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Abstract-State estimation is critical to maintaining system 
stability and reliability as it enables real-time monitoring of 
the power system operation and facilitates fault detection, 
minimizing the risk of power outages and improving overall 
system performance. This paper presents a state estimation 
method based on graph neural networks, aiming to improve time 
efficiency and extended observability. Graph neural networks can 
aggregate information and dependencies from voltage and power 
measurement at the critical buses, making them more effective 
for state estimation on non-grid structured data. The IEEE 123-
bus system is used as a case study to evaluate comprehensively 
the state estimation performance. The proposed model provides 
a better performance for mapping measurement data with states 
compared to other neural networks. 

ln.dex Terms-State estimation, cyber-physical system, graph 
neural network, deep learning, spatio-temporal. 

I. INTRODUCTION 

As a highly complex cyber-physical system, a smart grid is 
composed of power electronic devices, a power infrastructure 
and a communication network. Phasor Measurement Units 
(PMU s) initially collect physical data before sending it to 
Supervisory Control and Data Acquisition Systems (SCADA). 
The measurement data is then sent by the communication 
network to the application level, where the power applications 
are processed and assessed [1]. The main objective is to deter­
mine the state of the system based on the measurement data, 
ensuring the trustworthiness of the cyber-physical pipeline. 

Power system state estimation (PSSE) is highly critical in 
this pipeline, particularly for energy operation and central 
control since its functionality is directly used to process mea­
surements and extract accurately the bus voltage magnitudes 
and angles of power systems [2]. Thus, the reliability of the 
measurement data plays an important role in ensuring the 
proper management of smart grids. 

Data from micro phasor measuring units (PMU) is analyzed 
by using many state estimate schemes proposed in literature 
[3]-[11]. In general, these schemes can be categorized into 
two groups: model-based methods and data-driven methods. 
Model-based techniques are developed from physical equa­
tions which are relationships between power system mea­
surements and states. Conventionally, the state-space model 
equations of power networks can be studied to provide better 
awareness for the static state estimation (SSE) or dynamic state 
estimation (DSE) algorithms [12]. DSE can track state values 
well, even in the load-change cases and identify bad data using 
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a weighted least square or chi-square method. However, DSE 
is only reliant on precise dynamic system models, which may 
not always be observable in some situations [13]. Therefore, 
with the rapid advancement of state estimation techniques, 
large research groups are shifting to data-driven approaches. 

Data-driven methods have recently emerged as an appealing 
research direction because they do not rely on physical equa­
tions to perform state estimation [2]. The primary trend in 
these methods involves leveraging artificial neural networks 
to describe either part of or the entire power system. This 
is achieved through training vast amounts of data collected 
from different sources. These ANN-based techniques capture 
functional patterns from power systems and encode them as 
node parameters. This method enhances the robustness of state 
estimation against inaccurate measurements by leveraging 
either a neural network or a parallel distributed processing 
model. In addition to ANNs, kernel-weighted neighbors and 
kernel function methods have also been utilized for grid 
current-state estimation [2]. 

The accuracy of state estimation relies on both the type 
of model and the reliability of measurements used in the 
estimation process. Many models that have been investigated 
in several papers include multi-layer perception (MLP) [8]­
[10], Bayesian deep learning for static states estimation [14], 
[15], recurrent neural networks (RNN) with gated-based or 
long short term memory (LSTM) for state estimation and 
forecasting [16], convolutional neural networks (CNN) [17], 
generative adversarial networks and auto-encoders [18]. In 
fact, a dynamic power system, which includes nodes and 
edges, has a structure as same as a graph but most mentioned 
networks may not work well with power system information 
with specific connections among nodes. In other words, the 
ANN s are limited in their ability to capture the complex 
relationships and dependencies that exist in graphs [19]. Thus, 
it is necessary to explore a new model that be superior to 
ANNs in handling graph-structured data. 

This paper proposes a state estimation scheme that utilizes 
load-change cases and voltage measurements. These data can 
be recorded from various sources such as µPMU (micro Phasor 
Measurement Unit), smart meters, and advanced metering de­
vices. The proposed approach aims to enhance time efficiency 
and improve robustness and provide a comprehensive analysis 
of the results when we compare the capability of three net­
works including Multi-layer Perceptron (MLP), Convolutional 
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Input

GCN layers

Output

Neural Network (CNN), and Graph Convolutional Network 
(GCN) for state estimation. 

The contributions of this paper are twofold: the proposed 
scheme can track well changes of state values including 
voltage magnitude and phase angle in load-change cases; com­
prehensive studies and comparisons among different neural 
networks such as Multi-layer Perception, Convolutional Neural 
Network, and Graph Convolutional Network are also provided. 

Particularly, the proposed network could incorporate tradi­
tional model-based methods for state observability improve­
ment [20]. However, this procedure is not explored in this pa­
per. The remaining sections are structured as follows. Section 
II introduces Graph Neural Network and other models con­
sidering spatial-temporal data. Section III describes the IEEE 
123-bus distribution system, data collection, pre-processing, 
and a series of case studies to demonstrate the effectiveness 
of the proposed scheme. The results are discussed in Section 
IV and Section V concludes the paper. 

II. NEURAL NETWORK STRUCTURE 

In this section, we describe the overall architecture and 
information flow of neural network-based estimators. Also 
discussed are the loss functions and back-propagation. 

A. Multiple Layer Perceptron 

Multiple layer perceptron is an artificial neural network 
that consists of multiple layers of interconnected nodes. Its 
input layer receives the values of the input features and then 
multiplies them with the weights of hidden layers. Similarly, 
the outputs of hidden layers are transferred to the final layer 
for regression. Every unit in one layer is connected to every 
unit in the next layer, which makes a fully connected network. 
The determination of the number of hidden layers relies on the 
dimension and complexity of the dataset. A back-propagation 
learning technique is used to update the weights. In this 
manner, the MLP model can establish a mapping between 
the input and the output data by approximating an activation 
function [10]. This can be effectively achieved after training 
the model with the entire dataset. 

B. Convolutional Neural Network 

Convolutional Neural Network (CNN), a kind of deep artifi­
cial neural network, has been widely applied to deal with high­
dimensional data based on their shared-weights architecture. 
The architecture of CNN usually consists of convolutional 
layers, pooling layers, and fully-connected layers. The first 
layer is typically a convolutional layer that applies a filter to 
obtain local information. This is followed by a pooling layer 
that reduces the spatial size of the feature map. The output 
from these layers is then passed through fully connected layers 
for classification or regression [21]. Regarding the power 
system state estimation, CNN is used to analyze the complex 
and high-dimensional data from PMUs, and extract useful 
features that can be used for state estimation. 
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Fig. 1. A diagram of the proposed state estimation scheme 

C. Graph Convolutional Network 

The GCN structure includes convolutional layers for feature 
extraction as shown in Fig. 1. These layers are utilized to 
extract the spatial-temporal information among bus voltages in 
the power system. By employing a global average pooling, the 
features are aggregated from the nodes, and trained to predict 
state values [22]. The mathematical formulation of operational 
layers is simplified as follows. 

(1) 

Where A = A+ IN denotes the adjacent matrix, .b is 
the degree matrix from the matrix A, IN is the identity 
matrix. Wei) represents the weights of layer l, and (J" is a non­
linear activation function. The formulation involves in stacking 
several layers, utilizing a localized first-order approximation 
of spectral graph convolutions. 

III. GCN-BASED STATE ESTIMATION IMPLEMENTATION 

Electric power distribution systems are generally organized 
in a graph type. It is intuitive and logical to represent these 
systems as graphs. However, previous investigations neglect 
spatial characteristics of power systems such as network con­
nectivity and globality due to their subdivision into multiple 
partitions or grids. Despite the application of 2-D convolutions 
on grids, the ability to capture spatial information is still 
limited due to compromises in data modeling. Therefore, a 
graph neural network is directly utilized on data structured as 
graphs, facilitating the extraction of significantly meaningful 
patterns in the spatial domain. 

A. Investigated Power System 

The proposed network methods are performed on the IEEE 
123-bus feeder system. The system consists of overhead and 
underground lines, unbalanced loads, four voltage regulators, 
and shunt capacitor banks. The nominal voltage of the system 
is 4.16 kV. The regulator parameters and loads are configured 
following ones of the IEEE 123 Node XENDEE Test Cases. 

TABLE I 
123-BUS FEEDER DATASET 

Parameter Buses Count 
1, 7, 8, 13, 18, 21, 23, 25, 28, 29, 30, 

Measure 35, 40, 42, 44, 47, 49, 50, 51, 52, 53, 37 
54, 55, 57, 60, 67, 72, 78, 81, 89, 91, 

93, 97, 101, 105, 108, 197 
62, 63, 64, 65, 76, 77, 80, 

State 82, 83, 86, 87, 98, 99, 100, 14 
Total load change cases: 4000 samples I Train: 3200 I Test: 800 
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Fig. 2. The IEEE 123-bus feeder system 

The measurements are recorded in three-phase buses dis­
tributed throughout the system as shown in Fig. 2. The bus 
voltages are sampled at a frequency of 1 kHz using instrument 
transformers at the corresponding measurement devices. Opal­
RT, a real-time power system analysis tool, is utilized to 
simulate the microgrid system. The load-change datasets under 
various scenarios are produced to train and test the proposed 
state estimation scheme. 

The graph datasets are constructed from 51 three-phase 
buses of the IEEE 123-bus system. To calculate load values for 
three-phase buses, the loads of single-phase buses are taken 
into account. The information of 37 three-phase buses and 
14 three-phase buses are considered as measurements and 
states, respectively. This decision aims to test the system's 
observability first. Future research should investigate the best 
choice. Besides, we concentrate on the three-phase measured 
voltage as inputs to examine the effectiveness of the state 
estimation in the beginning. The extra single-phase inclusion 
in the unbalanced distribution system will also be conducted 
in future work. 

B. Data Collecting Procedure 
A Python script with RT-LAB API is written and run with 

RT-LAB to automatically collect the operational data of the 
IEEE 123 node feeder and store them in a specific folder. The 
collected data from Opal RT are instant voltage and current 
values of the main nodes in .mat format [23] . Moreover, other 
Python scripts are written to process the raw data in. mat 
format to the ready-to-use data in .pt format with Graph data 
class for convenient usage and storage. 

C. Dataset Preparation 
The dataset for a graph neural network is defined as an or­

ganized collection of a graph, node features, and label vectors 
[24], [25]. D = {(Gl,xl,yl),(G2,x2,y2), ... (Gn,xn,yn)}, 
where the vertex sets is unchanged Vi = V, 'vi E { 1, ... n}, 
i is the graph data index. The node feature matrices Xi E 
JRNxFxT contain three dimensions: the number of nodes 
I VI = N that contain measurement information, the number 
of node features F, and the time duration T. The state vector of 
the graph network within the time duration Tis yi E JRLxPxT 

with L as the number of state information-containing nodes 
and P as the number of state signals. The node feature 
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Fig. 3. Training MSE curve versus the number of training epochs 

matrix contains measured voltages of the three-phase buses. 
At the buses without measuring voltages, the missing node 
features are inserted by zeros. The voltage is collected from 
the Opal-RT-Power Sytem simulator in an interval of 500 
milliseconds with a load-change case in between. Table I 
summarizes these parameters for data collection. All of the 
4000 data are captured and processed under random load 
scenarios. Subsequently, the train set is collected from 3200 
graphs and the rest 800 graphs are gathered as the test set. 
In addition, data inputs are normalized by the MinMaxScaler 
function of the Sklearn library. 
D. Response to State Changes 

In real-time power system operation, the states are always 
changing due to the variation of load and generation. The 
state estimation methods are expected to capture accurately 
the relatively quick dynamics of state changes [9]. In this case, 
a load-change scenario is designed to test the performance 
of state estimation. The active and reactive power values are 
changed randomly from 70% to 130% of default loads at 
the 0.1 th second. Therefore, the actual states during the load 
change fluctuate transiently. 

E. Configuration of Training Model 
The graph datasets are trained with the Stochastic Gradient 

Descent (SGD) optimizer under the mean square error for 
estimation. To address the over-fitting problem, the dropout 
layers are included in hidden layers [26]. The batch size 
serves as a crucial parameter that significantly impacts both 
the execution time and model accuracy. The large batch size 
leads to a precise estimation of the gradient but the time 
consumption increases remarkably [27]. For graph datasets, 
the batch size should be chosen appropriately because each 
graph already encompasses the number of all nodes. Notably, 
hyper parameters are determined relatively since the training 
process is executed on a computer equipped with an Intel 
Core i7-8700 processor, 32 GB RAM, and an NVIDIA GTX 
1080 GPU. The deep learning framework utilized for the study 
is PyTorch, specifically leveraging the PyTorch Geometric 
library, which is tailored for GNN model tasks [28]. 

To measure and compare the performance of methods, Mean 
Absolute Errors (MAE), Mean Squared Errors (MSE) are 
adopted. the significance of learning rate is crucial in achieving 
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Fig. 4. Estimation of bus 62 in topology change case. 

an accurate result for regression. During the training process, 
the learning rate initially began at 0.05 for the first 10 epochs 
and was subsequently adjusted to 0.01. Fig. 3 indicates the 
training process with a learning rate transition from 0.05 to 
0.01 after 40 epochs. Mean Squared Error is saturated around 
0.0122 when keeping a learning rate of 0.01. 

IV. RESULTS AND ANALYSIS 

The state estimation results obtained using Graph Convolu­
tional Network are compared with other networks, including 
Multilayer Perceptron and Convolutional Neural Network. The 
GCN approach generally achieved better prediction results 
than traditional machine learning models. The details of these 
neural network structures are outlined in Table II, which indi­
cates the functional layers and the sizes of the corresponding 
tensors. To ensure dimension compatibility between layers, 
reshaping and flattening commands are employed. 

A. Comparison of Network Structures 

Initially, a comparison was conducted among the different 
neural network structures to evaluate the network capability. 
The number of trainable parameters of MLP is significantly 
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Fig. 5. Estimation of bus 77 in topology load-change case. 

higher than other network structures. This provides an expla­
nation for the MLP's ability to get the remarkable accuracy 
shown in Table ill. 

Mean Square Error and Mean Absolute Error during the 
500-rnillisecond window are summarized in Table ill. As a 
result of its ability to track the dynamics of load changes, 
the GCN-based estimator may have a smaller estimation 
error during transients. Additionally, comparing the training 
time required to achieve approximately 0.025 MSE loss, we 
observed that GCN, CNN, and MLP models took 347(s), 
422(s), and 875(s) respectively, indicating that GCN exhibits 
greater time efficiency compared to the other models. 

TABLE II 
COMPARISON OF NEURAL NETWORK STRUCTURES 

MLP CNN GCN 
Input [500x612] Input [500x612] Input [500x51 X 12] 
Dense [612] CNN+Pooling 51x[30x3] GCN [612x512] 
Dense [512] CNN+Pooling 30x[30x3] GCN [512x256] 
Dense [512] Dense [120] Dense [256] 
Dense [512] Dense [60] Dense [256] 
Dense [14] Dense [14] Dense [14] 

Fig. 4 and Fig. 5 are two examples showing the estimation 
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of bus 62 and bus 77 during the load-change case. The 
predicted voltage and phase angle can be estimated well by 
GCN from the original steady state along the ramping of the 
load. Looking at these figures, we can see that the voltage 
magnitude deviates from the actual state much more than the 
phase angle does. This is because the magnitude variation is 
substantially more than the phase variation between samples. 
Besides, the training process is performed for each voltage 
magnitude and phase angle separately to boost the accuracy 
due to the large number of output and nodes in hidden layers. 

TABLE ill 
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES 

Model Criteria 
MAE MSE 

MLP 0.0362/ 0.0385/ 0.0356 0.0161/ 0.0172/ 0.0168 
CNN 0.0352/ 0.0369/ 0.0334 0.0173/ 0.0171/ 0.0172 
GCN 0.0258/ 0.0252/ 0.0267 0.0146/ 0.0122/ 0.0138 

B. Discussion 

An advantage of GNN compared to other data-driven ap­
proaches is its ability to reflect non-Euclidean data in the 
power network model. However, the pure data-reliant model 
requires extensive amounts of data to be accurate. This is 
unrealistic as real-world data, especially with rare abnormal 
events, are limited. To enhance the precision and robustness of 
state estimation under the circumstances of imbalanced data or 
zero-day attacks, future work could be applied to the physical 
equations of the power system on the graph network. 

V. CONCLUSIONS 

In this paper, we proposed an innovative solution to state 
estimation in power distribution systems. The datasets for 
studying load-change cases in the IEEE 123-bus feeder system 
were generated using the Opal-RT simulation and can be 
leveraged for future research purposes. The numerical results 
show that the GCN model outperforms other state-of-the-art 
methods on the same dataset, demonstrating its great potential 
for exploiting spatio-temporal patterns from the graph datasets. 
Additionally, it enables faster training, improved convergence, 
reduced parameter count, as well as flexibility and scalability 
by hyper-parameter tuning techniques. In the future, we will 
modify the deep learning framework to specifically integrate 
the system's physical information. Moreover, the effect of 
reduced measurements and noises should also be examined. 
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