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Abstract 

Computationally modeling how mutations affect protein-protein binding not only 

helps uncover the biophysics of protein interfaces, but also enables the redesign and 

optimization of protein interactions. Traditional high-throughput methods for estimating 

binding free energy changes are currently limited to mutations directly at the interface 

due to difficulties in accurately modeling how long-distance mutations propagate their 

effects through the protein structure. However, the modeling and design of such 

mutations is of substantial interest as it allows for greater control and flexibility in protein 

design applications. We have developed a method that combines high-throughput 

Rosetta-based side-chain optimization with conformational sampling using classical 

molecular dynamics simulations, finding significant improvements in our ability to 

accurately predict long-distance mutational perturbations to protein binding. Our 

approach uses an analytical framework grounded in alchemical free energy calculations 

while enabling exploration of a vastly larger sequence space. When comparing to 

experimental data, we find that our method can predict internal long-distance mutational 

perturbations with a level of accuracy similar to that of traditional methods in predicting 

the effects of mutations at the protein-protein interface. This work represents a new and 

generalizable approach to optimize protein free energy landscapes for desired biological 

functions. 
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Introduction 

Protein interactions are central to many vital biological processes such as 

antibody binding, signal transduction, gene expression, and enzyme regulation. 

Consequently, changes in the propensity of proteins to associate or dissociate, for 

example due to mutation or post-translational modification, can be very disruptive to 

biological function and are therefore often linked to disease(1-3). The ability to 

understand and control the energetics of protein interactions therefore has far-reaching 

consequences for the study of disease and for the development of novel protein-based 

therapeutics. 

A number of strategies have been developed to quantitatively predict the effects 

of mutations on protein interactions based on either empirical(4-6) or statistically-

based(7, 8) scoring approaches, where energy functions or observations from known 

protein structures, respectively, are used to describe the physical interactions between 

protein residues and estimate free energy changes upon mutation. The relatively low 

computational cost of these scoring methods makes them well suited to large-scale 

analyses and protein design, albeit at the expense of accuracy(9). Modest 

improvements have been made to score-based approaches by integrating information 

from MD simulations to account for solvent effects and variations in protein 

conformation(10-12). Additionally, approaches which utilize the more physics-based 

scoring capabilities of the Rosetta macromolecular modeling suite have recently shown 

a promisingly high degree of accuracy in predicting mutational binding free energy 

changes(13-15), finding notable success in design applications(16, 17). Recently, 

machine learning algorithms and artificial intelligence have also been applied to score-
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based approaches, improving the prediction of interface-adjacent mutations(7, 18, 19). 

However, despite this progress, current scoring methods are almost exclusively limited 

to predicting the energetic effects of mutations at the protein interaction interface and 

fail to accurately predict the effects of mutations whose perturbations act over long 

distances. 

Other approaches to calculating mutational free energy changes involve applying 

theoretically rigorous statistical mechanics and conformational sampling from MD 

simulations to calculate, rather than approximate through heuristics, mutational free 

energy changes(20-22). Free Energy Perturbation (FEP) is a method to determine the 

free energy difference between two states by simulating the system in one state while 

simultaneously evaluating the energies of the system in another state(22, 23). FEP is 

based on the Zwanzig equation(23), which states that the free energy difference 

between two states is equal to the exponential average of the energy differences 

between the two states: 

!"($ → &) = −*!" ln 〈exp	(−2# − 2$3B4
)〉$ 

 
Here, !"($ → &) is the free energy difference between states A and B, * is equal 

to the inverse of the product of temperature (T) and Boltzmann’s constant (3B), 2$ and 

2# are the energies of conformations in state A and B respectively, and angular 

brackets denote the average over conformations taken from an equilibrium ensemble of 

state A. 

While this theorem is numerically exact with an infinite sample of energy 

differences and only requires simulation of one equilibrium ensemble, it is highly reliant 

on sufficient sampling of the equilibrium system to achieve acceptable levels of 
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accuracy and convergence(24, 25). It also often requires long and computationally 

expensive MD simulations simulated at many intermediate states when applied to 

typical biomolecular systems. 

Methods like the Bennet acceptance ratio (BAR) and thermodynamic integration 

(TI) are non-equilibrium alternatives to FEP which involve calculating the work of a 

transition in the “forward” as well as the “reverse” directions, i.e. 6A→B and 6B→A(26). 

Such methods have shown high degrees of accuracy in predicting the effects of 

mutations, both interface-adjacent and allosteric, on biophysical processes such as 

protein association(27, 28). However, while these “bidirectional” approaches 

significantly improve the accuracy and convergence of free energy estimates compared 

to their “unidirectional” counterparts(29), they further increase the need for 

computationally expensive MD simulations by requiring separate equilibrium simulations 

for each state of interest to allow calculation of a set of “reverse” work values. In addition 

to substantial equilibrium sampling, these methods also often rely on computationally 

expensive simulations to generate non-equilibrium work values(20, 27, 29), making 

them less suitable for large-scale applications. 

Recent studies have emphasized the importance of allosteric regulation in 

protein interactions throughout biology(30-32), underscoring the power of long-distance 

perturbations to protein structure and function. The ability to predict the effects of long-

distance mutations would significantly improve the current scope of protein design and 

allow for a greater understanding of disease processes which feature long-distance 

protein modulation. To the best of our knowledge there does not currently exist an 

accurate high-throughput method to predict the effects of long-distance mutations on 
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protein-protein interactions. In the present study, we develop the Molecular Dynamics 

Rosetta-Free Energy Perturbation (MDR-FEP) method which combines the extensive 

conformational sampling from classical MD simulations with the high-throughput nature 

of Rosetta repacking and the theoretical framework of alchemical FEP, allowing for the 

accurate prediction of long-distance mutational free energy changes with a high enough 

throughput for large-scale mutational analyses and forward protein design. 

Results and Discussion 

Protocol Rationale and Overview 

The effect of mutations directly at the protein-protein interface can often be 

modeled using algorithms that keep the backbone fixed and allow side chain 

flexibility(15). However, the farther a mutation is away from the protein-protein interface, 

the more likely it is to affect binding through backbone perturbations like shifts in 

secondary structure or protein loops. Prediction of those backbone shifts can be done 

with two different strategies. An “induced-fit” approach involves first making the mutation 

and then using structural refinement algorithms to predict how the mutation propagates 

changes to the rest of the structure and alters the binding free energy. Alternatively, a 

“conformational selection” approach involves first obtaining an ensemble of backbone 

structures with the wild-type sequence and then later determining whether given 

mutations will sufficiently alter the energetics of that backbone ensemble to affect the 

binding free energy.  

For the purposes of this work, we assume that sampling of backbone 

conformations is significantly more computationally costly than sampling of side chain 

conformations. This is largely supported by the high performance of algorithms like the 
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Rosetta packer(33), which can very efficiently sample both rotamer and sequence 

space, and the considerably more complex task of backbone sampling. Given this 

dramatic difference in performance between the sampling of backbone and side chain 

conformations, a “conformational selection” algorithm that creates an ensemble of 

backbone conformations once and then samples sequence space many times is likely 

to be much more efficient than an “induced-fit” approach. While a “conformational 

selection” algorithm may perform poorly on mutations that require larger shifts of the 

backbone ensemble than would be captured in an “induced-fit” approach, there likely 

remains a large number of mutations that represent low hanging fruit amenable to 

conformational selection. 

We hypothesized that equilibrium molecular dynamics simulations of a WT 

protein would serve as an effective means of generating a backbone ensemble for a 

“conformational selection” approach. To be effective, the MD simulations should 

transiently sample backbone conformations for which the energy with a given mutant 

sidechain is lower than WT, providing information about that mutation’s relative ΔG in 

the free or bound state. Because backbone conformations which are more stable with a 

mutant sidechain could have higher energies than with the WT sidechain present, these 

conformations may be infrequently sampled in WT simulations. Previous studies(12, 34, 

35) found improved accuracy in predicting the effects of interface-adjacent mutations 

using the FoldX method after averaging values from structural snapshots of an MD 

simulation as compared to using only a single structure. However, due to the increased 

difficulty of predicting long-distance mutations, we anticipated that the WT simulations 

would sample long-distance mutation-accommodating conformations less frequently. 
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Such infrequent sampling would lead to a relatively small contribution of these low-

energy conformations to the overall ensemble, resulting in negligible shifts in the mean 

or median energies for the WT and mutant sequences. To detect such shifts at the 

extremes of the energy distributions, we tested whether the use of analytical methods 

rooted in statistical mechanics enables better accounting for the contribution of these 

low-energy conformations to the overall ΔG value. In the present work, the Rosetta 

packer is used to side-chain optimize and score the energy of each frame in an 

equilibrium simulation with both WT and mutant sequences. These energies are then 

evaluated using exponential averaging in the Zwanzig equation (above) to produce a 

ΔG value. 

The β parameter of that function, which describes the inverse of the equilibrated 

system’s theoretical temperature multiplied by the Boltzmann constant, dictates the 

extent to which low-energy conformations contribute to ΔG: At low values of β, frames 

with a high ΔE dominate while those with a low ΔE contribute very little. Conversely, an 

increase in β causes the contribution of low-energy conformations to increase (Figure 

S1). While the MD simulations are run at a well-defined temperature with known β, the 

Rosetta packer uses simulated annealing to optimize the total energy over a set of 

discrete rotamer configurations. Packing is followed by gradient-based sidechain 

dihedral angle minimization. As a result of these distinctly non-equilibrium processes, 

the method is no longer theoretically rigorous like standard FEP and an appropriate 

temperature is not known a priori. Due to these theoretical and practical differences, an 

alternative variable name other than β may be preferable, but we continue to use it here 

to maintain continuity with the original Zwanzig equation. Many parts of the Rosetta 
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energy function use functional forms grounded in physics whose parameters are 

empirically optimized using structural data. Likewise, in the proposed method, β is 

treated as a parameter to be optimized in order to find the ideal level of contribution of 

low-energy frames to ΔG.  

For a protein dimer of chains A and B, WT MD simulations are run with both 

dimeric and monomeric chains (Figure 1A, Step 1). Individual structural snapshots are 

extracted every 1 ns from each trajectory. For each frame, all residues within 10 Å of 

the mutation of interest are repacked and scored with both the WT and mutant 

sidechain present, generating a distribution of ΔE values for both the monomer and 

dimer states (Figure 1A, Step 2). In order to account for the possibility of outliers, a 

cutoff is then applied to this density function where all values which fall below the cutoff 

are set equal to zero. The set of ΔE values generated for each mutation in the monomer 

and dimer states is converted into a distribution using kernel density estimation (KDE) in 

order to allow for the application of more precise cutoff values (Figure 1B-C). With no 

cutoff applied, MDR-FEP performance was comparable when using KDE and raw ΔE 

values (Figure S2). However, KDE allowed for the continuous exclusion of a percentage 

of the density curve allowing for more precise control while analysis of raw ΔE values 

required discretely excluding whole frames (Figure S3). The Zwanzig equation is then 

applied to each distribution to generate a ΔG value for the monomer and dimer, allowing 

for the calculation of ΔΔGDimerization for the mutation of interest. 

Parameter Optimization and Performance Evaluation 

We first performed a grid search over three separate mutation datasets in order 

to determine optimal β and cutoff parameters for the proposed method (Figure 2). To 

evaluate how well our method recapitulated experimental data at each given parameter 
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set, Pearson correlation with experimental data was evaluated with β ranging from 0 to 

0.1 and cutoff ranging between 0 and 1%. We first evaluated our method against an 

experimental surface plasmon resonance alanine scan(36) of urokinase-urokinase 

receptor dimerization for both interior long-distance and interface-adjacent mutations, 

which included experimentally validated values showing long-distance mutations which 

both stabilize and destabilize protein binding (Figure 2A-B). Interestingly, we found that 

the method’s performance in predicting the effects of both long-distance and interface 

mutations in the urokinase-urokinase receptor interaction seemed to depend on the 

cutoff parameter, with correlations appearing to decrease with cutoffs larger than 0.05% 

and 0.03%, respectively (Figure 2A/B). We interpret these results to indicate that the 

accurate prediction of the ΔG of these mutations relies on the sampling and correct 

accounting of low-energy frames, perhaps due to the increased difficulty of simulating 

long-distance and sterically larger mutations to alanine. To investigate this finding 

further, we evaluated MDR-FEP performance using simple averaging of ΔE distributions 

rather than exponential averaging, where low energy frames are able to shift the 

calculated value significantly less. As expected, MDR-FEP correlation to experiment for 

both long-range interior and interface mutations were lower and statistically insignificant 

(R = 0.03 and 0.13, respectively; p > 0.05) when using simple averaging (Figure 

S4A/B). Conversely, the correlation for each of these sets of mutations seemed to 

depend less on the β parameter (Figure 2A/B). 

We then evaluated the MDR-FEP method using an experimental ITC study(37) of 

the barnase-barstar dimerization process which included only non-allosteric (interface-

adjacent) mutations (Figure 2C), finding that our method was able to reproduce 
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experimental data with reasonable accuracy independent of the cutoff parameter while 

using a low β value. Correlation with the experimental ITC data did however decrease 

sharply at higher β values (Figure 2C). The fact that correlation did not decrease as 

more low-energy frames were removed by the increasing cutoff parameter suggests 

that the accurate prediction of ΔG for these mutations does not rely on the sampling of 

low-energy frames. Correlation with experiment remained approximately the same (R = 

0.5, p = 0.03) using simple averaging (Figure S4C), further indicating that low-energy 

frames are not as important for this easier interface-adjacent mutation dataset. Although 

the 1BRS and 3BT1 simulations sampled approximately the same number of low-ΔG 

conformations (Figure S5), we believe that mutations in the 1BRS system are overall 

easier to predict by Rosetta repacking alone and therefore rely less on the sampling and 

accounting of frames which approximate mutation-accommodating backbone 

conformations. 

We then compared the performance of the proposed method to that of Flex 

ddG(13), which is an existing Rosetta-based ΔΔGDimerization calculation method, and 

nonequilibrium fast-growth thermodynamic integration (TI). Over a set of 65 allosteric 

mutations to alanine (Figure 2D), our method achieved an overall correlation of 0.33 (p 

= 7.4x10-3) while Flex ddG showed a correlation of approximately 0 (p = 5.9x10-1). 

Excluding one clear outlier, TI achieved a correlation coefficient of 0.34 (p = 1.2x10-2, 

Figure S6). While clearly an improvement over Flex ddG, the somewhat low MDR-FEP 

correlation coefficient was expected given the TI performance and the difficulty of 

predicting binding free energy changes using only a conformational selection approach 

at the backbone level. For certain positions and/or mutations, this approach is likely to 
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fail due to rare sampling of the backbone conformations necessary for accurate 

predictions. We therefore sought to identify a simple heuristic that could be used to 

prospectively screen out mutations that are not likely to be predicted correctly. In the 

context of protein design, those mutations could then be excluded from experimental 

validation, increasing the likelihood of success at either stabilizing or destabilizing 

protein-protein binding. We noticed that a number of mutations were falsely predicted to 

have ΔΔG values between -1 and 1 REU by the MDR-FEP method. We term these 

“negligible predicted ΔΔG” mutations because the algorithm predicts a negligible ΔΔG 

(correctly or incorrectly), not because the actual ΔΔG is negligible. Interestingly, 

correlation improved significantly (R = 0.33 to 0.51; p = 7.4x10-3 to 2.6x10-3) with the 

exclusion of these “negligible predicted ΔΔG” mutations whereas Flex ddG did not show 

any improvement when applying this same filter. This improvement may result from the 

exclusion of mutations which feature extensive backbone alterations and are therefore 

too difficult for the MDR-FEP method to predict using the current level of backbone 

sampling. 

Over a set of 49 mutations to alanine at the urokinase-urokinase receptor 

interface (Figure 2E), the proposed method achieved an overall correlation of 0.21 (p = 

1.6x10-1) compared to Flex ddG’s 0.41 (p = 3.0x10-3). We observed that the MDR-FEP 

method was predicting very negative ΔG values for the D254A mutation in the 

monomer, even at low β values. Analysis of this mutation revealed that less than 90% of 

the contribution to the exponential averaging fell within the main distribution, while for all 

other mutations this was not the case. This analysis indicates an inappropriately large 

contribution from low-energy conformations for this particular mutation (Figure S6). 
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Exclusion of this potential outlier resulted in a correlation of 0.50 with experiment and 

increased statistical significance (p = 3.1x10-4). The correlation for the proposed method 

improved to 0.58 (p = 3.9x10-4) with the exclusion of negligible predicted ΔΔG mutations 

and the outlier, while the correlation of Flex ddG did not show such an improvement. 

Finally, for interface-adjacent barnase-barstar mutations, both the MDR-FEP method 

and Flex ddG achieved an overall correlation to experiment of approximately 0.5 (p = 

6.3x10-3 and 7.1x10-3, respectively) over a set of 28 mutations (Figure 2F). Again, the 

MDR-FEP method showed an improved correlation with experiment (R = 0.5 to 0.61, p 

= 6.3x10-3 to 1.1x10-2) with the exclusion of negligible predicted ΔΔG mutations, while 

Flex ddG did not. We noticed that the MDR-FEP method was predicting larger-

magnitude ΔΔG values for the W35F and H102L mutations which appeared to 

contribute significantly to the overall correlation. In order to evaluate performance 

without these potential outliers, we analyzed the correlation after excluding these 

mutations from the dataset. This analysis revealed a lower but still significant correlation 

to experiment (0.41 vs 0.50, p < 0.05) (Figure S7). 

After observing that the optimal β value for all three datasets was approximately 

0.002, we sought to determine an optimal consensus cutoff parameter that would 

maximize correlation independent of the dataset. We compared the correlation of each 

dataset using a β value of 0.002 against cutoff values ranging from 0 to 1% (Figure 2G), 

finding that all three datasets demonstrated acceptable correlations with no cutoff 

applied. Based on these results, we propose an optimal consensus parameter set of β = 

0.002 and cutoff = 0%. 
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The absolute scale of our ΔΔG predictions was significantly higher than that of 

the experimentally determined values. The REU scale is calibrated to be roughly 

comparable to kcal/mol(38), which further increases the discrepancy in overall scale 

with the experimental values shown in kJ/mol. However, that calibration may no longer 

be valid because of the Zwanzig algorithm’s emphasis on very low energy structures. 

The combination of the Rosetta packer and sidechain dihedral angle minimization may 

also exaggerate the magnitude of the energy differences found. Another factor that may 

exaggerate the absolute value and/or error of the predicted ΔΔG is differences in the 

ideal sidechain bond lengths and angles used by the AMBER 99SB*-ILDN force field 

and the Rosetta packer. The “idealization” of bond geometries during Rosetta rotamer 

generation may introduce clashes or unsatisfied hydrogen bonds that cannot be 

resolved by dihedral angle minimization alone. However, these potential differences 

between the AMBER 99SB*-ILDN and Rosetta force fields were not found to be a 

difficulty in a previous study that used iteration between AMBER 99SB*-ILDN MD and 

Rosetta for structure refinement(39). In addition, numerous other studies have used 

combinations of MD force fields with Rosetta repacking(40-46). Additonal investigation 

of these effects, especially in the context of other systems with experimentally 

characterized long-distance mutations, may lead to further improvements in the MDR-

FEP algorithm. 

Predictive Performance Depends on Mutation Location 

After observing good performance with both interface and long-distance 

mutations, we evaluated the performance of our method based on the location of the 

mutations included in the present study (Figure 3). Because the prediction of mutational 

effects becomes increasingly difficult at long distances, we hypothesized that ΔG values 
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for 3BT1 mutations at extreme distances would be predicted with less accuracy. Indeed, 

we observed that mutations which were correctly predicted to be destabilizing or 

stabilizing fell closest to the 3BT1 interface (Figure 3A-C, green and blue). Likewise, 

mutations incorrectly predicted to be destabilizing or stabilizing tended to fall farther 

from the interface (Figure 3A-C, red and magenta). Interestingly, we observed no clear 

trend to explain the performance of negligible predicted ΔΔG mutations based on 

distance to the interface. This analysis may suggest that negligible predicted ΔΔG 

mutations may be harder to predict due to their more significant backbone alterations 

rather than their distance to the protein-protein interface. Additionally, we evaluated the 

performance of the MDR-FEP method at various distance cutoffs, where only mutations 

that fall closer to the interface than the cutoff are included in the calculation (Figure 3D). 

We found that correlation indeed decreased with the inclusion of more distant 

mutations. 

We hypothesized that the exclusion of negligible predicted ΔΔG mutations 

improves correlation by removing “false negative” mutations, or mutations which are 

falsely predicted to have near-zero ΔΔG values. These false negatives likely arise due 

to a higher energy difference between the WT and mutant proteins, resulting in a 

smaller likelihood of sampling the low-energy frames needed to recapitulate 

experimental data. Indeed, we observed that negligible predicted ΔΔG mutations tend to 

sample fewer low-energy frames than their high predicted-value counterparts (Figure 

S8). Additionally, we found that 13 of the 36 negligible predicted ΔΔG allosteric 

mutations feature amino acids with hydroxyl groups (Figure 4A). Mutations which 
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remove or introduce hydrogen bonds to the protein structure may be more difficult for 

the WT equilibrium simulations to sample, perhaps helping to explain this trend. 

MDR-FEP Relies on WT Equilibrium Simulations Sampling MUT-like 
Conformations 

We initially predicted that the MDR-FEP method would detect mutational ΔG 

values by transiently sampling conformations which are more stable with mutant 

sidechains, and hence have more “low-RMSD frames” similar to conformations 

produced by mutant equilibrium simulations. We tested this hypothesis by evaluating 

the performance of the MDR-FEP method with differing numbers of low-RMSD frames 

removed, predicting that correlation to experiment would decrease as more low-RMSD 

frames are excluded. We indeed observed a strong relationship between correlation 

and the removal of low-RMSD frames, with overall correlation to experiment dropping 

from ~0.55 to ~0.30 with approximately 30% of the lowest-RMSD frames excluded 

(Figure 4A). 

Likewise, we expected that for mutations whose predicted values disagreed with 

experiment, the WT equilibrium simulations would feature higher RMSDs to the MUT 

equilibrium simulations’ average conformations. We found that the WT equilibrium 

simulation was more likely to have higher RMSDs to the average conformation of 

mutations which were falsely predicted to be stabilizing to the 3BT1 dimerization 

process (Figure 4B). However, we did not observe this trend in the monomer 

simulations, perhaps indicating that both monomer and dimer simulations must sample 

low-energy frames to accurately predict ΔG (Figure S9). 

Finally, we hypothesized that the WT equilibrium simulations would be more 

likely to sample low-energy frames with longer simulation times, thereby increasing 
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correlation with experiment. We observed a strong relationship between correlation and 

total simulation time used (Figure 4C), as well as a direct relationship between total 

simulation time and total number of frames with sub-Angstrom RMSDs to mean 

structures from mutant equilibrium simulations (Figure 4D). These results indicate that 

the MDR-FEP method’s ability to predict experimental values depends on the WT 

equilibrium simulation’s transient sampling of low-energy mutant-like frames, and that 

this sampling depends on the total simulation time used. Based on these results, we 

believe that the performance of the MDR-FEP method on negligible predicted ΔΔG 

mutations, which suffer from insufficient sampling of low-energy frames, may improve 

with longer equilibrium simulation times. 

The MDR-FEP method selects conformations which are sterically favorable with 
the mutant but not WT sidechains. 

We hypothesized that the MDR-FEP method would be most sensitive to 

conformations which favor the mutant through a steric rather than electrostatic effect. In 

order to investigate this conformational selection mechanism, we analyzed the 

individual Rosetta score terms of sample long-distance mutations which were correctly 

identified to be destabilizing and stabilizing by the MDR-FEP method (Figure 5). We first 

analyzed the H143A mutation (Figure 5A-C), which is correctly predicted by the MDR-

FEP method to destabilize 3BT1 dimerization (ΔΔGcalc = 4.8 REU, ΔΔGexp = 2.8 kJ mol-

1). We found that excluding frames with ΔE < -500 REU resulted in a predicted ΔΔG not 

in accordance with experiment (0.7 REU). Analysis of the individual score terms of low-

energy frames revealed high Lennard-Jones repulsion (“fa_rep”) between residues with 

the WT but not mutant sidechain, suggesting that mutating His143 to alanine in these 

particular conformations can relieve much more steric strain in monomeric state, 
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resulting in destabilization of the dimer. A high correlation (R > 0.99) between the ΔE 

and Δfa_rep of individual frames in both the H143A monomer and dimer was observed. 

Analysis of the W129A mutation, which was correctly predicted to stabilize 

dimerization, revealed similar trends (Figure 5D-F). When frames with ΔE < -500 REU 

were included, the MDR-FEP method correctly predicts the W129A mutation to stabilize 

dimerization (ΔΔGcalc = -2.9 REU, ΔGexp = -1.8 kJ mol-1). Removal of these frames 

resulted in an incorrect ΔΔG prediction of 1.7 REU. Score term analysis of these frames 

again revealed high steric overlap with the WT but not mutant sidechains present, 

indicating that mutation to alanine stabilizes the dimer by relieving more steric strain in 

the dimer than the monomer. The same strong relationship (R > 0.99) between Δfa_rep 

and overall ΔE was observed. 

For the H143A mutation, we found that there were more frames with a calculated 

ΔE < -500 REU in the monomer than in the dimer. This higher number of low-energy 

frames contributes to a lower ΔG value in the monomer than in the dimer, resulting in an 

overall positive ΔΔG. Similarly, there were more low-energy frames in the dimer for 

W129A than in the monomer, resulting in a negative ΔΔG. Based on this analysis, we 

believe that the MDR-FEP method is able to correctly predict the ΔΔG values of these 

mutations by appropriately reproducing the relative number of mutation-favoring 

conformations in the monomer and dimer. In the future, structural analysis of MD 

snapshots with these particularly large ΔE values may reveal communication pathways 

or global population shifts through which the mutations allosterically alter protein 

function. Identification of such mechanisms has been of significant recent interest(47, 

48). 
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The small but significant number of frames with ΔE < -500 REU also explains 

why the optimal value of β was found to be 0.002. Assuming Rosetta energy units 

correspond to kcal mol-1, β = 1/(RT) should be roughly 1.7 REU-1 at room temperature. 

However, the optimal value of β = 0.002 we find with the MDR-FEP grid search is 

roughly 850 times lower. If β was closer to the room temperature value of 1.7, the low-

energy frames would dominate the exponential average and yield a ΔΔG far larger than 

expected. Instead, by having β = 0.002, those frames still contribute significantly to the 

ΔΔG but only influence the exponential average rather than dominating it. The low β 

value thus acts as an empirical softening of the repulsive energies, compensating for 

the one-step switch of amino acids with the Rosetta packer. In traditional FEP, the 

transition between amino acids takes place over many steps, enabling use of a β value 

rigorously defined using the simulation temperature. 

Conclusions 

Prediction of the effects of long-distance mutations remains an important goal for 

advancing the field of protein analysis and design. However, current methods which can 

accurately predict these long-range effects are limited by prohibitively large 

computational cost and are therefore not useful for large-scale analysis or protein 

design. Recent advancements using the Rosetta macromolecular modeling suite have 

allowed for accurate large-scale prediction of mutational ΔΔG values, however these 

methods are limited to interface mutations and cannot accurately detect long-distance 

effects. In the current study, we propose a method to combine the theoretical framework 

and extensive conformational sampling of alchemical free energy calculations with the 

high-throughput capabilities of Rosetta. In this approach, conformations from MD 
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simulations are repacked and scored with Rosetta, and the effects of mutation-

accommodating conformations are accounted for using theory based in statistical 

mechanics to allow for the accurate prediction of allosteric effects using only simulations 

of the WT system. 

We evaluated the MDR-FEP method over three sets of mutations from two 

separate systems with accurate experimental data available. We found that the method 

is able to predict the effects of interface mutations with levels of accuracy comparable to 

current methods. Importantly, the MDR-FEP method was also able to predict the effects 

of long-distance mutations with similarly high levels of accuracy. We believe that this 

method represents a new approach to high-throughput analysis of mutations which 

propagate their effects over long distances. 

While this work has focused on the bound and unbound states of two protein 

chains, the methodology can be generalized to any system where two alternate states 

can be defined. Other future applications to be explored include shifting the energy 

landscape of a protein towards particular conformational states, optimizing binding 

affinity/specificity for different small-molecules, or even stabilizing a small-molecule 

ligand/substrate in functionally active conformations. Given the use of the Rosetta score 

function, MDR-FEP is most suitable for these types of applications where mutations are 

desired that shift the energy landscape from one folded state to another folded state. 

Predicting changes to protein fold stability with MDR-FEP would likely require 

reparametrizing the 20 amino acid-specific Rosetta reference energies to account for 

changes in unfolded state free energy. Similarly, Rosetta repacking in MDR-FEP would 

likely be unsuitable for cases where one of the states was intrinsically disordered. 
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Materials and Methods 

Equilibrium Molecular Dynamics Simulations 

Molecular dynamics simulations were generated in silico using the reference 

PDB structure 3BT1 (chains A and U) for the urokinase-urokinase receptor dimer, or 

1BRS for the barnase-barstar dimer. Missing residues in 3BT1 were added using 

RosettaRemodel(49). All mutant 3BT1 structures were generated using the PyMOL 

software package(50). For all simulations, each PDB structure was placed in a 

dodecahedral box with 1.5 nm between the protein and box walls and solvated using 

the TIP3P water model(51). Joung Na+ and Cl- ions were added to the simulation box at 

physiological concentrations of 150 mM(52). Each system was allowed to energy-

minimize for up to 10,000 steps using the Steepest-Descent algorithm in GROMACS. 

Energy-minimized structures were then equilibrated with 20 ps of NVT, and then 20 ps 

of NPT, simulation using 1000 kJ mol-1 nm-2 all-atom position restraints. Each system 

was then equilibrated with three consecutive 20 ps NPT simulations using all-atom 

position restraints of 500, 250, and 125 kJ mol-1 nm-2, respectively. Finally, two 

successive 20 ps NPT equilibrations were run with force constants of 125 kJ mol-1 nm-2, 

first on all backbone atoms and finally on Cα atoms only. 

Equilibrium simulations were run at constant temperature and pressure. The C-

rescale barostat was used to hold pressure at 1 Bar, and the V-rescale thermostat used 

to hold temperature at 300 K. All system preparations were carried out using 

GROMACS functions and in-house scripts. Production simulation trajectories were 

generated using GROMACS 2021(53) with a 2 fs timestep, the Verlet neighbor-

searching cutoff-scheme, and Particle-Mesh Ewald (PME) for van der Waals and 
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electrostatic interactions. The AMBER 99SB*-ILDN(54, 55) force field was used to 

generate production trajectories, constraining all bonds using the LINCS algorithm(56). 

Thermodynamic Integration 

3BT1 mutational free energy perturbations using thermodynamic integration 

(Figure S6) were calculated by fast-growth alchemical mutation using the PMX software 

package, as described in previous work(57, 58). Due to the fact that simulations with 

non-zero net charges experience artifacts that influence accuracy when using the PME 

method for long-range electrostatics(59), only charge-conserving mutations were 

included in TI analysis. For each ΔΔG calculation, three independent 100 ns equilibrium 

simulations of the monomer and dimer were run, both as WT and MUT. These 

equilibrium simulations were prepared as described above. “Snapshot” structures were 

recorded every 1 ns from each trajectory, alchemically mutated, and used to launch 50 

ps morphing simulations. 

Protocol Implementation and Rosetta Repacking 

For each system, three independent 500 ns simulations of both the monomer 

and dimer were run. Conformations were extracted every 1 ns from these trajectories. 

Each of these conformational frames was then repacked using the Rosetta 2020 fixed-

backbone repacker, allowing for extra sub-rotamers for χ1 and χ2 angles. The “multi-

cool-annealer” repacking option was used, where multiple “cooling” cycles are run and 

low temperature rotamer substitutions are then run from the 10 best network states 

generated during the cooling stage. Additionally, sidechain dihedral angle minimization 

was used on the lowest energy structure from the packer. For each frame, the score (E) 

from the lowest energy conformation of 50 repacking iterations was recorded with both 

the WT and mutant sidechains present. The following flags were used: -ex1 -ex2 -
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multi_cool_annealer 10 -minimize_sidechains -ndruns 50. Only residues which 

contained at least 1 atom within 10 Å of the mutation of interest in the crystal structure 

were repacked. For each mutation, the same set of residues was repacked in the 

monomer and dimer forms of the protein. 

 Following repacking and scoring, ΔE values for each frame were determined 

using the following equation: 

!2 = 2()* −	2+* 

Where ΔE represents the difference in score between the frame with a WT and MUT 

sidechain present. The set of ΔE values generated for each mutation in the monomer 

and dimer states were converted into a distribution using kernel density estimation with 

a bandwidth manually set to 0.1, and a cutoff parameter was applied such that all 

values below the cutoff are set equal to zero. ΔG values were then generated from each 

distribution of ΔE values using the following equation: 

!7 = − 1* ln 9:;,<!-.!
/

,0"
:;,
/

,0"
= > 

 
Where ? and ; are the vectors describing the X and Y values of the kernel 

density function, respectively. Finally, ΔΔG values were generated using the following 

equation: 

!!7()*,2345637893:; = !7()*,23456 − !7<)*,(:;:456 
 

All experimental data in Figure 2 and Figure 3 were obtained from the SKEMPI 

2.0 database(60) with mutations involving glycine removed, as were the locations of all 

mutations relative to the protein interaction interface (“interior” and “interface”). Flex ddG 

values shown in Figure 2 were calculated using the recommended parameters: nstruct 
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= 35, max_minimization_iter = 5000, abs_score_convergence_thresh = 1.0, and 

number_backrub_trials = 35000. 

Data Analysis and Visualization 

The solid lines in the data distributions shown in Figure 4B, Figure S8, and 

Figure S9 represent the mean value over three independent MD simulations. The 

shrouds in these distributions represent the standard error of these means, as 

calculated by  

 
@2 = A

√C
 

 
where σ is the standard deviation N is the number of independent trials. All protein 

images were generated using PyMol(50). 
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Figures 

 
Figure 1. Schematic of the MDR-FEP method. 

(A) A schematic overview of the proposed method is shown, with the first step involving 

Gromacs molecular dynamics simulations, the second step using Rosetta repacking 

simulations, and the third step involving analysis of the resulting energies. (B) Box plots 

containing all ΔE values for the L113A monomer and dimer are shown, where each 

frame outside the interquartile range represented by a dot. (C) Images of the primary 

ΔE distributions for the L113A monomer and dimer are shown. ΔG values, calculated 

using β = 0.002 and cutoff = 0.005%, are shown as dashed lines using all frames (solid 

colors) and using only frames with ΔE > -500 REU (opaque colors). The final ΔΔG value 

is the difference between the blue and green dashed lines, represented by a solid arrow 

for the calculation including all frames and by an opaque arrow for the calculation using 

only frames with ΔE > -500 REU. 
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Figure 2. Parameter optimization by grid search. 

(A-C) Grid search heat maps showing the correlation of MDR-FEP predicted data to 

experiment for (A) 3BT1 allosteric, (B) 3BT1 interface, and (C) 1BRS interface sets of 

mutations. Correlations were calculated after excluding negligible predicted ΔΔG 

mutations for all datasets. Green circles indicate the set of parameters producing the 

highest correlation. (D-F) The performance of the MDR-FEP method is compared to 

Flex ddG(13), a leading Rosetta-based ΔΔG calculation method, for each set of 
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mutations in (A-C) shown above. (G) The correlation of each set of mutations in (A-C) is 

plotted against the data cutoff using β = 0.002. Correlations were calculated after 

removal of negligible predicted ΔΔG mutations for all datasets, and after the removal of 

the outlier indicated by the gray circle in (E) for 3BT1 interface mutations. 
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Figure 3. Calculated ΔΔGDimerization values show good agreement with 

experimental data for allosterically active mutations in the 3BT1 interior. 

(A) ΔΔGDimerization values calculated with the optimal parameter set (β = 0.002, cutoff= 

0.05%) are plotted against experimentally determined values for 3BT1 mutations which 

are defined as “interior” by the SKEMPI database(60), meaning that these residues are 

located away from the protein-protein interface and have a relative solvent-accessible 

surface area of less than 25%. Lines of best fit are shown for the comparison of all 

mutations (gray) and for the set which excludes negligible predicted ΔΔG mutations 

(| MDR-FEP ΔΔG | ≤ 1 REU, orange). Dots are labeled by the identity of the residue 
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being mutated to alanine (WT alanines are mutated to serine). Values which were 

correctly identified as stabilizing and destabilizing are shown in blue and green, 

respectively. Values which are incorrectly predicted to be stabilizing and destabilizing 

are shown in red and magenta, respectively. Negligible predicted ΔΔG mutations are 

shown in gray. (B) Mutations shown in Panel A are depicted as spheres on 3BT1 chain 

U (gray backbone) along with the binding partner chain A (yellow backbone). The 

sphere coloring corresponds to the dot coloring of Panel A. (C) Distributions of the 

minimum distance between a mutation’s Cβ and the closest Cβ (or Cα in the case of 

glycine) of the opposite chain for each set of mutations in (A). Colored based on (A-B). 

(D) MDR-FEP correlation with experiment, calculated using the same mutations and 

parameter set as in (A), is plotted against a distance cutoff where mutations with a 

minimum distance to the opposite chain according to (C) greater than the cutoff are 

excluded from the calculation. Colored according to (A). 
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Figure 4. The MDR-FEP method performs well by sampling mutant-like 

conformations. 

(A) The correlation of predicted values to experimental data for all non-charge-changing 

interior allosteric 3BT1 mutations is compared to the number of frames with the lowest 

RMSDs to mutant simulations excluded from the calculation of each ΔG value. The 

optimal parameter set of β = 0.002 and cutoff = 0.05% is used. Correlations are 

calculated after removing negligible predicted ΔΔG mutations. (B) For each mutation 
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shown in Figure 3A, the backbone RMSD of each frame of the WT equilibrium 3BT1 

dimer simulation to the average structure of that mutation’s equilibrium simulation is 

calculated. An average RMSD is then calculated for each mutation, and the distribution 

of these average values is shown for each set of mutations colored according to Figure 

3A. (C) The correlation of predicted values to experiment is compared to total simulation 

time using the same set of mutations, parameters, and correlation calculation scheme 

as Figure 3A. The total simulation time is split evenly among three independent 

simulations, for example three independent 400 ns simulations are run for a total 

simulation time of 1200 ns. (D) The relationship between total simulation time and total 

number of frames with an RMSD to any mutant’s average structure of less than 1 Å is 

shown. 
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Figure 5. The MDR-FEP method selects conformations which sterically favor the 

mutant. 

(A-B, D-E) Plots comparing the overall ΔE and Δfa_rep (the Rosetta energy term which 

describes Lennard-Jones overlap) are shown for sample (A-B) destabilizing and (D-E) 

stabilizing mutations using the optimal parameter set of β = 0.002 and cutoff = 0.05%. 

Each frame is represented by a dot. (C/F) Protein images of the WT frames indicated by 

green circles in the (A)/(E) (above) are shown in green. Sample structures from frames 

with ΔE closer to 0, indicated by the blue circles in (A)/(E), are shown in blue for 

comparison. 
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Supporting Figures 

 
Figure S1. High β values cause low-energy frames to dominate the ΔG 

calculation. 

The calculated ΔG values are shown as dot-dashed vertical lines, and the contribution 

of each portion of the ΔE distribution to the final ΔG value is shown as a dotted line. 

With the optimal β value of 0.002 (green), low-energy frames contribute appropriately to 

the overall ΔG value. Increasing β to 0.5 causes low-energy frames to dominate, 

resulting in inaccurate predicted ΔG values. 
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Figure S2. MDR-FEP performance without the use of KDE. 

MDR-FEP correlation with experiment without the use of KDE is shown for (A) 3BT1 

long-range interior, (B) 3BT1 interface, and (C) 1BRS interface mutations. The same 

datasets generated using KDE are shown below for comparison. Correlations are 

calculated using β = 0.002 with no cutoff applied. All correlations shown are statistically 

significant (p > 0.05). 
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Figure S3. The use of KDE allows for more precise data cutoffs to be applied. 

Correlation is compared to (A) a continuous cutoff percentage applied to the density of 

the data and (B) a discrete whole-frame cutoff applied to the raw data. 
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Figure S4. MDR-FEP correlation to experiment using simple rather than 

exponential averaging.  

MDR-FEP correlation with experiment using simple averaging of ΔE distributions rather 

than exponential averaging is shown for (A) 3BT1 long-range interior, (B) 3BT1 

interface, and (C) 1BRS interface mutations. Correlations are calculated using β = 0.002 

with no cutoff applied. 
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Figure S5. 3BT1 and 1BRS simulations sample approximately equivalent numbers 

of low-energy frames. 

Comparison between the number of frames with an MDR-FEP predicted ΔE of less than 

-100 REU for mutations to 3BT1 and 1BRS in WT equilibrium (A) monomer and (B) 

dimer simulations. 
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Figure S6. 1BRS non-interface prediction with thermodynamic integration. 

Nonequilibrium fast-growth thermodynamic integration (TI) was used to predict the ΔΔG 

of binding for non-interface mutations in 1BRS. Due to the requirement of charge 

preservation during morphs, charge-changing mutations were excluded. Lines of best fit 

are shown for the comparison of all mutations (gray) and for the set which excludes a 

single outlier (orange). Values which were correctly identified as stabilizing and 

destabilizing are shown in blue and green, respectively. Values which are incorrectly 

predicted to be stabilizing and destabilizing are shown in red and magenta, respectively. 

A clear outlier (L23A) has a predicted ΔΔG of -72 kJ mol-1, over 2.5 times the magnitude 

of the next two mutations predicted to be most stabilizing (A49S and A56S). 
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Figure S7. The MDR-FEP method calculates an inappropriately large negative ΔG 

value for the D254A mutation, even at low β values. 

The ΔG value is calculated using the optimal parameter set of β = 0.002.0 and cutoff = 

0.05. The fraction of the contribution (green dotted line) which falls within 99.9% of the 

main distribution (solid black line) is calculated to be 0.88. 
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Figure S8. MDR-FEP performance using the 1BRS dataset, excluding potential 

outliers. Correlations are calculated using the same parameter set as in Figure 

2F. 
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Figure S9. The WT equilibrium simulation tends to sample fewer low-energy 

frames for negligible predicted ΔΔG mutations (gray) than mutations which have 

high predicted values (orange). 

Mutation set, parameters used, and coloring scheme are based on Figure 3A/D. 
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Figure S10. WT equilibrium 3BT1 simulations looked less like mutant simulations 

for mutations which were incorrectly predicted to be stabilizing. 

The mean RMSD of the WT equilibrium 3BT1 simulations to the average structure 

generated by mutant equilibrium simulation is plotted for the sets of mutations described 

by the coloring of Figure 3 A-C. 

 


