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Abstract—State estimation is critical to maintaining system
stability and reliability as it enables real-time monitoring of
the power system operation and facilitates fault detection,
minimizing the risk of power outages and improving overall
system performance. This paper presents a state estimation
method based on graph neural networks, aiming to improve time
efficiency and extended observability. Graph neural networks can
aggregate information and dependencies from voltage and power
measurement at the critical buses, making them more effective
for state estimation on non-grid structured data. The IEEE 123-
bus system is used as a case study to evaluate comprehensively
the state estimation performance. The proposed model provides
a better performance for mapping measurement data with states
compared to other neural networks.

Index Terms—State estimation, cyber-physical system, graph
neural network, deep learning, spatio-temporal.

I. INTRODUCTION

As a highly complex cyber-physical system, a smart grid is
composed of power electronic devices, a power infrastructure
and a communication network. Phasor Measurement Units
(PMUs) initially collect physical data before sending it to
Supervisory Control and Data Acquisition Systems (SCADA).
The measurement data is then sent by the communication
network to the application level, where the power applications
are processed and assessed [1]. The main objective is to deter-
mine the state of the system based on the measurement data,
ensuring the trustworthiness of the cyber-physical pipeline.

Power system state estimation (PSSE) is highly critical in
this pipeline, particularly for energy operation and central
control since its functionality is directly used to process mea-
surements and extract accurately the bus voltage magnitudes
and angles of power systems [2]. Thus, the reliability of the
measurement data plays an important role in ensuring the
proper management of smart grids.

Data from micro phasor measuring units (PMU) is analyzed
by using many state estimate schemes proposed in literature
[3]-[11]. In general, these schemes can be categorized into
two groups: model-based methods and data-driven methods.
Model-based techniques are developed from physical equa-
tions which are relationships between power system mea-
surements and states. Conventionally, the state-space model
equations of power networks can be studied to provide better
awareness for the static state estimation (SSE) or dynamic state
estimation (DSE) algorithms [12]. DSE can track state values
well, even in the load-change cases and identify bad data using
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a weighted least square or chi-square method. However, DSE
is only reliant on precise dynamic system models, which may
not always be observable in some situations [13]. Therefore,
with the rapid advancement of state estimation techniques,
large research groups are shifting to data-driven approaches.

Data-driven methods have recently emerged as an appealing
research direction because they do not rely on physical equa-
tions to perform state estimation [2]. The primary trend in
these methods involves leveraging artificial neural networks
to describe either part of or the entire power system. This
is achieved through training vast amounts of data collected
from different sources. These ANN-based techniques capture
functional patterns from power systems and encode them as
node parameters. This method enhances the robustness of state
estimation against inaccurate measurements by leveraging
either a neural network or a parallel distributed processing
model. In addition to ANNs, kernel-weighted neighbors and
kernel function methods have also been utilized for grid
current-state estimation [2].

The accuracy of state estimation relies on both the type
of model and the reliability of measurements used in the
estimation process. Many models that have been investigated
in several papers include multi-layer perception (MLP) [8]-
[10], Bayesian deep learning for static states estimation [14],
[15], recurrent neural networks (RNN) with gated-based or
long short term memory (LSTM) for state estimation and
forecasting [16], convolutional neural networks (CNN) [17],
generative adversarial networks and auto-encoders [18]. In
fact, a dynamic power system, which includes nodes and
edges, has a structure as same as a graph but most mentioned
networks may not work well with power system information
with specific connections among nodes. In other words, the
ANNs are limited in their ability to capture the complex
relationships and dependencies that exist in graphs [19]. Thus,
it is necessary to explore a new model that be superior to
ANNSs in handling graph-structured data.

This paper proposes a state estimation scheme that utilizes
load-change cases and voltage measurements. These data can
be recorded from various sources such as yPMU (micro Phasor
Measurement Unit), smart meters, and advanced metering de-
vices. The proposed approach aims to enhance time efficiency
and improve robustness and provide a comprehensive analysis
of the results when we compare the capability of three net-
works including Multi-layer Perceptron (MLP), Convolutional
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Neural Network (CNN), and Graph Convolutional Network
(GCN) for state estimation.

The contributions of this paper are twofold: the proposed
scheme can track well changes of state values including
voltage magnitude and phase angle in load-change cases; com-
prehensive studies and comparisons among different neural
networks such as Multi-layer Perception, Convolutional Neural
Network, and Graph Convolutional Network are also provided.

Particularly, the proposed network could incorporate tradi-
tional model-based methods for state observability improve-
ment [20]. However, this procedure is not explored in this pa-
per. The remaining sections are structured as follows. Section
II introduces Graph Neural Network and other models con-
sidering spatial-temporal data. Section III describes the IEEE
123-bus distribution system, data collection, pre-processing,
and a series of case studies to demonstrate the effectiveness
of the proposed scheme. The results are discussed in Section
IV and Section V concludes the paper.

II. NEURAL NETWORK STRUCTURE

In this section, we describe the overall architecture and
information flow of neural network-based estimators. Also
discussed are the loss functions and back-propagation.

A. Multiple Layer Perceptron

Multiple layer perceptron is an artificial neural network
that consists of multiple layers of interconnected nodes. Its
input layer receives the values of the input features and then
multiplies them with the weights of hidden layers. Similarly,
the outputs of hidden layers are transferred to the final layer
for regression. Every unit in one layer is connected to every
unit in the next layer, which makes a fully connected network.
The determination of the number of hidden layers relies on the
dimension and complexity of the dataset. A back-propagation
learning technique is used to update the weights. In this
manner, the MLP model can establish a mapping between
the input and the output data by approximating an activation
function [10]. This can be effectively achieved after training
the model with the entire dataset.

B. Convolutional Neural Network

Convolutional Neural Network (CNN), a kind of deep artifi-
cial neural network, has been widely applied to deal with high-
dimensional data based on their shared-weights architecture.
The architecture of CNN usually consists of convolutional
layers, pooling layers, and fully-connected layers. The first
layer is typically a convolutional layer that applies a filter to
obtain local information. This is followed by a pooling layer
that reduces the spatial size of the feature map. The output
from these layers is then passed through fully connected layers
for classification or regression [21]. Regarding the power
system state estimation, CNN is used to analyze the complex
and high-dimensional data from PMUs, and extract useful
features that can be used for state estimation.
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Fig. 1. A diagram of the proposed state estimation scheme

C. Graph Convolutional Network

The GCN structure includes convolutional layers for feature
extraction as shown in Fig. 1. These layers are utilized to
extract the spatial-temporal information among bus voltages in
the power system. By employing a global average pooling, the
features are aggregated from the nodes, and trained to predict
state values [22]. The mathematical formulation of operational
layers is simplified as follows.

hiyi1y = o(D™2AD™ 2 hiy W) (1)

Where A = A+ 1T ~ denotes the adjacent matrix, D is
the degree matrix from the matrix A, I is the identity
matrix. W(;y represents the weights of layer [, and o is a non-
linear activation function. The formulation involves in stacking
several layers, utilizing a localized first-order approximation

of spectral graph convolutions.

III. GCN-BASED STATE ESTIMATION IMPLEMENTATION

Electric power distribution systems are generally organized
in a graph type. It is intuitive and logical to represent these
systems as graphs. However, previous investigations neglect
spatial characteristics of power systems such as network con-
nectivity and globality due to their subdivision into multiple
partitions or grids. Despite the application of 2-D convolutions
on grids, the ability to capture spatial information is still
limited due to compromises in data modeling. Therefore, a
graph neural network is directly utilized on data structured as
graphs, facilitating the extraction of significantly meaningful
patterns in the spatial domain.

A. Investigated Power System

The proposed network methods are performed on the IEEE
123-bus feeder system. The system consists of overhead and
underground lines, unbalanced loads, four voltage regulators,
and shunt capacitor banks. The nominal voltage of the system
is 4.16 kV. The regulator parameters and loads are configured
following ones of the IEEE 123 Node XENDEE Test Cases.

TABLE 1
123-BUS FEEDER DATASET

Parameter Buses Count
1,7, 8, 13, 18, 21, 23, 25, 28, 29, 30,
Measure 35, 40, 42, 44, 47, 49, 50, 51, 52, 53, 37

54, 55, 57, 60, 67, 72, 78, 81, 89, 91,
93, 97, 101, 105, 108, 197
62, 63, 64, 65, 76, 77, 80,
State 82, 83, 86, 87, 98, 99, 100, 14
Total load change cases: 4000 samples | Train: 3200 | Test: 800
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Fig. 2. The IEEE 123-bus feeder system

The measurements are recorded in three-phase buses dis-
tributed throughout the system as shown in Fig. 2. The bus
voltages are sampled at a frequency of 1 kHz using instrument
transformers at the corresponding measurement devices. Opal-
RT, a real-time power system analysis tool, is utilized to
simulate the microgrid system. The load-change datasets under
various scenarios are produced to train and test the proposed
state estimation scheme.

The graph datasets are constructed from 51 three-phase
buses of the IEEE 123-bus system. To calculate load values for
three-phase buses, the loads of single-phase buses are taken
into account. The information of 37 three-phase buses and
14 three-phase buses are considered as measurements and
states, respectively. This decision aims to test the system’s
observability first. Future research should investigate the best
choice. Besides, we concentrate on the three-phase measured
voltage as inputs to examine the effectiveness of the state
estimation in the beginning. The extra single-phase inclusion
in the unbalanced distribution system will also be conducted
in future work.

B. Data Collecting Procedure

A Python script with RT-LAB API is written and run with
RT-LAB to automatically collect the operational data of the
IEEE 123 node feeder and store them in a specific folder. The
collected data from Opal RT are instant voltage and current
values of the main nodes in .mat format [23]. Moreover, other
Python scripts are written to process the raw data in. mat
format to the ready-to-use data in .pt format with Graph data
class for convenient usage and storage.

C. Dataset Preparation

The dataset for a graph neural network is defined as an or-
ganized collection of a graph, node features, and label vectors
[24], [25]. D = {(Gl,:vl,yl),(GQ,xQ,yz),...(G”,:L‘”,y”)},
where the vertex sets is unchanged V* = V.Vi € {1,..n},
i is the graph data index. The node feature matrices X* €
RNXFXT contain three dimensions: the number of nodes
| V| = N that contain measurement information, the number
of node features I, and the time duration 7. The state vector of
the graph network within the time duration 7' is y* € REXPXT
with L as the number of state information-containing nodes
and P as the number of state signals. The node feature
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Fig. 3. Training MSE curve versus the number of training epochs

matrix contains measured voltages of the three-phase buses.
At the buses without measuring voltages, the missing node
features are inserted by zeros. The voltage is collected from
the Opal-RT-Power Sytem simulator in an interval of 500
milliseconds with a load-change case in between. Table I
summarizes these parameters for data collection. All of the
4000 data are captured and processed under random load
scenarios. Subsequently, the train set is collected from 3200
graphs and the rest 800 graphs are gathered as the test set.
In addition, data inputs are normalized by the MinMaxScaler
function of the Sklearn library.

D. Response to State Changes

In real-time power system operation, the states are always
changing due to the variation of load and generation. The
state estimation methods are expected to capture accurately
the relatively quick dynamics of state changes [9]. In this case,
a load-change scenario is designed to test the performance
of state estimation. The active and reactive power values are
changed randomly from 70% to 130% of default loads at
the 0.1%" second. Therefore, the actual states during the load
change fluctuate transiently.

E. Configuration of Training Model

The graph datasets are trained with the Stochastic Gradient
Descent (SGD) optimizer under the mean square error for
estimation. To address the over-fitting problem, the dropout
layers are included in hidden layers [26]. The batch size
serves as a crucial parameter that significantly impacts both
the execution time and model accuracy. The large batch size
leads to a precise estimation of the gradient but the time
consumption increases remarkably [27]. For graph datasets,
the batch size should be chosen appropriately because each
graph already encompasses the number of all nodes. Notably,
hyper parameters are determined relatively since the training
process is executed on a computer equipped with an Intel
Core 17-8700 processor, 32 GB RAM, and an NVIDIA GTX
1080 GPU. The deep learning framework utilized for the study
is PyTorch, specifically leveraging the PyTorch Geometric
library, which is tailored for GNN model tasks [28].

To measure and compare the performance of methods, Mean
Absolute Errors (MAE), Mean Squared Errors (MSE) are
adopted. the significance of learning rate is crucial in achieving
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Fig. 4. Estimation of bus 62 in topology change case.

an accurate result for regression. During the training process,
the learning rate initially began at 0.05 for the first 10 epochs
and was subsequently adjusted to 0.01. Fig. 3 indicates the
training process with a learning rate transition from 0.05 to
0.01 after 40 epochs. Mean Squared Error is saturated around
0.0122 when keeping a learning rate of 0.01.

IV. RESULTS AND ANALYSIS

The state estimation results obtained using Graph Convolu-
tional Network are compared with other networks, including
Multilayer Perceptron and Convolutional Neural Network. The
GCN approach generally achieved better prediction results
than traditional machine learning models. The details of these
neural network structures are outlined in Table II, which indi-
cates the functional layers and the sizes of the corresponding
tensors. To ensure dimension compatibility between layers,
reshaping and flattening commands are employed.

A. Comparison of Network Structures

Initially, a comparison was conducted among the different
neural network structures to evaluate the network capability.
The number of trainable parameters of MLP is significantly
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(b) Estimation of phase angle

Fig. 5. Estimation of bus 77 in topology load-change case.

higher than other network structures. This provides an expla-
nation for the MLP’s ability to get the remarkable accuracy
shown in Table III.

Mean Square Error and Mean Absolute Error during the
500-millisecond window are summarized in Table III. As a
result of its ability to track the dynamics of load changes,
the GCN-based estimator may have a smaller estimation
error during transients. Additionally, comparing the training
time required to achieve approximately 0.025 MSE loss, we
observed that GCN, CNN, and MLP models took 347(s),
422(s), and 875(s) respectively, indicating that GCN exhibits
greater time efficiency compared to the other models.

TABLE II
COMPARISON OF NEURAL NETWORK STRUCTURES
MLP CNN GCN

Input | [500x612] Input [500x612] | Input | [S00x51x12]
Dense [612] CNN+Pooling | 51x[30x3] | GCN [612x512]
Dense [512] CNN+Pooling | 30x[30x3] | GCN [512x256]
Dense [512] Dense [120] Dense [256]
Dense [512] Dense [60] Dense [256]
Dense [14] Dense [14] Dense [14]

Fig. 4 and Fig. 5 are two examples showing the estimation
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of bus 62 and bus 77 during the load-change case. The
predicted voltage and phase angle can be estimated well by
GCN from the original steady state along the ramping of the
load. Looking at these figures, we can see that the voltage
magnitude deviates from the actual state much more than the
phase angle does. This is because the magnitude variation is
substantially more than the phase variation between samples.
Besides, the training process is performed for each voltage
magnitude and phase angle separately to boost the accuracy
due to the large number of output and nodes in hidden layers.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES

Model Criteria

MAE MSE
MLP 0.0362/ 0.0385/ 0.0356 | 0.0161/ 0.0172/ 0.0168
CNN 0.0352/ 0.0369/ 0.0334 | 0.0173/ 0.0171/ 0.0172
GCN 0.0258/ 0.0252/ 0.0267 | 0.0146/ 0.0122/ 0.0138

B. Discussion

An advantage of GNN compared to other data-driven ap-
proaches is its ability to reflect non-Euclidean data in the
power network model. However, the pure data-reliant model
requires extensive amounts of data to be accurate. This is
unrealistic as real-world data, especially with rare abnormal
events, are limited. To enhance the precision and robustness of
state estimation under the circumstances of imbalanced data or
zero-day attacks, future work could be applied to the physical
equations of the power system on the graph network.

V. CONCLUSIONS

In this paper, we proposed an innovative solution to state
estimation in power distribution systems. The datasets for
studying load-change cases in the IEEE 123-bus feeder system
were generated using the Opal-RT simulation and can be
leveraged for future research purposes. The numerical results
show that the GCN model outperforms other state-of-the-art
methods on the same dataset, demonstrating its great potential
for exploiting spatio-temporal patterns from the graph datasets.
Additionally, it enables faster training, improved convergence,
reduced parameter count, as well as flexibility and scalability
by hyper-parameter tuning techniques. In the future, we will
modify the deep learning framework to specifically integrate
the system’s physical information. Moreover, the effect of
reduced measurements and noises should also be examined.
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