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Abstract

Computationally modeling how mutations affect protein-protein binding not only
helps uncover the biophysics of protein interfaces, but also enables the redesign and
optimization of protein interactions. Traditional high-throughput methods for estimating
binding free energy changes are currently limited to mutations directly at the interface
due to difficulties in accurately modeling how long-distance mutations propagate their
effects through the protein structure. However, the modeling and design of such
mutations is of substantial interest as it allows for greater control and flexibility in protein
design applications. We have developed a method that combines high-throughput
Rosetta-based side-chain optimization with conformational sampling using classical
molecular dynamics simulations, finding significant improvements in our ability to
accurately predict long-distance mutational perturbations to protein binding. Our
approach uses an analytical framework grounded in alchemical free energy calculations
while enabling exploration of a vastly larger sequence space. When comparing to
experimental data, we find that our method can predict internal long-distance mutational
perturbations with a level of accuracy similar to that of traditional methods in predicting
the effects of mutations at the protein-protein interface. This work represents a new and
generalizable approach to optimize protein free energy landscapes for desired biological

functions.



Introduction

Protein interactions are central to many vital biological processes such as
antibody binding, signal transduction, gene expression, and enzyme regulation.
Consequently, changes in the propensity of proteins to associate or dissociate, for
example due to mutation or post-translational modification, can be very disruptive to
biological function and are therefore often linked to disease(1-3). The ability to
understand and control the energetics of protein interactions therefore has far-reaching
consequences for the study of disease and for the development of novel protein-based
therapeutics.

A number of strategies have been developed to quantitatively predict the effects
of mutations on protein interactions based on either empirical(4-6) or statistically-
based(7, 8) scoring approaches, where energy functions or observations from known
protein structures, respectively, are used to describe the physical interactions between
protein residues and estimate free energy changes upon mutation. The relatively low
computational cost of these scoring methods makes them well suited to large-scale
analyses and protein design, albeit at the expense of accuracy(9). Modest
improvements have been made to score-based approaches by integrating information
from MD simulations to account for solvent effects and variations in protein
conformation(10-12). Additionally, approaches which utilize the more physics-based
scoring capabilities of the Rosetta macromolecular modeling suite have recently shown
a promisingly high degree of accuracy in predicting mutational binding free energy
changes(13-15), finding notable success in design applications(16, 17). Recently,

machine learning algorithms and artificial intelligence have also been applied to score-



based approaches, improving the prediction of interface-adjacent mutations(7, 18, 19).
However, despite this progress, current scoring methods are almost exclusively limited
to predicting the energetic effects of mutations at the protein interaction interface and
fail to accurately predict the effects of mutations whose perturbations act over long
distances.

Other approaches to calculating mutational free energy changes involve applying
theoretically rigorous statistical mechanics and conformational sampling from MD
simulations to calculate, rather than approximate through heuristics, mutational free
energy changes(20-22). Free Energy Perturbation (FEP) is a method to determine the
free energy difference between two states by simulating the system in one state while
simultaneously evaluating the energies of the system in another state(22, 23). FEP is
based on the Zwanzig equation(23), which states that the free energy difference
between two states is equal to the exponential average of the energy differences
between the two states:
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Here, AF(A — B) is the free energy difference between states A and B, g is equal
to the inverse of the product of temperature (T) and Boltzmann'’s constant (kg), E4 and
Eg are the energies of conformations in state A and B respectively, and angular
brackets denote the average over conformations taken from an equilibrium ensemble of
state A.
While this theorem is numerically exact with an infinite sample of energy

differences and only requires simulation of one equilibrium ensemble, it is highly reliant

on sufficient sampling of the equilibrium system to achieve acceptable levels of
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accuracy and convergence(24, 25). It also often requires long and computationally
expensive MD simulations simulated at many intermediate states when applied to
typical biomolecular systems.

Methods like the Bennet acceptance ratio (BAR) and thermodynamic integration
(T1) are non-equilibrium alternatives to FEP which involve calculating the work of a
transition in the “forward” as well as the “reverse” directions, i.e. w,_z and wy_4(26).
Such methods have shown high degrees of accuracy in predicting the effects of
mutations, both interface-adjacent and allosteric, on biophysical processes such as
protein association(27, 28). However, while these “bidirectional” approaches
significantly improve the accuracy and convergence of free energy estimates compared
to their “unidirectional” counterparts(29), they further increase the need for
computationally expensive MD simulations by requiring separate equilibrium simulations
for each state of interest to allow calculation of a set of “reverse” work values. In addition
to substantial equilibrium sampling, these methods also often rely on computationally
expensive simulations to generate non-equilibrium work values(20, 27, 29), making
them less suitable for large-scale applications.

Recent studies have emphasized the importance of allosteric regulation in
protein interactions throughout biology(30-32), underscoring the power of long-distance
perturbations to protein structure and function. The ability to predict the effects of long-
distance mutations would significantly improve the current scope of protein design and
allow for a greater understanding of disease processes which feature long-distance
protein modulation. To the best of our knowledge there does not currently exist an

accurate high-throughput method to predict the effects of long-distance mutations on



protein-protein interactions. In the present study, we develop the Molecular Dynamics
Rosetta-Free Energy Perturbation (MDR-FEP) method which combines the extensive
conformational sampling from classical MD simulations with the high-throughput nature
of Rosetta repacking and the theoretical framework of alchemical FEP, allowing for the
accurate prediction of long-distance mutational free energy changes with a high enough

throughput for large-scale mutational analyses and forward protein design.

Results and Discussion
Protocol Rationale and Overview

The effect of mutations directly at the protein-protein interface can often be
modeled using algorithms that keep the backbone fixed and allow side chain
flexibility(15). However, the farther a mutation is away from the protein-protein interface,
the more likely it is to affect binding through backbone perturbations like shifts in
secondary structure or protein loops. Prediction of those backbone shifts can be done
with two different strategies. An “induced-fit” approach involves first making the mutation
and then using structural refinement algorithms to predict how the mutation propagates
changes to the rest of the structure and alters the binding free energy. Alternatively, a
“conformational selection” approach involves first obtaining an ensemble of backbone
structures with the wild-type sequence and then later determining whether given
mutations will sufficiently alter the energetics of that backbone ensemble to affect the
binding free energy.

For the purposes of this work, we assume that sampling of backbone
conformations is significantly more computationally costly than sampling of side chain

conformations. This is largely supported by the high performance of algorithms like the



Rosetta packer(33), which can very efficiently sample both rotamer and sequence
space, and the considerably more complex task of backbone sampling. Given this
dramatic difference in performance between the sampling of backbone and side chain
conformations, a “conformational selection” algorithm that creates an ensemble of
backbone conformations once and then samples sequence space many times is likely
to be much more efficient than an “induced-fit” approach. While a “conformational
selection” algorithm may perform poorly on mutations that require larger shifts of the
backbone ensemble than would be captured in an “induced-fit” approach, there likely
remains a large number of mutations that represent low hanging fruit amenable to
conformational selection.

We hypothesized that equilibrium molecular dynamics simulations of a WT
protein would serve as an effective means of generating a backbone ensemble for a
“‘conformational selection” approach. To be effective, the MD simulations should
transiently sample backbone conformations for which the energy with a given mutant
sidechain is lower than WT, providing information about that mutation’s relative AG in
the free or bound state. Because backbone conformations which are more stable with a
mutant sidechain could have higher energies than with the WT sidechain present, these
conformations may be infrequently sampled in WT simulations. Previous studies(12, 34,
35) found improved accuracy in predicting the effects of interface-adjacent mutations
using the FoldX method after averaging values from structural snapshots of an MD
simulation as compared to using only a single structure. However, due to the increased
difficulty of predicting long-distance mutations, we anticipated that the WT simulations

would sample long-distance mutation-accommodating conformations less frequently.



Such infrequent sampling would lead to a relatively small contribution of these low-
energy conformations to the overall ensemble, resulting in negligible shifts in the mean
or median energies for the WT and mutant sequences. To detect such shifts at the
extremes of the energy distributions, we tested whether the use of analytical methods
rooted in statistical mechanics enables better accounting for the contribution of these
low-energy conformations to the overall AG value. In the present work, the Rosetta
packer is used to side-chain optimize and score the energy of each frame in an
equilibrium simulation with both WT and mutant sequences. These energies are then
evaluated using exponential averaging in the Zwanzig equation (above) to produce a
AG value.

The B parameter of that function, which describes the inverse of the equilibrated
system’s theoretical temperature multiplied by the Boltzmann constant, dictates the
extent to which low-energy conformations contribute to AG: At low values of 3, frames
with a high AE dominate while those with a low AE contribute very little. Conversely, an
increase in 3 causes the contribution of low-energy conformations to increase (Figure
S1). While the MD simulations are run at a well-defined temperature with known (3, the
Rosetta packer uses simulated annealing to optimize the total energy over a set of
discrete rotamer configurations. Packing is followed by gradient-based sidechain
dihedral angle minimization. As a result of these distinctly non-equilibrium processes,
the method is no longer theoretically rigorous like standard FEP and an appropriate
temperature is not known a priori. Due to these theoretical and practical differences, an
alternative variable name other than 3 may be preferable, but we continue to use it here

to maintain continuity with the original Zwanzig equation. Many parts of the Rosetta



energy function use functional forms grounded in physics whose parameters are
empirically optimized using structural data. Likewise, in the proposed method, 3 is
treated as a parameter to be optimized in order to find the ideal level of contribution of
low-energy frames to AG.

For a protein dimer of chains A and B, WT MD simulations are run with both
dimeric and monomeric chains (Figure 1A, Step 1). Individual structural snapshots are
extracted every 1 ns from each trajectory. For each frame, all residues within 10 A of
the mutation of interest are repacked and scored with both the WT and mutant
sidechain present, generating a distribution of AE values for both the monomer and
dimer states (Figure 1A, Step 2). In order to account for the possibility of outliers, a
cutoff is then applied to this density function where all values which fall below the cutoff
are set equal to zero. The set of AE values generated for each mutation in the monomer
and dimer states is converted into a distribution using kernel density estimation (KDE) in
order to allow for the application of more precise cutoff values (Figure 1B-C). With no
cutoff applied, MDR-FEP performance was comparable when using KDE and raw AE
values (Figure S2). However, KDE allowed for the continuous exclusion of a percentage
of the density curve allowing for more precise control while analysis of raw AE values
required discretely excluding whole frames (Figure S3). The Zwanzig equation is then
applied to each distribution to generate a AG value for the monomer and dimer, allowing
for the calculation of AAGpimerization for the mutation of interest.

Parameter Optimization and Performance Evaluation

We first performed a grid search over three separate mutation datasets in order
to determine optimal B and cutoff parameters for the proposed method (Figure 2). To

evaluate how well our method recapitulated experimental data at each given parameter
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set, Pearson correlation with experimental data was evaluated with 3 ranging from O to
0.1 and cutoff ranging between 0 and 1%. We first evaluated our method against an
experimental surface plasmon resonance alanine scan(36) of urokinase-urokinase
receptor dimerization for both interior long-distance and interface-adjacent mutations,
which included experimentally validated values showing long-distance mutations which
both stabilize and destabilize protein binding (Figure 2A-B). Interestingly, we found that
the method’s performance in predicting the effects of both long-distance and interface
mutations in the urokinase-urokinase receptor interaction seemed to depend on the
cutoff parameter, with correlations appearing to decrease with cutoffs larger than 0.05%
and 0.03%, respectively (Figure 2A/B). We interpret these results to indicate that the
accurate prediction of the AG of these mutations relies on the sampling and correct
accounting of low-energy frames, perhaps due to the increased difficulty of simulating
long-distance and sterically larger mutations to alanine. To investigate this finding
further, we evaluated MDR-FEP performance using simple averaging of AE distributions
rather than exponential averaging, where low energy frames are able to shift the
calculated value significantly less. As expected, MDR-FEP correlation to experiment for
both long-range interior and interface mutations were lower and statistically insignificant
(R =0.03 and 0.13, respectively; p > 0.05) when using simple averaging (Figure
S4A/B). Conversely, the correlation for each of these sets of mutations seemed to
depend less on the 3 parameter (Figure 2A/B).

We then evaluated the MDR-FEP method using an experimental ITC study(37) of
the barnase-barstar dimerization process which included only non-allosteric (interface-

adjacent) mutations (Figure 2C), finding that our method was able to reproduce
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experimental data with reasonable accuracy independent of the cutoff parameter while
using a low 3 value. Correlation with the experimental ITC data did however decrease
sharply at higher 8 values (Figure 2C). The fact that correlation did not decrease as
more low-energy frames were removed by the increasing cutoff parameter suggests
that the accurate prediction of AG for these mutations does not rely on the sampling of
low-energy frames. Correlation with experiment remained approximately the same (R =
0.5, p = 0.03) using simple averaging (Figure S4C), further indicating that low-energy
frames are not as important for this easier interface-adjacent mutation dataset. Although
the 1BRS and 3BT1 simulations sampled approximately the same number of low-AG
conformations (Figure S5), we believe that mutations in the 1BRS system are overall
easier to predict by Rosetta repacking alone and therefore rely less on the sampling and
accounting of frames which approximate mutation-accommodating backbone
conformations.

We then compared the performance of the proposed method to that of Flex
ddG(13), which is an existing Rosetta-based AAGpimerization calculation method, and
nonequilibrium fast-growth thermodynamic integration (TI). Over a set of 65 allosteric
mutations to alanine (Figure 2D), our method achieved an overall correlation of 0.33 (p
= 7.4x107%) while Flex ddG showed a correlation of approximately 0 (p = 5.9x10").
Excluding one clear outlier, Tl achieved a correlation coefficient of 0.34 (p = 1.2x1072,
Figure S6). While clearly an improvement over Flex ddG, the somewhat low MDR-FEP
correlation coefficient was expected given the Tl performance and the difficulty of
predicting binding free energy changes using only a conformational selection approach

at the backbone level. For certain positions and/or mutations, this approach is likely to
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fail due to rare sampling of the backbone conformations necessary for accurate
predictions. We therefore sought to identify a simple heuristic that could be used to
prospectively screen out mutations that are not likely to be predicted correctly. In the
context of protein design, those mutations could then be excluded from experimental
validation, increasing the likelihood of success at either stabilizing or destabilizing
protein-protein binding. We noticed that a number of mutations were falsely predicted to
have AAG values between -1 and 1 REU by the MDR-FEP method. We term these
“negligible predicted AAG” mutations because the algorithm predicts a negligible AAG
(correctly or incorrectly), not because the actual AAG is negligible. Interestingly,
correlation improved significantly (R = 0.33 to 0.51; p = 7.4x1072 to 2.6x1073) with the
exclusion of these “negligible predicted AAG” mutations whereas Flex ddG did not show
any improvement when applying this same filter. This improvement may result from the
exclusion of mutations which feature extensive backbone alterations and are therefore
too difficult for the MDR-FEP method to predict using the current level of backbone
sampling.

Over a set of 49 mutations to alanine at the urokinase-urokinase receptor
interface (Figure 2E), the proposed method achieved an overall correlation of 0.21 (p =
1.6x10") compared to Flex ddG’s 0.41 (p = 3.0x103). We observed that the MDR-FEP
method was predicting very negative AG values for the D254A mutation in the
monomer, even at low  values. Analysis of this mutation revealed that less than 90% of
the contribution to the exponential averaging fell within the main distribution, while for all
other mutations this was not the case. This analysis indicates an inappropriately large

contribution from low-energy conformations for this particular mutation (Figure S6).
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Exclusion of this potential outlier resulted in a correlation of 0.50 with experiment and
increased statistical significance (p = 3.1x10*). The correlation for the proposed method
improved to 0.58 (p = 3.9x10#) with the exclusion of negligible predicted AAG mutations
and the outlier, while the correlation of Flex ddG did not show such an improvement.
Finally, for interface-adjacent barnase-barstar mutations, both the MDR-FEP method
and Flex ddG achieved an overall correlation to experiment of approximately 0.5 (p =
6.3x103and 7.1x1073, respectively) over a set of 28 mutations (Figure 2F). Again, the
MDR-FEP method showed an improved correlation with experiment (R = 0.5 to 0.61, p
=6.3x103to 1.1x102) with the exclusion of negligible predicted AAG mutations, while
Flex ddG did not. We noticed that the MDR-FEP method was predicting larger-
magnitude AAG values for the W35F and H102L mutations which appeared to
contribute significantly to the overall correlation. In order to evaluate performance
without these potential outliers, we analyzed the correlation after excluding these
mutations from the dataset. This analysis revealed a lower but still significant correlation
to experiment (0.41 vs 0.50, p < 0.05) (Figure S7).

After observing that the optimal 3 value for all three datasets was approximately
0.002, we sought to determine an optimal consensus cutoff parameter that would
maximize correlation independent of the dataset. We compared the correlation of each
dataset using a 3 value of 0.002 against cutoff values ranging from 0 to 1% (Figure 2G),
finding that all three datasets demonstrated acceptable correlations with no cutoff
applied. Based on these results, we propose an optimal consensus parameter set of 3 =

0.002 and cutoff = 0%.
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The absolute scale of our AAG predictions was significantly higher than that of
the experimentally determined values. The REU scale is calibrated to be roughly
comparable to kcal/mol(38), which further increases the discrepancy in overall scale
with the experimental values shown in kd/mol. However, that calibration may no longer
be valid because of the Zwanzig algorithm’s emphasis on very low energy structures.
The combination of the Rosetta packer and sidechain dihedral angle minimization may
also exaggerate the magnitude of the energy differences found. Another factor that may
exaggerate the absolute value and/or error of the predicted AAG is differences in the
ideal sidechain bond lengths and angles used by the AMBER 99SB*-ILDN force field
and the Rosetta packer. The “idealization” of bond geometries during Rosetta rotamer
generation may introduce clashes or unsatisfied hydrogen bonds that cannot be
resolved by dihedral angle minimization alone. However, these potential differences
between the AMBER 99SB*-ILDN and Rosetta force fields were not found to be a
difficulty in a previous study that used iteration between AMBER 99SB*-ILDN MD and
Rosetta for structure refinement(39). In addition, numerous other studies have used
combinations of MD force fields with Rosetta repacking(40-46). Additonal investigation
of these effects, especially in the context of other systems with experimentally
characterized long-distance mutations, may lead to further improvements in the MDR-
FEP algorithm.

Predictive Performance Depends on Mutation Location

After observing good performance with both interface and long-distance
mutations, we evaluated the performance of our method based on the location of the
mutations included in the present study (Figure 3). Because the prediction of mutational

effects becomes increasingly difficult at long distances, we hypothesized that AG values
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for 3BT1 mutations at extreme distances would be predicted with less accuracy. Indeed,
we observed that mutations which were correctly predicted to be destabilizing or
stabilizing fell closest to the 3BT1 interface (Figure 3A-C, green and blue). Likewise,
mutations incorrectly predicted to be destabilizing or stabilizing tended to fall farther
from the interface (Figure 3A-C, red and magenta). Interestingly, we observed no clear
trend to explain the performance of negligible predicted AAG mutations based on
distance to the interface. This analysis may suggest that negligible predicted AAG
mutations may be harder to predict due to their more significant backbone alterations
rather than their distance to the protein-protein interface. Additionally, we evaluated the
performance of the MDR-FEP method at various distance cutoffs, where only mutations
that fall closer to the interface than the cutoff are included in the calculation (Figure 3D).
We found that correlation indeed decreased with the inclusion of more distant
mutations.

We hypothesized that the exclusion of negligible predicted AAG mutations
improves correlation by removing “false negative” mutations, or mutations which are
falsely predicted to have near-zero AAG values. These false negatives likely arise due
to a higher energy difference between the WT and mutant proteins, resulting in a
smaller likelihood of sampling the low-energy frames needed to recapitulate
experimental data. Indeed, we observed that negligible predicted AAG mutations tend to
sample fewer low-energy frames than their high predicted-value counterparts (Figure
S8). Additionally, we found that 13 of the 36 negligible predicted AAG allosteric

mutations feature amino acids with hydroxyl groups (Figure 4A). Mutations which

15



remove or introduce hydrogen bonds to the protein structure may be more difficult for
the WT equilibrium simulations to sample, perhaps helping to explain this trend.

MDR-FEP Relies on WT Equilibrium Simulations Sampling MUT-like
Conformations

We initially predicted that the MDR-FEP method would detect mutational AG
values by transiently sampling conformations which are more stable with mutant
sidechains, and hence have more “low-RMSD frames” similar to conformations
produced by mutant equilibrium simulations. We tested this hypothesis by evaluating
the performance of the MDR-FEP method with differing numbers of low-RMSD frames
removed, predicting that correlation to experiment would decrease as more low-RMSD
frames are excluded. We indeed observed a strong relationship between correlation
and the removal of low-RMSD frames, with overall correlation to experiment dropping
from ~0.55 to ~0.30 with approximately 30% of the lowest-RMSD frames excluded
(Figure 4A).

Likewise, we expected that for mutations whose predicted values disagreed with
experiment, the WT equilibrium simulations would feature higher RMSDs to the MUT
equilibrium simulations’ average conformations. We found that the WT equilibrium
simulation was more likely to have higher RMSDs to the average conformation of
mutations which were falsely predicted to be stabilizing to the 3BT1 dimerization
process (Figure 4B). However, we did not observe this trend in the monomer
simulations, perhaps indicating that both monomer and dimer simulations must sample
low-energy frames to accurately predict AG (Figure S9).

Finally, we hypothesized that the WT equilibrium simulations would be more

likely to sample low-energy frames with longer simulation times, thereby increasing
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correlation with experiment. We observed a strong relationship between correlation and
total simulation time used (Figure 4C), as well as a direct relationship between total
simulation time and total number of frames with sub-Angstrom RMSDs to mean
structures from mutant equilibrium simulations (Figure 4D). These results indicate that
the MDR-FEP method’s ability to predict experimental values depends on the WT
equilibrium simulation’s transient sampling of low-energy mutant-like frames, and that
this sampling depends on the total simulation time used. Based on these results, we
believe that the performance of the MDR-FEP method on negligible predicted AAG
mutations, which suffer from insufficient sampling of low-energy frames, may improve
with longer equilibrium simulation times.

The MDR-FEP method selects conformations which are sterically favorable with
the mutant but not WT sidechains.

We hypothesized that the MDR-FEP method would be most sensitive to
conformations which favor the mutant through a steric rather than electrostatic effect. In
order to investigate this conformational selection mechanism, we analyzed the
individual Rosetta score terms of sample long-distance mutations which were correctly
identified to be destabilizing and stabilizing by the MDR-FEP method (Figure 5). We first
analyzed the H143A mutation (Figure 5A-C), which is correctly predicted by the MDR-
FEP method to destabilize 3BT1 dimerization (AAGcaic = 4.8 REU, AAGexp = 2.8 kd mol-
1). We found that excluding frames with AE < -500 REU resulted in a predicted AAG not
in accordance with experiment (0.7 REU). Analysis of the individual score terms of low-
energy frames revealed high Lennard-Jones repulsion (“fa_rep”) between residues with
the WT but not mutant sidechain, suggesting that mutating His143 to alanine in these

particular conformations can relieve much more steric strain in monomeric state,
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resulting in destabilization of the dimer. A high correlation (R > 0.99) between the AE
and Afa_rep of individual frames in both the H143A monomer and dimer was observed.

Analysis of the W129A mutation, which was correctly predicted to stabilize
dimerization, revealed similar trends (Figure 5D-F). When frames with AE <-500 REU
were included, the MDR-FEP method correctly predicts the W129A mutation to stabilize
dimerization (AAGcaic = -2.9 REU, AGexp = -1.8 kd mol'). Removal of these frames
resulted in an incorrect AAG prediction of 1.7 REU. Score term analysis of these frames
again revealed high steric overlap with the WT but not mutant sidechains present,
indicating that mutation to alanine stabilizes the dimer by relieving more steric strain in
the dimer than the monomer. The same strong relationship (R > 0.99) between Afa_rep
and overall AE was observed.

For the H143A mutation, we found that there were more frames with a calculated
AE < -500 REU in the monomer than in the dimer. This higher number of low-energy
frames contributes to a lower AG value in the monomer than in the dimer, resulting in an
overall positive AAG. Similarly, there were more low-energy frames in the dimer for
W129A than in the monomer, resulting in a negative AAG. Based on this analysis, we
believe that the MDR-FEP method is able to correctly predict the AAG values of these
mutations by appropriately reproducing the relative number of mutation-favoring
conformations in the monomer and dimer. In the future, structural analysis of MD
snapshots with these particularly large AE values may reveal communication pathways
or global population shifts through which the mutations allosterically alter protein
function. Identification of such mechanisms has been of significant recent interest(47,

48).
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The small but significant number of frames with AE < -500 REU also explains
why the optimal value of B was found to be 0.002. Assuming Rosetta energy units
correspond to kcal mol', B = 1/(RT) should be roughly 1.7 REU-" at room temperature.
However, the optimal value of B = 0.002 we find with the MDR-FEP grid search is
roughly 850 times lower. If § was closer to the room temperature value of 1.7, the low-
energy frames would dominate the exponential average and yield a AAG far larger than
expected. Instead, by having 3 = 0.002, those frames still contribute significantly to the
AAG but only influence the exponential average rather than dominating it. The low 3
value thus acts as an empirical softening of the repulsive energies, compensating for
the one-step switch of amino acids with the Rosetta packer. In traditional FEP, the
transition between amino acids takes place over many steps, enabling use of a 3 value

rigorously defined using the simulation temperature.

Conclusions

Prediction of the effects of long-distance mutations remains an important goal for
advancing the field of protein analysis and design. However, current methods which can
accurately predict these long-range effects are limited by prohibitively large
computational cost and are therefore not useful for large-scale analysis or protein
design. Recent advancements using the Rosetta macromolecular modeling suite have
allowed for accurate large-scale prediction of mutational AAG values, however these
methods are limited to interface mutations and cannot accurately detect long-distance
effects. In the current study, we propose a method to combine the theoretical framework
and extensive conformational sampling of alchemical free energy calculations with the

high-throughput capabilities of Rosetta. In this approach, conformations from MD
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simulations are repacked and scored with Rosetta, and the effects of mutation-
accommodating conformations are accounted for using theory based in statistical
mechanics to allow for the accurate prediction of allosteric effects using only simulations
of the WT system.

We evaluated the MDR-FEP method over three sets of mutations from two
separate systems with accurate experimental data available. We found that the method
is able to predict the effects of interface mutations with levels of accuracy comparable to
current methods. Importantly, the MDR-FEP method was also able to predict the effects
of long-distance mutations with similarly high levels of accuracy. We believe that this
method represents a new approach to high-throughput analysis of mutations which
propagate their effects over long distances.

While this work has focused on the bound and unbound states of two protein
chains, the methodology can be generalized to any system where two alternate states
can be defined. Other future applications to be explored include shifting the energy
landscape of a protein towards particular conformational states, optimizing binding
affinity/specificity for different small-molecules, or even stabilizing a small-molecule
ligand/substrate in functionally active conformations. Given the use of the Rosetta score
function, MDR-FEP is most suitable for these types of applications where mutations are
desired that shift the energy landscape from one folded state to another folded state.
Predicting changes to protein fold stability with MDR-FEP would likely require
reparametrizing the 20 amino acid-specific Rosetta reference energies to account for
changes in unfolded state free energy. Similarly, Rosetta repacking in MDR-FEP would

likely be unsuitable for cases where one of the states was intrinsically disordered.
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Materials and Methods
Equilibrium Molecular Dynamics Simulations

Molecular dynamics simulations were generated in silico using the reference
PDB structure 3BT1 (chains A and U) for the urokinase-urokinase receptor dimer, or
1BRS for the barnase-barstar dimer. Missing residues in 3BT1 were added using
RosettaRemodel(49). All mutant 3BT1 structures were generated using the PyMOL
software package(50). For all simulations, each PDB structure was placed in a
dodecahedral box with 1.5 nm between the protein and box walls and solvated using
the TIP3P water model(51). Joung Na* and CI ions were added to the simulation box at
physiological concentrations of 150 mM(52). Each system was allowed to energy-
minimize for up to 10,000 steps using the Steepest-Descent algorithm in GROMACS.
Energy-minimized structures were then equilibrated with 20 ps of NVT, and then 20 ps
of NPT, simulation using 1000 kJ mol* nm all-atom position restraints. Each system
was then equilibrated with three consecutive 20 ps NPT simulations using all-atom
position restraints of 500, 250, and 125 kJ mol"' nm™?, respectively. Finally, two
successive 20 ps NPT equilibrations were run with force constants of 125 kJ mol' nm2,
first on all backbone atoms and finally on Cy atoms only.

Equilibrium simulations were run at constant temperature and pressure. The C-
rescale barostat was used to hold pressure at 1 Bar, and the V-rescale thermostat used
to hold temperature at 300 K. All system preparations were carried out using
GROMACS functions and in-house scripts. Production simulation trajectories were
generated using GROMACS 2021(53) with a 2 fs timestep, the Verlet neighbor-

searching cutoff-scheme, and Particle-Mesh Ewald (PME) for van der Waals and
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electrostatic interactions. The AMBER 99SB*-ILDN(54, 55) force field was used to
generate production trajectories, constraining all bonds using the LINCS algorithm(56).

Thermodynamic Integration

3BT1 mutational free energy perturbations using thermodynamic integration
(Figure S6) were calculated by fast-growth alchemical mutation using the PMX software
package, as described in previous work(57, 58). Due to the fact that simulations with
non-zero net charges experience artifacts that influence accuracy when using the PME
method for long-range electrostatics(59), only charge-conserving mutations were
included in Tl analysis. For each AAG calculation, three independent 100 ns equilibrium
simulations of the monomer and dimer were run, both as WT and MUT. These
equilibrium simulations were prepared as described above. “Snapshot” structures were
recorded every 1 ns from each trajectory, alchemically mutated, and used to launch 50
ps morphing simulations.

Protocol Implementation and Rosetta Repacking

For each system, three independent 500 ns simulations of both the monomer
and dimer were run. Conformations were extracted every 1 ns from these trajectories.
Each of these conformational frames was then repacked using the Rosetta 2020 fixed-
backbone repacker, allowing for extra sub-rotamers for x1 and x> angles. The “multi-
cool-annealer” repacking option was used, where multiple “cooling” cycles are run and
low temperature rotamer substitutions are then run from the 10 best network states
generated during the cooling stage. Additionally, sidechain dihedral angle minimization
was used on the lowest energy structure from the packer. For each frame, the score (E)
from the lowest energy conformation of 50 repacking iterations was recorded with both

the WT and mutant sidechains present. The following flags were used: -ex1 -ex2 -
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multi_cool_annealer 10 -minimize_sidechains —ndruns 50. Only residues which
contained at least 1 atom within 10 A of the mutation of interest in the crystal structure
were repacked. For each mutation, the same set of residues was repacked in the
monomer and dimer forms of the protein.

Following repacking and scoring, AE values for each frame were determined
using the following equation:

AE = Eyyr — Ewr

Where AE represents the difference in score between the frame with a WT and MUT
sidechain present. The set of AE values generated for each mutation in the monomer
and dimer states were converted into a distribution using kernel density estimation with
a bandwidth manually set to 0.1, and a cutoff parameter was applied such that all
values below the cutoff are set equal to zero. AG values were then generated from each

distribution of AE values using the following equation:

N N
1
AG =—=1In Zyie‘ﬁxi Zyi
B\ & -
i=1 i=1

Where x and y are the vectors describing the X and Y values of the kernel
density function, respectively. Finally, AAG values were generated using the following
equation:

AAGMUT,Dimerization = AGMUT,Dimer - AGMUT,Monomer

All experimental data in Figure 2 and Figure 3 were obtained from the SKEMPI
2.0 database(60) with mutations involving glycine removed, as were the locations of all
mutations relative to the protein interaction interface (“interior” and “interface”). Flex ddG

values shown in Figure 2 were calculated using the recommended parameters: nstruct
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= 35, max_minimization_iter = 5000, abs_score_convergence_thresh = 1.0, and
number_backrub_trials = 35000.

Data Analysis and Visualization

The solid lines in the data distributions shown in Figure 4B, Figure S8, and
Figure S9 represent the mean value over three independent MD simulations. The
shrouds in these distributions represent the standard error of these means, as

calculated by

SE =2
VN

where 0 is the standard deviation N is the number of independent trials. All protein

images were generated using PyMol(50).
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Figure 1. Schematic of the MDR-FEP method.

(A) A schematic overview of the proposed method is shown, with the first step involving
Gromacs molecular dynamics simulations, the second step using Rosetta repacking
simulations, and the third step involving analysis of the resulting energies. (B) Box plots
containing all AE values for the L113A monomer and dimer are shown, where each
frame outside the interquartile range represented by a dot. (C) Images of the primary
AE distributions for the L113A monomer and dimer are shown. AG values, calculated
using B = 0.002 and cutoff = 0.005%, are shown as dashed lines using all frames (solid
colors) and using only frames with AE > -500 REU (opaque colors). The final AAG value
is the difference between the blue and green dashed lines, represented by a solid arrow
for the calculation including all frames and by an opaque arrow for the calculation using

only frames with AE > -500 REU.
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Figure 2. Parameter optimization by grid search.

Data Cutoff (%)

(A-C) Grid search heat maps showing the correlation of MDR-FEP predicted data to

experiment for (A) 3BT1 allosteric, (B) 3BT1 interface, and (C) 1BRS interface sets of

mutations. Correlations were calculated after excluding negligible predicted AAG

mutations for all datasets. Green circles indicate the set of parameters producing the

highest correlation. (D-F) The performance of the MDR-FEP method is compared to

Flex ddG(13), a leading Rosetta-based AAG calculation method, for each set of
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mutations in (A-C) shown above. (G) The correlation of each set of mutations in (A-C) is
plotted against the data cutoff using = 0.002. Correlations were calculated after
removal of negligible predicted AAG mutations for all datasets, and after the removal of

the outlier indicated by the gray circle in (E) for 3BT1 interface mutations.
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Figure 3. Calculated AAGpimerization Values show good agreement with
experimental data for allosterically active mutations in the 3BT1 interior.

(A) AAGpimerization Values calculated with the optimal parameter set (8 = 0.002, cutoff=
0.05%) are plotted against experimentally determined values for 3BT1 mutations which
are defined as “interior” by the SKEMPI database(60), meaning that these residues are
located away from the protein-protein interface and have a relative solvent-accessible
surface area of less than 25%. Lines of best fit are shown for the comparison of all
mutations (gray) and for the set which excludes negligible predicted AAG mutations

(| MDR-FEP AAG | =1 REU, orange). Dots are labeled by the identity of the residue
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being mutated to alanine (WT alanines are mutated to serine). Values which were
correctly identified as stabilizing and destabilizing are shown in blue and green,
respectively. Values which are incorrectly predicted to be stabilizing and destabilizing
are shown in red and magenta, respectively. Negligible predicted AAG mutations are
shown in gray. (B) Mutations shown in Panel A are depicted as spheres on 3BT1 chain
U (gray backbone) along with the binding partner chain A (yellow backbone). The
sphere coloring corresponds to the dot coloring of Panel A. (C) Distributions of the
minimum distance between a mutation’s Cg and the closest Cg (or Cq in the case of
glycine) of the opposite chain for each set of mutations in (A). Colored based on (A-B).
(D) MDR-FEP correlation with experiment, calculated using the same mutations and
parameter set as in (A), is plotted against a distance cutoff where mutations with a
minimum distance to the opposite chain according to (C) greater than the cutoff are

excluded from the calculation. Colored according to (A).
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Figure 4. The MDR-FEP method performs well by sampling mutant-like
conformations.

(A) The correlation of predicted values to experimental data for all non-charge-changing
interior allosteric 3BT1 mutations is compared to the number of frames with the lowest
RMSDs to mutant simulations excluded from the calculation of each AG value. The

optimal parameter set of § = 0.002 and cutoff = 0.05% is used. Correlations are

calculated after removing negligible predicted AAG mutations. (B) For each mutation
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shown in Figure 3A, the backbone RMSD of each frame of the WT equilibrium 3BT1
dimer simulation to the average structure of that mutation’s equilibrium simulation is
calculated. An average RMSD is then calculated for each mutation, and the distribution
of these average values is shown for each set of mutations colored according to Figure
3A. (C) The correlation of predicted values to experiment is compared to total simulation
time using the same set of mutations, parameters, and correlation calculation scheme
as Figure 3A. The total simulation time is split evenly among three independent
simulations, for example three independent 400 ns simulations are run for a total
simulation time of 1200 ns. (D) The relationship between total simulation time and total
number of frames with an RMSD to any mutant’s average structure of less than 1 A is

shown.
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Figure 5. The MDR-FIéP method selects conformations which sterically favor the
mutant.

(A-B, D-E) Plots comparing the overall AE and Afa_rep (the Rosetta energy term which
describes Lennard-Jones overlap) are shown for sample (A-B) destabilizing and (D-E)
stabilizing mutations using the optimal parameter set of f = 0.002 and cutoff = 0.05%.
Each frame is represented by a dot. (C/F) Protein images of the WT frames indicated by
green circles in the (A)/(E) (above) are shown in green. Sample structures from frames

with AE closer to 0, indicated by the blue circles in (A)/(E), are shown in blue for
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Supporting Figures
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Figure S1. High B values cause low-energy frames to dominate the AG

calculation.

The calculated AG values are shown as dot-dashed vertical lines, and the contribution
of each portion of the AE distribution to the final AG value is shown as a dotted line.
With the optimal 3 value of 0.002 (green), low-energy frames contribute appropriately to
the overall AG value. Increasing 3 to 0.5 causes low-energy frames to dominate,

resulting in inaccurate predicted AG values.
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Figure S2. MDR-FEP performance without the use of KDE.

MDR-FEP correlation with experiment without the use of KDE is shown for (A) 3BT1
long-range interior, (B) 3BT1 interface, and (C) 1BRS interface mutations. The same
datasets generated using KDE are shown below for comparison. Correlations are
calculated using B = 0.002 with no cutoff applied. All correlations shown are statistically

significant (p > 0.05).
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Figure S3. The use of KDE allows for more precise data cutoffs to be applied.

Correlation is compared to (A) a continuous cutoff percentage applied to the density of

the data and (B) a discrete whole-frame cutoff applied to the raw data.
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Figure S4. MDR-FEP correlation to experiment using simple rather than

exponential averaging.

MDR-FEP correlation with experiment using simple averaging of AE distributions rather
than exponential averaging is shown for (A) 3BT1 long-range interior, (B) 3BT1
interface, and (C) 1BRS interface mutations. Correlations are calculated using 8 = 0.002

with no cutoff applied.
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Figure S5. 3BT1 and 1BRS simulations sample approximately equivalent numbers
of low-energy frames.

Comparison between the number of frames with an MDR-FEP predicted AE of less than
-100 REU for mutations to 3BT1 and 1BRS in WT equilibrium (A) monomer and (B)

dimer simulations.



Thermodynamic Integration AAG (kd mol-1)

I I I I I
-2 0 2 4 6

Experimental AAG (kJ mol-1)
Figure S6. 1BRS non-interface prediction with thermodynamic integration.

Nonequilibrium fast-growth thermodynamic integration (Tl) was used to predict the AAG
of binding for non-interface mutations in 1BRS. Due to the requirement of charge
preservation during morphs, charge-changing mutations were excluded. Lines of best fit
are shown for the comparison of all mutations (gray) and for the set which excludes a
single outlier (orange). Values which were correctly identified as stabilizing and
destabilizing are shown in blue and green, respectively. Values which are incorrectly
predicted to be stabilizing and destabilizing are shown in red and magenta, respectively.
A clear outlier (L23A) has a predicted AAG of -72 kJ mol!, over 2.5 times the magnitude
of the next two mutations predicted to be most stabilizing (A49S and A56S).



D254A Monomer

2 ] AG =61.5 REU
Contribution to AG
o
o
0 _|
b ~—
K7)
c
(O]
o o _
To)
S
o
S
| | | | |
-2000 -1000 0 1000 2000
AE

Figure S7. The MDR-FEP method calculates an inappropriately large negative AG
value for the D254A mutation, even at low (8 values.

The AG value is calculated using the optimal parameter set of 3 = 0.002.0 and cutoff =
0.05. The fraction of the contribution (green dotted line) which falls within 99.9% of the

main distribution (solid black line) is calculated to be 0.88.
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Figure S8. MDR-FEP performance using the 1BRS dataset, excluding potential
outliers. Correlations are calculated using the same parameter set as in Figure

2F.
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Figure S9. The WT equilibrium simulation tends to sample fewer low-energy
frames for negligible predicted AAG mutations (gray) than mutations which have
high predicted values (orange).

Mutation set, parameters used, and coloring scheme are based on Figure 3A/D.
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Figure S10. WT equilibrium 3BT1 simulations looked less like mutant simulations
for mutations which were incorrectly predicted to be stabilizing.

The mean RMSD of the WT equilibrium 3BT1 simulations to the average structure
generated by mutant equilibrium simulation is plotted for the sets of mutations described

by the coloring of Figure 3 A-C.
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