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ABSTRACT: Metal peroxides are key species involved in a range
of critical biological and synthetic processes. Rare-earth (group III
and the lanthanides; Sc, Y, La—Lu) peroxides have been implicated
as reactive intermediates in catalysis; however, reactivity studies of
isolated, structurally characterized rare-earth peroxides have been
limited. Herein, we report the peroxide-selective (93—99% 0,>)
reduction of dioxygen (O,) at redox-inactive rare-earth triflates in

[ High peroxide

methanol using a mild metallocene reductant, decamethylferrocene ~ selectivity
(Fc*). The first molecular praseodymium peroxide ([Pr',(0,*”)- [ Ambiphilic
(18C6),(EG),][OTf],; 18C6 = 18-crown-6, EG = ethylene glycol,  reactivity

~OTf = “0,;SCFs; 2-Pr) was isolated and characterized by single-
crystal X-ray diffraction, Raman spectroscopy, and NMR spectros-
copy. 2-Pr displays high thermal stability (120 °C, SO mTorr), is
protonated by mild organic acids [pK,;(MeOH) = 5.09 + 0.23], and engages in electrophilic (e.g, oxygen atom transfer) and
nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated
by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive

[ Rates independent
of Lewis-acidity

metal ions by leveraging weak metal—ligand binding events preceding electron transfer.

B INTRODUCTION

Metal peroxides have been implicated as key species in a
variety of biological and synthetic processes ranging from
oxygen trans];)ort/storage,1 energy storage, medicine,3 and
catalysis (e g., OXygen reduction,” water oxidation,” and organic
oxidations®). Significant research efforts have been devoted to
the isolation and characterization of molecular transition-metal
peroxides, which in turn have uncovered novel structures
featuring diverse binding modes, properties, and reactivi-
ty.">”™"* These complexes can engage in mechanistically
distinct oxidative reactivity,> where the peroxide fragment can
display electrophilic,”® Peiigls nucleophilic,'”'” or in rare
instances, ambiphilic''®"**'™'® reactivity. In contrast, com-
paratively less is known regarding the chemistry of (alkyl-/
hydro-)peroxides of the rare-earth elements (RE = Sc, Y, La—
Lu). Such species have been proposed as reactive intermediates
in a range of transformations, including the oxidative coupling
of methane,'” epoxidations,” and phosphate-ester cleavage,”
yet reactivity studies of structurally characterized peroxides
have been extremely limited.”

In terms of accessing metal peroxides, O, is an abundant and
ideal oxidant; however, the limited kinetic reactivity of O, has
generally restricted facile and high-yielding syntheses of O,-
derived metal peroxides to redox-active transition-metal ions
and/or strongly reducing species. Consequentially, the syn-
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thesis of molecular RE™ peroxides derived from O, has
eﬁ’ectwely been hmlted to the use of strongly reducing RE",*
the N,2~ ligand,”** or adventitious formation in low yields**

and/or long time periods (3 weeks to $ months)™ from
presumed ligand or solvent oxidation. Looking at the chemistry
of other traditionally redox-inactive metal ions or main-group
Lewis acids, several examples have been reported (Figure 1).
Agapie and co-workers reported the direct synthesis of
bis(borane) peroxides from O, using mild metallocene
reductants (e.g., decamethylferrocene, Fc*, and ferrocene,
Fc) with a strong main-group Lewis acid, B(C4F;);; however,
control studies suggest that redox-active boron centers are
operative (Figure 1A).*° Greb and co-workers leveraged
metal—ligand cooperativity in the synthesis of aluminum
alkylperoxides, where inner-sphere reduction of O, was
achieved with reducing equivalents sourced from the calix[4]-
pyrrolato ligand after binding the Lewis acidic AI"™' center
(Figure 1B).”” Szymczak and co-workers also leveraged metal—
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0,-derived Peroxides Stabilized by "Redox-Inactive” Lewis Acids
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Figure 1. Examples of O,-derived peroxides stabilized by “redox-
inactive” Lewis acids. (A) Lewis acid redox, (B) ligand-based redox,
(C) H-bond stabilization, (D) metal-coupled electron transfer
(MCET), and (E) this work, O,-derived rare-earth peroxides at
redox-inactive rare earths.

ligand cooperativity in the synthesis of dizinc peroxides from
O, and cobaltocene, where H-bonding interactions between
the ligand secondary coordination-sphere and peroxide
fragment were crucial in enabling the observed reactivity
(Figure 1C).*® Recently, Karlin, Fukuzumi, and co-workers
accessed a scandium peroxide, “[Sc"'(0,>7)]*”, through a
copper-catalyzed reduction of O, in the presence of Fc* and
ScM(OTf);; however, the structure and reactivity of the RE™
species remain unknown (Figure 1D).*

Fukuzumi and co-workers have established that the rates,
selectivity, and thermodynamics of multi-e” processes can be
dramatically altered by redox-inactive metal ions through
MCET.* In stepwise or concerted MCET processes (Figure
1D), reduction of an electron-acceptor (A) by a donor (D) can
be accelerated by ~10° in the presence of strong redox-inactive
metal ions (M""), where the rates of electron transfer track
with Lewis acidity (kgp(M™) > kgr(MY) > kpr(MY)).>" This
acceleration originates from the increased driving force for
electron transfer due to stabilization of the reduced fragment
upon metal-ion binding. Despite these observations, outside of
the aforementioned Cu'-catalyzed reduction of oxygen, such
approaches have not been used to access O,-derived metal
peroxides. Herein, we report the peroxide-selective reduction
of O, at redox-inactive RE™(OTf), using a mild metallocene
reductant, Fc*. This leads to the isolation, characterization,
and reactivity of the first Pr'! peroxide, where reactivity studies
support ambiphilic character of a rare-earth peroxide fragment
for the first time (Figure 1E). Our mechanistic studies support

rate-limiting O, binding, which is sensitive to metal-ion size
and speciation in solution rather than Lewis acidity. This
unique dependence offers new opportunities for differentiated
reactivity of redox-inactive metal ions by leveraging weak
metal—ligand binding events preceding electron transfer.

B RESULTS AND DISCUSSION

Synthesis and Characterization of 1-Pr and 2-Pr.
Consistent with expectations based on formal reduction
potentials, methanol solutions of rare-earth metal triflates
[RE™(OTf);; RE™ = Sc, Y, La, Pr, Nd, Sm, Gd, Dy, Er, Yb,
and Lu] and decamethylferrocene (Fc*) were unreactive under
rigorously anaeroblc conditions [E; /Z(REIH(OTf)3) <-115V
versus NHE;E, ,(Fc*) = +0.1 V vs NHE™]. Alternatively,
addition of oxygen to these solutions led to a rapid color
change from golden yellow to green, which corresponded to
the formation of Fc** (4,,,, = 780 nm, & = 500 M™' cm™) and
reduction of oxygen. Spectrophotometric titrations revealed
that two equivalents of Fc* were consumed for every
equivalent of RE™(OTf); (Figure 2; RE™ = Pr), while

*
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Figure 2. Spectrophotometric titrations following the reduction of O,
(10 mM) by Fc* (1.0 mM) with Pr'™'(OTf); (0—1.5 mM) in MeOH
at 298 K.

iodometry confirmed exclusive peroxide formation at > 1:1
[Pr'""]:[Fc*] (peroxide selectivity = [I37]ops/[02% Jtheo X
100%; An(I37) = 358 nm, £ = 25 mM ™' cm™; see the
Supporting Information for additional details).

Isolation of a praseodymium peroxide with the empirical
formula [Pr'™,(0,%”) (OTf),(MeOH),], (1-Pr) was accom-
plished in 91% yield from the reaction of equimolar
Pr"'(OTf); and Fc* under an oxygen atmosphere (Figure 2).
Confocal Raman microscopy unambiguously confirmed the
presence of the peroxide fragment. 1-Pr displayed a single
isotopically sensitive vibration at 820 cm™, which falls within
the range reported for other rare-earth peroxides.”*>*****>3* A
peroxide stretch was not observed for '*0,-derived 1-Pr, which
we attribute to spectral overlap with a triflate C—F vibration®*
(ve_g = 770 cm™'; Theory: A®0-"*0(1-Pr) = 47 cm™,
8, 85(1-Pr) = 773 cm™'). Attempts to crystallize the
alcohol solvate, 1-Pr, only led to amorphous materials;
however, introducing chelating O-donors, 18-crown-6
(18C6), and ethylene glycol (EG) furnished X-ray quality
single crystals of the dimeric praseodymium peroxide,
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[Pr'",(0,%7) (18¢6),(EG),][OTf], (2-Pr), in 72% yield from
MeOH solutions layered with 'PrOH (Figure 3).
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Figure 3. (A) Synthesis of 1-Pr and 2-Pr. (B) Thermal ellipsoid plot
(50% probability) of 2-Pr. Select bond metrics: Pr(1)—O(1) =
2.327(2) A, Pr(1)-0(2) = 2.347(2) A, Pr(2)—0(1) = 2.320(2) A,
Pr(2)—0(2) = 2.316(2) A, O(1)-0(2) = 1.516(3) A. (C) Raman
spectrum (A, = 532 nm) of '°O,- and '*0,-derived 2-Pr. Inset:
160-180 difference spectrum.

2-Pr is the first crystallographically characterized molecular
praseodymium peroxide and features two, 10-coordinate Pr'"
centers with an all O-donor coordination environment. The
peroxide fragment is bound in a nearly symmetrical side-on
fashion (u:*:n*), where the Pr—O distances [2.316(2)—
2.347(2) A] and O—O distances [1.516(3) A] are comparable
to those of other dimeric RE" peroxides after accounting for
differences in ionic radii.”*****~%***~° Direct observation of
Vo_o in 2-Pr prepared from %0, and O, was not possible
due to overlap with vc_o(18C6) and ve_g(OTf) for '®O- and
80-labeled 2-Pr (Figure 3C), respectively; however, difference
spectra revealed isotopically sensitive peaks consistent with a
peroxide fragment and expectations based on an isolated
harmonic oscillator model [A*O—'80: Theory = 46 cm™,
Expt = 43 cm™; v'%5_'%5(2-Pr) = 805 cm ™, v!8,_¥5(2-Pr) =
762 cm™']. Multi-nuclear NMR studies confirmed that the
solid-state structure of 2-Pr was maintained in solution. The
"H NMR spectrum of 2-Pr collected in CD;CN (Figure S14)
displayed 6 paramagnetically shifted peaks over the range of +5
to —30 ppm corresponding to bound 18C6 and a single signal
for free EG (displaced by CD;CN). The "’F NMR spectrum
displayed a single broadened resonance at —71.78 ppm, which

was consistent with labile triflate (Figure S15). 2-Pr is non-
hygroscopic, stable up to 120 °C at S0 mTorr in the solid state,
and stable under N, or O, in refluxing MeOH or MeCN.

Reactivity Studies of 2-Pr. Despite proposals of rare-earth
(hydro/alkyl) peroxides as reactive intermediates in the
oxidative coupling of methane,'’ epoxidations,” and phos-
phate-ester cleavage,” reactivity studies of isolated species
have been extremely limited. Evans reduced the dinuclear
yttrium peroxide, Y'",(u-0,7)[N(SiMe;),],(THF),, with
KCq to form the corresponding bis-u-oxo, Y™, (u-0*"),[N-
(SiMe;),],(THF),.”** Kortz reported a hexacerium peroxide
polyoxometalate, [Ce'V(1-0,"7)s(GeW,,05,);]**", which
promoted the stoichiometric and catalytic (H,0,) oxidation
of methionine to the corresponding sulfoxide.”””  Finally,
Mashima reported a dinuclear cerium peroxide, [Ce™,(u-
0,”7)(L),(NO;),] (L = NH(CH,CH,N=CHCH,-3,5-
(‘Bu),-2-0),), which performed H-atom abstraction from
TEMPOH to form the corresponding p-oxo, [Ce™,(u-O*")
(L),(NO;),].**° In contrast, isolated transition-metal
peroxides display a diverse range of reactivity, including
epoxidation,®”*® aldehyde deformylation,”” hydrogen-atom
transfer (HAT),'®”*® oxygen-atom transfer (OAT)],"***
and C-H activation.'®*® Given the paucity of reactivity
studies of well-defined, soluble rare-earth peroxides, we
investigated the ability of the peroxide fragment found in 2-
Pr to engage in acid—base, electrophilic, and nucleophilic
reactions (Scheme 1).

Scheme 1. Reactivity of 2-Pr with Brensted Acids,
Nucleophiles, and Electrophiles

2 [ArNH,][OTf]

PC/MeOH, RT
200 mTorr, 3 h

"Bu n
/ MeCN. 80°C,an OF Bus

H20,
85% yield

o3
2-Pr 71% yield
EaEnEISHE  pnsiome

' ' 99% yield

25, PP L R 99% yield

Ar = 4-NO,-CgHy-

Spectrophotometric titration of 2-Pr in MeOH using a weak
organic acid, anilinium triflate ([PhNH;][OTf], pK,(MeOH)
= 6.05),"" was monitored by following the absorbance of the
conjugate base (PhNH,, 4,,,,, = 285 nm, &£ = 1867 M~ cm™").
Complete generation of H,0, was achieved at [PhNH,]-
[OTf]/[2-Pr] of ~60, and pK,; (5.09 + 0.23) was determined
from early titration points followin§ procedures adapted for
monoprotic systems (Figure S73)."* Given the absence of
equivalence points and lack of suitable absorption features to
distinguish Pr'"" speciation, only rough estimates for pK,, can
be made (5.1 > pK,, > 4.5; see the Supporting Information for
further discussion). Further confirmation of the observed
acid—base reactivity was obtained from the recovery of H,O,
by vacuum transfer (85% yield, Scheme 1) following
protonation of 2-Pr by stoichiometric p-nitroanilinium triflate
[pK,(MeOH) = 1.55].*

Electrophilic reactivity of the peroxide fragment of 2-Pr was
established by evaluating its ability to perform OAT with
organic nucleophiles (Scheme 1). Under rigorously anaerobic
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Figure 4. (A) Kinetic profiles for the reduction of O, (10.3 mM) by Fc* (1 mM) in the presence of M**(OTf), (10 mM) in MeOH at 298 K. (B)
Initial rates for the reduction of O, (10.3 mM) by Fc* (1 mM) in the presence of M"*(OTf), (10 mM) in MeOH at 298 K (left) and ionic radius

(right). Error bars = 26. (C) Dependence of initial rate constants on

[Pr(OTS),], [Fc*], or [O,

1 (conditions in inset). Error bars = 26.

conditions, 2-Pr performs OAT to P"Bu; to form OP"Bu; in 3
h at 80 °C in MeCN, while key control experiments confirm
that 2-Pr is stable in MeCN at 80 °C for days in the absence of
substrate (Table S8, Entry 3). Complete consumption of 2-Pr
and P"Bu; was confirmed by iodometry and *'P NMR,
respectively, while OP"Bu; was quantified by *'P NMR
spectroscopy after removal of praseodymium by precipitation
with oxalic acid and triethylamine (71% vyield; Section S8,
Figures S75 and S76). While 2-Pr was unreactive with a
weaker nucleophile, thioanisole (PhSMe), addition of stoi-
chiometric acetic acid [pK,(MeOH) 9.63]"" led to
quantitative formation of methylphenyl sulfoxide [PhS(O)Me]
(Figures S77 and S78, Table S8). Although the pK, of AcOH is
~5 units higher than that of pK, ; of 2-Pr, reactivity from small
amounts of a reactive rare-earth hydroperoxide cannot be
rigorously excluded.

Chin reported that at pH 7 (N-(2-hydroxyethyl)piperazine-
N'-ethanesulfonic acid, HEPES, buffer) in the presence of
H,0,, RE™(CIO,); accelerated phosphodiester cleavage (P—
OR bonds) of bis(nitrophenyl) phosphate (BNPP) by

~10%2"""¢ Variable pH kinetic studies suggested that low
concentrations (K., ~ 1.4 X 107>* M) of soluble, dimeric RE™
bis(peroxide) species, [REM,(0,%7),]*", were the active
species. Furthermore, the use of 'O-labeled H,0, implicated
that a nucleophilic peroxide fragment was responsible for the
rapid P—OR cleavage. Under identical conditions, electronic
absorption spectroscopy revealed that 2-Pr, [Pr'(18C6)-
(EG),][OTf]; (3-Pr)/H,0,, and Pr'"™(OTf),/H,0, react with
BNPP at comparable rates (within ~twofold, Figure S80) to
release 2 equiv of p-nitrophenol (Scheme 1). This marks the
first demonstration of nucleophilic reactivity from an isolated
rare-earth peroxide (i.e, 2-Pr) and supports ambiphilic
character of the RE™, (u:n*:1*—0,>") fragment.

Mechanism of O, Reduction. Mechanistic insights into
the peroxide-selective reduction of oxygen was provided by
initial-rate kinetic studies performed under flooding conditions
and monitored by UV—visible spectroscopy (Fc**: A,,,, = 780
nm; € = 500 M~ em™}; [Fc*] = 1 mM, [O,],, = 10.3 mM,
[M"™(OTf),] 10 mM; Figure 4A and $22-37). Full
conversion and high peroxide selectivity were observed for

17298

all RE™(OTY); (93—99%; Table S3), while weaker mono- and
divalent Lewis acids [e.g, Li'(OTf) and Mg"(OTf),] only
reached partial conversion and formed trace amounts of
peroxide (Figures $28 and $29). Unlike other electron-transfer
reactions that are accelerated in the presence of redox-inactive
metal ions,® the rate of Fc** formation did not follow
expectations based on Lewis acidity (S > Yb™ > Y™ > pr'!
~ La™). Instead, the most Lewis acidic cation, Sc™, was >10-
fold slower than the fastest RE™ and Pr', and rates varied
significantly depending on the RE" ionic radius (Figure 4B).

Control experiments evaluating the potential involvement of
trace-metal impurities were performed with RE™(OTf),
obtained from multiple sources and varying purity levels (98,
99.9, or 99.995%; all samples were >99.9% purity rare-earth
oxide, REO; Figures S23 and S26). Comparable rates and
selectivities were observed, making the involvement of trace-
metal impurities unlikely. Further control experiments revealed
that only small amounts of Fc** (~4%) and no peroxide
formed under identical conditions in the absence of
M”*(OTf) (Figures 4A and S38). Although disfavored in
alcohols,” auto-oxidation of ferrocene derivatives in the
presence of Bronsted acids and/or bases can occur through a
radical-chain process.*”** Addition of a known inhibitor of
radical-chain processes involving ferrocene derivatives,*’
butylated hydroxytoluene (BHT; [BHT] = 10 [Pr"'(OTf),]),
had no impact on the rate of Fc*" formation and discounted a
radical-chain mechanism (Figure S68).

Rate orders for Pr''(OTf);, Fc*, and O, were established
while maintaining at least a 10-fold excess of Pr''(OTf); and
O, relative to Fc*. Under these conditions, initial rates
displayed a first-order dependence on [Pr'(OTf);], a
saturation dependence on [O,], and a zero-order dependence
on [Fc*] (Figure 4C, eq 1, Figures S40—S53).

rate = k, [Pr'']'[O,]5; x=0-1 (1)

The zero-order dependence on the reductant was further
confirmed by using octamethylferrocene (MegFc) in place of
Fc*, where the reduced driving force for electron transfer
(~190 mV) led to only a ~twofold decrease in the initial rate
(Fc* = 9.41 & 0.53 X 107> mM/s; MegFc = 5.4 + 0.34 X 1073
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mM/s). This contrasts with the expectations for stepwise or
concerted MCET (first-order dependence on reductant)***"
and suggests an alternative mechanism in which electron
transfer is not rate determining.

Solvation and speciation are well known to play a key role in
the structure and reactivity of labile rare-earth salts in organic
solvent,* including RJ-EIH(OTf)3,46 and motivated further
experimental studies to establish the relevant structures of
RE™(OTf); in MeOH. Conductivity measurements of
anhydrous MeOH solutions of RE™(OTf); ([RE™] = 1 and
10 mM) fall within the range of 1:1 and 2:1 electrolytes in
MeOH (Tables S10-11; RE™:Sc, Y, La, and Pr)*” and align
with speciation proposed by Biinzli** for La"™(OTf); or by
Peters’ " for Dy'(OTf); using '*La NMR and quantitative
vibrational spectroscopy or 7O and '"F NMR spectroscopy,
respectively (i.e, [Ln(OTf),(MeOH),][OTf];_,; x=1-2,n=
5—7). Addition of 100 mM [NBu,][OTf] had no effect on
initial rates of Fc** formation and disfavors rate-determining
triflate exchange (Figure S69).

On the basis of our experimental results, we propose a
mechanism that is consistent with the observed kinetic
behavior and rate orders (Scheme 2). The first-order

Scheme 2. Proposed Mechanism

ki
[Pr|||] ;.T [PrIII]*

P+ 0, —2 5 [prio,)]
PO + Fo' —K o [pilo,) + Fort
PO + Fo' — o [pi0,2)] + Fet
[PrIO)] + [PH] — S 1.pr

Pr'"] = [Pr"(OTf)(MeOH),>** x=1-2, n=5-7

dependence on [Pr'™'] and saturation dependence on [O,]
support an equilibrium involving a solvated Pr'™(OTf),
species, [Pr''(OTf),(MeOH),>*™ ([Pr"]), followed by
rapid, irreversible O, binding to the activated Pr'' species,
[Pr(OTS),(MeOH),]™** ([Pr'™]*). The O, adduct,
[Pr'"(0,)(0Tf),(MeOH),]>™ ([Pr"(0,)]), would undergo
rapid, sequential reduction by Fc* (i.e,, MCET), which, in the

presence of an additional equivalent of Pr'!(OTf);, would
generate 1-Pr. Application of the steady-state approximation to
[Pr'"]* leads to the kinetic expression in eq 2. Saturation
behavior in [O,] would be achieved when k,[O,] > k_; and
would lead to the simplified observed rate law in eq 1.

__dlP"(0,)] _ kik,[Pr[0,]
dt k_ + k0]

s d[Fc* 1]
dt

)

Further support for the proposed mechanism came from
kinetic modeling and activation parameters. Preliminary
modeling of the initial-rate kinetic data using COPASI"
provided estimates of k; (1.43 + 0.78 s™') and k, (153 + 80
M 's-!), along with the experimentally measured value, k,
(7.67 + 0.36 X 107* s7"). Simulated time courses with these
values produced rate orders that were in excellent agreement
with the experiment (Figure S82). Furthermore, experimen-
tally determined activation parameters obtained from Eyring
analysis of variable temperature kinetic studies (243—298 K)
revealed a small enthalpic barrier and si%niﬁcant ordering for
Pr'(OTf), (AH* = 4.1 kcal/mol and AS* = —44.3 cal/mol-K;
AG*,4 = 17.3 kcal/mol). Evaluation of other RE™(OTY),
(RE™ = Sc, Y, La) revealed comparable activation parameters
and sugports a conserved mechanism across the series (Figure
S; AH*: 4.1 to 7.7 kcal/mol; AS*: —38.4 to —44.3 cal/mol-K;
AG* 4 17.3 to 19.1 kcal/mol). The large, negative values for
AS* are in line with solvation playing a prominent role in the
rate-determining step.

Complementary computational modeling studies were also
carried out at the MO6-L level of theory®® in conjunction with
SMD continuum solvation model®" for methanol as the solvent
(for the computational methods, see the Supporting
Information). Given the active role of solvent dynamics and
the possible errors that could originate from the computation
of entropy changes for association/dissociation events of
solvent molecules and O,, we limit the mechanistic discussion
to computed enthalpy changes (AH; see Tables S17—S25 for
the complete list of computed AH and AG values). The
enthalpy changes for MeOH exchange (AH;), O, binding
(AH,), sequential reductions by Fc* (AH; & AH,), and
formation of dinuclear peroxides (AH;) for representative
RE™(OTf); (RE™ = Sc, Y, La, and Pr) were calculated starting
from all plausible methanol-solvated 1:1 and 1:2 electrolytes
(Tables S17—S25). MeOH dissociation from coordinatively

4
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Figure 5. (Left) DFT-calculated structures for the reduction of O, by Pr™(OTf); in MeOH. (Right) Top: Enthalpy changes for the calculated
structures of REM(OTf); (RE™ = Sc™, Y™, La™, Pr™). Bottom: Experimental activation parameters obtained from Eyring analysis.
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saturated species was endothermic for all RE™ (AH;: +4.3 to
+12.0 kcal/mol), while coordination of the weak neutral
donor, O,, was modestly exothermic for all RE™ (AH,: —1.0
to —3.2 kcal/mol). Single-electron reduction of the RE™
oxygen adduct to form the RE™ superoxide was exothermic
and strongly correlated with Lewis acidity (AH;: —8.9 to
—33.3 kcal/mol). The trend in AHj; follows expectations for
concerted MCET’'* and indicates a strong driving force for
oxygen reduction at RE™(OTf);. The RE™ superoxide can be
further reduced by Fc* to a terminal RE™ peroxide (AH,:
—15.2 to +5.6 kcal/mol), which can readily form a stable
dinuclear peroxide with a second equivalent of RE™(OTf),
(AH; 24.2 to —8.4 kcal/mol).

Taken together, our mechanistic studies revealed that the
formation of RE™ peroxides at redox-inactive RE™(OTf),, O,,
and Fc* does not proceed through rate-limiting MCET. Instead
of rates being driven by differences in Lewis acidity,”**"* the
rate of Fc** formation is controlled by differences in RE™
solvation and their ability to interact with the weak neutral
donor, O,. We propose that the change in rate-determining
steps originates from the relative interaction strength between
the Lewis acid and O, fragment. In most examples of rate-
determining MCET involving O,, transition metals rapidly
bind O, and induce partial or full charge transfer.””*° The
enhanced charge density would be expected to increase the
affinity of the O, fragment for hard, ionic Lewis acids over that
of neutral Lewis bases (e.g,, solvent). While the reduction of
O, by Fc* in the presence of RE™(OTf), is slower than when
redox-active transition metals are present, this opens an
alternative mechanistic pathway with distinct periodic trends in
reactivity. Although size- and solvation-dependent trends are
pervasive in the chemistry of the lanthanide series (e.g,
“gadolinium break”” and tetrad effects®®), the discovery of
systems with non-monotonic trends in thermodynamic and/or
kinetic behavior across the lanthanide series remains rare.”*
Our results suggest that differences in solvation of even simple
and highly labile RE™ salts can lead to significant kinetic
reactivity differences of chemically similar, neighboring
lanthanides and might be further amplified through appro-
priate ligand design.

While our computational modeling studies capture the key
role that MCET plays in the driving force for peroxide
formation in post-rate-determining steps, further efforts are
needed to capture properties and reactivity of these labile and
heavily solvated species. Our exhaustive characterization of
RE" solvent speciation leading to O, binding provides initial
snapshots but is limited to the first solvation shell (i.e., primary
coordination sphere). Elegant modeling studies by Ramirez-
Solis have demonstrated that the dynamic microsolvation
environment of labile RE salts (e.g., Sm"X, (X = Br, I) and
Sm'';) experimentally explored by Flowers can be cagtured
through dynamic quantum mechanical approaches,” and
similar approaches may be necessary to resolve the observed
kinetic behavior in these and similar systems.

B CONCLUSIONS

We have discovered a peroxide-selective reduction of oxygen
mediated by redox-inactive RE™ in the presence of a mild
reducing agent, Fc*. This allows for a simple and high-yielding
synthesis of the first structurally characterized praseodymium
peroxide, 2-Pr. The dinuclear peroxide displays good thermal
stability, is readily protonated by mild organic acids, and
engages in electrophilic and nucleophilic reactivity. This is a
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rare demonstration of ambiphilic metal peroxide reactivity and
is the first example for a rare-earth metal. Our mechanistic
studies revealed that the rate of oxygen reduction does not
proceed through rate-limiting MCET, as rates are independent
of Lewis acid strength and exhibit a zero-order dependence on
[Ec*]. Instead, the observed rates effectively follow RE™
accessibility to O,, which is impacted by metal-ion size and
solution speciation. This unique dependence offers new
opportunities for differentiated reactivity of redox-inactive
RE™ by leveraging weak metal—ligand binding events
preceding electron transfer. Studies leveraging these weak
interactions in stoichiometric and catalytic small-molecule
transformations are ongoing.
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