
FBMM: Using the VFS for Extensibility in Kernel
Memory Management

Bijan Tabatabai
bijan@cs.wisc.edu

University of Wisconsin - Madison

Mark Mansi
markm@cs.wisc.edu

University of Wisconsin - Madison

Michael M. Swift
swift@cs.wisc.edu

University of Wisconsin - Madison

ABSTRACT

Modern memory hierarchies are increasingly complex, with
more memory types and richer topologies. Unfortunately
kernel memory managers lack the extensibility that many
other parts of the kernel use to support diversity. This makes
it difficult to add and deploy support for new memory con-
figurations, such as tiered memory: engineers must navigate
and modify the monolithic memory management code to
add support, and custom kernels are needed to deploy such
support until it is upstreamed.
We take inspiration from filesystems and note that VFS,

the extensible interface for filesystems, supports a huge vari-
ety of filesystems for different media and different use cases,
and importantly, has interfaces for memory management op-

erations such as controlling virtual-to-physical mapping and
handling page faults.
We propose writing memory management systems as

filesystems using VFS, bringing extensibility to kernel mem-
ory management. We call this idea File-Based Memory Man-
agement (FBMM). Using this approach, many recent memory
management extensions, e.g., tiering support, can be writ-
ten without modifying existing memory management code.
We prototype FBMM in Linux to show that the overhead of
extensibility is low (within 1.6%) and that it enables useful
extensions.

ACM Reference Format:

Bijan Tabatabai, Mark Mansi, and Michael M. Swift. 2023. FBMM:
Using the VFS for Extensibility in Kernel Memory Management .
In Workshop on Hot Topics in Operating Systems (HOTOS ’23), June

22ś24, 2023, Providence, RI, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3593856.3595908

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HOTOS ’23, June 22ś24, 2023, Providence, RI, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00

https://doi.org/10.1145/3593856.3595908

1 INTRODUCTION

In modern operating systems, the model of physical memory
is caches backed by main memory, which may be in multiple
NUMA nodes, which itself may be backed by a swap de-
vice. Linux, for example, provides a generic NUMA distance

metric [21]. However, with the introduction of CXL [22],
richer physical memory configurations such as tiered or dis-
aggregated memory and multiple memory types are gaining
popularity, but do not fit easily into that model. While oper-
ating systems are being modified to support these memory
configurations [12, 17], the changes are cumbersome because
memory management code is spread across many different
parts of the kernel and provides no extensibility support. For
example, transparent huge page support is spread across 18
source files.
This problem has two primary sources. First, Linux has

a limited abstraction of physical memory: a set of pages,
possibly split into NUMA nodes and/or backed by swap
space, which does not capture the rich variety of memory
types or the relationships between those memory types, such
as asymmetric read/write performance. Second, the Linux
kernel memorymanagement code is monolithic and provides
no extensibility to adapt mechanisms or policies for new
memory types and management practices; past work directly
modifies core Linux memory management code [10].

We observe that the VFS layer addresses a similar problem
for filesystems: all filesystems are accessed using generic
system calls, which then call the corresponding filesystem
code that can use workload- or device-specific policies and
mechanisms. This extensibility has lead to a flowering of
filesystems supporting widely varying devices and usages,
such as filesystems for non-volatile memory (e.g., PMFS),
flash storage (F2FS) or DRAM (RAMFS). Notably the VFS
layer provides interfaces for memory-mapped files that con-
trol the mapping of virtual addresses to data.
Many previous systems explored making memory man-

agement extensible [3, 11, 18, 23]. However, the concepts
for extensibility used in these systems, focus on application-
specific paging policies rather than new memory hardware,
and generally have not been adopted by Linux or other op-
erating systems.
To address this need, we propose that the kernel mem-

ory manager should be made extensible to allow new ways

1

HOTOS ’23, June 22ś24, 2023, Providence, RI, USA Bijan Tabatabai, Mark Mansi, and Michael M. Swift

of managing physical memory, virtual addresses, and page
movement; and that in Linux, the VFS filesystem interface
can be used for memory management extensions. Extensi-
bility should provide clean interfaces so that developers can
write new memory managers without modifying existing
code. In addition, it should allows memory managers to be
written as a separate module, allowing them to be deployed
without needing a custom kernel.

While the OS community is fond of designing new inter-
faces, we propose to instead use VFS as an extension interface

because it already exists and is good enough for many uses. It
may not provide every possible form of extension, but it has
sufficient power to support many recent memory manage-
ment modifications.

We call this design File-BasedMemoryManagement (FBMM).
With FBMM, memory managers are written as filesystems. Al-
locating/freeing memory corresponds to creating/extend-
ing and deleting/truncating a file. We term these memory-
management file systems (MMFSs). An MMFS can control
how its gets physical memory (e.g., reserved at boot, re-
quested from the kernel at some granularity), how and when
it is allocated (on map, on fault), and how allocations are
placed in physical memory.

FBMM supports two usage modes. To support unmodified
applications, FBMM allows specifying the default memoryman-
ager for a process, to which all requests for anonymous mem-
ory are passed. For finer-grained control or to allow different
memory managers for different data structures, applications
can also explicitly call an MMFS to request memory for the
structure. Precedent for this paradigm already exists in Linux
in HugeTLBFS, where memory backed by huge pages is al-
located by creating and mapping files in the filesystem, and
had a similar motivation: how to support huge pages without
complicating the existing memory management code [13].

In this work, wemotivate extensible memorymanagement
by showing that the current approach is unsustainable (Sec-
tion 2). We then describe the design of FBMM, and demonstrate
how it can be used to support proposed memory manage-
ment extensions currently implemented as modifications to
Linux kernel memory management (Section 3). The over-
head of this abstraction is small (Section 4): in our proof of
concept based on ext4 DAX, the throughput of Memcached
is within 1.6% compared to using normal Linux’s memory
management. We also use FBMM to build from scratch a func-
tional (but limited) tiered memory management system in
under 1500 lines of code.

2 MOTIVATION AND RELATED WORK

Unlike much of the kernel, memory management code is
still largely monolithic with few interfaces for extensibil-
ity. As a result, support for new memory management poli-
cies and mechanisms generally require wide-ranging and
invasive code changes. Making such changes is difficult: it
requires detailed knowledge of the existing memory man-
agement subsystem to identify all relevant places to change
and knowledge of the complex data structures and locking
protocols.

For example, support for transparent huge pages in Linux
is distributed across 18 files, and impacts wide ranging con-
cerns including page-fault handling, physical memory alloca-
tion, page table management, etc. Furthermore, the policies
controlling when to use huge pages are widely distributed,
increasing the likelihood of pathological behavior and long-
latency operations [14].

NewMemoryArchitectures Compute Express Link (CXL)
promises to simplify hardware support for new memory ar-
chitectures, such as heterogeneous or tiered memory. How-
ever, the non-extensible nature of the memory management
code complicates adding software support for these config-
urations. The existing abstraction of NUMA nodes can be
used by representing the slow memory tier as a CPU-less
node. However, prior work has shown this is suboptimal [17]
because the policy for NUMA migration is largely based on
attracting hot memory to the local node, while tiering often
migrates cold memory to slower memory devices. Meta’s
Transparent Page Placement (TPP) adds support for tiered
memory in Linux by modifying the NUMA system to better
fit its needs [17], but at the cost of modifying 22 files [16].
Similarly, support for hardware with configurable channel
mappings [24] also required kernel changes to provide page
allocators for different configurations of memory. An extensi-
ble interface for memory management could have simplified
each of these designs by keeping the implementation sepa-
rate from the rest of the memory management code.

Extensible Memory Management Making the memory
systemmore extensible is not a new idea.Mach [18], VINO [23],
Nemesis [9], and Krueger et al. [11] introduce systems that
allow applications to modify their paging behavior. SPIN [3]
allows applications to register callback functions on memory
management events for extensibility. However, both paging
and callbacks are not rich enough to describe many memory
configurations, like tiered memory, as they cannot be used
for asynchronous operations like hotness tracking and page
migration. HeMem [19] extends the memory system in a user
library that implements tiered memory, but this approach
lacks the control and information that would be allowed in
the kernel, such as access to LRU lists.

2

FBMM: Using the VFS for Extensibility in Kernel Memory Management HOTOS ’23, June 22ś24, 2023, Providence, RI, USA

Linux does provide limited extensibility in the memory
reclamation system. The shrinker interface allows kernel
modules with caches to be notified that they should release
memory [5]. The frontswap interface allows pages to be
swapped out to alternate media, such as compressed or re-
mote memory [1, 8]. Neither interface allows customization
of when or which pages are reclaimed, or where pages are
allocated.

Prior Successes The designers of NFS solved a similar
problem of extensibility in filesystems to allow for transpar-
ent access to remote files [20]. Their solution was to cre-
ate the Virtual Filesystem (VFS) layer that abstracts generic
filesystem system calls, like open or write, from the imple-
mentation of those operations that are specific to a filesystem
itself. The addition of the VFS layer makes it easier to create
new filesystems by implementing a set of callback functions
rather than modifying more general filesystem code. Today,
the Linux kernel has around 50 filesystem implementations
in-tree.

Beyond filesystems, VFS has been used to implement mem-
ory managers. Prior to support for transparent huge pages,
HugeTLBFS provided a filesystem based memory allocator
that enabled applications to explicitly request huge-page
backed memory. HugeTLBFS relies on the VFS as an exten-
sion mechanism, and requires only minor changes to existing
memory management code. This noninvasive approach was
essential for allowing HugeTLBFS into the kernel which
enabled Linux to support huge pages several years before
transparent huge pages were supported [13]. The success of
HugeTLBFS as a deployable huge-page mechanism points to
a potential solution to extensibility: use the power of the VFS
as an extension mechanism to support richer memory man-
agement mechanisms and policies and more varied memory
configurations. However, it also provides a lesson: extension
systems must be transparently usable by applications to pro-
vide real value, and HugeTLBFS had to be replaced because
it required application modifications (among other reasons).
To more easily extend the memory management system,

operating systems need an abstraction between the generic
memory management operations provide by the memory
manager, and the hardware- and policy-specific implemen-
tations of those operations.

3 DESIGN

We propose an extensible memory management architecture
for Linux. Our proposal has the following goals:

(1) New memory management systems modifying phys-
ical memory management, virtual address manage-
ment, or page movement can be written as standalone
pieces of software, i.e., without modifying the kernel
(extensibility).

App

FBMM
Shim

MMFS

2A

2B

DRAM Remote
DRAM

Page
Tables

1D

2C
3A

3B

Call to mmap/munmap

Create/delete file in
app's default MMFS

directory.

File creation/deletion
forwarded to default MMFS

1C

1B

1A

Page fault

Faulting MMFS notified

alloc/free
memory

Start async
page migration

Update
PTE

Persistent
Memory Swap ...

VFS

Figure 1: The overall architecture of FBMM.

(2) Applications can use a default memory manager with-
out code changes (transparency).

(3) Sophisticated applications can use multiple memory
managers on different data structures at the same time
(control).

We propose writing memory management systems as
filesystems: rather than allocating memory using a generic
kernel allocator, processes instead create andmap files through
VFS that provide access to memory. An application chooses
which memory manager to use by choosing where it creates
files. As a result, the memory for a process is made of files
that have been memory mapped into the process. We call
this paradigm File-Based Memory Management (FBMM).

Design Overview Figure 1 shows our design. The system
comprises the FBMM Shim (described below) and one or more
Memory-Management File Systems (MMFSs) that provide
different memory management mechanisms and policies. Ev-
ery process is assigned a MMFS to act as its default memory
manager (e.g., through an environment variable), but can
explicitly use any loaded MMFS.

In FBMM, applications map anonymous virtual memory, via
mmap with the MAP_ANON flag or brk, or unmap anonymous

memory, via munmap, the same way they do now 1A . How-
ever, the FBMM Shim intercepts these calls and either creates
and then maps a file in the application’s default MMFS when

3

HOTOS ’23, June 22ś24, 2023, Providence, RI, USA Bijan Tabatabai, Mark Mansi, and Michael M. Swift

mapping memory, or deletes the files associated with a mem-

ory range when unmapping memory 1B . We call such files
memory files. The creation/deletion of files invokes the VFS
layer, which forwards the operations to the relevant MMFS

1C . Finally, the MMFS updates its own metadata/bookkeep-
ing as needed and allocates (if using eager paging) or frees

the physical memory for the created/deleted file 1D .
The FBMM Shim provides transparency to applications by

routing memory management system calls to file operations
in the application’s default MMFS. However, an advanced
application may want a specific memory region to have dif-
ferent behavior than the default. For example, an application
might want a DMA buffer to be pinned in memory, while
the rest of its memory can be movable. An application can
accomplish this by manually creating a memory file in the
MMFS that has its desired behavior for a region and mapping
it to its address space. Note that when a memory file is cre-
ated manually, it is not tracked by the FBMM Shim. Therefore,
its memory is not freed automatically on a call to munmap.
Instead, the memory is freed when the file is closed, either
manually with the close syscall or by the kernel when the
application terminates.
On a page fault, the page fault handler directly invokes

VFS, using information about the faulting memory file 2A .
Like before, the VFS then notifies the MMFS owning the

faulty-containing file 2B . Then, the MMFS handles the page
fault in the manner it sees fit, such as allocating physical

memory for the fault 2C .
An MMFS can also execute asynchronously to MM events.

For example, a tiered memory MMFS can initiate page mi-

gration asynchronously without any outside prompting 3A .
Furthermore, an MMFS can utilize any useful function that
the existing Linux memory management code exposes. In
our tiered memory example, the MMFS uses relevant page
table walking and updating functions to update the physical

address of the migrated page 3B .

Interfaces A strict subset of callback functions defined by
the VFS layer suffices to define anMMFS. Themajor callbacks
defining an MMFS are listed in Table 1. With these interfaces,
a MMFS can control when memory is allocated (via mmap),
where memory is allocated in the virtual address space (get_
unmapped_area), what physical memory backs an allocation
(fallocate and fault). This is not an exhaustive list of the
callbacks an MMFS can implement, but are highlighted to
show the richness of the interface.

The functionality of a MMFS is not limited to the callbacks
provided by the VFS interface. Filesystems may do work
asynchronously via a kernel thread. For example, a MMFS
may perform page migration without prompting from the
VFS or a sysfs interface.

Additional, MMFSs can call existing Linux memory man-
agement code. For example, to allocate physical memory,
an MMFS can statically provision memory at boot time, or
can call get_free_pages to allocate physical memory dynam-
ically. An MMFS can also search a process’s vm_area_struct
trees, or modify its page tables directly. Generally, an MMFS
can use any helper functions and data structures exported
by existing memory management code.

Memory operations A MMFS is available for use when
it is mounted. All files created under its mount point allo-
cate memory using the MMFS. When a process starts, the
parent process or system administrator can specify a direc-
tory indicating the MMFS to use for anonymous memory
management. If no directory is specified, a system default is
used.
When a process calls brk or mmap with the MAP_ANON flag,

the FBMM Shim creates an unnamed temporary file in the
mount directory of the process’s assigned MMFS and maps
the file to the creating process’ address space. The FBMM Shim
also saves a reference to the file in a per-process tree indexed
by the virtual address range it maps. When a process termi-
nates or calls munmap, the FBMM Shim searches the process’s
tree of mapped files and deletes the files in the region be-
ing unmapped. This triggers the MMFS deletion procedure,
which frees the physical memory. Existing Linux functional-
ity handles faults to memory files: the kernel identifies and
invokes the MMFS corresponding to a memory region the
first time a page is touched.

Discussion FBMM meets our design goals in the following
ways:

(1) Extensibility: Like normal filesystems, a MMFS can
be written as a kernel module that does not require
kernel modifications. Through choice of when and
which pages to allocate, it controls physical memory.
Through mapping operations, it controls virtual ad-
dresses. Through asynchronous execution, it can per-
form background page movement.

(2) Transparency: The default memory manager for an
application can be changed by pointing the process
to the mount directory of a different MMFS without
changing the application.

(3) Control: Applications can manually create and manage
files in a different MMFS.

Design examples Our design is expressive enough to be
used to reimplement existing systems as MMFSs.
Tiering. For example, to implement TPP [17] as an MMFS
one needs to be able to choose whether a new page should
be allocated between near and far memory, measure which
pages are hot and cold, and migrate pages from near to far
memory and vice versa. The decision of where to place a
new page happens in callbacks responsible for allocating

4

FBMM: Using the VFS for Extensibility in Kernel Memory Management HOTOS ’23, June 22ś24, 2023, Providence, RI, USA

Table 1: Interfaces used by MMFSs.

Interface Defined in Called by Purpose

mmap (callback, not syscall) struct file_operations Application via
VFS

provide VFS a set of functions (struct
vm_operations_struct) to manage amap-
ping

get_unmapped_area struct file_operations mmap syscall allocate virtual address range

fault struct vm_operations_struct Page fault handler control the paging behavior of a process

fallocate struct file_operations mmap syscall
with MAP_

POPULATE flag

signal need to allocate physical memory

free_inode struct super_operations file deletion code signal need to free physical memory

physical memory, i.e. fault and fallocate. Hotness tracking
and migration are asynchronous tasks that do not corre-
spond to a callback and instead execute in a kernel thread.
Hotness tracking periodically scanning page table access
bits. Migration checks the page hotness information to de-
termine promotion/demotion candidates, copying memory
to its new home, and then updating the page table to reflect
the changes.
Address translation. Another example is ASAP [15] and Re-
dundant Memory Mappings [10], which propose changes to
how page tables are allocated and managed. When written as
an MMFS, the code to allocate the page tables specific to the
memory system would be placed inside the fault callback.
New policies. CBMM [14] proposes using cost-benefit models
to make memory management decisions, such as whether
or not to allocate a huge page, eagerly allocate a page before
its first access, or prezero some number of pages. In the orig-
inal implementation, calls to the cost-benefit models were
placed throughout the memory management code; however,
the implementation could instead be localized inside of an
MMFS. Huge page decisions are made inside of the fault

and fallocate callbacks. Eager paging is done inside the mmap
callback, where the model decides which pages of a mapping
should be preallocated. This is in contrast to mapping anony-
mous memory with the MAP_POPULATE flag which preallocates
every page. Prezeroing, an asynchronous operation, is done
by a kernel thread.

Limitations. One limitation of our design is that there is
no way for the MMFSs in the system to coordinate with each
other. Such coordination would be useful for dealing with
global memory pressure, for example. An MMFS can register
a "shrinker" to free its caches and swap out pages when the
kernel requires more memory; however, the kernel invokes
these shrinkers in an arbitrary order. It may be useful to have
a mechanism where the MMFSs could coordinate to decide
the ideal order to shrink them.
Another limitation is that our design does not consider

extensions to the memory management API exposed to ap-
plications, such as what is described in mmapx [2].

4 PROOF OF CONCEPT

We implemented the FBMM Shim in Linux kernel version 5.14
and created a simple proof of concept MMFS based on ext4

Direct Access (DAX). We compare the cost of memory oper-
ations against the standard kernel memory manager.

Implementation. We implemented the FBMM Shim as addi-
tional functionality within the Linux memory manager. It ex-
poses interfaces to the Linux memory manager to construct
its per-process tree of memory files and redirect anonymous
memory operations to the appropriate MMFS. The FBMM Shim
has four main functions it exposes to the rest of Linux:

• fbmm_create_new_file: Creates a new, unnamed tem-
porary file and returns a handle to that file to the caller.

• fbmm_register_new_file: Adds a newly mapped file to
the per-process tree of memory files, indexed by the
virtual address it is mapped to.

• fbmm_munmap: Invoked when a process calls munmap to
delete or truncate the memory file.

• fbmm_exiting_proc: Called when a process exits and
deletes any remaining files attributed to that process.

We made minor modifications the existing Linux memory
manager to support FBMM. When the mmap syscall is called
with the MAP_ANON flag, it creates a file via fbmm_create_new_

file and then maps that file. Then, after the new file was
mapped, it calls fbmm_register_new_file was made to track
the new file. The brk system call was similarly modified. The
munmap and exit system calls invoke fbmm_munmap and fbmm_

exiting_proc respectively to do cleanup.

Prototype MMFS. We built a proof of concept MMFS on
top of ext4 DAX, a variant of ext4 intended for persistent
memory and byte-addressable direct access to the storage
medium [6]. Instead of persistent memory, we back the ext4

DAX filesystem with DRAM reserved at boot time. We use
this rather than RAMFS, because ext4 implements its own
allocator rather than relying on the kernel page allocator.
In addition, as a DAX filesystem it bypasses the page cache
to allow applications to map file data directly to physical
location in memory. These implementation shortcuts allow

5

HOTOS ’23, June 22ś24, 2023, Providence, RI, USA Bijan Tabatabai, Mark Mansi, and Michael M. Swift

us to focus on the design and implementation of the FBMM

Shim and use the ext4 DAX filesystem without modification
to test and evaluate FBMM. We disable metadata and journal-
ing in ext4 DAX, as we do not need persistence. Because
ext4 DAX was designed for file storage, rather than memory
management, its performance gives an upper bounds of the
overhead of memory management via FBMM ś an optimized
MMFS would likely have lower overhead. We observed a few
cases where ext4 was faster than the kernel memory man-
ager, and made a handful of small optimizations to the Linux
memory management code to remove these anomalies.

Preliminary Results. We ran two sets of experiments
to measure the overhead of the FBMM Shim and VFS layer.
First, we compare how quickly Linux’s memorymanagement
system and FBMMwith ext4 allocate andmapmemory. Second,
we measure the performance of Memcached using the ext4
MMFS using YCSB [4] and compare against Linux on the
same workload. Our experiments were run on Linux 5.14 on
bare metal Cloudlab [7] xl170 machines with 64GB of ECC
DDR4, and ten 2.4GHz Intel Broadwell cores. Experiments
were run both with and without huge pages enabled.

The allocation benchmark allocates and populates a 32GB
memory region using the MAP_POPULATE flag.With huge pages,
the FBMM system is 2% slower than standard Linux due to
bookkeeping done by the DAX subsystem; the FBMM Shim adds
no overhead. With base pages, FBMM is 50% slower than Linux
due to the overhead in ext4 DAX of allocating single pages
ś an artifact of its design for file workloads not memory
management. A more optimized MMFS would remove this
overhead. For huge pages, the cost of allocating a block is
overshadowed by the time to zero memory.

For our second set of experiments, we looked at the through-
put of Memcached operations for read-only, read/write, and
insert-only workloads driven by YCSB, where all heap mem-
ory is allocated by the ext4 DAXMMFS. In all three workloads,
the FBMM system is within 1% of the performance of the stan-
dard Linux system when huge pages are used. Surprisingly,
when base pages are used, the FBMM system is within 1.6% of
the performance of Linux, indicating that the workload is
not very sensitive to page allocation cost.

Overall, despite the fact that our proof of concept is not at
all tuned for memory management, it does not significantly
degrade the end-to-end performance of Memcached.

Tiering Extension. To evaluate the extensibility and rich-
ness of our design, we are in the process of building a tiered
memory manager similar to TPP [17]: it seeks to place cold
data in a slower (more distant) tier of memory while keep-
ing hot memory close to the processor and is suitable for
CXL-based disaggregated memory systems.
Our implementation keeps a list of hot and cold pages of

allocated memory for both the fast and slow tiers of memory.

If there is adequate space in the fast tier when memory is
requested, the MMFS services the allocation with the fast
tier; otherwise, the allocation is serviced by the slow tier.
The MMFS adds the corresponding page to the hot list of
the page’s tier. Periodically, a kernel thread scans through
the hot and cold lists checking the page table access bits of
the pages. The same kernel thread monitors the amount of
free memory in the fast tier, and migrates pages to maintain
enough free memory.

Though not fully evaluated, our tieringMMFS is functional
and is able to dynamically detect and migrate hot/cold pages
to the appropriate fast/slowmemory. The systemwas created
as a standalone kernel module, and is only about 1500 lines of
C code in total, much of which is debugging and boilerplate
code for defining a filesystem.

5 CONCLUSION

Memory management extensibility has been a long standing
issue in operating systems research [3, 11, 18, 23]. However,
the memory management system in the Linux kernel pro-
vides few interfaces for extensibility. The emergence of new
memory technology and topologies like tiered and disaggre-
gated memory has put new pressure on this front. To solve
this problem, we propose using the extensibility provided
by VFS to create extensible memory management software.
Our prototype implementation demonstrates that the over-
head of invoking a file system can be low, and that the VFS
interface has the expressiveness for important extensions
like tiering.

ACKNOWLEDGEMENTS

This work was supported in part by PRISM, one of seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, and by NSF grants
CNS 1815656 and CNS 1900758.

REFERENCES
[1] Linux Kernel Documentation: Zswap. https://www.kernel.org/doc/

Documentation/vm/zswap.txt.

[2] Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Hum-

bel, Timothy Roscoe, and Daniel Schwyn. mmapx: Uniform memory

protection in a heterogeneous world. In Proceedings of the Workshop

on Hot Topics in Operating Systems, HotOS ’21, 2021.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,

D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and Perfor-

mance in the SPIN Operating System. In Proceedings of the 15th ACM

Symposium on Operating Systems Principles, SOSP ’95, 1995.

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.

In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC

’10, 2010.

[5] Jonathan Corbet. Smarter Shrinkers. https://lwn.net/Articles/550463/,

May 2013.

6

FBMM: Using the VFS for Extensibility in Kernel Memory Management HOTOS ’23, June 22ś24, 2023, Providence, RI, USA

[6] Tom Coughlan. Persistent Memory in Linux. https:

//www.snia.org/sites/default/files/PM-Summit/2017/presentations/

Coughlan_Tom_PM_in_Linux.pdf, 2017. SNIA Peristent Memory

Summit.

[7] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of

CloudLab. In 2019 USENIX Annual Technical Conference, USENIX ATC

’19, July 2019.

[8] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,

and Kang G. Shin. Efficient Memory Disaggregation with Infiniswap.

In 14th USENIX Symposium on Networked Systems Design and Imple-

mentation, NSDI ’17, 2017.

[9] Steven M Hand. Self-Paging in the Nemesis Operating System. In

Proceedings of the 3rd Symposium on Operating Systems Design and

Implementation, OSDI ’99, 1999.

[10] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal,

Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.

Swift, and Osman Ünsal. RedundantMemoryMappings for Fast Access

to Large Memories. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture, ISCA ’15, June 2015.

[11] Keith Krueger, David Loftesness, Amin Vahdat, and Thomas Anderson.

Tools for the Development of Application-Specific Virtual Memory

Management. In Proceedings of the 8th Annual Conference on Object-

Oriented Programming Systems, Languages, and Applications, OOPSLA

’93, 1993.

[12] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,

Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In

Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 2,

ASPLOS 2023, 2023.

[13] AdamGLitke. łTurning the Pagež onHugetlb Interfaces. In Proceedings

of the Linux Symposium, page 277, 2007.

[14] Mark Mansi, Bijan Tabatabai, and Michael M Swift. CBMM: Financial

Advice for Kernel MemoryManagers. In 2022 USENIX Annual Technical

Conference, USENIX ATC ’22, 2022.

[15] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris

Grot. PrefetchedAddress Translation. In Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’52,

2019.

[16] Hasan Al Maruf. [PATCH 0/5] Transparent Page Placement for

Tiered-Memory. https://lore.kernel.org/lkml/cover.1637778851.git.

hasanalmaruf@fb.com/.

[17] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,

Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-

hury, Shobhit Kanaujia, and Prakash Chauhan. TPP: Transparent Page

Placement for CXL-Enabled Tiered-Memory. In Proceedings of the

28th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Volume 3, ASPLOS 2023,

2023.

[18] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert

Baron, David Black, William Bolosky, and Jonathan Chew. Machine-

Independent VirtualMemoryManagement for Paged Uniprocessor and

Multiprocessor Architectures. In Proceedings of the Second International

Conference on Architectual Support for Programming Languages and

Operating Systems, ASPLOS II, 1987.

[19] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon

Peter. HeMem: Scalable Tiered Memory Management for Big Data

Applications and Real NVM. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, SOSP ’21, 2021.

[20] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob

Lyon. Design and Implementation of the Sun Network Filesystem. In

Proceedings of the summer 1985 USENIX conference, 1985.

[21] Steve Scargall. Linux NUMADistances Explained. https://stevescargall.

com/2022/11/03/linux-numa-distances-explained/, November 2022.

[22] Debendra Das Sharma. Compute Express Link®: An open industry-

standard interconnect enabling heterogeneous data-centric computing.

In 2022 IEEE Symposium on High-Performance Interconnects, HOTI,

2022.

[23] Christopher A Small and Margo I Seltzer. Vino: An Integrated Platform

for Operating System and Database Research. Technical Report TR-

30-94, Harvard University, 1994.

[24] Jialiang Zhang, Michael M. Swift, and Jing Jane Li. Software-Defined

Address Mapping: A Case on 3D Memory. In Babak Falsafi, Michael

Ferdman, Shan Lu, and Thomas F. Wenisch, editors, Proceedings of

the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’22, 2022.

7

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Design
	4 Proof of Concept
	5 Conclusion
	References

