 
of vaporization, 2.45 MJ kg−1, fwet was the wet surface fraction from the 
Fisher et al. (2008) ET model (Fisher et al., 2008). 

All abbreviations are listed in Supplemental Table B1. 

2.3.4. Comparison with previous T/ET estimations 
First, T/ET estimated from both the BBL model and the gc-SIF model 

were evaluated using the Pearson correlation analysis at the site scale. 
Second, we used correlation analysis to examine the relationship be
tween our TSIF/ET finding and prior multi-site T/ET results (collected by 
Wei et al. (2017)). Wei et al. (2017) collected the values of T, E, I, ET, 
and PFT type from 64 individual ground sties. Since these ground sites 
are different from the sites in our study, we can only compare our results 
with Wei’s results at PFT scale. Third, to further explore the performance 
of our gc-SIF model, we estimated the global mean TSIF/ET of terrestrial 
ecosystem for the 2018 growing season using TSIF/ET values at the PFT 
scale and the method from Schlesinger and Jasechko (2014) combined 
with MODIS ecozone ET (Mu et al., 2011) and land cover product (Friedl 
et al., 2010, Table 3). Finally, we compared our global TSIF/ET result to 
T/ET values using other methodologies reported in the previous 
literature. 

3. Results 

3.1. Calibration and validation of the gc-SIF model 

We first examined the relationship between SIF and both GPP and 
gcSITE × VPD0.5 for all sites over the growing season at both daily and 16- 
day temporal scale (Fig. 4). In general, the linear relationship can be 
observed between daily SIF and GPP with R2 of 0.50 (Fig. 4a). The SIF- 
GPP relationship presents an increasing linearity and an improvement 
after aggregating from daily to 16-days (R2 increased to 0.56, Fig. 4b). 
For the majority of sites, SIF shows significantly positive correlations 
with GPP (p < 0.05, 21 out of 30 sites) at the 16-day temporal scale 
(Table A3), and the mean site-based R between SIF and GPP is 0.62. The 
correlation between gcSITE × VPD0.5 and SIF is less scattered and more 

Fig. 3. Schematic plot of ET energy distribution in PMopt equation.  

Table 2 
Model parameters and validation results of the gc-SIF model.  

Type Model 
Slope 

Model 
Intercept 

RMSE, m s¡1 

Pa0.5 
MAE, m s¡1 

Pa0.5 
R2 

GRAC4  0.0291  0.0015  0.0024  0.0019  0.88 
GRA  0.0172  0.0026  0.0027  0.0023  0.50 
OSH  0.0095  0.0014  0.0008  0.0007  0.41 
SAV  0.023  0.0041  0.0015  0.0014  0.80 
CSH  0.0361  0.0023  0.0025  0.0022  0.7 
WSA  0.0223  0.0053  0.0024  0.0020  0.75 
ENF þ

MF  
0.0324  0.0042  0.0034  0.0030  0.81 

DBF þ
EBF  

0.0254  0.0077  0.0062  0.0051  0.73  
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linear compared with the SIF-GPP relationship, with an improved R2 of 
0.69 for daily scale (Fig. 4c) and R2 of 0.76 for 16-day temporal scales 
(Fig. 4d) for all sites. At the individual site, 23 of 30 sites demonstrate 
significant (p < 0.05) associations between SIF and gcSITE × VPD0.5 

(Table A3). The mean site-based R between SIF and gcSITE × VPD0.5 is 
0.48. Most of these sites (12/19 sites) show a stronger linear correlation 
between SIF and gcSITE × VPD0.5 than between SIF and GPP. In short, the 
relationship between SIF and gcSITE × VPD0.5 at the 16-day scale is 
strongest among these four relationships. 

We further explored the performance of the SIF-gcSITE × VPD0.5 

linear regressions at both daily and 16-day scales for each biome (Fig. 5). 
The regression models vary significantly across PFTs, and the R2 ranges 
from 0.03 for OSH to 0.6 for GRAC4 at daily scale. The regressions show 
improved R2 (R2 ranges from 0.28 for OSH to 0.83 for GRAC4) and 
increased magnitude in slopes across PFTs when aggregating daily to 16- 
day. Correlations between 16-day SIF and gcSITE × VPD0.5 are generally 
high (R > 0.75) for GRAC4, CSH, WSA, SAV, ENF + MF and DBF + EBF, 
but low (0.75 > R > 0.5) for GRA as well as OSH. According to the 

Table 3 
Statistics of the global mean T/ET calculated by different methods.  

Year Method Type of method T/ET SD
2005 Gerten et al., LPJ Climate model 0.65 0.03
2006 Dirmeyer et al., GSWP-2 Climate model 0.48 0.03
2007 Lawrence et al., CLM3 Climate model 0.44
2009 Alton et al., JULES Climate model 0.38 0.09
2010 Cao et al., CLM3.5/CAM3.5 Climate model 0.41 0.03
2011 Lawrence et al., CLM3.5 Climate model 0.43
2011 Lawrence et al., CLM4CN Climate model 0.56
2011 Lawrence et al., CLM4CNE Climate model 0.56
2011 Lawrence et al., CLM4SP Climate model 0.48
2012 Ito and Inatomi, VISIT/Sim-CYCLE Climate model 0.24
2014 Wang-Erlandsson et al., STEAM Climate model 0.59
2016 Maxwell and Condon, ParFlow-CLM Climate model 0.62 0.12
2017 Fatichi et al. T&C Climate model 0.7 0.09
2017 Wei et al. CMIP5 Climate model 0.43 0.12
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Fig. 4. The relationship between SIF and both GPP ((a) and (b)) and gc × VPD0.5 ((c) and (d)) at all sites from daily ((a) and (c)) and 16-day ((b) and (d)) data. All R2 

are statistically significant (p < 0.0001). 

Fig. 5. The relationship between SIF and both GPP and gcSITE × VPD0.5 per PFT from daily and 16-day data. R2 is calculated by simple correlation analysis.  
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significant correlation between SIF and gcSITE × VPD0.5, we calculated 
the slope and intercept per PFT in the gc-SIF model (Table 2). The results 
show that the slopes of CSH and OSH are the greatest and lowest, 
respectively. The best performance of the model was observed for GRAC4 
(R2 = 0.88), while the worst was obtained for OSH (R2 = 0.41). Similar 

to R2 between SIF and gcSITE × VPD0.5, the model slopes for GRA and 
OSH are lower than those for other PFTs. Finally, the values of a and b in 
the gc-SIF model across different PFTs are obtained. 

3.2. T/ET Comparation 

TSIF/ET at the site scale was calculated using the simulated TSIF and 
the observed ET (Fig. 6). TSIF/ET ratio is the greatest for MF (0.90), 
which is limited to a single site. The lowest TSIF/ET ratio is for GRA 
(0.39). DBF is the PFT with the second greatest TSIF/ET (0.85). For in
dividual sites, the FR-Pue EBF site has the highest TSIF/ET (0.98) of all 
the sites, while the lowest TSIF/ET value (0.30) is seen at the CN-Xil GRA 
site. Interestingly, for evergreen forests, ENF’s mean TSIF/ET (0.78) is 
close to that of EBF (0.78). Due to a high vegetation coverage for CSH, an 
average TSIF/ET ratio of 0.78 is observed. The mean TSIF/ET values in 
WSA, SAV and OSH, are 0.65, 0.69 and 0.57, respectively. Moreover, 
there is a substantial difference in the TSIF/ET for C3 grasslands and C4 
grasslands with different CO2 assimilation pathways, with GRAC3 having 
a mean TSIF/ET value of 0.39 and GRAC4 having a mean TSIF/ET value of 
0.73. Both the BBL model (Fig. A3) and the gc-SIF model provide com
parable T/ET values for PFTs, but the ranking of TSITE/ET for PFTs with 
high vegetation coverage is not entirely consistent (MF > EBF > DBF >
CSH > GRAC4 > ENF > WSA > SAV > OSH > GRA). 

TSITE/ET is highly correlated with TSIF/ET (R2 = 0.69p < 0.001 
Fig. 7a). In addition, our TSIF/ET values were further compared with the 
T/ET values from Wei et al. (2017) using data from earlier research 
(Fig. 7b). The R2 between our PFT-mean TSIF/ET values and PFT-mean 
T/ET from Wei et al. (2017) is 0.70, a significant correlation (p =

0.037). The R2 for PFT-median value is 0.86 (p = 0.08). These two 
comparative studies demonstrate the potential of the gc-SIF model in 
TSIF/ET estimation across a wide variety of PFTs. GRA has the lowest 
mean and median T/ET values, while forests, including ENF, DBF and 
EBF (The last two are referred to BF.), have the highest mean and me
dian T/ET values. SAV, WSA, and shrublands (OSH and CSH), all have 
mean and median T/ET values around 0.6 with a large standard devi
ation. But pattern of the mean T/ET values for SAV, WSA, and shrub
lands are different in our results than in Wei’s results. In a word, our 
TSIF/ET values are well validated by TSITE/ET and T/ET from Wei et al. 
(2017). 

To further explore the performance of our gc-SIF model, we esti
mated the global mean TSIF/ET of terrestrial ecosystem for the 2018 
growing season using TSIF/ET values at the PFT scale and the method 
from Schlesinger and Jasechko (2014) combined with MODIS ET and 
landcover product (Table 3). Our growing season global mean TSIF/ET 
value is 0.57 ± 0.14. Global mean T/ET values calculated by different 
methods vary from 0.24 to 0.86, whereas our result falls within this 
range and close to their mean value. Global mean T/ET values computed 

Fig. 6. The TSIF/ET for each site calculated by the gc-SIF model.  

Fig. 7. (a) The correlation between T/ET calculated by the BBL model and by the gc-SIF model at the site scale. (b) The correlation between T/ET selected by Wei 
et al. (2017) and calculated by the gc-SIF model at the PFT scale. SHR is shrublands, including OSH and CSH. BF is broadleaf forests, including EBF and DBF. The 
small points in (b) represent the TSIF/ET value of each site when the T/ET ratio in Wei et al. (2017) is the average value of each PFT. 
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using climate models, isotopes, LAI-based models, remote sensing 
models, and WUE-based models are 0.50, 0.60, 0.59, 0.61, and 0.62. The 
uncertainties (measured as standard deviation, SD) also vary widely 
across models ranging from 0.03 to 0.33, while our global TSIF/ET has an 
SD of 0.14. Moreover, we evaluated the global mean T/ET (0.55 ± 0.07) 
for 2018 using PML-V2 data. Thus, our growing season global mean 
TSIF/ET value is comparable to the average of global mean T/ET values 
from other methods. 

3.3. Global T estimation with the gc-SIF model 

Our T estimates based on the gc-SIF model were compared to those 
from GLEAM and PML-V2 products at the site scale (Fig. 8). ET simu
lated by PML-V2 and GLEAM are strongly correlated with ET measured 
from EC flux tower, with the R values of 0.85 and 0.79. The correlations 
between the T from PML-V2 and both TSITE and TSIF are more significant 
than those between the ET from PML-V2 and the ET from the flux tower, 

Fig. 8. Comparison of ETSITE, TSITE and TSIF with GLEAM and PML-V2 products. ETSITE is ET measured by flux tower. TSITE is T calculated by the BBL model. TSIF is T 
calculated by our gc-SIF model. 

Fig. 9. The average daily T for the 2018 growing season worldwide calculated by our gc-SIF model as well as ERA5-land data and MODIS data.  
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while the correlations between the T from GLEAM and both TSITE and 
TSIF are less than those between the ET from GLEAM and the ET from the 
flux tower. Moreover, for most sites, the T estimated by GLEAM is higher 
than TSITE and TSIF. 

The global spatial pattern of the average daily TSIF for the 2018 
growing season is shown in Fig. 9. The daily mean TSIF value varies 
between 0 and 3 mm day−1 globally (Fig. 9). The growing season mean 
TSIF shows the high values (TSIF > 1.5 mm day-1) in the tropical rain 
forest area (including the Amazon basin and the Congo river basins) and 
the temperate broad-leaved forest area (including southeastern United 

States, southern Europe, and southern China). The intermediate TSIF 
values range from 0.8 mm day−1 to 1.5 mm day−1 in the crop area (e.g., 
central United States, Sahel area, central and eastern Europe, south Asia, 
and eastern China) and the ENF area (e.g., southern Canada, northern 
Europe and northeastern China). The low values (TSIF < 0.8 mm day−1) 
are in the arid and semi-arid areas, as well as the areas with high latitude 
and altitude, which are characterized by sparse vegetation. 

Our global TSIF mapping can exhibit the spatial pattern of terrestrial 
ecosystem T globally, which is consistent with the current global T es
timates. This consistency is simultaneously confirmed by the strong 

Fig. 10. The comparation of the global average daily T for the 2018 growing season between our result and both PML-V2 and GLEAM products.  
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correlation with the PML-V2 product (R2 = 0.61; RMSE = 0.60 mm 
day−1) and the GLEAM product (R2 = 0.56; RMSE = 0.75 mm day−1) on 
a per pixel basis (Fig. 10). In most places, the magnitudes of T from 
GLEAM products are higher than our results. The T of PML-V2 product 
exceeds our findings only in the areas with high T intensity (T > 1.5 mm 
day−1), mostly distributed in the tropics. In the arid and semi-arid areas, 
as well as some crop areas, the T of PML-V2 and GLEAM products is 
lower than our results. 

4. Discussion 

Accurate assessment of the contribution of T to ET is critical for 
understanding terrestrial ecosystem carbon and water cycle (Good et al., 
2015; Wei et al., 2018). This study constructed a gc-SIF model to 
simulate gc and T based on satellite SIF data. The model is used to es
timate the global mean T/ET and T values for the growing season of the 
year 2018. 

4.1. Influencing factors of partitioning T from ET based on SIF 

Our study shows that SIF links closely with GPP at different temporal 
scales (Fig. 4), consistent with previous findings (Guanter et al., 2014; 
Yang et al., 2015). The mechanic linkage between photosynthesis and 
SIF provides a valuable opportunity to estimate T, since GPP and T are 
coupled through stomatal function (Stoy et al., 2019). However, SIF 
cannot directly and exclusively estimate T, owing to the impact of 
confounding factors, such as micro-meteorological conditions, plant 
physiological characteristics, and canopy structure (Damm et al., 2018; 
Maes et al., 2020). A lucubration of the SIF-T relationship prompts re
searchers to develop two techniques for T retrieval via SIF, including the 
SIF-gc empirical relationship-based model (Shan et al., 2019) and the 
mechanism model (Feng et al., 2021; Shan et al., 2021). We adopt the 
mechanism framework proposed by Shan et al. (2021) to connect SIF 

Table A1 
The basic information of FLUXNET sites used in this study. Characteristics of the sites include latitude (in degree), longitude (in degree), hm (measurement height, 
in meters), hc (canopy height, in meters), and international geosphere-biosphere programme (IGBP) plant functional type (PFT). EBF is evergreen broadleaf forests, 
ENF is evergreen needleleaf forests, DBF is deciduous broadleaf forests, MF is mixed forests, CSH is closed shrublands, OSH is open shrublands, WSA is woody savannas, 
SAV is savannas, GRA is C3 grasslands, and GRAC4 is C4 grasslands.  

Site No. PFT Name Latitude Longitude hm hc 

AU-ASM 1 SAV Alice Springs  –22.2828  133.2493 11.6 6.5 
AU-Col 2 DBF Collie  –33.4200  116.2370 35 10 
AU-Cpr 3 OSH Calperum  −34.0027  140.5877 10 2 
AU-Das 4 WSA Daly River Cleared  −14.1592  131.3881 23 16.4 
AU-Dry 5 SAV Dry River  −15.2588  132.3706 15 12.3 
AU-Gin 6 WSA Gingin  −31.3764  115.7139 14.8 6.8 
AU-Stp 7 GRAC4 Sturt Plains  −17.1507  133.3502 4.8 1.2 
AU-Wrr 8 EBF Warra  −43.0950  146.6545 81 55 
AU-Ync 9 GRA Australia Yanco site  −34.9893  146.2907 8 1.2 
BR-Sa1 10 EBF Santarem-Km67-Primary Forest  −2.85667  −54.95889 57.8 50 
CN-Xil 11 GRA Xilinhot  43.5500  116.6667 5 1.2 
FI-Var 12 ENF Varrio  67.7549  29.6100 16.6 8.61 
FR-Pue 13 EBF Puechabon  43.7413  3.5957 12.2 7 
IT-Tor 14 GRA Torgnon  45.8444  7.5781 2.5 0.5 
RU-Fyo 15 ENF Fyodorovskoye  56.4615  32.9221 31 17 
US-Jo2 16 CSH Jornada Experimental Range Mixed Shrubland  32.5849  −106.6032 7.1 1 
US-Kon 17 GRAC4 Konza Prairie LTER (KNZ)  39.0824  −96.5603 3 0.5 
US-MMS 18 DBF Morgan Monroe State Forest  39.3200  −86.4100 46 32.2 
US-Mpj 19 WSA Mountainair Pinyon-Juniper Woodland  34.4385  −106.2377 9.33 5 
US-Rls 20 CSH RCEW Low Sagebrush  43.1439  −116.7356 2.09 0.6 
US-Rms 21 CSH RCEW Mountain Big Sagebrush  43.0645  −116.7486 2.5 1.2 
US-Rws 22 OSH Reynolds Creek Wyoming big sagebrush  43.1675  −116.7132 2.05 0.6 
US-Syv 23 MF Sylvania Wilderness Area  46.2420  −89.3477 36 21.8 
US-Vcm 24 GRA Valles Caldera Mixed Conifer  35.8884  −106.5321 23.6 19.1 
US-Vcp 25 ENF Valles Caldera Ponderosa Pine  35.8642  −106.5967 23.8 21 
US-WCr 26 DBF Willow Creek  45.8059  −90.0799 29.6 18 
US-Whs 27 OSH Walnut Gulch Lucky Hills Shrub  31.7438  −110.0522 6.5 0.5 
US-Wjs 28 SAV Willard Juniper Savannah  34.4255  −105.8615 8 2 
US-Wkg 29 GRAC4 Walnut Gulch Kendall Grasslands  31.7365  −109.9419 6.4 0.3 
US-xJR 30 OSH NEON Jornada LTER (JORN)  32.5907  −106.8425 6.5 0.8  

Table A2 
The data availability after quality control at all sites.  

Site ID Site name PFT Number of hourly data 

1 AU-ASM SAV 1108 
2 AU-Col DBF 2297 
3 AU-Cpr OSH 3825 
4 AU-Das WSA 2291 
5 AU-Dry SAV 2427 
6 AU-Gin WSA 2782 
7 AU-Stp GRAC4 1490 
8 AU-Wrr EBF 1054 
9 AU-Ync GRA 3299 
10 BR-Sa1 EBF 1679 
11 CN-Xil GRA 1764 
12 FI-Var ENF 1804 
13 FR-Pue EBF 1693 
14 IT-Tor GRA 3228 
15 RU-Fyo ENF 3501 
16 US-Jo2 CSH 1135 
17 US-Kon GRAC4 1437 
18 US-MMS DBF 3052 
19 US-Mpj WSA 1837 
20 US-Rls CSH 1806 
21 US-Rms CSH 1781 
22 US-Rws OSH 933 
23 US-Syv MF 2818 
24 US-Vcm GRA 2427 
25 US-Vcp ENF 2316 
26 US-WCr DBF 3595 
27 US-Whs OSH 2891 
28 US-Wjs SAV 3512 
29 US-Wkg GRAC4 765 
30 US-xJR OSH 2173  
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with gc (Eq. (8)). This framework is a semi-mechanistic model for esti
mating gc by combining theories on the photosynthetic pathway and 
optimal stomatal behavior. The results indicate that the relationship 
between SIF and gc × VPD0.5 has improved performance over that be
tween SIF and GPP (Fig. 4), accounting for the enhancement of VPD on 
the correlation of SIF-gc. With an increase in VPD, the stomatal closure 
reduces the diffusion of CO2 into the mesophyll, causing imbalances 
between carboxylation and the harvest of light, then reduces GPP and 
SIF (Paul-Limoges et al., 2018). Other mechanism models suggest that 
VPD may also optimize T retrieval through SIF (Feng et al., 2021), since 

VPD is a key parameter in the PM model and contributes to the expla
nation of large variability in the SIF-T relationship at the ecosystem scale 
(Jonard et al., 2020). 

Considering that the SIF-gc × VPD0.5 connection varies with PFTs 
(Shan et al., 2021), we calculated the model parameters a and b of the 
equation for each PFTs (Fig. 5 and Table 2). We find that the model slope 
of GRAC4 is much greater than that of GRA, which might be attributed to 
different photosynthetic strategies of C3 and C4 plants (Table 2). This 
may be because the GPP of C4 plants is more sensitive to SIF than that of 
C3 plants (Li et al., 2018; Liu et al., 2017), and C3 plants are more likely 

Table A3 
The correlations between SIFTRO and both gc × VPD0.5 and GPP at all sites. R2 is the coefficient of determination. The count is the number of useful 16-day observations. 
R is the Pearson correlation coefficient. The red numbers in column R for gc × VPD0.5 indicate that R for gc × VPD0.5 is greater than R for GPP.  
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to exhibit a positive ET response than C4 plants (Massmann et al., 2019). 
Different PFTs within C3 plants differ in SIF, LAI and response to stress, 
and water stress stability in forests is much larger than in grasslands 
(Isbell et al., 2015; Zhang et al., 2019c). As a result, a calibration of the 
gc-SIF model is also required for independent PFTs of C3 plants. Our 
results show that the SIF-gc × VPD0.5 correlations are relatively weak in 

GRA and OSH because GPP, SIF and VPD in these PFTs with low vege
tation coverage, are generally more vulnerable to environmental factors. 
The lower model slopes in these PFTs are probably due to a lower m 
value in the BBL model (Table 1). The m value varied among PFTs, 
especially for forests, due to the possibility that the big-leaf model 
applied in forests with a high LAI generally underestimates GPP 

Fig. A1. Vegetation types of the 10-km buffer zone around each site. The first line in the upper left corner of each small plot represents the vegetation type of the site 
and its proportion within the 10-km buffer zone, and the other lines represent the proportion of other main vegetation types. When the vegetation type proportion of 
the site within the 10-km buffer is<75%, the correlation coefficient between LAI of the 1-km buffer and the 10-km buffer of the site are marked with white words 
below each site. 
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(Sprintsin et al., 2012). 
The precipitation interception process has an important effect on the 

accuracy of T partitioning from ET. The inaccurate description of the 
interception process is one of the major reasons for the general under
estimate of T/ET by climate models (Lian et al., 2018). In addition, the 
large difference in T/ET values from two isotope methods reported are 
mainly due to the disparate interception evaporation fluxes they used 
(Good et al., 2015; Jasechko et al., 2013). As for PM-MOD model, pre
vious studies indicate its interception evaporation is much greater than 
that from other global ET products (i.e., GLEAM and PT-JPL) (Miralles 
et al., 2016). This is because the rs of the wet canopy is underestimated 
in the PM-MOD model (Yue et al., 2021; Zhang et al., 2019a). In this 
study, our treatment of I is partially consistent with the PM-MOD model 
by distinguishing wet and dry surfaces, but we simply remove the energy 
of interception evaporation, independent of the resistance, implying that 
our treatment of the interception process has less effect on the parti
tioning of T from ET. 

Moreover, our results show that the correlation between SIF and gc 
× VPD0.5 is more robust at a coarser temporal scale (Figs. 4 & 5), which 
is similar to previous works on the more linear relationship between GPP 
and SIF from short to longer time scales (Frankenberg et al., 2011; Yang 
et al., 2017). This temporal aggregation effect is also observed in the SIF- 
T relationship in the temperate forest ecosystem (Lu et al., 2018), which 
suggests that both SIF and gc × VPD0.5 are sensitive to other environ
mental factors in different ways. 

4.2. Comparison with other independent ET partitioning products 

We compare T/ET across different PFTs at the site scale and find a 
trend toward a higher T/ET for PFTs with higher vegetation coverage 
(Figs. 6 & 7). This trend coincides with the nonlinear relationship be
tween T/ET and LAI found by Wang et al. (2014) and Wei et al. (2017). 
However, this trend has been challenged in high LAI ecosystems, with a 
close T/ET value (0.78) for ENF and EBF (Figs. 6 & 7). The underlying 
mechanism is that more precipitation interception of broad-leaved for
ests results in an increased I than that of coniferous forests during the 
growing season (van Dijk et al., 2015). For grasslands, significant 

differences in T/ET are observed between our study and Wei et al. 
(2017), primarily derived from photosynthetic pathways. The T/ET of 
GRAC3 is much lower than that of GRAC4 (Fig. 6). Compared with GRAC3, 
GRAC4 has a very low Γ and can sustain photosynthesis with very low gc 
under conditions of high atmospheric water demand and limited water 
availability (Brooks and Farquhar, 1985). This may cause C4 plants to 
maintain low gc and T, and to continue emitting SIF under water stress. 
Our study and Wei et al. (2017) indicate that the T/ET for SAV, WSA and 
shrublands (OSH and CSH) is about 0.6 with a large standard deviation 
(Fig. 7). Statistically, the large standard deviation is due to the small 
sample size and the occurrence of outliers (Fig. 7). The large standard 
deviation causes the PFT-mean pattern of SAV, WSA and shrublands to 
be opposite to the PFT-median pattern, and the PFT-median pattern is in 
line with Wei et al. (2017). If using more sites in the future comparison, 
it is expected the discrepancy of PFT-mean pattern in T/ET ratio for SAV, 
WSA and shrublands between our and Wei’s results may not exist. 
Ecologically, the large standard deviation may be because in SAV, WSA 
and shrublands, surface landscape heterogeneity affects the fraction of 
absorbed PAR by leaves and further eco-hydrological processes, partic
ularly T (Kobayashi et al., 2012). Besides, the large standard deviation 
may also be due to the distinct patterns of carbon–water coupling be
tween herbaceous and woody plants in SAV, WSA and shrublands (Wei 
et al., 2017). Moreover, SAV, WSA and shrublands are usually vegetated 
sparsely, which may result in a situation where E predominates over T. 

We collected the results of global mean T/ET derived from 36 
different methods (Table 3). The estimated global mean T/ET is>50% 
for most methods. Our global mean T/ET value of 0.57 closes to the 
ensemble mean of global T/ET (0.549) from these different methods. 
Climate models generally underestimate the global mean T/ET due to 
the inaccuracies in their representation of canopy light use and root 
water uptake processes (Lian et al., 2018). Hydrological processes-based 
climate models, such as ParFlow-CLM (Maxwell and Condon, 2016) and 
T&C (Fatichi and Pappas, 2017) generally calculate a greater T/ET than 
the other models. Global mean T/ET values derived from isotopes, LAI- 
based models, remote sensing models and WUE-based models are all 
around 0.6, which are slightly higher than our results. The lower value 
in our study may be because we compare T/ET on different timescales. 

Fig. A2. The relationship of daily mean gc between from the BBL model and from the BBM model. The fitted g0 and g1 values on the BBM model for different PFTs 
are from Lin et al. (2015), in which g0 is 0 for every PFTs, and g1 are 2.35 in ENF, 4.12 in EBF, 2.35 in DNF, 4.45 in DBF, 4.7 in Shrub, 5.25 in GRA, 1.62 in GRAC4. 
The fitted g1 values in Sav and WSA are 4.8 and 6.7. 
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Growing season with sufficient precipitation generally leads to an 
increased I and hence a drop in T/ET, particularly for forests. The lower 
T/ET in our study may also be a consequence of the neglect of the impact 
of C4 plants and crops when upscaling T/ET to the global terrestrial 
ecosystem. They generally have a greater T/ET value than C3 plants. The 
greater T/ET achieved using isotope method may be due to the signifi
cant uncertainties of isotopic ratios under weak turbulence conditions 
(Wei et al., 2015) or the overestimation of T in cases of hydrologic 
decoupling (Brooks et al., 2010). The greater T/ET value derived using 
LAI-based model, especially the method of Wang et al. (2014), is most 
likely attributed to the inadequacy of the statistical method used to 
calculate global average, which is simply an arithmetic average of all 
observations. The global per-pixel calculation method (Wei et al., 2017) 
and the weighted average method (this study) (Schlesinger and 
Jasechko, 2014) are more acceptable. There are two possible explana
tions for the greater T/ET value calculated by Li et al. (2019) in the 
WUE-based model: the statistical method used and the omission of I. 

When compared to remote sensing models, our method produces 
comparable global mean T/ET values as PT-JPT and PML-V2, whereas 
GLEAM, PML and Gerrits’s model generate larger global mean T/ET 
values and PM-MOD has a lower global mean T/ET value. GLEAM and 
Gerrits’s model have approximate estimation of T and ET (Mianabadi 
et al., 2019). A comparative study finds that PT-JPT is the closest to the 

actual T/ET value, while GLEAM (PM-MOD) overestimates (un
derestimates) T/ET based on field observations (Talsma et al., 2018). 
Another reason for underestimating T/ET by PM-MOD is that it signif
icantly overestimates I as shown in section 4.1. GLEAM substantially 
underestimates soil evaporation but slightly overestimates T, resulting 
in a high accuracy of ET estimates (Talsma et al., 2018). This perspective 
coincides with our findings that the T estimates in GLEAM are system
atically greater than our global simulations (Figs. 8 & 10). The most 
possible reason why PML has a larger global mean T/ET value than our 
result is that PML overestimate T since the gc of PML is calculated 
through empirical equations based on LAI and PAR without considering 
water and heat stresses (Leuning et al., 2008). Thus, based on PML, the 
PML-V2 optimizes the original gc module into the Ball-Berry model with 
carbon–water coupling characteristics (Gan et al., 2018). The PML-V2 
has been proved to perform better in estimating GPP and ET (Zhang 
et al., 2019b). The estimation of T illustrates that our result is consistent 
with PML-V2 at the site scale (Fig. 8). Nevertheless, when compared to 
PML-V2, our global patterns of T indicate that it is larger in the tropics 
and lower in the drylands (Fig. 10). The explanation may include the 
following aspects: 1) The relationship between SIF and the modeled GPP 
varies in these two regions; 2) We estimate T by treating C4 plants as C3 
plants; 3) The available energy for T in our model is different from PML- 
V2. 

4.3. Implications and limitations 

Our study may have important implications for assessing regional 
and global water flux under climate change. This new framework reveals 
that satellite SIF may be utilized to precisely estimate T/ET and monitor 
the spatio-temporal variations in terrestrial T at the regional and global 
scale combined with meteorological data (Figs. 7 & 9). The T/ET value 
calculated using SIF can help to resolve whether T/ET is constrained by 
vegetation characteristics and environmental factors (Fatichi and Pap
pas, 2017; Niu et al., 2019; Paschalis et al., 2018; Wei et al., 2017). In 
addition, previous empirical techniques employing vegetation indexes 
or LAI can produce T, but hardly capture the temporal variations of T 
since they are limited to environmental conditions and ecosystems 
(Zhang et al., 2016a). Our SIF-based approach is useful to resolve this 
shortcoming because SIF is more sensitive than other remotely sensed 
vegetation parameters to plant photosynthetic and water/heat stresses 
(Song et al., 2018; Yoshida et al., 2015). A remotely sensed ET model 
with better performance can be developed in association with appro
priate remote sensing models for I and E. This could be used to improve 
the simulation accuracy of the global water and energy cycle. 

However, there are still some limitations in this study. First, our 
method may be inapplicable in the condition of carbon–water decou
pling. For example, forests may decouple photosynthesis and T in 
response to heat extremes and sufficient water availability (De Kauwe 
et al., 2019). The trade-off between leaf water potential regulation and 
stomatal behavior may influence the effect of VPD on the SIF-gc rela
tionship (Martinez-Vilalta and Garcia-Forner, 2017). Second, the clas
sification of PFTs is inadequate and needs further refined. The remote 
sensing methods for T retrieval, such as PM-MOD, generally divide the 
global ecosystem into 11 or more PFTs (Mu et al., 2011). Our model 
examines 10 PFTs and did not distinguish crops or wetlands. Moreover, 
we do not consider the proportion of C4 grasslands in our global T 
simulation due to lack of accurate global map of C4 plants, even though 
we have developed models for C4 grasslands. Third, the validation of our 
model may be limited by the source of validated data. While we vali
dated our results from satellite SIF data using EC flux tower and other 
remote sensing products, the flux tower T/ET is achieved by simulation, 
not by independent field measurements such as the isotope method. 

5. Conclusion 

Our results show that SIF has a stronger relationship with gc × VPD0.5 

Fig. A3. The T/ET for each site calculated using the BBL model.  
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than GPP, and the SIF-gc × VPD0.5 linear regression at the 16-day scale 
are tighter and sharper than at the daily scale. Based on the regression, 
we developed the SIF-driven semi-mechanism gc model on various PFTs 
and use the PMopt model to calculate T and T/ET. Correlations between 
TSIF/ET and T/ET values from other independent techniques are excel
lent at both site and global scale. After the implementation of our gc-SIF 
model, we estimate the global mean T/ET of the terrestrial ecosystem for 
growing season in 2018 (0.57 ± 0.14) that is close to the mean T/ET 
value (0.55) of the current models from other 36 methods. Ultimately, 
we simulate global T for the 2018 growing season at the resolution of 
0.1◦ × 0.1◦and compare it to two commonly used remote sensing 
retrieval products. Our model provides a valuable complement to 
remote sensing-based T and ET retrieval, and has critical implications 
for assessing eco-hydrological processes under climate change. More 
consideration about condition of carbon–water decoupling, different 
PFTs, and source of validated data will be useful in future studies. 
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Table B1 
All abbreviations and their meanings in this study.  

Abbreviation Full name Abbreviation Full name Abbreviation Full name 

a slope for the linear relationships between gc ×

VPD0.5 and SIF for each PFT 
GLEAM Global Land Evaporation 

Amsterdam Model 
Rl↓ downward thermal radiation 

An net assimilation rate or gross photosynthesis GPP vegetation productivity Rl↑ upward thermal radiation 
b intercept for the linear relationships between gc 

× VPD0.5 and SIF for each PFT 
GRA C3 grasslands RMSE root mean square error 

BBL Ball-Berry-Leuning GRAC4 C4 grasslands Rn net radiation 
cp specific heat of the air Gs surface conductance Rnl surface net thermal radiation 
CO2 carbon dioxide hc canopy height Rns surface net solar radiation 
Cs [CO2] at the leaf surface hm measurement height Rs↓ downward solar radiation 
[CO2] CO2 concentration I interception evaporation Rs↑ upward solar radiation 
CSH closed shrublands LAI leaf area index SAV savannas 
DBF deciduous broadleaf forests LE latent heat flux SIF solar-induced chlorophyll 

fluorescence 
D0 an empirically fitted parameter representing the 

sensitivity of stomata to changes in Ds 

m slope in BBL model calculated 
from empirical data 

T transpiration 

Ds humidity deficit at the leaf surface MAE mean absolute error Tair 2 m temperature 
esat saturated vapor pressure MF mixed forests Tdew 2 m dewpoint temperature 
esat,dew esat at dew point temperature MODIS moderate resolution imaging 

spectroradiometer 
TSITE T calculated using gcSITE 

E evaporation MSE mean square error TSIF T calculated using gcSIF 

EBF evergreen broadleaf forests OSH open shrublands T/ET ratio of T to ET 
ECMWF European Centre for Medium-Range Weather 

Forecasts 
P surface pressure TSITE/ET ratio of TSITE to ET 

ENF evergreen needle forests PAR photosynthetically active 
radiation 

TSIF/ET ratio of TSIF to ET 

ERA5-Land the 5th ECMWF reanalysis for land PFT plant functional type TROPOMI TROPOspheric Monitoring 
Instrument 

ET evapotranspiration PM Penman-Monteith model u wind speed 
fPAR fraction of PAR absorbed by vegetation PML Penman-Monteith-Leuning 

model 
u* friction velocity 

fwet wet surface fraction PML-V2 Penman-Monteith-Leuning- 
Version 2 model 

Vm coefficient when converting gs from 
mol m−2 s−1 to m s−1 

g0 minimum conductance in BBL model calculated 
from empirical data 

PMopt optimized Penman-Monteith 
model 

VPD vapor pressure deficit 

gc canopy conductance PM-MOD MODIS evapotranspiration 
model 

WSA woody savannas 

gcSITE gc calculated using BBL model PT-JPL Priestley-Taylor Jet Propulsion 
Laboratory model 

WUE water-use efficiency 

gcSIF gc calculated using gc-SIF model ra aerodynamic resistance Δ slope of the saturation vapour 
pressure temperature relationship 

gc-SIF model PFT-specific SIF-driven semi-mechanism gc 
model 

rs surface resistance Γ CO2 compensation point 

gs stomatal conductance R Pearson’s correlation coefficient γ psychrometric constant 
G ground heat flux R2 goodness of fit λ latent heat of vaporization 
GEE google earth engine RH air relative humidity ρa mean air density at constant pressure  
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Menzer, O., Reichstein, M., 2018. Basic and extensible post-processing of eddy 
covariance flux data with REddyProc. Biogeosciences. 15 (16), 5015–5030. https:// 
doi.org/10.5194/bg-15-5015-2018. 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., 
Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., 
Mocko, D., 2012. Continental-scale water and energy flux analysis and validation for 
the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. 
Intercomparison and application of model products: WATER AND ENERGY FLUX 
ANALYSIS. J. Geophys. Res. 117 (D3) https://doi.org/10.1029/2011JD016048. 

Yang, H., Yang, X.i., Zhang, Y., Heskel, M.A., Lu, X., Munger, J.W., Sun, S., Tang, J., 
2017. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from 
leaf to canopy in a temperate forest. Global Change Biol. 23 (7), 2874–2886. https:// 
doi.org/10.1111/gcb.13590. 

Yang, M.H., Zuo, R.T., Wang, L.Q., Chen, X., 2018. A simulation study of global 
evapotranspiration components using the community land model. Atmosphere. 9 
(5), 178. https://doi.org/10.3390/atmos9050178. 

Yang, X., Tang, J., Mustard, J.F., Lee, J.-E., Rossini, M., Joiner, J., Munger, J.W., 
Kornfeld, A., Richardson, A.D., 2015. Solar-induced chlorophyll fluorescence that 
correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate 

deciduous forest. Geophys. Res. Lett. 42 (8), 2977–2987. https://doi.org/10.1002/ 
2015gl063201. 

Yoshida, Y., Joiner, J., Tucker, C., Berry, J., Lee, J.-E., Walker, G., Reichle, R., Koster, R., 
Lyapustin, A., Wang, Y., 2015. The 2010 Russian drought impact on satellite 
measurements of solar-induced chlorophyll fluorescence: Insights from modeling 
and comparisons with parameters derived from satellite reflectances. Remote Sens. 
Environ. 166, 163–177. https://doi.org/10.1016/j.rse.2015.06.008. 

Yoshimura, K., Miyazaki, S., Kanae, S., Oki, T., 2006. Iso-MATSIRO, a land surface model 
that incorporates stable water isotopes. Global Planet. Change. 51 (1–2), 90–107. 
https://doi.org/10.1016/j.gloplacha.2005.12.007. 

Yue, K., De Frenne, P., Fornara, D.A., Van Meerbeek, K., Li, W., Peng, X., Ni, X., Peng, Y., 
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