

1 Sputtering deposition under limited adatom mobility: an effective method to  
2 prepare a SERS substrate based on Ag@ZnO composite deposited onto electrospun  
3 cellulose acetate fibers

4 **Adrián Camacho-Berrios<sup>1</sup>, Oscar Marcelo Suárez<sup>1</sup>**

5 *Department of Engineering Sciences and Materials, <sup>1</sup>University of Puerto Rico - Mayagüez,  
6 Puerto Rico, USA*

7 **Corresponding author email:** adrian.camacho@upr.edu

8 **Abstract:** Sputtering is a well-known physical vapor deposition method for the synthesis of coatings and  
9 thin films. When combined with other techniques, such as electrospinning, it becomes a straightforward  
10 yet effective method to prepare substrates that can render various morphological structures at the nano  
11 and micrometer scale. The resulting substrates possess high surface area, making them suitable for  
12 applications such as gas sensing and surface-enhanced Raman scattering (SERS). The present work  
13 reports the successful magnetron sputtering deposition of silver/zinc oxide (Ag@ZnO) onto cellulose  
14 acetate fibers. By adjusting the sputtering process parameters, we limited the deposition of ZnO and Ag to  
15 be under limited adatom mobility conditions. Secondary electron imaging revealed that the resulting ZnO  
16 morphology on the fibers presented a columnar grain morphology at the nanometer scale. The ZnO  
17 crystallites of the said grains possessed a wurtzite structure, as shown by Raman spectroscopy. Ag  
18 sputtering deposition onto the previously deposited ZnO-covered fibers, produced under limited adatom  
19 mobility and short deposition time, rendered nanoparticles of various shapes and sizes, as revealed by  
20 electron microscopy. Then, using benzenethiol (BZT) and rhodamine 6G (R6G) as the probe molecules,  
21 the Ag@ZnO/CA fibers were tested as SERS substrates. All the prepared composite materials showed  
22 good SERS response towards the BZT and R6G. In summary, the novel approach is a practical and  
23 straightforward route for preparing Ag/ZnO-based SERS substrates.

24 **Keywords:** Sputtering, Ag@ZnO composite, SERS, cellulose acetate fibers

25 **Acknowledgments**

26 This work was supported by the National Science Foundation grants number 2112537 (NSF CREST  
27 Postdoctoral Research Fellowship) and 1345156 (NSF CREST Program). Infrastructure support by the  
28 UPRM Dean of Students Office is acknowledged by coauthor Suárez. The authors would like to thank the  
29 Material Characterization Center of the University of Puerto Rico (UPR) for electron microscopy services  
30 and Dr. Danilo Barrionuevo (UPR- Cayey campus) for his assistance in the profilometer measurements.  
31 The authors acknowledge the UPR-Cayey campus for the sputtering facilities. The authors acknowledge  
32 the UPR Molecular Science Research Center for the Raman and SERS measurements. We also kindly  
33 acknowledge Professors Marco De Jesus and Francisco Bezires for many helpful discussions about  
34 SERS. The authors would like to thank Dr. Wilfredo for his valuable and constructive suggestions during  
35 the revision process of the manuscript.

36 **Adrian Camacho Berrios (ORCID 0000-0002-1673-1663)**

37 **Oscar Marcelo Suarez (ORCID 0000-0002-3797-4787)**

38 **1 Introduction**

39 As an analytical technique, Surface-enhanced Raman Scattering (SERS) is of great interest to  
40 researchers for its potential applications in various fields such as environmental science [1,2], food safety  
41 [3,4], agriculture [5], and forensic sciences [6,7], due to its ability to detect molecules at trace levels. In  
42 SERS, the characteristic vibrational modes of a molecule can be identified from the interaction between  
43 the electromagnetic radiation and the molecule being studied [8]. This is similar to Raman scattering,  
44 although SERS signals are enhanced several orders of magnitude. The origin of this enhancement lies in  
45 the physical properties of the substrates. These substrates are typically metals where charge density  
46 oscillations couple resonantly with the electromagnetic radiation forming a surface plasmon, for  
47 continuous metal surfaces, or a localized surface plasmon (LSP) for metallic nanoparticles [9]. Surface  
48 plasmons (continuous or localized) and the lightning rod effect contribute to the electromagnetic (EM)  
49 enhancement mechanism, one of the two main enhancement mechanisms known in SERS, the other one  
50 being the chemical enhancement mechanism [10].

51 Early studies on metallic nanoparticles showed that the SERS effect could be optimized by tuning the  
52 size and shape of the nanoparticles. For instance, Barbosa et al. [11], tuned the LSP resonance frequency  
53 of star-shaped Au nanoparticles by changing their dimensions. Similarly, Zhang et al. [12], demonstrated  
54 that the LSP could be tuned by controlling the thickness and shape of the Ag nanoplates. Another aspect  
55 of shapes such as nanostars and nanoplates is the occurrence of tips and sharp edges that can concentrate  
56 electromagnetic radiation, contributing to EM enhancement, as indicated by Barbosa. The extra  
57 enhancement is also attributed to tips in other shapes, such as popcorn-like nanoparticles [13]. Despite the  
58 advantage of easy preparation and tunable optical properties, the agglomeration of the nanoparticles is a  
59 significant drawback for practical applications because they can be randomly organized, making it  
60 challenging to control them, therefore, affecting the reproducibility of those experiments.

61 The agglomeration problem was offset by fabricating highly oriented arrays of metallic nanostructures  
62 on rigid substrates [14–16]. One example is the dimmer-based optical antennas fabricated by Zhu et al.  
63 [16]. These antennas are made of an array of dimers fabricated on an indium tin oxide-coated glass via e-  
64 beam lithography. This method allows for the precise control of the dimmer size and the gap between the  
65 dimers where the EM field is intense. These authors also fabricated antennas with gaps between the  
66 dimers as small as 3 nm allowing for a high SERS response. Like the tips and sharp edges of the  
67 nanoparticles, gaps play an essential role as the EM field within the nanoparticles provide a considerable  
68 EM enhancement compared to an isolated nanoparticle [17]. Although these nanostructures show high  
69 SERS performance, their practical application can be limited by their production methods since they can  
70 be expensive, time-consuming, and technically challenging.

71 Metal oxide composite-based SERS substrates such as copper(II) oxide Nanowires/ copper(I) oxide  
72 (CuO Nanowires/Cu<sub>2</sub>O) [18], silver/zinc oxide (Ag@ZnO) [19], and gold/zinc oxide (Ag@ZnO) [20]  
73 composites have the potential to overcome the abovementioned difficulties and have also attracted  
74 attention due to their multifunctional properties. Compared to SERS substrates based on pure metallic  
75 nanoparticles, metal-metal oxide composite based on Ag@ZnO or Au@ZnO inherit their  
76 multifunctionality from the ZnO properties, in addition to displaying high SERS enhancement [21], low  
77 detection limit of probe molecules [22,23], and good SERS signal uniformity [20,24]. For example, a  
78 porous ZnO layer covering the Au nanoparticles can provide adsorption sites for gas molecules to detect  
79 benzene-volatile organic compounds [25]. Furthermore, the said layer contributes to the SERS signal  
80 through the chemical enhancement mechanism. Additionally, ZnO photocatalytic properties are known  
81 for helping develop recyclable or reusable SERS substrates [19,22,26,27]. In the past decade, researchers  
82 have prepared these composites in remarkable morphologies like nanoneedles arrays [28], nanorods

83 arrays [29,30], nanodomes [31], nanomaces [32], multipods [27], nanoflowers [33], fibers [34,35] and  
84 nanofibers [36]. Specifically, fiber-based SERS substrates are very interesting for fabricating wearable  
85 SERS optical sensors [37].

86 Different methods have been applied to fabricate Ag@ZnO, Au@ZnO fibers, and nanofibers. Most  
87 combine techniques such as hydrothermal, electrospinning, and sputtering. For example, Park et al.  
88 worked on electrospun Ag@ZnO nanofibers using polyvinyl alcohol (PVA) and metal-polymer precursors  
89 followed by thermal treatments [36]. Fang Lu et al. [38] combined electrospinning with hydrothermal and  
90 photoreduction processes to synthesize Ag nanoparticles on ZnO nanorods grown on polyimide/Ag  
91 nanofibers. Other methods rely on the use of sputtering deposition either alone or in combination with  
92 another technique. For example, a hydrothermal method was used to prepare ZnO nanorods on a  
93 stainless-steel fiber decorated with Au nanoparticles deposited by ion sputtering [35]. Yuan et al. sputtered  
94 Ag/ZnO thin films on polyester fibers [34]. In summary, different combinations of techniques were  
95 available to prepare Ag@ZnO on nanofibers. Nonetheless, little attention has been paid to the sputtering  
96 deposition of both constituents of the composite onto the fibers.

97 Combining sputtering deposition and electrospinning turns into a simple and effective method for  
98 fabricating substrates that yield high surface area and interesting morphological structures where the  
99 fibers are used as scaffolds. By adjusting the sputtering process parameters, the morphological structures  
100 can be varied at the micro and nanoscale. For example, Pantojas et al. [39] prepared palladium nanoshells  
101 by sputtering palladium onto electrospun polyethylene oxide (PO) nanofibers. After the sputtering  
102 deposition, they heated the samples in air to remove the PO nanofibers. By tuning the sputtering  
103 parameters, these authors modified three types of structures within the palladium nanoshells: the  
104 columnar structure, the shape of the nanoshell walls, and their crystallinity. The shape of the nanoshell  
105 walls could change from nanoribbons to fully formed tubes by increasing the sputtering time such that the  
106 sputtered material covered the PO nanofibers completely. Under low adatom mobility conditions (e.g.,  
107 low substrate temperature and relatively high sputtering pressure), the palladium nanoshells had columnar  
108 grains. This approach is suitable for substrates with a high surface area that could be used in many  
109 applications, such as gas sensing and SERS.

110 In the present work, we follow the ideas presented by Pantojas et al. and extend them to the sputtering  
111 deposition of ZnO and Ag onto cellulose acetate (CA) fibers. By adapting the said technology, we have  
112 successfully prepared an Ag@ZnO composite magnetron-sputtered onto electrospun CA fibers  
113 (Ag@ZnO/CA fibers) under low adatom mobility conditions. Our work offers a facile approach to  
114 produce Ag@ZnO/CA fibers that can be used as SERS sensors for various applications. This research also  
115 provided insight into the effects of limited adatoms mobility conditions on the morphology and optical  
116 properties of Ag@ZnO/CA fibers. The resulting composite fibers were tested as a SERS substrate using  
117 benzenethiol (BZT) and rhodamine 6 G (R6G) as probe molecules.

## 118 2 Methodology

119 The present study aims to prepare an Ag@ZnO composite sputtered onto electrospun CA fibers that  
120 were subsequently tested as SERS substrates using BZT. Preparing the composite structure comprised  
121 three steps: (a) the synthesis of the cellulose acetate fibers; (b) the ZnO sputtering deposition onto the AC  
122 fibers, and (c) the Ag sputtering deposition onto the ZnO-fiber composite. The following sections describe  
123 the methodology and the characterization used in this work.

### 124 2.1 Synthesis of cellulose acetate fibers

125 We first dissolved cellulose acetate powder into a mixture of dimethylformamide (DMF), ethanol, and  
126 acetone to synthesize the CA fibers preparation. Subsequently, we magnetically stirred the solution  
127 overnight to obtain a homogeneous one. Then, the solution was electrospun using a laboratory-made  
128 electrospinning system under a potential difference of 20 kV and a 0.5 ml/h flow rate. Finally, we  
129 collected the fibers onto 1 cm<sup>2</sup> glass slides placed on a collector.

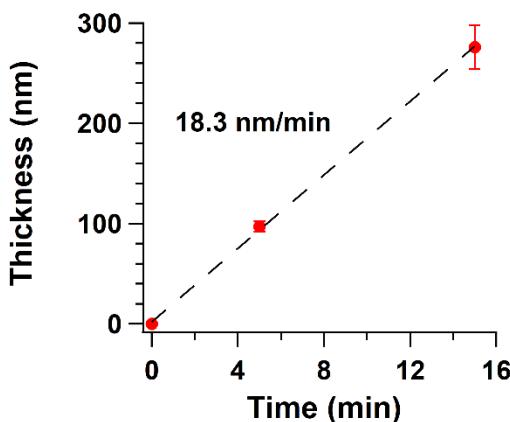
130 **2.2 ZnO sputtering**

131 A reactive direct current (DC) magnetron sputtering deposited a ZnO layer on the cellulose acetate  
132 fibers. The fibers were placed in a 1.3x10<sup>-4</sup> Pa pressure chamber. For the ZnO sputtering, we used a 50.8  
133 mm metallic Zn target at 6 cm from the substrate. Before the sputtering deposition of ZnO, the Zn target  
134 was pre-sputtered in an Ar atmosphere for 120 s to clean the target and do the depositions in the metallic  
135 mode. A 1.3 Pa pressure, using Ar and oxygen as reactive gas, and 100 W sputtering power were used for  
136 the deposition. The oxygen-to-argon flow ratio and the sputtering deposition time were set at 30 % and  
137 600 s, respectively.

138 **2.3 Sputtering deposition of Ag**

139 We silver-coated the ZnO/CA fibers via DC magnetron sputtering. The deposition was carried out  
140 under an Ar atmosphere of 1.7 Pa, using a 25.4 mm diameter Ag target and 50 W of sputtering power. The  
141 target-to-substrate distance was 6.5 cm, and the sputtering times were 5, 10, and 15 s. All the sputtering  
142 depositions were carried out without intentionally heating the substrate.

143 **2.4 Characterization of the substrates**

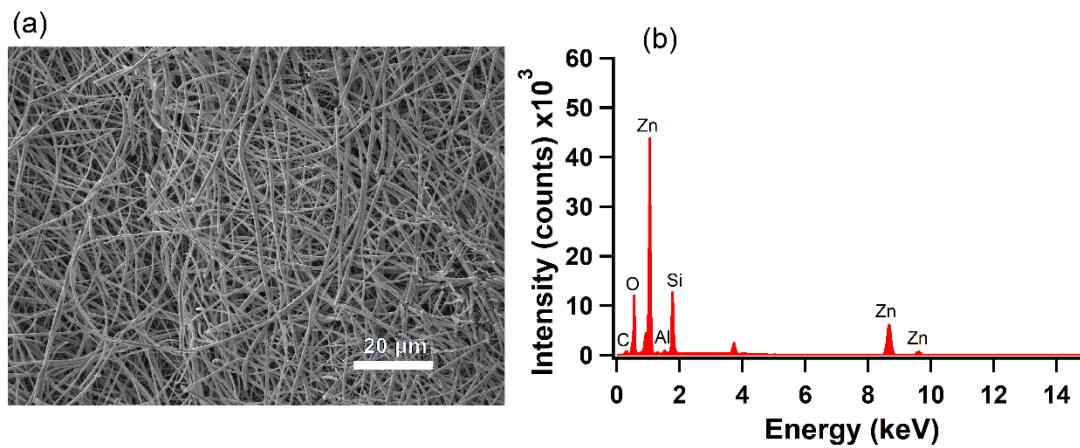

144 A masked silicon substrate, included alongside the CA fibers during the sputtering deposition, was  
145 used to create a ZnO step that was measured using a stylus profilometer to obtain the deposited thickness.  
146 The ZnO layer thickness was measured as a function of the sputtering time. The deposition rate was  
147 estimated by dividing the layer thickness by the sputtering deposition time. The same procedure was  
148 followed to determine the Ag deposition rate. The morphology and elemental composition were evaluated  
149 using a scanning electron microscope with an energy-dispersive spectroscopy module. As the Ag  
150 deposited on the ZnO/CA fibers can suffer from oxidation due to the ambient conditions and thus reduce  
151 the performance of the SERS substrate, we stored the samples in a vacuum desiccator under partial  
152 vacuum conditions until each characterization. For the BZT SERS measurements, a Raman microscope  
153 (Thermo Fisher Scientific Inc, USA), with an excitation source of 532 nm. All the spectra were obtained  
154 using a 10x objective lens with a 5 mW laser power and 5 s exposure time with two accumulations. To  
155 minimize the fluorescence effect of the R6G molecules on the SERS spectra, we used 0.5 mW power to  
156 collect the R6G spectra with 2 s exposure time and eight acquisitions. The SERS spectra were baseline-  
157 corrected Asymmetric Least Square Smoothing. The peaks were fitted using the Multi-Peak Fitting  
158 package from Igor Pro (WaveMetrics, Lake Oswego, OR, USA), with Gaussian shape peaks and a  
159 constant function baseline.

160 **3. Results and discussion**

161 **3.1 Sputtering deposition of ZnO onto the CA fibers**

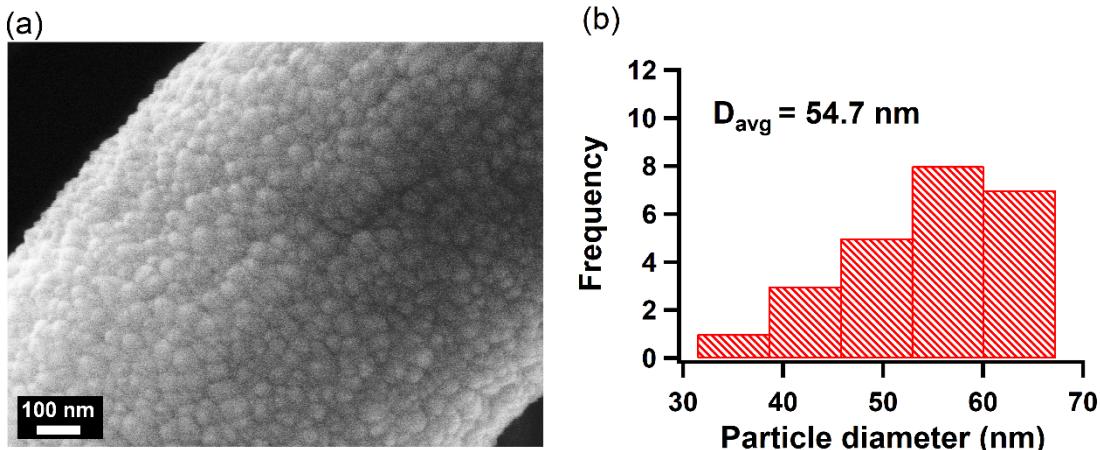
162 The magnetron sputtering technique will permit the deposition of ZnO on cellulose nanofibers [40–  
163 44]. Sputtering is a widely used coating technique where through a cold plasma glow discharge and gas  
164 ion bombardment onto the target material's surface; atoms are sputtered on a substrate [45]. With this  
165 technique, one can make coatings of any material, including compounds such as ZnO. One way to prepare  
166 compounds is reactive sputtering [41]. The ZnO's deposition by reactive sputtering using a Zn target has

167 some advantages compared to the direct sputtering from a ZnO target. Firstly, Zn targets have higher  
 168 purity than ZnO targets. ZnO targets are made by hot pressing and sintering powder; during this process,  
 169 gases, porosity, and impurities are incorporated into the target, reducing its purity [45]. Secondly,  
 170 considerable changes in the composition and properties of the reactively sputtered films from metallic  
 171 targets are possible, depending on processing parameters such as the amount of reactive gas [44,46].  
 172 Thus, the first step to prepare the Ag@ZnO composite with a fiber morphological structure was the ZnO  
 173 deposition onto the CA fibers. We deposited ZnO from a Zn target onto the electrospun CA fibers that  
 174 served as scaffolds. Fig. 1 shows the average thickness of ZnO thin films as a function of the deposition  
 175 time obtained from profilometry. For the sputtering parameters used in this work, the ZnO deposition rate  
 176 was around 18.3 nm/min, as obtained from a linear fitting of two data points and the origin.




177 **Fig. 1** The sputtering deposition rate of thin films grown on a Si substrate by reactive magnetron sputtering using a  
 178 DC power supply at 30 % O<sub>2</sub>/(Ar+O<sub>2</sub>) flow ratio. The two data points are means  $\pm$  1 standard error (SE) (n=5)

179 Next, we evaluated the surface morphology and elemental composition of the sputtered material on the  
 180 CA fibers using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS),  
 181 respectively. The SEM micrographs (Fig. 2a) show the entwined CA fibers after the reactive DC  
 182 magnetron sputtering at a 30% O<sub>2</sub>/(Ar+O<sub>2</sub>) flow ratio for a 900 s deposition, corresponding to 200 nm  
 183 thickness of sputtered material. As expected, the EDS results show the presence of Zn and O  
 184 characteristic transition energies suggesting the possible formation of ZnO on the CA fibers. Fig. 3a  
 185 shows a high-magnification SEM micrograph of a fiber. The structure of the sputtered layer consists of  
 186 nanoscaled columnar grains covering the top of the fibers with a top dome morphology typical of zone 1  
 187 of the structure-zone models of Thornton [39] and Messier [40]. Sputtering is a line-of-sight deposition  
 188 process [38], and the fiber is a variable-angle surface. The thickness of ZnO deposited on top of the CA  
 189 fiber is expected to be around 200 nm, the same as the flat Si surface. But, at the edges of the fibers, the  
 190 amount of material deposited will be smaller, and shadowing will tend to separate the columns. On the top  
 191 of the CA fibers, the dome diameter averaged 54.7 nm for the middle section (estimated using ImageJ  
 192 software tools), as shown in Fig. 3b. ZnO columns, 200 nm of height and  $\sim$  50 nm diameter on top are  
 193 expected in the top midsection of the fiber, while smaller height columns with a wider spread, should  
 194 come forth at the edges of the CA fibers.


195 The structure of the sputtered material is linked to the mobility of the atoms absorbed on the surface of  
 196 the growing film. In the structure-zone model proposed by Thornton [47], the film structure results from  
 197 many concurrent processes (i.e., surface diffusion, bulk diffusion, and desorption). The homologous  
 198 temperature T<sub>m</sub> (i.e., the ratio between the substrate temperature and the melting point of the growing  
 199 material) and the sputtering gas pressure are dominant mechanisms during film growth. The model was

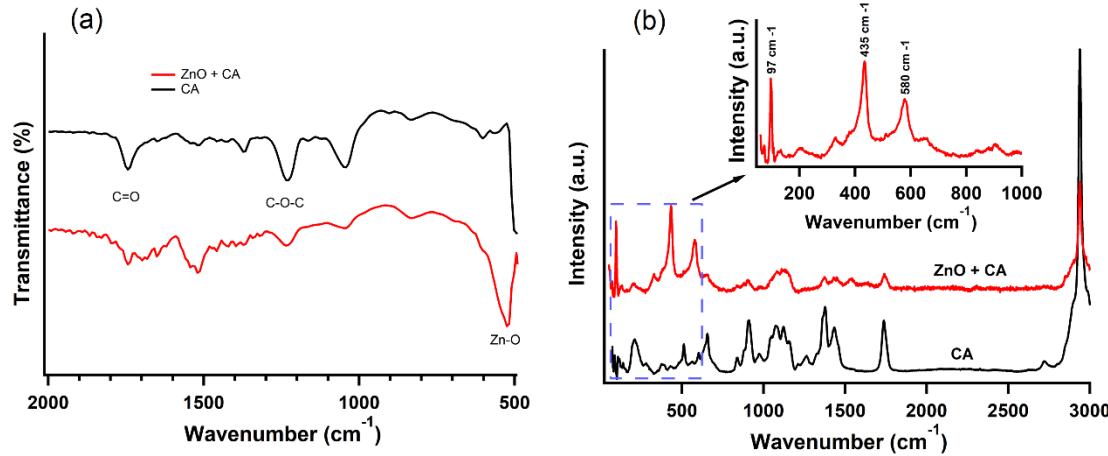
201 extended by Messier [48] to account for bombardment-induced mobility, thermal effects, and the  
 202 evolution of the growing film at low mobility conditions. In the present work, the sputtering of ZnO was  
 203 carried out by avoiding heating the substrate, which remained at 300 K, and no electrical biasing of the  
 204 substrate. Thus, using the melting temperature of 2248 K [49] for ZnO and a substrate temperature of 300  
 205 K, the homologous temperature is  $T_m = 0.1$ , corresponding to Zone 1 of the structure-zone models. At an  
 206 extremely low  $T_m$ , the surface mobility due to thermal effects is negligible; as a result, the microstructure  
 207 in Zone 1 consists of columnar grains. In addition, these columns have poor crystallinity and voids  
 208 between them. The full coverage observed on the CA fiber (Fig. 3a) by the sputtered layer could be  
 209 explained by considering the sputtering time, the deposition pressure, and the power used. An advantage  
 210 of the combined fiber morphology and columnar grain structure of the sputtered layers, topped in a dome  
 211 surface morphology, is the abundance of surface area for the analyte to be absorbed and, therefore, be  
 212 detected using SERS.



213

214 **Fig. 2** SEM image (a) and EDS spectra (b) of the ZnO/CA fibers substrates




215

216 **Fig. 3** High magnification SEM image of ZnO deposited on CA (a); particle diameter distribution (b). The number  
 217 of bins in the histogram and their width are 5 and 7.7, respectively

218 Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy are valuable techniques for  
 219 identifying crystalline structures. Fig. 4a shows the FTIR spectra of the as-spun CA and CA fibers after  
 220 the reactive DC sputtering deposition. We can identify the vibrational features of cellulose acetate and  
 221 wurtzite ZnO from the spectra. The 1,743 cm<sup>-1</sup> and 1,226 cm<sup>-1</sup> bands are assigned to the vibrational modes

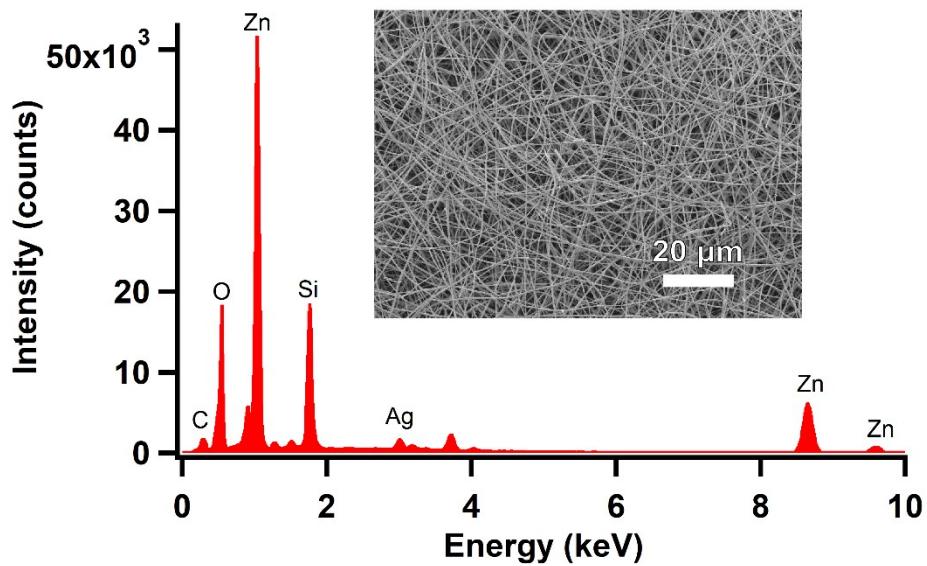
222 of cellulose acetate [50]. The band between  $500\text{ cm}^{-1}$  and  $600\text{ cm}^{-1}$  is ascribed to the stretching mode of  
223 the Zn-O bond in the ZnO lattice [51].

224 Fig. 4b shows the Raman spectra of CA and ZnO/CA. As seen in Fig. 4b, the intensities of the CA  
225 peaks are attenuated, whereas three peaks become apparent in the  $60\text{-}1000\text{ cm}^{-1}$  range after the sputtering  
226 deposition of ZnO. These predominant peaks are around  $97\text{ cm}^{-1}$ ,  $435\text{ cm}^{-1}$ , and  $580\text{ cm}^{-1}$ . The assignment  
227 of the peak identity was made following the published literature [52]. The peak near  $97\text{ cm}^{-1}$  is assigned to  
228 the  $E_2$  (low) phonon mode, and the  $435\text{ cm}^{-1}$  peak corresponds to the  $E_2$ (high) phonon mode of ZnO with  
229 the wurtzite crystal structure.

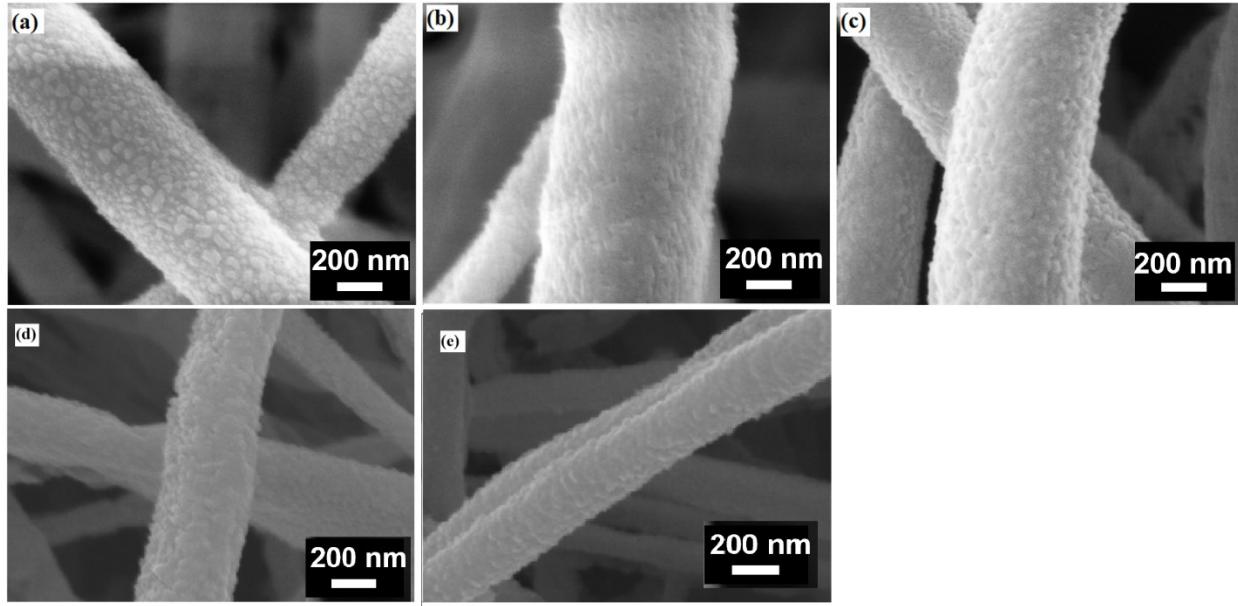


230

231 **Fig. 4** FT-IR spectra for CA fibers (black) and ZnO/CA fibers (red) (a). The peak near  $524\text{ cm}^{-1}$  indicates the  
232 vibrational stretching mode of the Zn-O bond in the ZnO lattice. Raman spectra of the CA fibers (black) and for the  
233 ZnO/CA fibers (b). The peaks near  $97\text{ cm}^{-1}$  and  $435\text{ cm}^{-1}$  are characteristic of the ZnO wurtzite structure


234 The peak near  $580\text{ cm}^{-1}$  has been ascribed to the  $A_1$ (Low) [53,54] or the  $E_1$ (Low) [55,56] phonon modes.  
235 These modes are attributed to ZnO lattice defects [48,49]. Because we are depositing ZnO from a  
236 metallic Zn target by adding a relatively small amount of oxygen to the sputtering gas mixture, the  
237 occurrence of oxygen vacancies in the ZnO lattice is likely. Consequently, the observed  $580\text{ cm}^{-1}$  peak can  
238 be associated with the phonon mode that arises from oxygen vacancies in the ZnO lattice. Clearly, the  
239 FTIR and Raman results confirm the wurtzite ZnO deposition onto the CA fibers.

### 240 3.2 Sputtering deposition of Ag


241 As in the ZnO deposition, Ag was sputtered onto the ZnO/CA fibers under limited adatom mobility  
242 conditions. The substrate temperature remained at 300 K, and the power was set to 50 W to minimize the  
243 bombardment-induced adatom mobility. At pressures above 1 Pa, scattering events of the sputtered atoms  
244 with neutrals and ions in the plasma reduce their induced mobility when they arrive to the substrate. Thus,  
245 considering this effect, we selected a pressure of 1.7 Pa for the Ag deposition onto the ZnO/CA fibers.

246 Chang et al. [58], used ion-beam sputtering for the deposition of Ag nanoparticles on ZnO:Al  
247 nanoneedles, observed that by extending the sputtering deposition time, the Ag nanoparticles size and  
248 surface coverage gradually increased until Ag film completely covered the nanoneedles. However, they  
249 did not behave similarly for the SERS intensity as a function of the sputtering time. The SERS intensity  
250 first rose to a maximum and decreased at longer sputtering times. Thus, to assess the sputtering time  
251 effect on the Ag surface morphology and the compound SERS intensity, we sputtered Ag onto the  
252 ZnO/CA nanofibers at 5, 10, and 15 seconds.

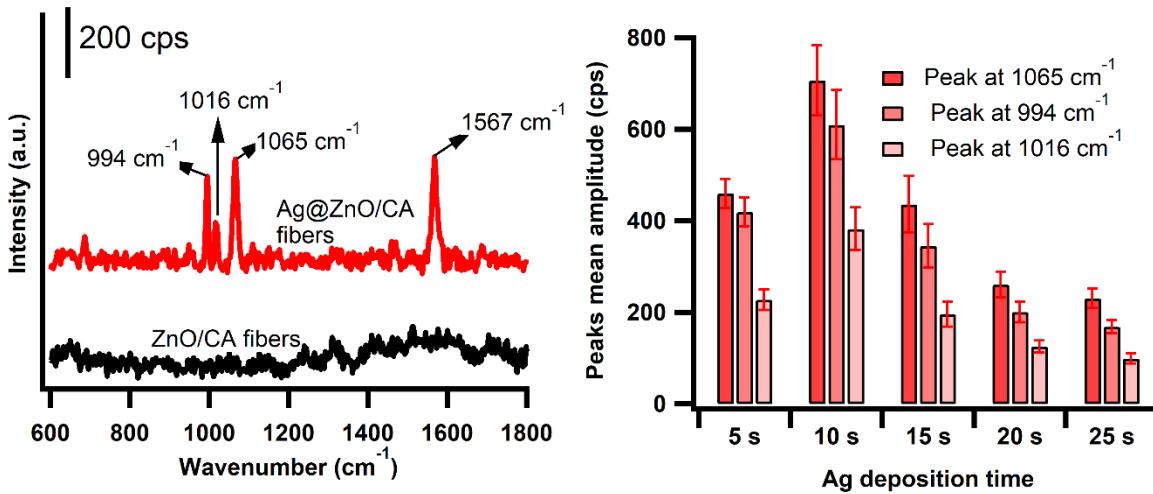
253 The morphology and elemental composition of the ZnO/CA fibers decorated with Ag at different  
 254 deposition times were examined with SEM and EDS, respectively. Fig. 5 shows the low magnification  
 255 SEM image (inset Fig. 5) and EDS spectrum of the Ag@ZnO/CA fibers sputtered with Ag for 5 seconds.  
 256 The appearance of their respective peaks confirms the constituent elements for Ag@ZnO, Zn, O, and Ag.  
 257 Fig. 6 shows the high magnification micrographs of Ag on the ZnO/CA fibers as deposited by DC  
 258 sputtering at various deposition times: (a) 5 s, (b) 10 s, (c) 15 s, (d) 20 s and (e) 25s. As shown in Fig. 6a,  
 259 at five seconds, the resulting Ag morphology consists of nanoparticles of different shapes and sizes  
 260 distributed on top and along the ZnO/CA fiber surface. Albeit, at 10, 15, 20 and 25 seconds, the Ag  
 261 surface coverage of the surface of ZnO/CA fibers increased promptly, rendering a more continuous Ag  
 262 film. Interestingly, this result, i.e., the expedited rising of surface coverage, contrasts with the gradual  
 263 increase in surface coverage reported by Chang et al. The difference could be related to the sputtering  
 264 parameters used in their experiment or the orientation between the nanoneedle surface and the incoming  
 265 flux of sputtered material.



266  
 267 **Fig. 5** EDS spectra and low magnification SEM image of Ag@ZnO/CA fibers substrates. The EDS spectrum  
 268 confirms the presence of Ag in Ag@ZnO with Ag deposition for 5 s  
 269



270


271 **Fig 6** High magnification SEM micrographs of Ag@ZnO/CA fibers/glass substrates after depositing Ag at 5 s (a),  
 272 10 s (b), 15 s (c), 20 s (d) and 25 s (e)

273 In brief, one can identify three morphological structures at the micro and nanometric levels that  
 274 constitute the Ag@ZnO/CA fibers prepared. At the micro level, we obtained ZnO fibers by providing  
 275 sufficient sputtering time to cover the CA fibers. In addition, under limited adatom mobility, sputtered  
 276 ZnO has columnar grain morphology at the nano level, which provides plenty of surface area for the  
 277 adsorption of molecules. Regarding the Ag layer, nanoparticles were obtained by sputtering under limited  
 278 adatom mobility and a short deposition time, i.e., 5 s. An important question for future studies is  
 279 determining the substrate temperature effect on the size and shape of the Ag nanoparticles. As a proof of  
 280 concept, we tested the Ag@ZnO/CA fibers as SERS substrates using BZT as the probe molecule.

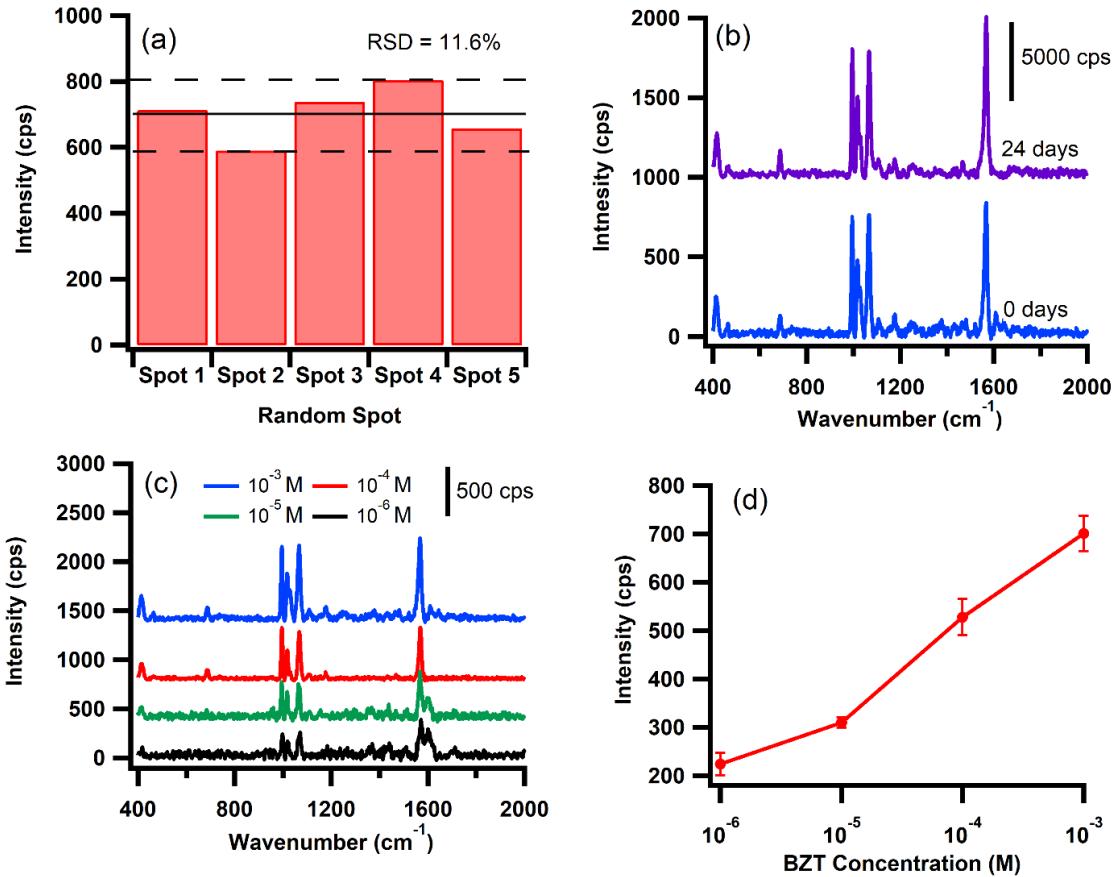
281 **3.3 Ag@ZnO/CA nanofibers as a SERS substrate**

282 The SERS effect of the Ag@ZnO/CA fibers was studied using BZT as a probe molecule. Fig. 7a  
 283 shows the SERS spectra in the  $600 - 1800 \text{ cm}^{-1}$  region of BZT adsorbed on the surface of ZnO/CA and  
 284 Ag@ZnO/CA nanofibers sputtered with Ag for 5 seconds. The BZT Raman peaks were assigned  
 285 following reported literature data [59]. No peaks of the dispersed BZT solution ( $10^{-3} \text{ M}$ ) on the ZnO/CA  
 286 fibers could be observed. Conversely, four prominent peaks came forth for the BZT solution dispersed on  
 287 the Ag@ZnO/CA fibers. The peak near  $994 \text{ cm}^{-1}$  is the carbon ring in-plane bending mode; the peak near  
 288  $1016 \text{ cm}^{-1}$  corresponds to the CH in-plane bending mode; the  $1065 \text{ cm}^{-1}$  peak is the carbon breathing  
 289 mode, and the peak near  $1567 \text{ cm}^{-1}$  is the C=C stretching mode.

290



291


292 **Fig. 7** SERS spectra of BZT adsorbed on ZnO/CA fibers (black) and Ag@ZnO/CA fibers (red) sputtered with Ag at  
 293 a sputtering deposition time of 5 s (a). Peaks mean amplitude (b). The data in Fig. 7b are means  $\pm$  1 standard error  
 294 (SE) (n=5)

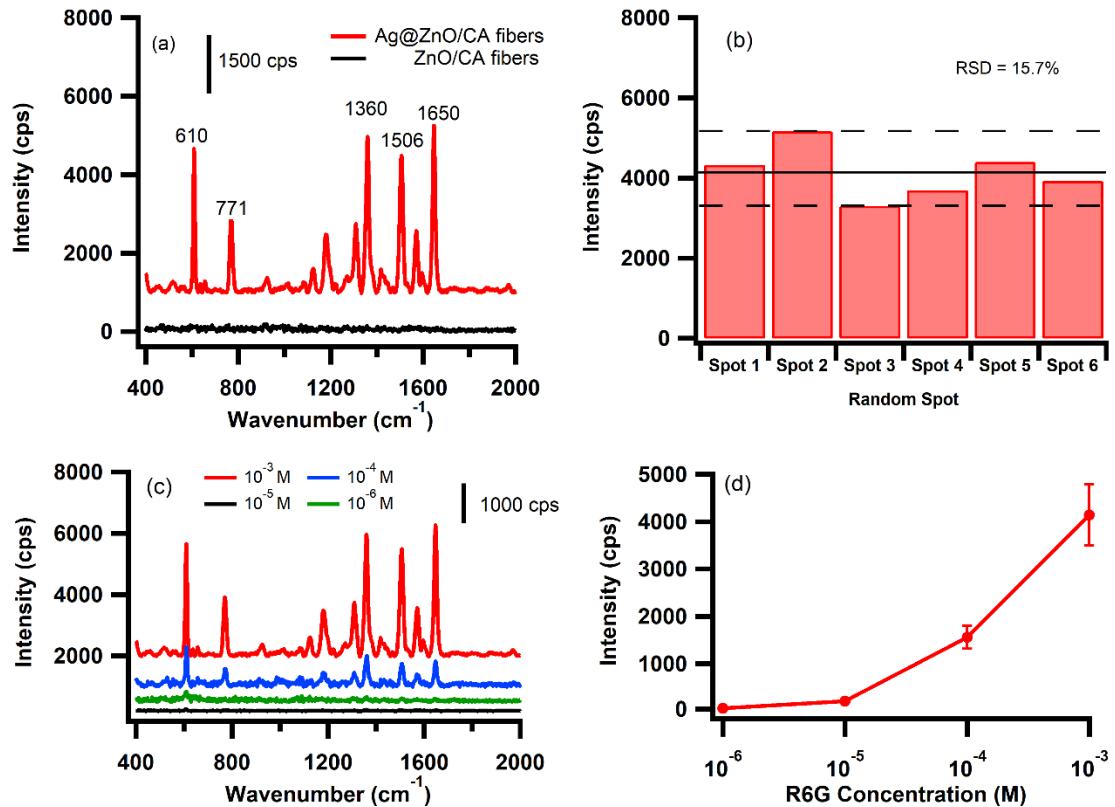
295

296 Previous results on the SERS enhancement of sputtered Ag and Au nanoparticles revealed that  
 297 extending the sputtering time raised the size and coverage of the nanoparticles. Such enhancement in size  
 298 and surface coverage leads to a higher intensity of the SERS signal up to a particular value of sputtering  
 299 time, followed by lower intensity values for a longer sputtering time [35,60]. To study the influence of the  
 300 Ag sputtering time, we examined the intensity of the 994  $\text{cm}^{-1}$ , 1016  $\text{cm}^{-1}$ , and 1065  $\text{cm}^{-1}$  peaks for the  
 301 Ag@ZnO/CA fibers sputtered with Ag for 5, 10, 15, 20 and 25 seconds. Overall, the peaks mean  
 302 amplitude increased when the sputtering deposition time extended from 5 to 10 s; then, a decrease in the  
 303 mean amplitude, for 15 s, 20 s and 25 s sputtering time (Fig. 7b), is observed. The SERS intensity change  
 304 with sputtering time observed agrees, in general, with the behavior reported in the works mentioned  
 305 above. As discussed by Bo Li [35], increasing the size of the nanoparticles decreases the gaps between  
 306 them, and the electromagnetic field intensifies in these regions, thus increasing the EM enhancement.  
 307 However, if the size and surface coverage of the nanoparticles expands to develop a film structure, it  
 308 reduces the number of gaps by filling these regions; as a result, the SERS enhancement diminishes.

309 In addition, to evaluate the reproducibility of the SERS signal of the Ag@ZnO/CA fibers with a 10 s  
 310 AG deposition, we used BZT  $10^{-3}$  M as the probe molecule as shown in Fig 8a. We randomly measured  
 311 five spots on the same fiber and kept the same measurement conditions for each spot. We calculated the  
 312 relative standard deviation (RSD) from the SERS spectra obtained at each spot. The estimated RSD was  
 313 11.6 %, which indicates that the SERS signal has good reproducibility. The substrate showed good  
 314 reproducibility in the SERS measurements, which we attribute to two main factors. First, the successful  
 315 coating of ZnO on the CA fibers by sputtering deposition under limited adatom mobility, resulted in a  
 316 combined fiber morphology and columnar grain structure of the sputtered layers. This created a  
 317 morphology with a large surface area for the BZT to adsorb and be detected by SERS. Second, the growth  
 318 of Ag nanoparticles on top of ZnO, which generated a high density of SERS 'hot spots' between the  
 319 nanoparticles and between the nanoparticles and ZnO. These 'hot spots' enhanced the electromagnetic  
 320 field and increased the Raman signal of the BZT molecules.

321




322

323 **Fig. 8** Intensity distribution collected at five random spots of 1065 cm<sup>-1</sup> peak of 10<sup>-3</sup> M BZT on Ag@ZnO/CA fibers  
 324 substrate with a 10 s Ag deposition. (a) SERS spectra of BZT adsorbed on Ag@ZnO/CA fibers collected at different  
 325 shelf times. (b) SERS spectra of BZT adsorbed on Ag@ZnO/CA fibers obtained from different concentrations (10<sup>-3</sup>  
 326 M, 10<sup>-4</sup> M, 10<sup>-5</sup> M, 10<sup>-6</sup> M). (c) 1065 cm<sup>-1</sup> peak intensity vs BZT concentration. (d) The data points in Fig 8d are  
 327 means  $\pm$  1 standard error (SE) (n=5)

328 One of the challenges for using SERS substrates in real-world scenarios is their stability over time. The  
 329 SERS signal of BZT did not show any significant difference after 24 days compared to the signal from a  
 330 new substrate (Fig. 8b). This suggests that Ag@ZnO is a stable SERS substrate that can be kept for  
 331 almost a month at room temperature. A possible way to further improve the stability of our SERS  
 332 substrate is to functionalize it with a bioinspired polymer, as suggested by a recent study [61]. The authors  
 333 showed that polydopamine-coated aluminum nanocrystals could maintain their plasmonic properties in  
 334 aqueous media for over two weeks, while uncoated nanocrystals rapidly oxidized and lost their  
 335 functionality. We could apply a similar approach to our Ag@ZnO substrate and investigate how it affects  
 336 the SERS signal of BZT and other probe molecules over time.

337 To evaluate the sensitivity of the SERS substrates, we selected Ag@ZnO/CA fibers with 10 s Ag  
 338 deposition as the optimal condition based on the previous analysis. We performed SERS measurements  
 339 for different concentrations of BZT ranging from 10<sup>-3</sup> M to 10<sup>-6</sup> M. The corresponding spectra are shown  
 340 in Fig. 8c. The peak intensity at 1065 cm<sup>-1</sup>, was used to quantify the SERS signal. As shown in Fig. 8d,  
 341 the peak intensity decreased with a decrease of BZT concentration, but it was still clearly observable at  
 342 10<sup>-6</sup> M level, indicating a high sensitivity of our substrates.

343 The Ag@ZnO/CA fibers (10 s Ag deposition) were further applied as the SERS substrate to detect R6G.  
 344 We prepared a solution with  $10^{-3}$  M R6G concentration and drop-casted it on the substrate. After drying in  
 345 air, we obtained the SERS spectra in Fig. 9a, which shows the characteristic peaks of R6G. We observed  
 346 five peaks of R6G at around  $612\text{ cm}^{-1}$ ,  $771\text{ cm}^{-1}$ ,  $1360\text{ cm}^{-1}$ ,  $1506\text{ cm}^{-1}$  and  $1650\text{ cm}^{-1}$ . According to the  
 347 literature [43,62], the peaks around  $612\text{ cm}^{-1}$  and  $771\text{ cm}^{-1}$  were assigned to in-plane and out-of-plane  
 348 bending motions of the C-H bond, respectively, whereas the peaks at  $1360\text{ cm}^{-1}$  and  $1650\text{ cm}^{-1}$  are related  
 349 to the C-C stretching mode of the aromatic ring.



350  
 351 **Fig. 9** SERS spectra of R6G adsorbed on ZnO/CA fibers (black) and Ag@ZnO/CA fibers (red) sputtered with Ag at  
 352 a sputtering deposition time of 10 s (a) Intensity distribution collected at five random spots of  $610\text{ cm}^{-1}$  peak of  $10^{-3}$   
 353 M R6G on Ag@ZnO/CA fibers substrate with a 10 s Ag deposition. (b) SERS spectra of R6G adsorbed on  
 354 Ag@ZnO/CA fibers obtained from different concentrations ( $10^{-3}$  M,  $10^{-4}$  M,  $10^{-5}$  M,  $10^{-6}$  M). (c)  $610\text{ cm}^{-1}$  peak  
 355 intensity vs R6G concentration. (d) The data points in Fig 9c indicate mean intensity of peak  $610\text{ cm}^{-1}$  of five  
 356 measurements and the error bar represents the standard error of the mean.

357 The reproducibility of Ag@ZnO/CA fibers was also tested using R6G. We randomly measured six spots  
 358 on the same fiber and estimated the relative standard deviation (RSD) from the SERS spectra obtained at  
 359 each location. The estimated RSD was 16.6 %, indicating good signal reproducibility as in the cases of  
 360 the BZT probe molecule. Lastly, we also observed the SERS signals with a low concentration, as shown  
 361 in Fig. 9c and Fig. 9d. These results indicate that Ag@ZnO/CA fibers can detect R6G at a concentration  
 362 as low as  $10^{-6}$  M. The limit of detection Ag@ZnO/CA fibers towards R6G is comparable to other SERS  
 363 substrates, such as TiN SERS substrates of various morphologies (nanoporous films [63] and nanorods  
 364 arrays [64]).

365 All things considered, our findings demonstrate the feasibility of sputtering materials under limited  
366 adatom mobility conditions onto templates to obtain SERS substrates with various morphological  
367 structures at the micro and nanometric levels capable of detecting BZT and R6G at low concentrations.

## 368 **4 Conclusions**

369 By combining sputtering deposition and electrospinning technique, we developed a straightforward and  
370 effective method for preparing SERS substrate with various morphological structures at the micro and  
371 nanoscales. We successfully prepared Ag@ZnO/CA fiber composites by sputtering ZnO and Ag onto  
372 cellulose acetate fibers. The selected sputtering process parameters for the deposition of ZnO allowed  
373 reducing the adatoms' thermally induced mobility. Whereas for Ag, the sputtering parameters were  
374 selected so as to cut down the bombardment-induced and thermally-induced mobility. Under such limited  
375 adatom mobility, the cellulose acetate fibers were covered by ZnO columnar grains at the nanoscale.  
376 Moreover, under low adatom mobility and short deposition times, the Ag sputtering yielded nanoparticles  
377 of different sizes and shapes on the ZnO surface. All the synthesized composites rendered good SERS  
378 responses towards BZT. An improvement is observed for the composite prepared at an Ag deposition time  
379 of 10s. One can attribute this occurrence to an enhancement of the electromagnetic field due mainly to (a)  
380 small gaps between the Ag nanoparticles and (b) an increase in particle size. The Ag@ZnO/CA fiber  
381 composites with 10 s Ag deposition also shows good uniformity and response at low concentrations of  
382 BZT and R6G, which could be used for the detection of these probe molecules with a detection limit of  
383  $10^{-6}$  M. Our work offers a facile approach to produce Ag@ZnO/CA fibers that can be used as SERS  
384 sensors for various applications. This research also provided insight into the effects of limited adatoms  
385 mobility conditions on the morphological structure developed for the deposited Ag@ZnO composite at  
386 various length scales.

## 387 **Acknowledgments**

388 This work was supported by the National Science Foundation grants number 2112537 (NSF CREST  
389 Postdoctoral Research Fellowship) and 1345156 (NSF CREST Program). Infrastructure support by the  
390 UPRM Dean of Students Office is acknowledged by coauthor Suárez. The authors would like to thank the  
391 Material Characterization Center of the University of Puerto Rico (UPR) for electron microscopy services  
392 and Dr. Danilo Barrionuevo (UPR- Cayey campus) for his assistance in the profilometer measurements.  
393 The authors acknowledge the UPR-Cayey campus for the sputtering facilities. The authors acknowledge  
394 the UPR Molecular Science Research Center for the Raman and SERS measurements. We also kindly  
395 acknowledge Professors Marco De Jesus and Francisco Bezares for many helpful discussions about  
396 SERS. The authors would like to thank Dr. Wilfredo for his valuable and constructive suggestions during  
397 the revision process of the manuscript.

## 398 **Declarations**

## 399 **Authors' contributions**

400 All authors contributed to the technology's study, conception, and design. Materials preparation,  
401 data collection, and analysis were performed by Adrián Camacho-Berrios. Resources provided  
402 by Oscar Marcelo Suárez. Supervision of research activities by Oscar Marcelo Suárez. Project  
403 administration by Adrián Camacho-Berrios and Oscar Marcelo Suárez. The first draft of the  
404 manuscript was first composed by Adrián Camacho-Berrios. Funding acquisition by Adrián  
405 Camacho-Berrios and Oscar Marcelo Suárez. The review and editing of the manuscript were

406 performed by Oscar Marcelo Suárez. All authors commented on previous versions of the  
407 manuscript. All authors read and approved the final manuscript.

408 **Funding and/or Conflicts of interests/Competing interests**

409 This work was supported by the National Science Foundation (Grants numbers 2112537 and 1345156).  
410 The authors have no relevant financial or non-financial interests to disclose. The authors have no  
411 competing interests to declare relevant to this article's content.

412 **Data availability**

413 The datasets generated during and/or analyzed during the current work are available from the  
414 corresponding author upon reasonable request.

415 **References**

416 1. B. Zhao, H. Liu, L. Xia, Z. Wang, and C. Zhang, *ACS Appl Nano Mater* (2022).

417 2. L. Xie, K. Gong, Y. Liu, and L. Zhang, *Environ Sci Technol* (2022).

418 3. A. Hussain, H. Pu, B. Hu, and D. W. Sun, *Spectrochim Acta A Mol Biomol Spectrosc* **245**, (2021).

419 4. A. Hussain, H. Pu, and D. W. Sun, *Journal of Food Measurement and Characterization* **14**, 2021 (2020).

420 5. G. Beaton, Y. Bdour, C. Escobedo, and K. Stamplecoskie, *ACS Appl Nano Mater* (2022).

421 6. M. A. Fikiet, S. R. Khandasammy, E. Mistek, Y. Ahmed, L. Halámková, J. Bueno, and I. K. Lednev, *Spectrochim Acta A Mol Biomol Spectrosc* (2018).

422 7. B. Thirumalraj, *Biomed J Sci Tech Res* **16**, 0 (2019).

423 8. K. Kneipp, *Phys Today* **40** (2007).

424 9. F. Kretschmer, S. Mühlig, S. Hoeppener, A. Winter, M. D. Hager, C. Rockstuhl, T. Pertsch, and U. S. Schubert, *Particle and Particle Systems Characterization* **31**, 721 (2014).

425 10. X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, *Anal Bioanal Chem* **394**, 1729 (2009).

426 11. S. Barbosa, A. Agrawal, L. Rodríguez-Lorenzo, I. Pastoriza-Santos, R. A. Alvarez-Puebla, A. Kornowski, H. Weller, and L. M. Liz-Marzán, *Langmuir* **26**, 14943 (2010).

427 12. Q. Zhang, N. Li, J. Goebel, Z. Lu, and Y. Yin, *J Am Chem Soc* **133**, 18931 (2011).

428 13. Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, *Sens Actuators B Chem* **241**, 1008 (2017).

429 14. H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, *Advanced Materials* **25**, 2678 (2013).

430 15. D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, *Nano Lett* **13**, 2194 (2013).

431 16. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, *Small* **7**, 1761 (2011).

432 17. Z. B. Wang, B. S. Luk'yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, *Journal of Chemical Physics* **128**, (2008).

433 18. K. Xu, H. Yan, C. F. Tan, Y. Lu, Y. Li, G. W. Ho, R. Ji, and M. Hong, *Adv Opt Mater* **6**, (2018).

434 19. Z. Sun, X. Fang, C. Kang, Y. Han, L. Zha, and X. Zhang, *ACS Appl Nano Mater* (2022).

435 20. S. Kalasung, I. Chatnuntawech, V. Pathanasettakul, S. Limwichean, K. Lertborworn, M. Horprathum, N. Nuntawong, P. Eiamchai, and K. Aiempanakit, in *Mater Today Proc* (Elsevier Ltd, 2021), pp. 3517–3524.

436 21. L. Xu, H. Zhang, Y. Tian, A. Jiao, F. Chen, and M. Chen, *Talanta* **194**, 680 (2019).

437 22. H. Chen, H. Liu, Y. Chen, X. Li, C. Gu, and T. Jiang, *Mater Chem Phys* **273**, (2021).

438 23. C. Huang, C. Xu, J. Lu, Z. Li, and Z. Tian, *Appl Surf Sci* **365**, 291 (2016).

446 24. C. Liu, X. Xu, C. Wang, G. Qiu, W. Ye, Y. Li, and D. Wang, *Sens Actuators B Chem* **307**, (2020).

447 25. Z. Zhao, H. Bao, Q. Zhao, H. Fu, L. Zhou, H. Zhang, Y. Li, and W. Cai, *ACS Appl Mater Interfaces* **14**,  
448 47999 (2022).

449 26. Y. C. Lai, H. C. Ho, B. W. Shih, F. Y. Tsai, and C. H. Hsueh, *Appl Surf Sci* **439**, 852 (2018).

450 27. Q. Huang and J. Li, *Mater Lett* **204**, 85 (2017).

451 28. L. Chen, L. Luo, Z. Chen, M. Zhang, J. A. Zapien, C. S. Lee, and S. T. Lee, *Journal of Physical Chemistry C*  
452 **114**, 93 (2010).

453 29. F. Xu, Y. Zhang, Y. Sun, Y. Shi, Z. Wen, and Z. Li, *Journal of Physical Chemistry C* **115**, 9977 (2011).

454 30. Z. Yi, Y. Y. Yi, J. Luo, X. Li, X. Xu, X. Jiang, Y. Y. Yi, and Y. Tang, *Physica B Condens Matter* **451**, 58 (2014).

455 31. K. Sivashanmugan, J. der Liao, B. H. Liu, C. K. Yao, and S. C. Luo, *Sens Actuators B Chem* **207**, 430  
456 (2015).

457 32. J. Huang, F. Chen, Q. Zhang, Y. Zhan, D. Ma, K. Xu, and Y. Zhao, *ACS Appl Mater Interfaces* **7**, 5725  
458 (2015).

459 33. G. Zhang, C. Deng, H. Shi, B. Zou, Y. Li, T. Liu, and W. Wang, *Appl Surf Sci* **402**, 154 (2017).

460 34. X. Yuan, W. Xu, F. Huang, D. Chen, and Q. Wei, *Appl Surf Sci* **390**, 863 (2016).

461 35. B. Li, Y. E. Shi, J. Cui, Z. Liu, X. Zhang, and J. Zhan, *Anal Chim Acta* **923**, 66 (2016).

462 36. J. H. Park and Y. L. Joo, *Appl Surf Sci* **416**, 742 (2017).

463 37. L. Liu, P. Martinez Pancorbo, T. H. Xiao, S. Noguchi, M. Marumi, H. Segawa, S. Karhadkar, J. Gala de  
464 Pablo, K. Hiramatsu, Y. Kitahama, T. Itoh, J. Qu, K. Takei, and K. Goda, *Adv Opt Mater* **10**, (2022).

465 38. F. Lu, J. Wang, Z. Chang, and J. Zeng, *Mater Des* **181**, (2019).

466 39. D. Rodríguez-Vindas, *J Nanophotonics* **2**, 021925 (2008).

467 40. P. Carvalho, P. Sampaio, S. Azevedo, C. Vaz, J. P. Espinós, V. Teixeira, and J. O. Carneiro, *Appl Surf Sci*  
468 **307**, 548 (2014).

469 41. A. N. Fouda, E. S. M. Duraia, and E. A. Eid, *Superlattices Microstruct* **73**, 268 (2014).

470 42. A. Ismail, M. J. Abdullah, and M. A. Qaeed, *J Lumin* **164**, 69 (2015).

471 43. N. Kaisar, Y. T. Huang, S. Jou, H. F. Kuo, B. R. Huang, C. C. Chen, Y. F. Hsieh, and Y. C. Chung, *Surf Coat  
472 Technol* **337**, 434 (2018).

473 44. E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, *Mater Res Bull* **95**, 123 (2017).

474 45. M. Ohring, *The Materials Science of Thin Films* (Academic Press, San Diego, 1992).

475 46. Z. Li and W. Gao, *Mater Lett* **58**, 1363 (2004).

476 47. J. A. Thornton, in *J Vac Sci Technol* (1974), pp. 666–670.

477 48. R. Messier, A. P. Giri, and R. A. Roy, *Journal of Vacuum Science & Technology A: Vacuum, Surfaces,*  
478 and *Films* **2**, 500 (1984).

479 49. G. Guisbiers and S. Pereira, *Nanotechnology* **18**, (2007).

480 50. A. Salama, A. Mohamed, N. M. Aboamera, T. Osman, and A. Khattab, *Advances in Polymer*  
481 *Technology* **37**, 2446 (2018).

482 51. Z. Liu, T. Zhao, W. Fan, X. Men, K. Jiang, and G. Lu, *ACS Appl Nano Mater* **5**, 2280 (2022).

483 52. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoç, U.  
484 Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, *J Appl*  
485 *Phys* **98**, 1 (2005).

486 53. N. A. Putri, V. Fauzia, S. Iwan, L. Roza, A. A. Umar, and S. Budi, *Appl Surf Sci* **439**, 285 (2018).

487 54. H. B. Ruan, C. Y. Kong, G. P. Qin, W. J. Li, T. Y. Yang, F. Wu, and L. Fang, *J Magn Magn Mater* **369**, 219  
488 (2014).

489 55. Q. Q. Gao, Q. X. Yu, K. Yuan, X. N. Fu, B. Chen, C. X. Zhu, and H. Zhu, *Appl Surf Sci* **264**, 7 (2013).

490 56. D. E. E. Motaung, I. Kortidis, D. Papadaki, S. S. S. Nkosi, G. H. H. Mhlongo, J. Wesley-Smith, G. F. F.  
491 Malgas, B. W. W. Mwakikunga, E. Coetsee, H. C. C. Swart, G. Kiriakidis, and S. S. S. Ray, *Appl Surf Sci* **311**,  
492 14 (2014).

493 57. H. Ruan, L. Fang, W. Li, G. Qin, F. Wu, and C. Kong, *Mater Sci Semicond Process* **21**, 52 (2014).

494 58. T. H. Chang, Y. C. Chang, and S. H. Wu, *J Alloys Compd* **843**, (2020).

495 59. J. Song, W. Cheng, M. Nie, X. He, W. Nam, J. Cheng, and W. Zhou, *ACS Nano* **14**, 9521 (2020).

496 60. T. H. Chang, Y. C. Chang, and S. H. Wu, *J Alloys Compd* **843**, (2020).

497 61. D. Renard, S. Tian, A. Ahmadiwand, C. J. Desantis, B. D. Clark, P. Nordlander, and N. J. Halas, *ACS Nano*  
498 **13**, 3117 (2019).

499 62. Y. Cao, P. Liang, Q. Dong, D. Wang, D. Zhang, L. Tang, L. Wang, S. Jin, D. Ni, and Z. Yu, *Anal Chem*  
500 (2019).

501 63. H. Wei, M. Wu, Z. Dong, Y. Chen, J. Bu, J. Lin, Y. Yu, Y. Wei, Y. Cui, and R. Wang, *Journal of Raman*  
502 *Spectroscopy* **48**, 578 (2017).

503 64. J. Zhao, J. Lin, H. Wei, X. Li, W. Zhang, G. Zhao, J. Bu, and Y. Chen, *Opt Mater (Amst)* **47**, 219 (2015).

504