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Modeling process—structure—property relationships using machine learning methods has become a valuable
enabler for materials design and discovery. However, the machine learning models rely heavily on the
featurization of the materials’ structure. This paper introduces a microstructure featurization framework to
compute generic topological and morphological descriptors. The framework relies on our skeletal microstruc-

ture representation. The representation allows for the seamless calculation of topological descriptors, which is

the main focus of this paper.

To demonstrate the efficacy of our featurization framework, we couple it with a feature selection method
to establish the structure-property model for organic photovoltaics (OPV). For this goal, we identify a salient
set of descriptors and construct the structure-property map with high accuracy.

1. Introduction

The holy grail of materials science is to establish quantitative
structure-property (SP) relationships and apply them toward materials
design and discovery [1]. Recently, there has been an increasing inter-
est in using machine learning methods (ML) to establish SP maps [2].
For this goal, the material structure needs to be converted into a format
compatible with the machine learning methods and be computationally
manageable. However, material structure is hierarchical in nature [3]
with scales varying from electronic and atomic systems through mi-
crostructures to macrostructures. Even while focusing on a single
scale, the raw structural data may contain information about several
material aspects (e.g., phase distribution, crystal structure). They can
be of a high dimensions (100% voxels) requiring large training datasets,
effectively impacting the robust data-driven model construction [4].

In this paper, we focus on materials at the microstructure level.
The materials’ microstructures are typically imaged in 2D or 3D that
capture the composition or the phases in a material. The images are
of high resolutions to capture the details, making SP maps even more
data-demanding to establish. Hence, one critical question is how to
efficiently process microstructures to establish SP maps and then solve
the inverse problem of designing microstructures with desired proper-
ties. In this context, three closely related terms are used: microstruc-
ture featurization, microstructure quantification, and microstructure
representation.

Featurization is the process of converting various forms of data
(e.g., microstructure) to numerical data, which can be directly used
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as an input to machine learning algorithms [5]. In most cases, the
featurization involves vectorizing the raw data into a vector capturing
physically meaningful descriptors in low dimensions [5]. Microstruc-
ture quantification refers to the process of extracting statistical in-
formation through function(s) and/or descriptors [6]. The goal of
quantification is to capture spatial correlations among different lo-
cations in a microstructure and/or to capture physically meaningful
characteristics of the microstructure (e.g., volume fraction, interfacial
area). The outcome of microstructure quantification may be equiva-
lent to featurization and can be directly (or with the additional step
of data projection into lower dimensions) used in ML methods [7].
In most cases, the quantification provides physically meaningful rea-
soning used to establish scaling laws of materials behavior. Finally,
microstructure representation refers to the form in which data is stored,
processed, and transmitted [8]. For example, arrays (or matrices),
graphs [9], the bag of visual features [10], spectral density func-
tions [11], and skeleton [12]. Each representation is defined to ease
a specific task in machine learning methods. For example, a bag of
visual features has been used to capture the local features, create
the vocabulary of features and ultimately enable microstructure com-
parison and classification [10]. Alternatively, graphs have been used
to extract information about phase connectivity or path lengths at a
low computational cost [9]. Similar to microstructure quantification
and featurization, some forms of microstructure representation can be
directly used in ML pipelines.
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Fig. 1. Workflow to determine skeletal descriptors for two-phase microstructure. The steps involve skeletonization followed by skeletal segmentation. The example descriptors are

listed below the corresponding step.

In this paper, we leverage our recently introduced skeletal represen-
tation of microstructure [12]. It allows for storage of microstructure
information with a small storage footprint. Our work [12] demon-
strated two orders of magnitude reduction in the number of required
variables compared to the pixel-based microstructure representation.
We demonstrated two-way transformation [12] from the image-based
representation to skeletal representation (using skeletonization) and re-
construction of the image-based representation from the representation
(using convolution surfaces). Finally, in its mathematical form, it can be
used for topology optimization where the skeleton and kernels can be
modified independently. However, it is non-trivial to use the skeletal
representation in its original form in ML approaches to establish SP
maps. Nevertheless, the skeletal representation can be featurized with
the suite of seamlessly computable descriptors for ML models. This is
the scope of this paper. Using the skeletal microstructure represen-
tation, we define and implement the suite of physically meaningful
skeletal descriptors. The descriptor suite includes comprehensive fea-
tures related to the topological and morphological characteristics of the
microstructures. We extract the descriptors like number and length of
branches, number of intersections, domain widths, among others, from
the microstructure skeleton. These descriptors are seamlessly computed
using our skeletal representation either directly from the skeleton or by
combining with the information stored in the distance maps (distance
from the given phase to the interface). And although most of these
descriptors encode the topological information, we refer to them as
“skeletal” based on their origin.

To illustrate the utility of the suite, we discuss an application in
the results section. We use the feature selection method to identify a
smaller set of descriptors that explain the most variability in the ma-
terial properties. Effectively, the aim is to show that one can construct
SP maps with the derived descriptors. We show that for the application
discussed, out of 20 descriptors, using a feature selection method, only
seven descriptors are needed for building predictive models with high
accuracy.

2. Method

In this section, we describe the methodology for calculating de-
scriptors based on the skeletal representation of microstructures. Fig. 1
depicts the workflow for the descriptor calculation. Panels of the figure
depict the intermediate steps to calculate descriptors with two major
algorithms: (i) skeletonization and (ii) skeletal segmentation. The input
is the microstructure, labeled M in Fig. 1, which is skeletonized to
determine the skeleton S from the distance map D,. The example
distance map is plotted as a heat map in Fig. 1. The skeleton is then
segmented into branches for descriptor calculations.

Three levels of information and two associated algorithms are crit-
ical for seamless descriptor calculations. Subsets of descriptors are

calculated at intermediate steps based on the information available at
that step. For example, basic descriptors like the skeleton length and
cycles are calculated from the skeleton .S. But only when the skeleton
is segmented into branches and stored as Sz more complex descriptors
can be computed (e.g., the number of intersections, the number of
end pixels, or branch length). In this sense, the skeletal representation
provides a granularity of information for calculating descriptors and
allows for seamless integration of information. This is the case when
information about microstructure domains (contained in the distance
map Dy) and the skeleton are combined to identify bottlenecks along
the skeleton (more details below).

In the following section, we define the basic concepts used to
calculate the descriptors. In the later sections, we define the skeletal
descriptors and include an application to demonstrate the utility of the
proposed descriptors.

2.1. Basic definitions

The formal definition of the skeletal representation can be found in
our recent work [12], below we provide the definitions used in this

paper.

1. Microstructure M = {M,;}, xn, is formally defined through a
local states M, ; that can take values as defined in Eq. (1):

{0, if (x;;,y;;) € phase A
ij =

. (@)
1, if (x;;,¥i ;) € phase B

where M, ; corresponds to the local state at the location i, j in
the input matrix M. The local state can take one of two values,
{0,1} to denote phase A or B, respectively. We describe all the
operations and descriptors for phase A (in the figures encoded
in black or when needed in gray for clear display). However, the
procedure is general and can be applied to phase B, or it can be
extended to multi-phase material systems.

For descriptor definition, we distinguish two vectors M,, and
M g that store the pixels belonging to phase A and phase B only.
For instance, M 4, consists of positions of pixels (i, j) that belong
to phase A of the microstructure. Therefore, the number of pixels
in phase A is |[M |, where, |.| is the cardinality of the set M ,,
and similarly, the number of pixels in phase B is |[Mp|.

2. Distance map Dy is an array of distances from each pixel of
a given phase to the interface between two phases [13]. Dis-
tance map is defined for all the continuous domains in the
microstructure. An example distance map for phase A is plotted
in Fig. 1 below the input microstructure. The darker pixels on
the microstructure represent a greater distance to the interface,
and the lighter pixels lie close to the interface with the opposite
phase. Map Dy is used to determine the skeleton and calculate
some of the descriptors.
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3. Skeleton .S, also known as the “medial axis” [14-16], is a thin
(one pixel thick) set of skeletal pixels that captures the topol-
ogy of a phase [16]. The pixels belonging to the skeleton are
equidistant from phase boundaries (here the interface between
two phases). The skeletonization algorithm is applied to each
domain of a given phase and involves three major steps: (i) cal-
culating distance map Dy to the boundary (interface between
phase A and phase B), (ii) deleting pixels from the boundary
using Dy, and (iii) repeating step (ii) until no more pixels can
be deleted without affecting the connectivity and the topology
of the skeleton. The aim is to reduce domain dimensionality
of the continuous domain while preserving its topology. As a
consequence, the set of pixels on the skeleton are defined as the
subset of the microstructure pixels:

S ={s;,5,53,....8,}, SCM 2

where s; is the skeletal pixel. Fig. 1 illustrates an example of
an input two-phase microstructure M, and the corresponding
skeleton S extracted for phase A (marked with black circles
corresponding to skeletal pixels in the middle top panel).

4. Neighborhood Ng(p) is the set of pixels surrounding given pixel
p in the microstructure M. It consists of the orthogonal and
diagonally adjacent pixels to p (in 2D this corresponds to eight
pixels surrounding the pixel under consideration). This type
of neighborhood is known as Moore’s neighborhood [17]. In
this work, we also use the N,(p) neighborhood' known as von
Neumann neighborhood [18].

5. End skeletal pixels S are terminating pixels in the skeleton .S
that have one skeletal pixel in its neighborhood Ng. For every
pixel s; in the set S, the number of other skeletal pixels are
counted in the neighborhood Ny. If Ng contains exactly one pixel
that belongs to .S, the pixel s, is classified as an end and is stored
in Sg. Formally,

8
Sg=1{s;} where Y Ng(s)=1 V Ny(s)€S 3)
m=1
In Fig. 1, the end skeletal pixels are denoted with blue circles. In
this work, we classify ends into two categories: boundary ends
and bulk ends. Boundary end skeletal pixels belong to the top
and bottom boundaries of the input microstructure, and bulk
end skeletal pixels are the other remaining ends that lie in the
volume of the microstructure.

6. Intersection skeletal pixels .S; are the skeletal pixel that belong
to at least three branches (see branch definition below). Simply,
an intersection skeletal pixel is the junction pixel between the
branches. Similar to the end skeletal pixels, the intersections are
determined by checking the neighborhood Ny of 5; € S. For
each pixel s; € S, the skeletal pixels in the neighborhood Ny
are counted. If Ng contains more than two pixels that belong to
S, the pixel s; is classified as an intersection and stored in S;.?
In Fig. 1, intersections are denoted with filled black circles in the
panel containing the segmented skeleton S. Formally,

8
S, ={s;} where ZNg(sl-)23 V Ng(s)esS 4

m=1

7. Skeletal segmentation is an operation of dividing the skeleton
into segments that we call branches. The branches are deter-
mined by traversing® through the set S, and segmenting S at

1 This is also known as 4-neighborhood and composes the central pixel and
the 4 adjacent pixels.

2 Actual implementation is more complex and the steps are included
in Appendix.

3 Graph traversal refers to the process of visiting each vertex in a graph.
Graph-traversal algorithms are based on the order in which the vertices are
visited, e.g., depth-first search and breadth-first search. In this work, traversing
occurs along the skeleton to visit each skeletal pixel.
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an intersection or an end pixel. Each set in Sy is a branch of
the skeleton and contains the sequence of pixels that lie on that
branch (denoted as b; in Eq. (5)). Formally,

SB = {b|,b2,b3,---,bn3}7

where by = {sy,5,53,....5,}
by = {s1,50, 53,5, } )
by = {s1,50,53,....5,,}
an={S1752753=---,S[ }

np

where /; is the length of individual branch b;, and np is the
total number of branches in the skeleton. The branches are
non-overlapping, except for the intersections. Each intersection
skeletal pixel belongs to all branches where it intersects. In
Fig. 3, the skeleton S is segmented into S, where Sj is a set
of sets. The intersections appear in all the branches that emerge
from it. Fig. 3 illustrates an example of skeletal segmentation
into branches (b,,b,, ..., b;5) in the microstructure.

8. Branch of the skeleton § is a sequence of pixels that is termi-
nated by end point or intersection pixels (formally defined in
Eq. (5)). Three combinations or terminating points are possible:
end-end or an end-intersection or an intersection-intersection.
The branches are determined by segmenting the skeleton via
skeletal segmentation operation.

9. Cycle is a consecutive sequence of skeletal pixels that are con-
nected in a closed path. To calculate this value, the skeleton
S is represented as an undirected graph for which the paths
can be computed using classic algorithms in the graph theory.
Intuitively, for a graph, a cycle is defined as a non-empty subset
of the graph that forms a path such that the first skeletal pixel
on the path corresponds to the last one.*

2.2. List of skeletal descriptors

Given an input microstructure M, the distance map D and the
segmented skeleton .S (and Sj), we define the skeletal descriptors.
Formally, each descriptor is denoted as d; and constitutes the vector
of descriptors for each phase of a microstructure. For phase A:

dy=1{d),dy,ds,....,d, } (6)

»Cny

where n,; is the total number of descriptors for a given phase. In an
analogous way, the descriptor vector for phase B is defined by dp,
where each descriptor d; belongs to the vector:

dp = {d},d},dj, ... d} } )

The complete descriptor vector for the input two-phase microstructure
is denoted here by d,, (Eq. (8))

dy = {dy,dp} 8)

The skeletal descriptors include two descriptors: descriptors com-
puted directly from the skeleton and descriptors computed from the
segmented skeleton. Fig. 2 illustrates examples of the skeletal charac-
teristics of a segmented skeleton. Panels A and B of that figure depict

4 An undirected graph G = (V, E) is defined by a set of vertices, V, and a set
of edges, E, where each edge in E is an unordered pair of vertices drawn from
V. The vertices correspond to the pixels in S. The edge is the unordered pair of
skeletal pixels directly adjacent in M. The set of edges ensures the connectivity
of S. A path between a source vertex, v, € V, and a target vertex, v, € V is a
sequence w = [vy, Uy, ... U; ... U] of vertices such that for each i from 0 to i—1,
vertices v; and v,,, are adjacent in G. For a cycle, the source v, and the target
v, correspond to the same vertex in G. The microstructure is assumed to be
nonperiodic for calculating the cycles.
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Fig. 2. Selected skeletal descriptors are labeled for a microstructure. The panels include examples of: an intersection and an end pixel (A), the end on boundary and a branch

(B), bottlenecks in the microstructure (C), and two examples of intersection degree (D).
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Fig. 3. Illustrations of skeletal segmentation to extract branches, distances to the interface and types of intersections. The top panel (left) is an example of segmentation of skeletal
pixels at the intersections (red) and ends (blue and green) into branches (right). The bottom left panel depicts an example to calculate the distance to the interface from branch

b, and the bottom right corner summarizes the intersections.

the examples of intersection skeletal pixel (marked red), end skeletal
pixel (marked blue and green), and a branch on the skeleton (marked
with open black circles). Panel C depicts a bottleneck in the input
microstructure. We provide a few examples of how basic methods are
leveraged to compute the descriptors below.

Fig. 3 illustrates examples of a descriptor calculation from the
segmented skeleton. In this case, the skeleton of phase A (marked gray)
is segmented at the intersections and ends into 15 branches, labeled
as (by, b, ..., bs). Branches are also sorted (see the top right panel of
Fig. 3) based on the branch lengths. Finally, the bottom left panel of
that figure demonstrates the bottleneck computation. For each skeletal
pixel on the branch (here branch b,), the distances to the interface
are looked up from Dy (see Section 2.1) and stored in an array. The
minimum distance is equivalent to the bottleneck along a given branch.
This is an example of seamless calculation of the descriptors from our
skeletal representation. The bottleneck identification requires combin-
ing information from the distance map and the skeleton followed by

EN

the filtering operation. Finally, the bottom right panel of Fig. 3 depicts
the table with the intersections (including their degree - or the number
of branches originating at a given intersection). For the microstructure
in Fig. 3, four intersections are identified.

With examples of the descriptors, we now formally define the vector
of the skeletal descriptors used in this work. For more involved descrip-
tors, we illustrate the definitions by providing the value of descriptor.
We use the italic font and refer to microstructures in Fig. 3 or Table 1.

d, Fraction of skeletal pixels fg = |.S|/|M 4| is the ratio of number
of skeletal pixels of a given phase (say, A) |.S| to the number of
pixels of the same phase of a microstructure, |M ,|.

Number of skeletal end pixels |Sg| is the number of
end/terminating pixels on the skeleton, Sy as defined in Sec-
tion 2.1. In Fig. 3 the end skeletal pixels are marked with blue
and green circles (green circles correspond to the ends that lie
on the top and the bottom boundary, and the blue correspond

dy



D. Jivani and O. Wodo Computational Materials Science 214 (2022) 111668

Table 1

Example microstructures annotated with the descriptors. Top panel illustrates the distribution of phases with corresponding skeleton for each
phase: blue skeleton for the black phase (4) and magenta skeleton for the white phase (B). The table contains ten descriptors for each phase
A and B - phase is marked in the second column. Descriptors quantifying distances (dg, dg, dy and d,y) are given in unit of pixels.

AL e SUess SRV
Descriptor ”g‘h\\vrf: 0 Ovl\ %{bﬂ\ﬁ@é

d,: Frac. of skel pixels /; gg;;, gg;g gg;

d,: Number of ends 2 12 i; 2(1)

dy: Number of intersections 2 Z gl ;3

dy: Number of ends on bndr. 2 12 ;‘ 12

ds: Number of branches 2 ?3 :132 iz

dg: Avg. branch length /; giéé é?gé Zggi

d;: Number of cycles 2 1 (1)4 3)

dg: Max dist. to interface 2 1224 1;:8 1;26

dy: Min. dist. to interface 2 !13?2 gg ;52

dyy: Avg. dist. to interface 2 ﬁ;: 2(1)2 Z(l)g
to the bulk ends). Note that | S| for phase A of microstructure in d,o Average distance to the interface (D) is the average domain
Fig. 3is 21. width of a microstructure. The bottom panel in Fig. 3 depicts

d; Number of skeletal intersection pixels on the skeleton |.S;|. The the distances to the interface for one branch; however, this value

set S, is defined in Section 2.1 and is marked as red circles in represents the average distance for the entire microstructure.

Fig. 3. Note that |S;| for the microstructure in Fig. 3 is 4.

d, Number of end skeletal pixels on the boundary is the number
of ends that lie on the top and the bottom boundary of the
microstructure. In Fig. 3, end skeletal pixels on the boundary
are denoted with green circles. Note that the phase A in Fig. 3 has
7 boundary end points on that skeleton.

ds; Number of branches ny = |.S| is the total number of branches in
the skeleton. The branches are extracted after skeletal segmenta-
tion at intersections and ends (defined in Section 2.1) procedure.
In Fig. 3, the branches are listed according to their lengths in the
top right panel. Note that this descriptor for the microstructure in
Fig. 3 is 15.

d¢ Average branch length L, = Zf“ |b;|/np is the average of branch
lengths in the skeleton.® For the branches extracted in the previ-
ous descriptor, number of pixels in each branch is calculated as
the cardinality of set |b;| in Eq. (5). In Fig. 3, the branch lengths
are listed on the right panel. Note that this descriptor is the average
of that list, which is 11.53 pixels per branch.

d, Number of cycles C is the count of cycles (closed loops) in the
skeleton (see Section 2.1). In Table 1, the number of cycles for
the second microstructure is listed in row d;. Note that phase A
in Fig. 3 has no cycles; however, phase B has 14 cycles.

dg Maximum distance to the interface D,,,, is the maximum width
of the domains along the skeleton of phase A. The bottom left
panel of Fig. 3 depicts the process. Note for branch b, in Fig. 3
the maximum distance to the interface is 8 pixels.

Using the machine learning language, the vector of the descriptors
becomes the featurized microstructures. And, it is compatible with the
machine learning methods. The feature vector size is relatively small
compared to the typical pixel-based representation of the microstruc-
ture (100%). In this work, the vector captures skeletal information about
the microstructures. Moreover, the descriptors are generic with mini-
mal input of the target application. However, the utility of the feature
vector needs to be assessed in the context of the targeted application
with two questions of importance: is the vector of features sufficient to
build the data-driven model with good accuracy? And can the vector
be further reduced to distill the key (or salient) features controlling the
properties of interest? The following subsection defines the data-driven
model of structure-property map and describes the associated feature
selection method used to answer the two questions above.

2.3. Feature selection methods and structure-property map

We use a feature selection technique — mRMR (Maximum Relevance—
Minimum Redundancy) to identify a small set of salient features that
capture the most variance in the property under study [19]. This is
relatively simple method that is decoupled from the model construction
and relies on the correlation between descriptors and property of
interest. The method relies on the importance score that is computed for
each feature and capture the correlation between the feature under con-
sideration and the property (relevance) as well as the already selected
features (redundancy). Therefore, a high importance score indicates

dy Minimum distance to the interface D,,;, corresponds to the bot- high relevance with respect to the property and small redundancy
tleneck or the minimum width of the domains along the skeleton among the selected features. At each iteration, the method selects one
in a microstructure. The value corresponds to half of the width of feature with maximum relevance with respect to the property and
bottlenecks in the microstructure domain (see panel C in Fig. 2). minimum redundancy with respect to the chosen features at previous
Note, for the branch b, in Fig. 3, the value of this descriptor is 3. iterations. As an outcome, the vector of features is reordered based

on the importance score, and the gap (or significant decrease of score
between consecutive features) is used to choose the features’ subset of
5 The length is given in pixels. high importance. Formally, the selected features are defined as d, where
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the number of descriptors, # < 2n is determined based on the gap in
the importance score — see the results section for the example.

Given the subset of feature, in this work, we define an SP map as a
function f that maps d to a property of interest:

n
P=fd=) wd +e ©
i=1
where o, are the weights of each descriptor d; in the model, 7 is
the number of salient features and ¢ is the noise in the map. The
map assumes the linear dependence between salient features and our
property. Results from other trained other models (e.g., higher order
polynomials and random forests) showed similar accuracy as these
reported in Section 3. Hence, we use the simplest model to demonstrate
the flexibility of generic descriptors to build data-driven models with
high accuracy.

3. Results

In this section, we provide the technical details of the framework.
Next, we showcase descriptor calculations for a representative set of
microstructures and construct an SP map to show the utility of the
descriptor set.

3.1. Technical details

The framework for skeletonization and descriptor calculation is
implemented in C/C++ using the boost library for the graph-based
operations [20]. Feature selection is performed on MatLab R2021
using the Statistics and Machine Learning Toolbox. The regression
analysis is performed using numpy [21] and scikit-learn [22]
libraries. The runtime of descriptor calculation for one microstructure
(40,501 pixels) is under one second on a desktop computer with a
2.3-GHz dual-core Intel Core i5 processor and 8 GB of RAM. The low
computational time affirms that the descriptors are computationally
manageable.

3.2. Data

The framework is tested on an open-source dataset containing the
process—structure-property data of OPVs [23]. The active layer of
organic photovoltaics (OPV) is manufactured using thin-film deposition
technologies from organic blends. The microstructure of the active
layer is known to affect the properties of OPV devices and can be
controlled by tailoring the manufacturing settings. Hence, there is a
need to establish and optimize PSP maps. In this paper, the focus is
on establishing a structure-property relationship using the data-driven
approach. The dataset consists of 1708 microstructures generated using
a Cahn-Hilliard equation solver [24]. The Cahn-Hilliard solver models
the evolution of a binary blend undergoing thermal annealing — one of
the manufacturing techniques used in OPV. The binary mixture consists
of an electron donor material and an electron acceptor material. Each
microstructure is of size 400 nm x 100 nm with the discretization of
400 x 100 elements. Three example microstructures are included on the
top panel of Table 1. All microstructures (P3HT:PCBM blend® mixture:
a well-studied material system) consist of two phases, where one phase
serves as an efficient electron-donor and the other phase serves as an
efficient electron-acceptor.

Each microstructure in the dataset is annotated with one property
(i.e., the target property) - short circuit current, J,,. To predict the
property (J,.), a computational framework is employed which models
the OPV device physics of the active layer in OPV device [25-27]. The
model uses a finite element-based solution strategy to the excitonic

6 P3HT:PCBM is poly(3- hexylthiophene) and 1-(3-methoxycarbonyl)-
propyl-1-phenyl-[6,61Cy, .
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drift-diffusion equations. It solves the spatial distribution of excitons,
electrons, holes, and the electric potential across the domain. The ma-
terial parameters corresponding to a P3HT: PCBM system are provided
in our prior work [25]. More details on the data generation and the
computational model of OPV device physics can be found in our prior
paper [28].

Each microstructure is also annotated with twenty skeletal de-
scriptors. For the SP models — Section 3.6 — the dataset is split into
training and testing sets of 80% and 20%, respectively. Additionally,
the training set is split into five subsets for five-fold cross-validation
when specified.

3.3. Descriptor calculation

Descriptors for three example microstructures are listed in Table 1.
The microstructures and the skeletons: blue skeleton for phase A (black)
and magenta skeleton for phase B (white) are shown in the top panel
of Table 1. The descriptors from vector d,, consist of 20 descriptors, 10
per phase. For each descriptor, two values for each phase are provided
in sub rows A and B, respectively.

Three diverse microstructures are selected to demonstrate the ca-
pabilities of the descriptors. The first microstructure consists of thick
domains of both phases with similar topology. In contrast, the phases
of the second microstructure have very different topological character-
istics. Phase A (black) has dispersed droplets, and phase B (white) has a
connected structure. The third microstructure has a connected structure
with thin domains for both phases.

The skeletal descriptors capture the above characteristics. For exam-
ple, d; (number of intersections) for phase A in the second microstruc-
ture is much smaller (d; = 0) than that of the third microstructure
(d3 = 13). The first microstructure has d; = 7 for phase A, and the
third microstructure has d; = 13 for phase A. The lower number of
intersections and branches is a signature of branch connectivity in a
structure. The third microstructure has the highest number of branches
(ds = 26 for phase A and ds = 36 for phase B). The first microstructure
has a balanced number of branches for both the phases; d5 = 9 for phase
A, and ds = 13 for phase B; on the contrary, the ds values for the second
microstructure are different. Phase A only has 13 branches, while phase
B has 32 branches. Combining these descriptors accentuates that only
one phase has connected domains (here, phase B), while phase A has
many small domains embedded inside phase B.

Descriptor d; (number of cycles) captures the topological character-
istics of the phases. Among the three example microstructures, the first
and the third are similar. Descriptor d, reflects these characteristics as
the values of the first and the third microstructures are alike (either 0
or 1). For the second microstructure, the value for phase A is 0, and
for phase B is 14. A clear difference in the number of cycles is an
indication that phase A and phase B of the second microstructure have
different topologies. Finally, the last three descriptors provide quanti-
tative means to determine the domain widths and bottlenecks in the
microstructure. The first microstructure has the thickest domains, and
the third has the thinnest. The d,, (average distance to the interface)
of the third microstructure is the minimum (6 pixels). Phase B of the
second microstructure has the smallest bottleneck (dy) of width at 0.5
pixels.

Microstructure featurization allows determining the distributions of
various descriptors in datasets. The four panels of Fig. 4 depict the
distributions of four descriptors for phase B (white): fraction of skeletal
pixels (d,), number of end skeletal pixels (d,), average distance to the
interface (d,,), and number of cycles (d,). The inserts in each of the dis-
tributions include two microstructures characterized by extreme values
in the histograms. The histograms of descriptors may be considered as a
data summary and be used for sampling from the larger data to choose
the diverse subset, among other applications.

For example, the top left panel depicts a histogram of descriptor d,
- a fraction of skeletal pixels. The most common value for a fraction
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Fig. 4. Four histograms of descriptors for phase B (denoted by white color) in the data set. Four descriptors are: d,, d,, d,, and d,. Each panel includes the distribution of
descriptor value where frequency is given as a fraction of the number of samples. In each panel two inserts depict microstructures with extreme descriptor values: the lowest and

highest values.

of skeletal pixels for phase B is 0.05. However, this descriptor range
is from 0.0002 to 0.15. The inserts show that the smallest value of d,
corresponds to a structure with thick droplet domains, and the largest
value corresponds to a structure with connected thin domains.

The top right panel of the figure depicts the histogram of the number
of ends on the skeleton. This descriptor informs about the branching
and the type of domains in the microstructure. For example, phase
B of microstructures with less than 5 skeletal ends corresponds to
data points with thick domains connected to the top and bottom of
the microstructure. The microstructures with a maximum number of
ends are typical of thin domains with a less connected structure. The
histogram of the average distance to the interface (d,) is plotted in the
bottom left panel of Fig. 4. These values indicate the average domain
sizes of phase B in the dataset. The microstructure with the lowest
value of this descriptor (3.00) is included in the inserts. As expected,
the microstructure is of thin domains, and the microstructure with the
highest value (53.06) is of thick domains. Finally, the histogram of
number of cycles is included in the bottom right panel of the figure.
Most of the microstructures analyzed have less than five cycles. The
highest value is 47 (denoted in white in the insert included), the
complimentary phase of a droplet microstructure.

3.4. Correlation between descriptors
Given a sufficiently large data set, the correlations between descrip-

tors can be used to understand and remove the redundant descriptors
from the initial pool of descriptors. This type of analysis is also of

importance if some properties of a material are challenging to quan-
tify. If the correlation is challenging to predict, the descriptor can
be inferred from a calculated descriptor combination. For instance,
the value of tortuosity may be challenging to determine from two-
dimensional imaging. But the correlation with other descriptors exists
(for example, porosity), and then the tortuosity can be imputed. In
this work, we use the descriptor correlation studies to understand the
results of feature selection for SP map construction — see Section 3.5.
Specifically, we calculate the Pearson’s correlation coefficients (r) [29]
within the descriptor set and between the descriptors and the property.

The correlation matrix between the skeletal descriptors (d,,) and
the property - Jgo is determined and plotted in Fig. 5. The matrix
is representated as a heat map and contains the Pearson’s correlation
coefficient between every pair of descriptors and the property. In the
most left panel of Fig. 5, the first row and the first column contain the
correlation between the property P and all descriptors. The remaining
rows and columns contain the correlations between all 10 descriptors
(all-to-all correlation coefficients). Each descriptor is listed twice for
each phase in the microstructure. The high correlations are marked
with deep red or deep blue for positive and negative correlation,
respectively.

For the dataset, as shown in Fig. 5, two groups of correlations with
high values can be identified. The first group corresponds to the first
five descriptors (d,, d,, d3, d, and ds5) and the second group corresponds
to the last three descriptors (dg, dy and d,(). The first five descriptors
are skeletal features. They correspond to the fraction of skeletal pixels,
number of ends, number of ends on the boundary, number of intersec-
tions, and number of branches. The last three descriptors correspond
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to the maximum, minimum, and average distance to the interface. To
visualize the correlation trends within the descriptor set, we plot the
values in the top right panel of the figure. Each point corresponds to
one microstructure in the dataset in the scatter plots. For example,
descriptors ds (number of branches) and d; (number of intersections)
of phase A are highly correlated with the correlation coefficient of
0.98, as shown in the first scatter plot of Fig. 5. The high correlation is
predictable as the intersections determine the branches. An unexpected,
correlated descriptor pair is dg (number of ends) and d, (maximum
distance to the interface) of phase A as shown in the second scatter
plot of the figure. The correlation coefficient is —0.79, and the scatter
plot demonstrates that these descriptors are inversely proportional. This
correlation is less apparent and means that microstructures with a
high maximum distance to the interface are characterized by the low
number of ends for this dataset. Descriptors dy (average branch length)
and d; (number of cycles) are observed to be uncorrelated with other
descriptors in the correlation matrix. We use these results in the next
section to select/eliminate features for the prediction model.

3.5. Correlations with the property and feature selection

In this section, we report the correlations between the descriptors
and the property to aid the development of SP maps. We return to

Fig. 5 for the correlation matrix and focus on the first row denoted
as P. The property is negatively correlated with descriptors d,, d,, ds,
d,, ds and d;, and positively correlated to dg, dy and d,,. Descriptor
de, especially, phase B is poorly correlated with P. The example
scatter plots are depicted in the bottom row of the right panel in
Fig. 5. The high correlation coefficient of 0.82 is observed between
dg (max. distance to the interface) of phase A and property P (Jg¢)
(the left panel in the bottom row). The correlation coefficient captures
the correlation between these two variables for microstructure in our
dataset. The microstructures with low dg exhibit poor performance and
low P. The microstructure with high dg is more suited for organic
electronics. The negative correlation coefficient of —0.85 is observed
between d, (number of ends) and property P. The microstructures with
high performance are characterized by the low number of d,. Both
descriptors are relevant for property predictions.

The concepts of redundancy and relevance are core to the mRMR
method of feature selection — explained in Section 2.3. mRMR is
performed on the data with 20 descriptors (listed in Table 1) to identify
the most relevant, non-redundant features that can explain the property
to the maximum extent. The method returns the descriptors/features
ranked according to the importance score plotted in the left panel of
Fig. 6. Phase A (denoted by d;) corresponds to the donor, and phase
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Fig. 7. Left: The accuracy of the model comparing the predicted vs. the true value of Jg. for the test data. Each point in this panel correspond to one microstructure in the
testing data. Right: learning curve for increasing number of data-points in the training data.

B (denoted by d) to the acceptor. The method assigns the highest
score to d,, (average distance to the interface) of phase A, followed
by d; (number of intersections) for phase B (d;). The descriptor d
displays a strong negative correlation with the property (Fig. 5), and
d; displays a strong positive correlation. The correlation coefficient of
d,o for phase A and d; for phase B is weak (~ 0.2). The dip after the
second descriptor in Fig. 6 signifies the selection of two descriptors to
construct the prediction model.

3.6. Structure—property maps in organic solar cells

In this subsection, we report the accuracy of SP models for selected
descriptors and corresponding models. Given the ranking of the features
based on the importance score from the mRMR method, data-driven
models of SP are built for an increasing number of skeletal features
and increasing number of data points.

The right panel of Fig. 6 depicts the accuracy of models with the in-
creasing number of features. The coefficient of determination R?2[30]is
computed as a measure of model accuracy with three types of accuracy
reported: accuracy of training, validation, and testing. For each type,
the curve depicts the accuracy of the models for an increasing number
of features. Each curve includes the mean and standard deviation of
R? values across the five-folds. The error bars represent the standard
deviation of the accuracy across five-folds.

The importance score analysis presented in the previous subsection
indicated the first two descriptors to have the highest importance
scores. This observation is reflected in the highest increase in the
model’s accuracy. Further adding up to seven descriptors increases the
train, validation, and validation accuracy of the models up to 0.80,
after which the curves saturate. The seven features are optimal for
SP predictions due to the balance between complexity and accuracy.”
The seven features include average distance to the interface (donor),
number of intersections (acceptor), number of ends on the boundary
(acceptor), average branch length (donor), the average distance to the
interface(acceptor), maximum distance to the interface (donor), and
number of ends (donor). It is important to note that mRMR and model
construction is independent; however, they both provide consistent
results. In the next section, we built the structure—property maps with
seven features and report on its performance.

To additionally evaluate the model performance, we plot the cor-
relation between predicted and true values of the property Jg. (left
panel) and the learning curve (right panel) of Fig. 7. The left panel

7 These results are consistent with models built using other feature selection
methods like Random Forests (not shown here).

depicts a so-called parity plot that compares the predicted value against
the true value (Jg.). The predicted values of our property are calcu-
lated using the model with seven descriptors ranked by mRMR. The true
values of our property are computed using the computational model
(see Section 3.2) and are considered true values. For reference, we
also provide a diagonal line representing the ideal curve where the
prediction is equal to the true value (see the gray line in the plot).
Points that lie close to that line indicate a low error, with the predicted
value very close to the true value. In contrast, the points located further
away from the diagonal have a high error. The results included in the
parity plot show the good distribution of the error in our model. Most
points are distributed near the diagonal without clear outliers affecting
the R2.

Finally, we plot a learning curve that depicts the model’s training
and testing accuracy to check the model’s generalization. The right
panel of Fig. 7 plots the R? value for increasing training data size (from
100 points to 1400) and seven features. The size of the testing set
is kept constant at 300 points. When the smaller data set is used for
training, the R? of the model on the training set (gray) is higher than
on the testing set (black). As the training size increases, the training
R? stabilizes at ~ 0.77, and for test data, the accuracy also increases
and stabilizes at 0.74. This indicates that the model is free from high
variance and high bias. This demonstrates the efficacy of the proposed
featurization framework and the skeletal representation.

4. Limitations and potential extensions

Our method is generalizable to other types of microstructures. How-
ever, the underlying assumption is that the skeleton can be computed
without artifacts and captures some information about the type of
microstructure being analyzed. In this work, the focus is on two-phase
microstructure. But the multi-phase microstructures can also be featur-
ized using skeletal representation. In such a case, the skeletonization
and descriptor definition needs to be done for each phase.

Moreover, the introduced methodology is independent of dimen-
sionality and can be used to quantify both two and three-dimensional
microstructures. All descriptors can be expanded for three-dimensional
datasets. Nevertheless, on the technical level, the anticipated chal-
lenge is related to the skeletonization algorithm in three dimensions.
Although several implementations of skeletonization exist [15,31,32],
these are known to have limitations in delivering smooth, noise-free,
and centered skeletons [33].
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(a) Example 1: Largest number of neighbors.

(b) Example 2: Largest number and positions of neighbors.

(c) Example 3: Two true intersections in the same local neighborhood.

Fig. 8. Three examples of identifying intersections on a skeleton. The black squares represent the skeleton of the input microstructure. The potential intersections are marked with

blue squares and, the final intersections are marked with red squares.

5. Conclusion

This paper introduced the framework to compute the skeletal de-
scriptors seamlessly computed directly from our skeletal representa-
tion. Seamless calculation of descriptors is one of the advantages of
the skeletal representation (apart from the compact representation
demonstrated before [12]). Here, we defined a suite of skeletal descrip-
tors that captured the topological and morphological characteristics
of microstructure. We show that this descriptor-based representation
is sufficient to capture the salient features of the microstructure cor-
related with the short circuit current of OPVs. The simple regression
model of the structure—property relationship was built with only seven
descriptors with an accuracy of R> = 0.77. The proposed descriptors
are generic, computationally manageable and compatible with machine
learning methods.
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Appendix
Procedure to determine the intersections

As a reminder, an intersection is a skeletal pixel in the set S that
lies on at least three branches — see Fig. 2. To determine if a skeletal
pixel is an intersection or not, two steps are followed:

1. The first step is to identify the potential intersections. For every
pixel s5; € S, Ng is determined, and the skeletal pixels are
counted. If Ng(s;) has at least 3 other skeletal pixels, s; is labeled
as a potential intersection and added to the set of potential
intersections: J.

2. The second step is to identify the actual intersections from the
potential intersection set J. For each potential intersection j; €
J, the local neighborhood Ng(j;) is checked for other potential
intersection pixels. If the neighborhood contains more than one
potential intersection:
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(a) Potential skeletal pixel with the highest number of poten-
tial intersection neighbors has the highest precedence.
For potential skeletal pixels with same number of other
potential intersection neighbors, the counting is repeated
but in the smaller neighborhood — the von Neumann
neighborhood. A pixel with the highest number of other
potential intersections in N,(j;) is marked as the actual
intersection.

If more than one pixel has the same number and type of
potential intersection neighbors, one among all is selected
as the true intersection. However, skeletal segmentation is
performed at all the pixels.

(b)

(@

In Fig. 8, we provide three examples of typical pixel intersections
on a skeleton to illustrate the protocol of intersection determination.
In each example, the skeleton is marked with black pixel (the first
column). To identify the potential intersections, the local neighborhood
of each pixel of the skeleton is examined (the second column). The final
intersections are marked red (the second column).

The first example is straightforward as only one skeletal pixel has
more than two skeletal pixels as neighbors (marked blue). Since there
are no other potential intersections in the local neighborhood, in the
second step (third column) this pixel is immediately classified as an
intersection (marked red).

In the second example, multiple skeletal pixels have more than
two skeletal neighbors in their Ng neighborhoods. These pixels are
marked in blue as potential intersections and indexed 1 to 4 (second
column). Pixels with index 1 and index 3 have two neighbors marked as
potential intersections, while pixels with index 2 and index 4 have three
potential intersections. Hence, pixels 1 and 3 are excluded from the
further steps. From pixels with index 2 and 4, the neighborhood is then
narrowed down to the von Neumann neighborhood and the counting is
repeated. Pixel with index 2 has three potential intersections in the von
Neumann neighborhood, hence it is selected as a true intersection. For
comparison, the pixel with index 4 has only one potential intersection
in the von Neumann neighborhood.

The last example illustrates a more complex case with a symmetrical
neighborhood and the same number of potential intersections both in
Moore’s and von Neumann’s neighborhood. In Fig. 8(c) pixels with
indices 1 and 2 have the same number of neighbors, and hence, both
are classified as true intersections (marked red). In this paper, we keep
both intersection skeletal pixels to segment the skeleton and ensure
the clear segmentation of the skeleton into branches. For this small
example, the skeleton will be segmented into 4 branches. However, for
counting the number of intersections, we choose one intersection as the
representative intersection.
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